中考数学专题复习模拟演练:函数基础知识

合集下载

中考数学模拟题汇总《一次函数》专项练习(附答案)

中考数学模拟题汇总《一次函数》专项练习(附答案)

中考数学模拟题汇总《一次函数》专项练习(附答案)一、选择题1.若函数y=(k﹣1)x+b+2是正比例函数,则( )A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠1,b=22.下列函数:①y=16x;②y=-4x;③y=3-12x;④y=3x2﹣2;⑤y=x2﹣(x﹣3)(x+2);⑥y=6x.其中,是一次函数的有( ).A.5个B.4个C.3个D.2个3.经过以下一组点可以画出函数y=2x图象的是( )A.(0,0)和(2,1)B.(1,2)和(-1,-2)C.(1,2)和(2,1)D.(-1,2)和(1,2)4.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=( )A.2B.﹣2C.4D.﹣45.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<36.一次函数y1=kx+b与y2=x+a的图象如图所示.则下列结论:①k<0;②a>0;③当x<3时,y1<y2,错误的个数是( )A.0B.1C.2D.37.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是( ).A.(0,﹣2)B.(32,0) C.(8,20) D.(12,12)8.在平面直角坐标系中,将直线l1:y=﹣3x﹣1平移后,得到直线l2:y=﹣3x+2,则下列平移方式正确的是( )A.将l1向左平移1个单位 B.将l1向右平移1个单位C.将l1向上平移2个单位 D.将l1向上平移1个单位9.下图是温度计的示意图,左边的刻度表示摄氏温度,右边的刻度表示华氏温度,华氏温度y(℉)与摄氏温度x(℃)之间的一次函数表达式为( )A.y=95x+32 B.y=x+40 C.y=59x+32 D.y=59x+3110.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为( )A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1311.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是( )A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y= (50-2x)(0<x<50)D.y= (50-x)(0<x<25)12.对于函数y=﹣2x+5,下列表述:①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x每增加1,y的值减少2;⑤该图象向左平移1个单位后的函数表达式是y=﹣2x+4.正确的是( )A.①③B.②⑤C.②④D.④⑤二、填空题13.点(0.5,y1),(2,y2)是一次函数y=﹣0.5x﹣3图像上的两点,则y1y2.(填“>”、“=”或“<”)14.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.15.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的解析式是y=-2x+4,则直线BC的解析式为_________________16.一次函数y= -4x+12的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .17.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2﹣k1)x+b2﹣b1>0的解集为_________.18.如图,矩形ABCD边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD周长分成2:1两部分,则x值为.三、解答题19.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.20.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数 y=kx+b的图象与x轴的交点是A(a,0),求a的值.21.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=32x的图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.23.学校为奖励在艺术节系列活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共1800件,其中购买乙种奖品的件数不超过甲种奖品件数的2倍,学校分别购买甲、乙两种奖品多少件才能使总费用最小?最小费用是多少元?24.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1与直线y=kx+4与y轴所围成的△ABC的面积等于;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x<-1,求k的取值范围.25.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,直角坐标系内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值,并写出此时点E的坐标.参考答案1.B2.C3.B4.B5.D6.C7.C 8.B 9.A. 10.A 11.D 12.C. 13.答案为:>; 14.答案为:m <4且m ≠1 15.答案为:y=12x+4.16.答案为:(3,0),(0,12),18. 17.答案为:x <3 18.答案为:±23.19.解:(1)将x =2,y =﹣3代入y =kx ﹣4, 得﹣3=2k ﹣4,解得k=12.故一次函数的解析式为y=12x-4.(2)将y=12x-4的图象向上平移6个单位得y=12x+2,当y =0时,x =﹣4,故平移后的图象与x 轴交点的坐标为(﹣4,0). 20.解:(1)由题意知解得∴k ,b 的值分别为1,2. (2)由(1)得y =x +2.∴当y =0时,x =﹣2,即a =﹣2.21.解:(1)∵点P(2,n)在正比例函数y =32x 的图象上,∴n =32×2=3.把点P 的坐标(2,3)代入y =﹣x +m ,得 3=﹣2+m , ∴m =5.即m=5,n=3.(2)由(1)知,一次函数为y=﹣x+5,令x=0,得y=5,∴点B的坐标为(0,5),∴S△POB =12×5×2=5.22.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3.∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=-1.(2)当x=a时,yC =2a+1.当x=a时,yD=4-a.∵CD=2,∴|2a+1-(4-a)|=2,解得a=13或53.23.解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得:.答:甲种奖品的单价为40元/件,乙种奖品的单价为30元/件.(2)设购买甲种奖品m件,则购买乙种奖品(1800﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴1800﹣m≤2m,∴m≥600.依题意,得:w=40m+30(1800﹣m)=10m+54000,∵10>0,∴w随m值的增大而增大,∴当学习购买600件甲种奖品、1200件乙种奖品时,总费用最小,最小费用是60000元.24.解:(1)①∵直线y=-2x+1过点B,点B的横坐标为-1,∴y=2+1=3,∴B(-1,3),∵直线y =kx +4过B 点, ∴3=-k +4,解得:k =1; ②∵k =1,∴一次函数解析式为:y =x +4, ∴A(0,4), ∵y =-2x +1, ∴C(0,1), ∴AC =4-1=3,∴△ABC 的面积为12×1×3=32.(2)∵直线y =kx +4(k ≠0)与x 轴交于点E(x 0,0),-2<x 0<-1, ∴当x 0=-2,则E(-2,0),代入y =kx +4得:0=-2k +4, 解得:k =2,当x 0=-1,则E(-1,0),代入y =kx +4得:0=-k +4, 解得:k =4,故k 的取值范围是:2<k <425.解:(1)如图1中,由题意知点A 、点C 的坐标分别为(﹣2,0)和(0,2) 设直线l 的函数表达式y =kx +b(k ≠0),经过点A(﹣2,0)和点C(0,2), 得解得,∴直线l 的解析式为y =x +2. 设点P 的坐标为(m ,m +2), 由题意得12×2×|m +2|=3, ∴m =1或m =﹣5.∴P(1,3),P ′(﹣5,﹣3).(2)如图2中,连接OD 交直线l 于点E ,则点E 为所求,此时|BE +DE|=|OE +DE|=OD ,OD 即为最大值.设OD所在直线为y=k1x(k1≠0),经过点D(﹣1,2),∴2=﹣k1,∴k1=﹣2,∴直线OD为y=﹣2x,由解得,∴点E的坐标为(﹣23,43),又∵点D的坐标为(﹣1,2),∴由勾股定理可得OD=5.即|BE+DE|的最小值为5.(3)如图3中,∵O与B关于直线l对称,∴BE=OE,∴|BE﹣DE|=|OE﹣DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE﹣DE|的值最大,最大值为OD.∵D(﹣1,﹣2),∴直线OD的解析式为y=2x,OD=5,由,解得,∴点E(2,4),∴|BE﹣D′E|的最大值为5此时点E的坐标为(2,4).。

中考总复习函数综合--知识讲解

中考总复习函数综合--知识讲解

中考总复习函数综合--知识讲解函数是数学中的基本概念之一,也是数学建模中常用的工具。

在中考中,函数综合是一个重点复习内容,掌握了函数的性质和应用,能够帮助我们解决各种与函数相关的问题。

下面,我将给大家介绍一些函数的基本知识和应用。

一、函数的定义与性质函数是将一个集合的每个元素映射到另一个集合的元素上的规则。

在数学中,常常用一个公式或者图像来表示函数。

1.定义域和值域:函数中输入的元素称为自变量,输出的元素称为因变量。

自变量取值的范围称为定义域,而因变量取值的范围称为值域。

2.奇偶性:如果对于定义域内的任意x,函数满足f(x)=f(-x),则称函数为偶函数;如果对于所有定义域内的x,函数满足f(x)=-f(-x),则称函数为奇函数。

3.单调性:如果对于定义域内的任意x1和x2,若x1<x2,则有f(x1)<f(x2),则称函数为增函数;如果对于定义域内的任意x1和x2,若x1<x2,则有f(x1)>f(x2),则称函数为减函数。

二、函数的表示方法1.函数关系式:函数可以用关系式表示,如y=f(x)。

2.函数图像:函数的图像是将自变量和因变量的对应关系用平面直角坐标系上的点表示出来的。

3.函数表:函数的输入和输出可以用表的形式表示出来。

三、函数的运算与性质1.四则运算:对于两个函数f(x)和g(x),我们可以进行加、减、乘、除的运算。

即:f(x)+g(x):将两个函数对应位置上的值相加;f(x)-g(x):将两个函数对应位置上的值相减;f(x)*g(x):将两个函数对应位置上的值相乘;f(x)/g(x):将两个函数对应位置上的值相除。

2.复合函数:复合函数是指将一个函数作为另一个函数的自变量。

如:f(g(x))表示先对x进行函数g(x)的运算,然后再对得到的结果进行函数f(x)的运算。

3.反函数:如果一个函数f(x)的值域与定义域相反,即对于f(x)的每一个值y,存在唯一的x使得f(x)=y,则称f(x)的反函数为f(x)的逆。

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。

中考数学专题复习课件第13讲函数函数基础知识专题练习

中考数学专题复习课件第13讲函数函数基础知识专题练习

D、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点 ,故D不符合题意; 故选:A.
7.下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是( A)
A.
B.
C.
D.
【解析】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它 对应,所以y是x的函数,故A符合题意; B、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所 以y不是x的函数,故B不符合题意; C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所 以y不是x的函数,故C不符合题意; D、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,
16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘 合部分宽为5cm.
(1)根据图,将表格补充完整.
白纸
张数
1
2
3
4
5
……
纸条 40
长度
110
145
……
(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?
(3)你认为多少张白纸粘合起来总长度可能为2022cm吗?为什么?
当x≥200时,B方案比A方案便宜12元,故(2)正确; 当y=60时,A:60=0.4x-18,∴x=195, B:60=0.4x-30,∴x=225,故(3)正确; 当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10 元, 将yA=40或60代入,得x=145分或195分,故(4)错误; 故选:C.
三.函数关系式
9.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d的关系,下列关系式中能表示这种关系的是( C )
d/cm

中考数学函数复习-经典知识点总结

中考数学函数复习-经典知识点总结

中考数学专题复习-函数知识点1、平面直角坐标系与点的坐标一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。

点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。

知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P1的坐标为(x ,-y );关于y 轴的对称轴点P2的坐标为(-x ,y );关于原点的对称点P3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a | 点P (a ,b )到原点的距离等于:22b a + 知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。

知识点5、已知函数解析式,判断点P (x ,y )是否在函数图像上的方法:若点P (x ,y )的坐标适合函数解析式,则点P 在其图象上;若点P 在图象上,则P (x ,y )的坐标适合函数解析式.知识点6、列函数解析式解决实际问题设x 为自变量,y 为x 的函数,先列出关于x ,y 的二元方程,再用x 的代数式表示y ,最后写出自变量的取值范围,要注意使自变量在实际问题中有意义。

知识点7、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。

中考总复习函数综合--知识讲解

中考总复习函数综合--知识讲解

中考总复习函数综合--知识讲解函数是数学中一个非常重要的概念,也是中考数学中经常考察的内容之一、掌握了函数的概念和基本性质,可以帮助我们更好地解决实际问题。

下面我们就来系统地介绍一下函数的相关知识。

一、函数的定义在数学中,函数的定义是这样的:设有两个集合A和B,如果对于A中的每一个元素x,都有唯一确定的元素y属于B与之对应,则称y是x的函数值,记作y=f(x),其中,x是自变量,y是因变量,f是函数的符号,表示从集合A到集合B的映射。

函数可以用图象、列表、公式等不同形式来指代。

例如,y=x+2就是一个函数的表达式,表示对于集合A中的每一个元素x,都有唯一的元素y满足y=x+2、其他形式的函数也可以通过类似的方式来解释。

二、函数的性质1.定义域和值域:对于函数f(x),A中的元素x的集合称为函数的定义域,B中的元素y的集合则称为函数的值域。

2.单调性:对于函数f(x),如果对于定义域内的任意x1和x2,当x1<x2时,有f(x1)<f(x2),则函数f(x)是严格递增的;当f(x1)>f(x2)时,函数f(x)是严格递减的。

3.最值:对于函数f(x),如果定义域内存在一个元素x0,使得对于任意的x,都有f(x)>=f(x0),则称f(x0)为函数f(x)的最大值;同理,如果对于任意的x,都有f(x)<=f(x0),则称f(x0)为函数f(x)的最小值。

4.奇偶性:对于函数f(x),如果对于定义域内的任意x,都有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意的x,都有f(-x)=-f(x),则函数f(x)是奇函数。

三、常见函数的形式1. 一次函数:一次函数是指坐标系中满足y=kx+b的函数。

其中,k表示斜率,b表示截距。

一次函数的图象是一条直线,斜率k的大小决定了直线的倾斜程度,截距b的大小决定了直线和y轴的交点位置。

2. 二次函数:二次函数是指坐标系中满足y=ax^2+bx+c的函数。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

中考函数必备知识点总结

中考函数必备知识点总结

中考函数必备知识点总结一、函数的基本概念1. 函数的定义:函数是一种对应关系,对于每一个自变量(输入),都有且只有一个因变量(输出)与之对应。

2. 自变量和因变量:在函数中,自变量是函数的输入,通常用x表示;因变量是函数的输出,通常用y表示。

3. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

4. 函数的图象:函数的图象是自变量和因变量的对应关系在坐标系中的展示,通常是一条曲线或者一组点。

二、函数的表示与表达1. 函数的表示方法:函数可以用等式、表格、图象和文字描述等方式表达。

2. 函数的公式:函数常常用公式来表示,常见的函数公式包括线性函数、二次函数、指数函数、对数函数等。

3. 函数的计算:可以通过函数的公式来计算函数在特定自变量取值下的因变量的取值。

三、函数的性质和运算1. 函数的奇偶性:通过函数的图象或者公式可以判断一个函数的奇偶性,常见的有奇函数和偶函数。

2. 函数的单调性:函数的单调性指的是在定义域内,函数的增减性质。

3. 函数的对称性:函数的对称性通常指的是基于对称中心对称、对称轴对称或者周期对称等性质。

4. 函数的运算:函数之间可以进行加减乘除运算,也可以进行复合运算。

四、函数的应用1. 函数的应用范围非常广泛,例如在数学、物理、经济等多个领域都有函数的应用。

2. 函数的实际问题:函数可以用来描述和解决实际问题,例如速度、加速度、成本、收入等各种实际问题都可以通过函数来描述。

本文总结了中考函数的必备知识点,包括了函数的基本概念、函数的表示与表达、函数的性质与运算、函数的应用等方面。

学生在备考中考数学时,应该重点掌握这些知识点,通过练习和应用来提高自己的函数应用能力,从而取得更好的考试成绩。

中考总复习:函数综合--知识讲解(基础).doc

中考总复习:函数综合--知识讲解(基础).doc

中考总复习:函数综合—知识讲解(基础)责编:常春芳【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m 为何值时,它是一次函数. (2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小? (3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0. 【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限, y 随x 的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0), 与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题2】 【变式】已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k <. 【解析】由反比例函数的性质可知,1y x=的图象在第一、三象限, ∴当一次函数y=kx+1与反比例函数图象无交点时,k <0,解方程组11y kx y x =+⎧⎪⎨=⎪⎩,得kx 2+x-1=0, 当两函数图象没有公共点时,△<0,即1+4k <0, 解得1-4k <, ∴两函数图象无公共点时,1-4k <. 故答案为:1-4k <. 【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3 【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号. 【答案】C . 【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确; ②当x=1时,y <0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【高清课程名称: 函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题3】【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=, ∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n abc a c c c =++=+--+=->0. ∴ 0mn <. ② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。

广州中考数学专题复习:函数

广州中考数学专题复习:函数

初三数学讲义函数知识点一:一次函数1) 一次函数y kx b =+的图象 k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0, b <0 图像的大致位置经过象限 第 象限第 象限第 象限第 象限性质 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而2)已知直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.3.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤94.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .5.如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。

(1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作图痕迹,不写作法)。

知识点二.:反比例函数1)反比例函数xky =的图像 k 、b 的符号 k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质 y 随x 的增大而 y 随x 的增大而A.2x y =B. 1-=x yC. x y 43=D. xy 1= 3. 已知函数xy 2=,当x =1时,y 的值是________ 4.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、(1-2)两点。

若y 1<y 2,则x 的取值范围是( )。

(A )、x <-1或x >-1 (B )、 x <-1或0<x <1(C )、-1<x <0或0<x <1 (D )、-1<x <0或x >15.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. (3)求△AOB 的面积.6.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x−3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.132.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm3.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁4.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ∠CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.95C.65D.15.将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.函数y= √x−1的自变量x的取值范围是()A.x=1B.x≠1C.x≥1D.x≤17.在函数y=√x+2x中,自变量x的取值范围为( )A.x≥-2B.x<-2且x≠0C.x≥-2且x≠0D.x≠0.8.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,89.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180 A.140B.138C.148D.16010.下列各曲线中表示y是x的函数的是()A.B.C.D.11.下列函数中自变量x的取值范围是x>1的是().A.y=1√x−1B.y=√x−1C.y=1√x−1D.y=1√1−x12.习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,8二、填空题13.一棵树现在高60cm,每个月长高2cm,x月之后这棵树的高度为hcm,则h关于x的函数解析式为.14.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.15.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是.,则自变量x的取值范围是.16.已知函数y= √2x+1x−217.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∠x轴.直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度y与平移的距离x的函数图象如图2所示,那么平行四边形ABCD的面积为.18.甲、乙两地相距360km,一辆货车从甲地以60km/ℎ的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.三、综合题19.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系(2)A与B比较,速度快;(3)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(4)15分钟内B能否追上A?为什么?(5)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?20.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤,图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为;(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.21.已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.22.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,沙沙一共行驶了多少米?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?24.2022年3月23日“天宫课堂”第二课开讲.传播普及空间科学知识,激发了广大青少年不断追求“科学梦”的热情.小明在周末从家骑自行车到晋中市科技馆探索科技的奥秘,他骑行了一段时间后,在某路口等待红绿灯,待绿灯亮起后继续向科技馆方向骑行,在快到科技馆时突然发现钥匙不见了,于是他着急地原路返回,在刚刚等红绿灯的路口处找到了钥匙,使继续前往科技馆.小明离科技馆的距离(m)与离家的时间(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)小明家到晋中市科技馆的距离是m;(2)小明等待红绿灯所用的时间为min;(3)图中点C表示的意义是;(4)小明在整个途中,哪个时间段骑车速度最快?,最快速度是m/min.(5)小明在整个途中,共行驶了m.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】h=60+2x 14.【答案】100 15.【答案】时间 16.【答案】x≥﹣12且x≠217.【答案】12 18.【答案】(3,180) 19.【答案】(1)直线l 1(2)B(3)由题意可得k 1、k 2的实际意义是分别表示快艇B 的速度和可疑船只的速度 S 1=0.5t ,S 2=0.2t+5; (4)15分钟内B 不能追上A理由:当t =15时,S 2=0.2×15+5=8,S 1=0.5×15=7.5 ∵8>7.5∴15分钟内B 不能追上A ; (5)B 能在A 逃入公海前将其拦截 理由:当S 2=12时,12=0.2t+5,得t =35 当t =35时,S 1=0.5×35=17.5∵17.5>12∴B能在A逃入公海前将其拦截.20.【答案】(1)(7,0);y=-150x+1050(2)解:设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150−x)斤根据题意得:y=8x+12(150−x)=−4x+1800∵甲种方式的数量不低于乙种方式∴x≥150−x∴x≥75而−4<0∴y随x的增大而减小∴x=75时,y最大为−4×75+1800=1500答:该超市卖完全部糕点销售总额的最大值是1500元.21.【答案】(1)解:如下图:(2)2(2.1到1.8之间都正确);该函数有最大值(其他符合题意性质都可以).22.【答案】(1)解:根据图象,学校的纵坐标为1500,小明家的纵坐标为0故沙沙家到学校的路程是1500米(2)解:根据图象,12≤x≤14时,直线最陡故沙沙在12分钟到14分钟最快,最快的速度是1500−60014−12=450米/分(3)解:根据题意,沙沙在书店停留的时间为从8分到12分,12-8=4故沙沙在书店停留了4分钟.(4)解:读图可得:沙沙共行驶了1200+600+900=2700米.23.【答案】(1)解:∵对于每一个摆动时间t,都有一个唯一的ℎ的值与其对应∴变量h是关于t的函数。

2024中考数学专题过关检测专题10 一次函数的核心知识点精讲(讲义)(解析版)

2024中考数学专题过关检测专题10 一次函数的核心知识点精讲(讲义)(解析版)

专题10 一次函数的核心知识点精讲1、理解函数的意义,通过认识自变量与因变量之间的因果关系培养函数思想;2、掌握一次函数的定义,会用待定系数法求解析式,理解其图像的性质;3、理解一次函数与方程及不等式的关系,学会利用图像解决相关问题。

【题型1:一次函数的图像和性质】【典例1】(2023•益阳)关于一次函数y=x+1,下列说法正确的是( )A.图象经过第一、三、四象限B.图象与y轴交于点(0,1)C.函数值y随自变量x的增大而减小D.当x>﹣1时,y<0【答案】B【解答】解:∵一次函数y=x+1中,k>0,b>0,∴图象经过第一、二、三象限,故A不正确;当x=0时,y=1,∴图象与y轴交于点(0,1),故B正确;∵一次函数y=x+1中,k>0,∴函数值y随自变量x的增大而增大,故C不正确;∵当x=﹣1时,y=0,函数值y随自变量x的增大而增大,∴当x>﹣1时,y>0,故D不正确;故选:B.1.(2023•长沙)下列一次函数中,y随x的增大而减小的函数是( )A.y=2x+1B.y=x﹣4C.y=2x D.y=﹣x+1【答案】D【解答】解:在一次函数y=2x+1中,∵2>0,∴y随着x增大而增大,故A不符合题意;在一次函数y=x﹣4中,∵1>0,故B不符合题意;在一次函数y=2x中,∵2>0,∴y随着x增大而增大,故C不符合题意;在一次函数y=﹣x+1中,∵﹣1<0,∴y随着x增大而减小,故D符合题意,故选:D.2.(2023•临沂)对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是( )A.k>0B.kb<0C.k+b>0D.k=﹣b【答案】C【解答】解:∵一次函数y=kx+b(k≠0)的图象不经过第二象限,∴b≤0,又∵函数图象经过点(2,0),∴图象经过第一、三、四象限,∴k>0,k=﹣b,∴kb<0,∴k+b=b<0,∴错误的是k+b>0.故选:C.3.(2022•兰州)若一次函数y=2x+1的图象经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是( )A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】A【解答】解:∵一次函数y=2x+1中,k=2>0,∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图象上的两个点,﹣3<4,∴y1<y2.故选:A.【题型2:确定一次函数的解析式】【典例2】(2022•陕西)在测浮力的实验中,将一长方体石块由玻璃器皿的上方,向下缓慢移动浸入水里的过程中,弹簧测力计的示数F拉力(N)与石块下降的高度x(cm)之间的关系如图所示.(1)求AB所在直线的函数表达式;(2)当石块下降的高度为8cm时,求此刻该石块所受浮力的大小.(温馨提示:当石块位于水面上方时,F拉力=G重力;当石块入水后,F拉力=G重力﹣F浮力.)【答案】(1)F拉力=﹣x+;(2)当石块下降的高度为8cm时,该石块所受浮力为N.【解答】解:(1)设AB所在直线的函数表达式为F拉力=kx+b,将(6,4),(10,2.5)代入得:,解得,∴AB所在直线的函数表达式为F拉力=﹣x+;(2)在F拉力=﹣x+中,令x=8得F拉力=﹣×8+=,∵4﹣=(N),∴当石块下降的高度为8cm时,该石块所受浮力为N.1.(2023•鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(﹣2,﹣1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )A.y=x+1B.y=x﹣1C.y=2x+1D.y=2x﹣1【答案】A【解答】解:∵“帅”位于点(﹣2,﹣1)可得出“马”(1,2),设经过棋子“帅”和“马”所在的点的一次函数解析式为y=kx+b,∴,解得,∴y=x+1,故选:A.2.(2021•乐山)如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB 的面积平分的直线l2的解析式为( )A.y=x B.y=x C.y=x D.y=2x【答案】D【解答】解:如图,当y=0,﹣2x+4=0,解得x=2,则A(2,0);当x=0,y=4,则B(0,4),∴AB的中点坐标为(1,2),∵直线l2把△AOB面积平分∴直线l2过AB的中点,设直线l2的解析式为y=kx,把(1,2)代入得2=k,解得k=2,∴l2的解析式为y=2x,故选:D.3.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为( )A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4【答案】A【解答】解:过D点作DH⊥x轴于H,如图,∵点A(3,0),B(0,4).∴OA=3,OB=4,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵∠OBA+∠OAB=90°,∠OAB+∠DAH=90°,∴∠ABO=∠DAH,在△ABO和△DAH中,,∴△ABO≌△DAH(AAS),∴AH=OB=4,DH=OA=3,∴D(7,3),设直线BD的解析式为y=kx+b,把D(7,3),B(0,4)代入得,解得,∴直线BD的解析式为y=﹣x+4.故选:A.【题型3:一次函数与方程不等式的关系】【典例3】(2023•丹东)如图,直线y=ax+b(a≠0)过点A(0,3),B(4,0),则不等式ax+b>0的解集是( )A.x>4B.x<4C.x>3D.x<3【答案】B【解答】解:∵直线y=ax+b(a≠0)过点A(0,3),B(4,0),当x<4时,y>0,∴不等式ax+b>0的解集为x<4.故选:B.【典例4】(2022•鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<0)的图象与直线y=x都经过点A(3,1),当kx+b<x时,根据图象可知,x的取值范围是( )【答案】A【解答】解:由图象可得,当x>3时,直线y=x在一次函数y=kx+b的上方,∴当kx+b<x时,x的取值范围是x>3,故选:A.【典例5】(2022•梧州)如图,在平面直角坐标系中,直线y=2x+b与直线y=﹣3x+6相交于点A,则关于x,y的二元一次方程组的解是( )A.B.C.D.【答案】B【解答】解:由图象可得直线的交点坐标是(1,3),∴方程组的解为.故选:B.1.(2022•南通)根据图象,可得关于x的不等式kx>﹣x+3的解集是( )【答案】D【解答】解:根据图象可知:两函数图象的交点为(1,2),所以关于x的一元一次不等式kx>﹣x+3的解集为x>1,故选:D.2.(2021•贺州)直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为( )A.x=0B.x=1C.x=2D.x=3【答案】C【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(2,0),∴方程ax+b=0的解是x=2,故选:C.3.(2022•扬州)如图,函数y=kx+b(k<0)的图象经过点P,则关于x的不等式kx+b>3的解集为x<﹣1 .【答案】x<﹣1.【解答】解:由图象可得,当x=﹣1时,y=3,该函数y随x的增大而减小,∴不等式kx+b>3的解集为x<﹣1,故答案为:x<﹣1.4.(2022•西宁)如图,直线y1=k1x与直线y2=k2x+b交于点A(1,2).当y1<y2时,x的取值范围是x <1 .【答案】x<1.【解答】解:∵直线y1=k1x与直线y2=k2x+b交于点A(1,2),∴当y1<y2时,x的取值范围是x<1,故答案为:x<1.【题型4:应用一次函数解决最有方案问题】【典例6】(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A种食材单价是每千克38元,B种食材单价是每千克30元;(2)A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:,解得:,∴A种食材单价是每千克38元,B种食材单价是每千克30元;(2)设A种食材购买m千克,B种食材购买(36﹣m)千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,∵m≥2(36﹣m),∴24≤m<36,∵k=8>0,∴w随m的增大而增大,∴当m=24时,w有最小值为:8×24+1080=1272(元),∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.1.(2023•呼和浩特)学校通过劳动教育促进学生树德、增智、强体、育美全面发展,计划组织八年级学生到“开心”农场开展劳动实践活动.到达农场后分组进行劳动,若每位老师带38名学生,则还剩6名学生没老师带;若每位老师带40名学生,则有一位老师少带6名学生.劳动实践结束后,学校在租车总费用2300元的限额内,租用汽车送师生返校,每辆车上至少要有1名老师.现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量/(人/辆)4530租金/(元/辆)400280(1)参加本次实践活动的老师和学生各有多少名?(2)租车返校时,既要保证所有师生都有车坐,又要保证每辆车上至少有1名老师,则共需租车6辆;(3)学校共有几种租车方案?最少租车费用是多少?【答案】(1)老师有6名,学生有234名;(2)6;(3)学校共有两套租车方案,最少费用为2160元.【解答】解:(1)设老师有x名,学生有y名,根据题意,列方程组为:,解得,答:老师有6名,学生有234名.(2)∵每辆车上至少有1名老师,∴汽车总数不能大于6辆,∵要保证240名师生有车坐,汽车总数不能少于(取整数6)辆,综合可知汽车总数为6辆.故答案为:6.(3)设租用甲客车x辆,则租车费用y(元)是x的函数,即:y=400x+280(6﹣x),整理得:y=120x+1680,∵学校在租车总费用2300元的限额内,租用汽车送师生返校,∴120x+1680≤2300,∴x≤,即x≤5.要保证240人有车坐,x不能小于4,所以有两种租车方案:方案一:租4辆甲种客车,2辆乙种客车;方案二:租5辆甲种客车,1辆乙种客车;∵y随x的增大而增大,∴当x=4时,y最小,y=120×4+1680=2160.答:学校共有两套租车方案,最少费用为2160元,2.(2023•湘西州)2023年“地摊经济”成为社会关注的热门话题,“地摊经济”有着启动资金少、管理成本低等优点,特别是在受到疫情冲击后的经济恢复期,“地摊经济”更是成为许多创业者的首选,甲经营了某种品牌小电器生意,采购2台A种品牌小电器和3台B种品牌小电器,共需要90元;采购3台A 种品牌小电器和1台B种品牌小电器,共需要65元.销售一台A种品牌小电器获利3元,销售一台B 种品牌小电器获利4元.(1)求购买1台A种品牌小电器和1台B种品牌小电器各需要多少元?(2)甲用不小于2750元,但不超过2850元的资金一次性购进A、B两种品牌小电器共150台,求购进A种品牌小电器数量的取值范围.(3)在(2)的条件下,所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,请说明甲合理的采购方案有哪些?并计算哪种采购方案获得的利润最大,最大利润是多少?【答案】(1)A、B型品牌小电器每台进价分别为15元、20元;(2)30≤a≤50;(3)A型30台,B型120台,最大利润是570元.【解答】解:(1)设A、B型品牌小电器每台的进价分别为x元、y元,根据题意得:,解得:,答:A、B型品牌小电器每台进价分别为15元、20元.(2)设购进A型品牌小电器a台,由题意得:,解得30≤a≤50,答:购进A种品牌小电器数量的取值范围30≤a≤50.(3)设获利为w元,由题意得:w=3a+4(150﹣a)=﹣a+600,∵所购进的A、B两种品牌小电器全部销售完后获得的总利润不少于565元,∴﹣a+600≥565,解得:a≤35,∴30≤a≤35,∵w随a的增大而减小,∴当a=30台时获利最大,w最大=﹣30+600=570元,答:A型30台,B型120台,最大利润是570元.3.(2023•遂宁)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售.经了解,每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.(1)甲、乙两种粽子每个的进价分别是多少元?(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为W元.①求W与m的函数关系式,并求出m的取值范围;②超市应如何进货才能获得最大利润,最大利润是多少元?【答案】(1)每个甲种粽子的进价为10元,每个乙种粽子的进价为12元;(2)①W与m的函数关系式为W=﹣m+600;≤m<200(m为正整数);②购进甲种粽子134个,乙种粽子66个时利润最大,最大利润为466元.【解答】解:(1)设每个甲种粽子的进价为x元,则每个乙种粽子的进价为(x+2)元,根据题意得:=,解得x=10,经检验,x=10是原方程的根,此时x+2=12,答:每个甲种粽子的进价为10元,每个乙种粽子的进价为12元;(2)①设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,根据题意得:W=(12﹣10)m+(15﹣12)(200﹣m)=2m+600﹣3m=﹣m+600,∴W与m的函数关系式为W=﹣m+600;甲种粽子的个数不低于乙种粽子个数的2倍,∴m≥2(200﹣m),解得m≥,∴≤m<200(m为正整数);②由①知,W=﹣m+600,﹣1<0,m为正整数,∴当m=134时,W有最大值,最大值为466,此时200﹣134=66,∴购进甲种粽子134个,乙种粽子66个时利润最大,最大利润为466元.4.(2023•达州)某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?【答案】(1)每件豆笋的进价为60元,每件豆干的进价为40元;(2)该特产店有三种进货方案:购进豆笋120件,购进豆干80件;购进豆笋121件,购进豆干79件;购进豆笋122件,购进豆干78件;(3)购进豆笋122件,购进豆干78件可使该特产店获得利润最大,最大利润为3610元.【解答】解:(1)设每件豆笋的进价为x元,每件豆干的进价为y元,由题意得:,解得:,∴每件豆笋的进价为60元,每件豆干的进价为40元;(2)设购进豆笋a件,则购进豆干(200﹣a)件,由题意可得:,解得:120≤a≤122,且a为整数,∴该特产店有以下三种进货方案:当a=120时,200﹣a=80,即购进豆笋120件,购进豆干80件,当a=121时,200﹣a=79,即购进豆笋121件,购进豆干79件,当a=122时,200﹣a=78,即购进豆笋122件,购进豆干78件,(3)设总利润为w元,则w=(80﹣60)•a+(55﹣40)•(200﹣a)=5a+3000,∵5>0,∴w随a的增大而增大,∴当a=122时,w取得最大值,最大值为5×122+3000=3610,∴购进豆笋122件,购进豆干78件可使该特产店获得利润最大,最大利润为3610元.1.(2023•吴兴区一模)一次函数y=2x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:在一次函数y=2x+1中,k=2>0,b=1>0,∴一次函数y=2x+1的图象经过第一、二、三象限,不经过第四象限,故选:D.2.(2023•东莞市校级一模)已知点(﹣1,y1),(3,y2)在一次函数y=2x+1的图象上,则y1,y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定【答案】A【解答】解:∵k=2>0,∴y随x的增大而增大,又∵点(﹣1,y1),(3,y2)在一次函数y=2x+1的图象上,且﹣1<3,∴y1<y2.故选:A.3.(2023•皇姑区三模)一次函数y=﹣x+4的图象经过( )A.第一二三象限B.第二三象限C.第一二四象限D.第二三四象限【答案】C【解答】解:∵一次函数y=﹣x+4,k=﹣1<0,b=4>0,∴该函数图象经过第一、二、四象限,故选:C.4.(2023•花溪区模拟)若一次函数y=kx+b的图象如图所示,则k、b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】B【解答】解:观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:B.5.(2023•东莞市校级二模)已知点(﹣3,2)在一次函数y=kx﹣4的图象上,则k等于( )A.2B.3C.﹣2D.﹣3【答案】C【解答】解:∵点(﹣3,2)在一次函数y=kx﹣4的图象上,∴2=﹣3k﹣4,解得:k=﹣2.故选:C.6.(2023•蕉城区校级二模)直线y=nx+2n的图象如图所示,则关于x的不等式nx+2n>0的解集为( )A.x>﹣1B.x>﹣2C.x<﹣2D.x<﹣1【答案】B【解答】解:当y=0时,x=﹣2.∴函数图象与x轴交于点(﹣2,0),一次函数y=nx+2n,当y>0时,图象在x轴上方,∴不等式nx+2n>0的解集为x>﹣2,故选:B.7.(2023•宝鸡一模)如果直线y=3x+6与y=2x﹣4交点坐标为(a,b),则解为的方程组是( )A.B.C.D.【答案】D【解答】解:∵直线y=3x+6与y=2x﹣4交点坐标为(a,b),∴解为的方程组是,即,8.(2023•贵阳模拟)已知函数y=(2m﹣1)x是正比例函数,且y随x的增大而增大,那么m的取值范围是( )A.m>B.m<C.m>0D.m<0【答案】A【解答】解:根据正比例函数图象的性质,知:当y随自变量x的增大而增大,即2m﹣1>0,m>.故选:A.9.(2023•黔东南州二模)在同一平面直角坐标系中,直线y=x+1与y=﹣x+m相交于点P(1,n),则关于x的方程组的解为( )A.B.C.D.【答案】B【解答】解:∵直线y=x+1与直线y=﹣x+m交于点P(1,n),∴n=1+1=2,∴P(1,2),∴关于x,y的方程组的解;故选:B.10.(2023•霍林郭勒市校级三模)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【答案】C【解答】解:设一次函数的解析式为y=kx+b.由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.11.(2023•晋州市模拟)一次函数y=﹣2x+4的图象与y轴交点的坐标是( )A.(2,0)B.(0,4)C.(4,0)D.【解答】解:当x=0时,y=﹣2×0+4=4,∴一次函数y=﹣2x+4的图象与y轴交点的坐标是(0,4).故选:B.12.(2023•沈河区校级模拟)对于函数y=﹣2x+1,下列结论正确的是( )A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限【答案】C【解答】解:A、∵k=﹣2<0,∴y值随x值的增大而减小,结论A不符合题意;B、当y=0时,﹣2x+1=0,解得:x=,∴函数y=﹣2x+1的图象与x轴交点坐标为(,0),结论B不符合题意;C、当x=﹣1时,y=﹣2x+1=3,∴函数y=﹣2x+1的图象必经过点(﹣1,3),结论C符合题意;D、∵k=﹣2<0,b=1>0,∴函数y=﹣2x+1的图象经过第一、二、四象限,结论D不符合题意.故选:C.13.(2023•武侯区校级三模)A(﹣1,y1),B(3,y2)是直线y=﹣2x+b上的两点,则y1 > y2(填>或<)【答案】见试题解答内容【解答】解:在一次函数y=﹣2x+b中,∵k=﹣2<0,∴y随x的增大而减小,∵﹣1<3,∴y1>y2,故答案为:>.14.(2023•柳州三模)若一次函数y=x+b的图象过点A(1,﹣1),则b= ﹣2 .【答案】见试题解答内容【解答】解:把点A(1,﹣1)代入一次函数y=x+b得:1+b=﹣1,解得b=﹣2.15.(2023•播州区三模)在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.【答案】(1)(1,﹣2),(2)4.【解答】解:(1)由题意可得:一次函数y1=3x﹣5与一次函数y2=2x﹣4相交于一点,∴3x﹣5=2x﹣4,解得:x=1,当x=1时,y1=y2=﹣2,∴一次函数y1=3x﹣5与一次函数y2=2x﹣4的交点坐标为:(1,﹣2).(2)当x=0时,一次函数y2=2x﹣4与y轴有交点,∴y=﹣4,∴A(0,﹣4),当y=0时,一次函数y2=2x﹣4与x轴有交点,∴0=2x﹣4,解得:x=2,∴B(2,0),∴如图可知S=,△AOB∴一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积为4.16.(2022•岷县模拟)一次函数y=kx+b的图象经过A(1,6),B(﹣3,﹣2)两点.(1)此一次函数的解析式;(2)求△AOB的面积.【答案】见试题解答内容【解答】解:(1)把A(1,6),B(﹣3,﹣2)代入y=kx+b得到,解得,所以直线AB的解析式为y=2x+4;(2)直线AB与y轴的交点坐标为(0,4),所以△AOB的面积=×4×3+×4×1=8.17.(2023•长沙县二模)小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w元,康乃馨有x支,求w与x之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.【答案】(1)买一支康乃馨需4元,买一支百合需5元;(2)w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.【解答】解:(1)设买一支康乃馨需m元,买一支百合需n元,则根据题意得:,解得:,答:买一支康乃馨需4元,买一支百合需5元;(2)根据题意得:w=4x+5(11﹣x)=﹣x+55,∵百合不少于2支,∴11﹣x≥2,解得:x≤9,∵﹣1<0,∴w随x的增大而减小,∴当x=9时,w最小,即买9支康乃馨,买11﹣9=2支百合费用最少,w min=﹣9+55=46(元),答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.18.(2021•普陀区模拟)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.【答案】出租车的起步价是8元;y与x的函数关系式为:y=2x+2;这位乘客乘车的里程是11km.【解答】解:由图象得:出租车的起步价是8元;设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;∵32元>8元,∴当y=32时,32=2x+2,解得x=15,答:这位乘客乘车的里程是15km.1.(2023•丹阳市二模)一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解答】解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,∴k<0,b>0,∴该函数经过第一、二、四象限,不经过第三象限,故选:C.2.(2023•河北模拟)已知点(﹣2,y1),(3,y2)都在直线y=﹣x﹣5上,则y1,y2的值的大小关系是( )A.y1<y2B.y1>y2C.y1=y2D.不能确定【答案】B【解答】解:当x=﹣2时,y1=﹣1×(﹣2)﹣5=﹣3,当x=3时,y2=﹣1×3﹣5=﹣8.∵﹣3>﹣8,∴y1>y2.故选:B.3.(2023•榆阳区一模)一次函数y=kx+b(k,b为常数,且k≠0)与一次函数y=2x+1关于y轴对称,则一次函数y=kx+b的表达式为( )A.B.y=﹣2x+1C.y=2x﹣1D.【答案】B【解答】解:一次函数y=2x+1,则与该一次函数的图象关于y轴对称的一次函数的表达式为:y=2(﹣x)+1,即y=﹣2x+1.故选:B.4.(2023•龙岩模拟)若k<2,则函数y=(k﹣2)x+2﹣k的图象可能是( )A.B.C.D.【答案】D【解答】解:∵k<2,∴k﹣2<0,2﹣k>0,∴一次函数y=(k﹣2)x+2﹣k的图象经过第一、二、四象限,故选:D.5.(2023•沭阳县模拟)A,B两地相距80km,甲、乙两人沿同一条路从A地到B地.甲、乙两人离开A地的距离s(单位:km)与时间t(单位:h)间的关系如图所示,下列说法错误的是( )A.乙比甲提前出发1hB.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80kmD.0.75h或1.125h时,乙比甲多行驶10km【答案】C【解答】解:由图象可得,乙车比甲车早出发1小时,故A正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),故B正确;乙的速度是=km/h,3h甲车行走的路程为40×(3﹣1)=80(km),3h乙车行走的路程为×3=40(km),∴3h后甲、乙相距80﹣40=40(km),故C错误;0.75h乙车走了0.75×=10(km),甲车还在A地没出发,此时乙比甲多行驶10km,1.125h乙走了1.125×=15km,此时甲行走的路程为(1.125﹣1)×40=5(km),乙车比甲车多走了15﹣5=10(km),故D正确.故选:C.6.(2023•秦都区二模)一次函数y=kx+3的图象经过点(﹣1,5),若自变量x的取值范围是﹣2≤x≤5,则y的最小值是( )A.﹣10B.﹣7C.7D.11【答案】B【解答】解:一次函数y=kx+3的图象经过点(﹣1,5),∴5=﹣k+3,解得:k=﹣2,∴y=﹣2x+3,∵k=﹣2,∴y随x的增大而减小,∵﹣2≤x≤5,∴当x=5时,y的最小值为﹣2×5+3=﹣7.故选:B.7.(2023•绍兴模拟)某商店以每件13元的价格购进某商品100件,售出部分商品后进行了降价销售,销售金额y(元)与销售量x(件)的函数关系如图所示,则售完这100件商品可盈利( )元.A.200B.250C.400D.500【答案】B【解答】解:当x≥40时,设y与x的函数关系式为y=kx+b(k≠0,k,b为常数),代入点(40,800)和点(80,1300),得,解得,∴y=x+300(x≥40),当x=100时,y==1550,1550﹣13×100=250(元),∴售完这100件商品可盈利250元,故选:B.8.(2023•合肥三模)直线l1:y=kx+b和l2:y=bx﹣k在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】A【解答】解:∵直线l 1:经过第一、三象限,∴k >0,∴﹣k <0.又∵该直线与y 轴交于正半轴,∴b >0.∴直线l 2经过第一、三、四象限.故选:A .二.解答题(共5小题)9.(2023•新县校级三模)“五一”劳动节到了,为在学生中弘扬劳动精神,让学生在做中学、学中做、家校合力共推劳动教育.五一假期老师布置了与父母互换身份,做一天父母的工作,体会劳动并感受父母的艰辛,理解、感恩父母,小李和妈妈互换身份,帮妈妈卖干果,他上午卖出4kg 甲种类和3kg 乙种类干果获得利润为85元,下午卖出7kg 甲种类和5kg 乙种类干果获得利润为145元.(1)求每千克甲种类干果和乙种类干果的销售利润各是多少;(2)小李的妈妈想一次购进两种干果共100kg 用于销售,其中乙种类干果的进货量不超过甲种类干果的进货量的,请你帮小李妈妈设计一种进货方案使销售总利润最大,并求出总利润的最大值.【答案】(1)每千克甲种类干果的销售利润为10元,每千克乙种类干果的销售利润为15元;(2)购进甲种类干果60kg ,乙种类干果40kg 时,销售总利润最大,总利润的最大值为1200元.【解答】解:(1)设每千克甲种类干果的销售利润为x 元,每千克乙种类干果的销售利润为y 元,根据题意得:解得答:每千克甲种类干果的销售利润为10元,每千克乙种类干果的销售利润为15元.(2)设购进甲种类干果akg,则购进乙种类干果(100﹣a)kg,获得总利润为w元,w=10a+15(100﹣a)=﹣5a+1500,∵﹣5<0,∴w的值随着a值的增大而减小,∵,∴a≥60,∴a=60时,w=﹣5×60+1500=1200,100﹣a=100﹣60=40.答:购进甲种类干果60kg,乙种类干果40kg时,销售总利润最大,总利润的最大值为1200元.10.(2023•阿瓦提县模拟)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是 320 件,日销售利润是 640 元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】(1)320;640;(2)y=;(3)日销售利润不低于600元的天数共有16天,日销售最大利润是720元.【解答】解:(1)340﹣(26﹣22)×5=320(件),320×(8﹣6)=640(元).故答案为:320;640;(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=;(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥600,解得:x≥15;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥600,解得:x≤30.∴15≤x≤30.30﹣15+1=16(天),∴日销售利润不低于600元的天数共有16天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.11.(2023•沭阳县模拟)如图,直线AB:y=x+与坐标轴交于A、B两点,点C与点A关于y轴对称.CD⊥x轴与直线AB交于点D.(1)求点A和点B的坐标;(2)点P在直线CD上运动,且始终在直线AB下方,当△ABP的面积为时,求出点P的坐标;(3)在(2)的条件下,点Q为直线CD上一动点,直接写出所有使△APQ是以AP为腰的等腰三角形的点Q的坐标.【答案】(1)点A、B的坐标分别为(﹣2,0)、(0,);(2)点P的坐标为(2,﹣);(3)点Q的坐标为:(2,)或(2,)或(2,).【解答】解:(1)对于y=x+,令x=0,则y=,令y=0,解得x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,);(2)设直线AP交y轴于点H,设直线AP的表达式为:y=k(x+2),当x=0时,y=2k,当x=2时,y=4k,即点H、P的坐标分别为(0,2k),(2,4k),+S△HBA=×AC×BH=×(﹣2k)=,则△ABP的面积=S△HBP解得:k=﹣,∴点P的坐标为(2,﹣);(3)由(2)知,点P的坐标为(2,﹣),点A(﹣2,0),设点Q(2,t),由勾股定理得:AP2=(2+2)2+()2=16+,同理可得:PQ2=(t+)2,AQ2=16+t2,当AP=PQ时,即16+=(t+)2,解得t=或,故点Q的坐标为(2,)或(2,);当AP=AQ时,即16+=16+t2,解得t=(负值已舍去),故点Q的坐标为(2,);综上,点Q 的坐标为:(2,)或(2,)或(2,).12.(2023•乾安县一模)杆秤是我国传统的计重工具,如图,秤钩上所挂的不同重量的物体使得秤砣到秤纽的水平距离不同.称重时,秤钩所挂物重为x (斤)时,秤杆上秤砣到秤纽的水平距离为y (厘米).如表中为若干次称重时所记录的一些数据,且y 是x 的一次函数.x (斤)0.751.001.502.253.25y (厘米)﹣2124711注:秤杆上秤砣在秤纽左侧时,水平距离y (厘米)为正,在右侧时为负.(1)根据题意,完成上表;(2)请求出y 与x 的关系式;(3)当秤杆上秤砣到秤纽的水平距离为15厘米时,秤钩所挂物重是多少斤?【答案】见试题解答内容【解答】解:(1)由表格中的数据可得,每增加1厘米,重物增加0.25斤,故当y =4时,x =1.00+(4﹣2)×0.25=1.50,当x =3.25时,y =7+(3.25﹣2.25)÷0.25=11,故答案为:1.50,11;(2)设y 与x 的关系式为y =kx +b ,∵点(0,﹣2),(0.75,1)在该函数图象上,∴,解得,即y 与x 的关系式为y =4x ﹣2;(3)当y =15时,15=4x ﹣2,解得x =4.25,即当秤杆上秤砣到秤纽的水平距离为15厘米时,秤钩所挂物重是4.25斤.13.(2023•甘南县一模)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关。

初三数学:函数专题复习

初三数学:函数专题复习

函数专题一次函数:一、相关知识回顾 (一)一次函数的相关概念 1、变量与常量 2、函数的概念函数:一般地,在一个变化的过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。

3、一次函数 正比例函数一般地,形如y kx =(k 是常数,0k ≠)的函数,叫做正比例函数,其中k 叫做比例。

正比例函数图象的性质当k >0时,直线y kx =经过第一、三象限,y 随x 的增大而增大 当k >0时,直线y kx =经过第一、三象限,y 随x 的增大而增大一次函数一般地,形如y kx b =+(k 、b 是常数,0k ≠)的函数,叫做一次函数。

当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数。

一次函数图象的画法我们在作图时主要取过(0,b )(bk-,0)的一条直线。

图象的平移图象左右平移的规律是:左加右减 图象上下平移的规律是:上加下减 一次函数解析式的求法:一次函数解析式主要运用待定系数法,求出系数k 、b ,还原方程就可以了。

二、强化练习1、下列各曲线中不能表示y 是x 的函数是( )。

A B C D2、若点A (2, 4)在函数y =k x -2的图象上,则下列各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)3、函数y =k (x -k ) (k <0 )的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如果直线y =2x +m 与两坐标轴围成的三角形面积等于m ,则m 的值是( )A 、±3B 、3C 、±4D 、45、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( )A 、y=2xB 、 y=2x -6C 、y=5x -3D 、y=-x -3 6、如图,直线y=12x+2交x 轴于点A ,交y 轴于点B ,点P (x , y )是线段AB 上一动点(与A ,B 不重合),△PAO 的面积为S ,求S 与x 的函数关系式。

中考总复习:函数综合复习--知识讲解(提高)

中考总复习:函数综合复习--知识讲解(提高)

中考总复习:函数综合复习--知识讲解(提高)函数是数学中非常重要的概念,也是中考数学的重点内容之一。

在这篇文档中,我们将讲解函数的相关知识,帮助同学们复和提升函数的理解和运用能力。

1. 什么是函数?在数学中,函数是一种特殊的关系,它把一个集合的每个元素都对应到另一个集合的唯一元素上。

我们可以将函数看作是一种映射,它可以将输入值映射为对应的输出值。

2. 函数的表示方法函数可以用不同的方式来表示。

常见的表示方法包括:- 方程表示法:通过方程的形式来表示函数,如 y = f(x)。

- 图表表示法:通过绘制函数的图表来表示函数的输入和输出之间的关系。

- 集合表示法:用集合的形式表示函数,如 {(x, y) | y = f(x)}。

3. 函数的性质函数有一些重要的性质,包括:- 定义域和值域:函数的定义域是指输入值的集合,而值域是函数输出值的集合。

函数的值域应当包含所有可能的输出值。

- 单调性和增减性:函数的单调性指函数的增减趋势,可以分为递增和递减。

增减性指函数的导数的正负性。

- 奇偶性:函数的奇偶性指函数在坐标系中的对称性,可以分为奇函数和偶函数。

4. 函数的运算函数之间可以进行多种运算,常见的运算包括:- 函数的加法和减法:对于两个函数 f(x) 和 g(x),它们的加法可以表示为 (f + g)(x) = f(x) + g(x),减法可以表示为 (f - g)(x) = f(x) - g(x)。

- 函数的乘法:对于两个函数 f(x) 和 g(x),它们的乘法可以表示为 (f * g)(x) = f(x) * g(x)。

- 函数的复合:对于两个函数 f(x) 和 g(x),它们的复合可以表示为 (f ∘ g)(x) = f(g(x))。

5. 函数的应用函数在实际生活中有着广泛的应用,包括数学、物理、经济等各个领域。

函数可以用来描述和分析各种变化规律,帮助我们解决问题和做出决策。

6. 总结函数是中考数学中的重要内容,掌握函数的概念、性质和运算方法对于提高数学水平至关重要。

九年级数学中考复习:函数专题训练(含答案)

九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。

中考数学模拟试题函数的概念与应用

中考数学模拟试题函数的概念与应用

中考数学模拟试题函数的概念与应用函数的概念与应用函数是数学中一个重要的概念,它在中考数学中占据着较大的比重。

函数的概念和应用是我们解决各种数学问题的基础。

本文将介绍函数的定义、性质以及其在中考数学中的应用。

一、函数的定义函数是一种对应关系,通俗地讲,它把集合A中的每个元素都对应到集合B中的唯一一个元素上。

数学上用f(x)表示函数,其中f表示函数名,x表示自变量,f(x)表示函数的值,也称为因变量。

函数的定义包括定义域、值域和对应关系。

定义域是自变量的取值范围,值域是因变量的取值范围,对应关系是自变量和因变量之间的关系。

例如,f(x) = 2x + 1就是一个函数。

其中,自变量x可以是任意实数,定义域为全体实数集R;因变量f(x)的取值范围也是全体实数集R。

二、函数的性质函数具有以下几个常见的性质:1. 单调性:函数的单调性可以分为增函数和减函数。

增函数是指在定义域内,当自变量增大时,对应的因变量也增大;减函数是指在定义域内,当自变量增大时,对应的因变量减小。

2. 奇偶性:函数的奇偶性是指函数图象关于坐标原点的对称性。

如果对任意x有f(-x) = f(x),则函数为偶函数;如果对任意x有f(-x) = -f(x),则函数为奇函数。

3. 周期性:函数的周期性是指函数图象在一定范围内具有循环重复的规律。

如果存在正数T,对任意x都有f(x) = f(x + T),则函数具有周期性。

常见的周期函数有正弦函数和余弦函数。

4. 零点与极值:函数的零点是指因变量为0时的自变量的取值,极值是指函数在某一段区间内的最大值和最小值。

三、函数的应用函数在中考数学中有着广泛的应用,常见的应用包括函数模型、函数图象和函数求解等。

1. 函数模型:函数可以用来建立实际问题的数学模型。

例如,一个汽车行驶的问题可以用函数来描述,其中自变量表示时间,因变量表示行驶的距离。

2. 函数图象:函数的图象可以通过绘制函数图像来观察函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习模拟演练:函数基础知识
一、选择题
1.(2019•荆门)在函数y= 中,自变量x的取值范围是()
A. x>
5 B.
x≥5
C. x≠5
D. x<5
【答案】A
2.下列各种图象中,y不是x的函数的是()
A. B. C.
D.
【答案】B
3.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C (2,1),D(6,5),则此函数()
A. 当x<1,y随x的增大而增
大 B. 当x<1,y随x的增大而减小
C. 当x>1,y随x的增大而增
大 D. 当x>1,y随x的增大而减小
【答案】A
4.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的
国旗,下列哪个函数图象能近似地刻画上升国旗离旗杆顶端的距离与时间的关系( )
A. B.
C.
D.
【答案】A
5.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设
他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所
示,下列说法错误的是( )
A. 小明中途休息用了20分
钟 B. 小
明休息前爬上的速度为每分钟70米
C. 小明在上述过程中所走的路程为6600米
D. 小明休息
前爬山的平均速度大于休息后爬山的平均速度
【答案】C
6.星期六,小亮从家里骑自行车到同学家去玩,然后返回,图是他离家的路程y(千米)与
时间x(分钟)的函数图象,根据图象信息,下列说法不一定正确的是()
A. 小亮到同学家的路程是3千
米 B. 小亮在同学家
逗留的时间是1小时
C. 小亮去时走上坡路,回家时走下坡路
D. 小
亮回家时用的时间比去时用的时间少
【答案】C
7.下列各点:①(0,0);②(1,1);③(1,1);④(1,1),其中在函数的图像上的点()
A. 1

B. 2

C. 3

D. 4个
【答案】B
8.如图,点E为菱形ABCD边上的一个动点,并沿的路径移动,设点E经过
的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()
A.
B.
C.
D.
【答案】D
9.下列关系式:①x2-3x=4;②S=3.5t;③y=;④y=5x-3;⑤C=2πR;⑥S=v0t+at2;
⑦2y+y2=0,其中不是函数关系的是()
A. ①⑦
B.
①②③④ C.
④⑥ D. ①②⑦
【答案】A
10.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留),前往终点B地,甲、乙两车之间的距离S(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶3 小时,其中正确的个数为()
A. 1

B. 2

C. 3

D. 4个
【答案】C
二、填空题
11.函数的自变量x的取值范围________
【答案】x≠1
12.在女子3000米的长跑中,运动员的平均速度v= ,则这个关系式中自变量是
________.
【答案】t
13.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为________
【答案】
14.汽车行驶时,邮箱中的余油量y(L)与行驶时间x(h)的关系为y=20﹣3x,从关系式可知道这辆汽车最多可行驶________h.
【答案】
15.下列变量间的关系是函数关系的有________(填序号)
①正方形的周长与边长;②圆的面积与半径;
③等腰三角形的底边长与面积;④商场中某种商品的单价为a元,销售总额与销售数量【答案】①②④
16.(2019•重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需________分钟到达终点B.
【答案】78
17.甲、乙两人从A地出发前往B地,甲先出发1分钟后,乙再出发,乙出发一段时间后返回A地取物品,甲、乙两人同时达到B地和A地,并立即掉头相向而行直至相遇,甲、乙两人之间相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则甲、乙两人最后相遇时,乙距B地的路程是________米.
【答案】320
18.(2019•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则
△ABC的面积是________.
【答案】12
三、解答题
19.已知,与成正比例,与成反比例,且当时,,当
时,,求与之间的函数关系式.
【答案】解:设y1=kx,y2= ,则y=kx+ ,
根据题意得,
解得,
所以y与x之间的函数关系式为.
20.某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S(km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,
解答下列问题:
(1)求该团去景点时的平均速度是多少?
(2)该团在旅游景点游玩了多少小时?
(3)求返回到宾馆的时刻是几时几分?
【答案】(1)解:210÷(9﹣6)=70(千米/时),答:该团去景点时的平均速度是70千米/时
(2)解:13﹣9=4(小时),答:该团在旅游景点游玩了4小时
(3)解:设返货途中S(km)与时间t(h)的函数关系式为s=kt+b,根据题意,得

解得,
函数关系式为s=﹣50t+860,
当S=0时,t=17.2
答:返回到宾馆的时刻是17时12分
21. 楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.
(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;
(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)
【答案】解:(1)由题意,得
当0<x≤5时
y=30.
当5<x≤30时,
y=30﹣0.1(x﹣5)=﹣0.1x+30.5.
∴y=;
(2)当0<x≤5时,
(32﹣30)×5=10<25,不符合题意,
当5<x≤30时,
[32﹣(﹣0.1x+30.5)]x=25,
解得:x1=﹣25(舍去),x2=10.
答:该月需售出10辆汽车.
22.(2019•泰州)平面直角坐标系xOy中,点A,B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A,B,且a、m满足2a﹣m=d(d为常数).
(1)若一次函数y1=kx+b的图象经过A、B两点.
①当a=1、d=﹣1时,求k的值;
②若y1随x的增大而减小,求d的取值范围;
(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;
(3)点A,B的位置随着a的变化而变化,设点A,B运动的路线与y轴分别相交于点C,D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
【答案】(1)解:①当a=1、d=﹣1时,m=2a﹣d=3,
所以二次函数的表达式是y=﹣x2+x+6.
∵a=1,
∴点A的横坐标为1,点B的横坐标为3,
把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,
∴A(1,6),B(3,0).
将点A和点B的坐标代入直线的解析式得:,解得:,
所以k的值为﹣3.
②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),
∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),
∵y1随着x的增大而减小,且a<a+2,
∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,
又∵2a﹣m=d,
∴d的取值范围为d>﹣4.
(2)解:∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,
∴m=2a+4.
∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.
把x=a代入抛物线的解析式得:y=a2+6a+8.
把x=a+2代入抛物线的解析式得:y=a2+6a+8.
∴A(a,a2+6a+8)、B(a+2,a2+6a+8).
∵点A、点B的纵坐标相同,
∴AB∥x轴.
(3)解:线段CD的长度不变.
∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,
∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).
∴yA=﹣a2+(2﹣d)a﹣2d,yB=a2+(2﹣d)a﹣4d﹣8.
∵把a=0代入yA=﹣a2+(2﹣d)a﹣2d,得:y=﹣2d,
∴C(0,﹣2d).
∵点D在y轴上,即a+2=0,
∴a=﹣2,.
把a=﹣2代入yB=a2+(2﹣d)a﹣4d﹣8得:y=﹣2d﹣8.∴D(0,﹣2d﹣8).
∴DC=|﹣2d﹣(﹣2d﹣8)|=8.
∴线段CD的长度不变.。

相关文档
最新文档