七年级上册数学全册教案(已整理)

合集下载

部编版七年级数学上册教案(全册)

部编版七年级数学上册教案(全册)

部编版七年级数学上册教案(全册)教案概述本教案是针对部编版七年级数学上册所编写,旨在帮助教师有效教授数学知识和培养学生的数学能力。

教案涵盖了全册的内容,提供了详细的教学方案和活动安排。

教学目标- 理解并掌握七年级数学上册的知识点和技能要求- 培养学生的数学思维能力和解决问题的能力- 提高学生的数学研究兴趣和乐趣教学内容全册教案包括以下几个主题:1. 数的性质和运算2. 一次函数与一次方程3. 几何图形与尺规作图4. 数据统计与概率5. 平面和空间的初步认识教学方法- 合作研究法:通过小组合作和讨论,激发学生的思维和创造力- 情景教学法:通过情境设置,使学生能够将数学知识运用到实际生活中- 探究式研究法:鼓励学生主动探索和发现数学规律,培养独立思考和解决问题的能力教学活动为了更好地帮助学生理解和掌握数学知识,教案提供了多种教学活动,包括:1. 观察和实验活动:通过观察和实验让学生亲自探索数学规律2. 游戏和竞赛活动:通过游戏和竞赛激发学生的研究兴趣和积极性3. 小组合作活动:通过小组合作解决问题,培养学生的团队合作能力教学评价为了及时了解学生的研究情况,教案提供了相应的教学评价方法,包括:1. 课堂表现评价:评价学生在课堂上的表现,如参与度、回答问题的准确性等2. 作业和考试评价:通过作业和考试检查学生对知识的理解和掌握程度3. 项目评价:评价学生在小组活动和实际项目中的表现和成果教案中的教学方案和活动安排将根据具体的教学情况进行调整和适应,旨在激发学生的学习兴趣和提高他们的数学能力。

教师可根据自己的判断和实际需求,对教案进行灵活运用。

最新人教版数学七年级上册教案(5篇)

最新人教版数学七年级上册教案(5篇)

最新人教版数学七年级上册教案(5篇)为大家准备的最新人教版数学七年级上册教案,欢迎大家前来参阅。

最新人教版数学七年级上册教案(篇1)教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。

【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点【教学重点】数轴的意义及作用。

【教学难点】数轴上的点与有理数的直观对应关系。

课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

新人教版七年级数学上册精品全册教案

新人教版七年级数学上册精品全册教案

新人教版七年级数学上册精品全册教案篇一:最新人教版七年级数学上册全册最新人教版七年级数学上册教案全册课题: 1.1 正数和负数(1)授课时间:____________ 12 3 1.1 正数和负数(2)授课时间:____________4 5 篇二:2015新人教版七年级数学上册全册教案数学教案七年级上册 2016—2017学年度第一学期教师:买买提·玉努斯伊吾县淖毛湖镇中学七年级(1)班数学课程表第一章有理数教材分析 1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化. 3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分. 4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标 1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解。

七年级数学(上册)集体备课教案

七年级数学(上册)集体备课教案

七年级数学(上册)集体备课教案第一章:有理数1.1 学习有理数的概念,理解有理数的定义及特点。

1.2 学习有理数的加法、减法、乘法、除法运算,掌握运算法则。

1.3 学习有理数的比较,掌握有理数大小比较的方法。

第二章:整式的加减2.1 学习整式的概念,理解整式的组成及特点。

2.2 学习整式的加减法运算,掌握运算法则。

2.3 练习整式的加减法题目,巩固所学知识。

第三章:一元一次方程3.1 学习一元一次方程的概念,理解一元一次方程的定义及特点。

3.2 学习一元一次方程的解法,掌握解题方法。

3.3 练习一元一次方程的题目,巩固所学知识。

第四章:不等式4.1 学习不等式的概念,理解不等式的定义及特点。

4.2 学习不等式的性质,掌握不等式变形的方法。

4.3 学习不等式的解法,掌握解题方法。

4.4 练习不等式的题目,巩固所学知识。

第五章:函数的概念5.1 学习函数的概念,理解函数的定义及特点。

5.2 学习函数的性质,掌握函数的表示方法。

5.3 学习函数的图像,理解函数图像的特点。

5.4 练习函数的题目,巩固所学知识。

第六章:平面图形6.1 学习平面图形的基本概念,理解平面图形的性质和特点。

6.2 学习线段、射线和直线的概念,掌握它们的性质和运算。

6.3 学习角的概念,理解角的度量和平行线的性质。

6.4 练习平面图形的题目,巩固所学知识。

第七章:三角形7.1 学习三角形的基本概念,理解三角形的性质和特点。

7.2 学习三角形的分类,掌握不同类型三角形的特征。

7.3 学习三角形的角的度量,理解三角形的内角和定理。

7.4 练习三角形的题目,巩固所学知识。

第八章:数据的收集与处理8.1 学习数据的收集方法,理解数据收集的重要性。

8.2 学习数据的整理和表示方法,掌握图表的制作技巧。

8.3 学习数据的平均数、中位数和众数的计算方法。

8.4 练习数据处理题目,巩固所学知识。

第九章:概率初步9.1 学习概率的基本概念,理解概率的定义和计算方法。

七年级数学上册教案(优秀7篇)

七年级数学上册教案(优秀7篇)

七年级数学上册教案(优秀7篇)篇一:人教版七年级上数学教案篇一我们七年级数学备课组认真做好各项工作,现根据学校和上级有关部门工作计划,特制定本学期的备课组工作计划如下:一。

指导思想:基于学习任务及小组合作学习的课堂,落实新课改,体现新理念,培养学生自主学习。

以“面向全体学生,共同提高教学质量”为指导思想,同时在教学中渗透情感教育。

树立本组团队合作意识。

加强教学常规建设和课题研究,积极开展校本研究,进一步提高我们组数学整体的教学水平。

二。

工作要点1.切实加强教学常规管理,积极开展小组合作学习的课堂,提高课堂教学效率。

2.认真开展集体备课和课题研究活动,加强备课组团队合作意识,充分发挥学科骨干教师的示范作用。

3.深化数学教学研究,提升数学教师科研素养,积极撰写教学论文。

4.立足课堂,在有效教学策略上深入实践与研究。

三。

具体措施1.加强理论学习,提升教师素质。

进一步认真学习《课程标准》,领会教材编写意图的特点,认真分析教学内容,目标,重难点,严格执行新课程标准的指导思想,提出具体可行的教学方法,继续开展教科研活动,积极参与校本课程的研发工作,提高教科研能力。

2.加大课堂教学改革力度,做到“有效教学”。

探索适合学生实践的教学方式,把“基于学习任务及小组合作学习的课堂,”的教学模式作为本学期课堂教学研究,实现课堂教学理念的更新,做到课堂教学的有效性。

3.加强备课组教研活动,强化教研功能。

由备课组长负责继续实行集体备课制,备出优质课,特色课,全力打造实用课,共同探索新的教学模式,同事注重发挥每位教师各自的教学特色。

4.加强质量监测,及时反馈,提高教学质量。

认真完成各单元的练习卷,检测卷,由专人负责,他人审核,严把质量关。

在平时教学中,及时反馈教学情况,认真分析原因,并及时调查和整改措施,努力提高教学质量。

篇二:人教版七年级数学上册教案篇二1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系。

七年级上册数学教案(共12篇)

七年级上册数学教案(共12篇)

七年级上册数学教案〔共12篇〕篇1:七年级上册数学教案教学目的(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进展一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,可以比拟纯熟地进展口算.教学重点和难点重点:在理解的根底上,掌握用一位数乘的口算过程.难点:理解并掌握满十向前一位进“1”的算理.教学过程设计(一)复习准备投影出示口算题:老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师提醒课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)根据14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学互相启发进展讨论)然后请同学答复:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=26×3=25×2=要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分别请同学互相说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应该怎样做,然后试做.(老师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.集中起来说出不同的想法:因为14×3=42,那么140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.做一做投影出示:130×5=150×6=每人在自己本上直接写出结果.四人小组进展讨论,能用几种方法说出口算过程.小结今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说.最后集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找朋友游戏.15×318×212×514×435×2240×325×4310×332×326×2160×612×416×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备.讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比拟,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,表达以学生为主体.使学生真正悟出新旧知识的内在联络.通过形式多样的练习,到达能准确、迅速地口算的目的.板书设计篇2:七年级上册数学教案一、目的1.用它们拼成各种形状不同的四边形,并计算它们的周长。

2024年数学七年级教案全册七年级上册数学教学教案

2024年数学七年级教案全册七年级上册数学教学教案

2024年数学七年级教案全册七年级上册数学教学教案一、教学目标1.让学生掌握基本的数学概念、公式和定理。

2.培养学生的数学思维能力,提高解决问题的能力。

二、教学内容1.第一单元:有理数2.第二单元:整式的加减3.第三单元:一元一次方程4.第四单元:几何图形初步5.第五单元:数据的收集、整理与描述三、教学重点与难点重点:1.掌握有理数的概念、性质及运算。

2.掌握整式的加减运算。

3.学会解一元一次方程。

4.理解几何图形的基本概念和性质。

5.学会收集、整理和描述数据。

难点:1.有理数的乘除法运算。

2.整式的乘法运算。

3.一元一次方程的解法。

4.几何图形的证明。

四、教学进度安排第一周:有理数的基本概念及加减法运算第二周:有理数的乘除法运算第三周:整式的加减运算第四周:一元一次方程第五周:几何图形初步第六周:数据的收集、整理与描述第七周:期中考试复习第八周:期中考试第九周:期中考试试卷分析第十周:一元一次方程的应用第十一周:几何图形的证明第十二周:数据的收集、整理与描述(续)第十三周:期末考试复习第十四周:期末考试五、教学过程第一单元:有理数第1课时:有理数的基本概念1.引导学生了解有理数的定义、性质。

2.通过实例让学生掌握有理数的加减法运算。

3.课堂练习:完成课后练习题。

第2课时:有理数的乘除法运算1.讲解有理数的乘除法运算规则。

2.通过实例让学生掌握有理数的乘除法运算。

3.课堂练习:完成课后练习题。

第二单元:整式的加减第3课时:整式的概念及加减运算1.讲解整式的概念及加减运算规则。

2.通过实例让学生掌握整式的加减运算。

3.课堂练习:完成课后练习题。

第三单元:一元一次方程第4课时:一元一次方程的概念及解法1.讲解一元一次方程的概念及解法。

2.通过实例让学生学会解一元一次方程。

3.课堂练习:完成课后练习题。

第四单元:几何图形初步第5课时:几何图形的基本概念1.讲解几何图形的基本概念。

2.通过实例让学生理解几何图形的性质。

初一数学教案上册5篇

初一数学教案上册5篇

初一数学教案上册5篇作为一名人民教师,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。

那么什么样的教案才是好的呢?以下是收集整理的初一数学教案上册,欢迎大家分享。

初一数学教案上册1一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。

本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。

在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

七年级数学上册教案【优秀10篇】

七年级数学上册教案【优秀10篇】

在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,这次漂亮的小编为您带来了七年级数学上册教案【优秀10篇】,如果能帮助到您,小编的一切努力都是值得的。

人教版七年级上册数学教案篇一教学目标1 知识与技能:使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点1 教学重点:掌握用整十数除的口算方法。

2 教学难点:理解用整十数除的口算算理。

教学工具多媒体设备教学过程1 复习引入口算。

20×3= 7×50= 6×3=20×5= 4×9= 8×60=24÷6= 8÷2= 12÷3=42÷6= 90÷3= 3000÷5=2 新知探究1、教学例1有80面彩旗,每班分20面,可以分给几个班?(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?师:怎样解决这个问题?(2)列式 80÷20(3)学生独立探索口算的方法师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:预设学生可能会有以下两种口算方法:A.因为20×4=80,所以80÷20=4 这是想乘算除B.因为8÷2=4,所以80÷20=4 这是根据计数单位的组成为什么可以不看这个“0”?( 80÷20可以想“8个十里面有几个二十?”)这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?把你喜欢的方法说给同桌听。

(5)检查正误师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)(6)用刚学会的方法再次口算,并与同桌交流你的想法40÷20 20÷10 60÷30 90÷30(7)探究估算的方法出示:83÷20≈ 80÷19≈师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)2023最新人教版数学七年级上册教案篇一一、教学目标1、理解一个数平方根和算术平方根的意义;2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;3、通过本节的训练,提高学生的逻辑思维能力;4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法讲练结合。

四、教学手段多媒体五、教学过程(一)提问1、已知一正方形面积为50平方米,那么它的边长应为多少?2、已知一个数的平方等于1000,那么这个数是多少?3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。

下面作一个小练习:填空1、()2=9; 2.()2 =0.25;5、()2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0.0081的平方根。

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=-4学生思考后,得到结论此题无答案。

反问学生为什么?因为正数、0、负数的平方为非负数。

由此我们可以得到结论,负数是没有平方根的。

下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质1、一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方求一个数a的平方根的运算,叫做开平方的运算。

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案(通用18篇)

人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。

七年级上册数学教案

七年级上册数学教案

七年级上册数学教案七年级上册数学教案15篇作为一名教职工,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。

我们应该怎么写教案呢?下面是小编整理的七年级上册数学教案,仅供参考,希望能够帮助到大家。

七年级上册数学教案1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】

人教版初一上册数学教案精选【三篇】【导语】本文为作者为您整理的人教版初一上册数学教案精选【三篇】,期望对大家有帮助。

课题:1.1正数和负数教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的爱好。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学进程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,扼要说明在前两个学段我们已经学过的数,并由此请学生摸索:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中显现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:摸索,交换师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(视察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并摸索讨论,然落后行交换。

(也能够出示气象预报中的气温图,地图中表示地势高低地势图,工资卡中存取钱的记录页面等)学生交换后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回想小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设以下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的愿望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数课题: 1.1 正数和负数(1)1.1 正数和负数(2)1.2.1 有理数1.2.2 数轴课题: 1.3.1 有理数的加法(一)课题: 1.3.1 有理数的加法(二)课题: 1.3.1 有理数的加法(二)课题: 1.3.2有理数的减法(1)课题: 1.3.2有理数的减法(1)课题: 1.3.2 有理数的减法(2)此时飞机比起飞点高了多少千米?(组织学生小组讨论并得出答案)课题: 1.4.1 有理数的乘法(1)课题: 1.4.1 有理数的乘法(2)课题: 1.4.1 有理数乘法(3)课题: 1.4.2 有理数的除法(1)课题: 1.5.1 有理数的乘方(1)课题: 1.5.1 有理数的乘方(1)课题:1.5.2有理数的乘方(2)课题: 1.5.2 科学记数法课题: 1.5.3 近似数和有效数字第二章整式的加减 第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。

教学目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:分层次教学,讲授、练习相结合。

教学过程: 一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ; (3)若x 表示正方形棱长,则正方形的体积是 ; (4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。

让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

) 二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a ,5。

2.练习:判断下列各代数式哪些是单项式? (1)21x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)3.单项式系数和次数:直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。

以四个单项式31a 2h ,2πr ,a bc ,-m 为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

4.例题:例1:判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数和次数。

①x +1; ②x1; ③πr 2; ④-23a 2b 。

答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2; ④是,它的系数是-23,次数是3。

例2:下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。

通过其中的反例练习及例题,强调应注意以下几点: ①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等; ③单项式次数只与字母指数有关。

5.游戏:规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

)6.课堂练习:课本p56:1,2。

三、课堂小结:①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、课堂作业: 课本p59:1,2。

板书设计:第2课时:整式(2)教学内容:教科书第56—59页,2.1整式:2.多项式。

教学目标和要求:1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。

由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。

3.初步体会类比和逆向思维的数学思想。

教学重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

教学方法:分层次教学,讲授、练习相结合。

教学过程: 一、复习引入:1.列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ; (2)某班有男生x 人,女生21人,则这个班共有学生 人; (3)图中阴影部分的面积为_________;(4)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。

(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。

)2.观察以上所得出的四个代数式与上节课所学单项式有何区别。

(1)2(a +b) ; (2)21+x ; (3)a +b ; (4)2a +4b 。

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。

通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充。

) 二、讲授新课:1.多项式:板书由学生自己归纳得出的多项式概念。

上面这些代数式都是由几个单项式相加而成的。

像这样,几个单项式的和叫做多项式(polynomi a l)。

在多项式中,每个单项式叫做多项式的项(term)。

其中,不含字母的项,叫做常数项(const a nt term)。

例如,多项式5232+-x x有三项,它们是23x ,-2x ,5。

其中5是常数项。

一个多项式含有几项,就叫几项式。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式5232+-x x 是一个二次三项式。

注意:(1)多项式的次数不是所有项的次数之和; (2)多项式的每一项都包括它前面的符号。

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。

)2.例题: 例1:判断:①多项式a 3-a 2b+a b 2-b 3的项为a 3、a 2b、a b 2、b 3,次数为12; ②多项式3n 4-2n 2+1的次数为4,常数项为1。

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a 2b 、-b 3,而往往很多同学都认为是a 2b 和b 3,不把符号包括在项中。

另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。

)例2:指出下列多项式的项和次数:(1)3x -1+3x 2; (2)4x 3+2x -2y 2。

解:略。

例3:指出下列多项式是几次几项式。

(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2。

解:略。

例4:已知代数式3x n -(m -1)x +1是关于x 的三次二项式,求m 、n 的条件。

解:略。

(让学生口答例2、例3,老师在黑板上规范书写格式。

讲述例2时应特别提醒学生注意, 多项式的项包括前面的符号,多项式的次数应为最高次项的次数。

在例3讲完后插入整式的定义:单项式与多项式统称整式(integr a l expression)。

例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。

)通过其中的反例练习及例题,强调应注意以下几点: 6.课堂练习:课本p59:1,2。

①填空:-45a 2b -34a b +1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。

②已知代数式2x 2-mnx 2+y 2是关于字母x 、y 的三次三项式,求m 、n 的条件。

三、课堂小结:①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。

(让学生小结,师生进行补充。

) 四、课堂作业: 课本p60:3 板书设计:第3课时:整式(3)教学内容:补充内容,课本64页提到这个内容 教学目的和要求:1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

2.通过尝试和交流,让学生体会到多项式升(降)幂排列的可行性和必要性。

3.初步体验排列组合思想与数学美感,培养学生的审美观。

教学重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

教学方法:分层次教学,讲授、练习相结合。

教学过程: 一、复习引入:请运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?(以上由学生小组讨论,得出结果后,教师可投影演示,然后与全班同学共同探讨。

充分发挥学生的主体作用,让学生成为知识的发现者,感受成功的喜悦,体验其中蕴含的数学美,增强学好数学的信心。

)由讨论发现任意交换多项式x 2+x +1中各项的位置,可以得到六种不同的排列方式,在众多的排列方式中,像x 2+x +1与1+x +x 2这样的排列比较整齐。

相关文档
最新文档