第二章概率分布

合集下载

第2章概率

第2章概率
第二章
随机变量及其分布
§2.1 随机变量 离散型随机变量 §2.2 随机变量的分布函数 §2.3 连续型随机变量及其分布 §2.4 随机变量的函数的分布
1
§2.1 随机变量 量
2.1.1 随机变量的概念
离散型随机变
(1) 掷一颗骰子, 出现的点数 X 1, 2, , 6 (2)电话总机在单位时间内接到的呼唤次数 Y 0,1,2,…… (3)某电子元件的使用寿命 T [0, ) (4) 将一枚硬币抛掷两次,观察正面出现的次数 Z
X ~ ( ),

e e
3e 2
2
P{ X 3} 1 P{ X 0} P{ X 1} P{ X 2}
21 2 2 2 2 1 e 2 e e 1 5e 2 0.323 1! 2!
27
四、 超几何分布
定义4 称 X 服从参数为N, M, n (M≤N, n≤N)的 超几何分布 ( X ~ h(N, M, n)), 若 X 的分布律为
n k N M n N
C C P{ X k } C
k M
( k 0, 1, , r , r min{ M , n})
注 背景: 若N个元素分为A、B两类,A类中含有 M(M≤N)个元素.任取n个,则这n 个元素中 含有A类元素的个数 X ~ h( N, M, n).
28
§2.2 随机变量的分布函数
击, 每人射击一次,各人击中目标的概率依次为
0.7,0.6,0.5, 求目标被击中次数 X 的分布律.
解:设A, B, C分别表示甲、乙、丙击中目标,
X所有可能的取值为0, 1, 2, 3.
P{ X 0} P ( ABC ) 0.3 0.4 0.5 0.06

2.2离散型随机变量及其概率分布

2.2离散型随机变量及其概率分布

8
5
k
24
小结
离 散 型 随 机 变 量 的 分 布
二项分布 泊松分布
两点分布
两点分布
n1
二项分布
n 10, p 0.1, np
泊松分布
25
二项分布与 (0 1) 分布、泊松分布之间的 关系 .
二项分布是 (0 1) 分 布 的 推 广 , 对 于n 次 独 立重复伯努利试验 ,每 次 试 验 成 功 的 概 率 为 p, 设 , 1, 若 第 i 次 试 验 成 功 Xi ( i 1,2, , n) . 0, 若 第 i 次 试 验 失 败 它们都服从 (0 1) 分 布 并 且 相 互 独 立 , 那末 X X1 X 2 X n 服 从 二 项 分 布 , 参 数 为( n, p).
定义2 如果随机变量 X 只有两个可能取 值,其概率分布为
P{ X x1 } P , P{ X x2 } q 1 p(0 p 1, p q 1)
则称X服从 x1 , x2 处参数为p的两点分布. 特别,若X服从
x1 1, x 0 处参数为p的两点分布,即
p
k 1
5
k
1
1 a . 15
5
关于分布律的说明:
若已知一个离散型随机变量X的概率分布 X P x1 p1 x2 p2 ... ... xn ... pn ...
则可以求X所生成的任何事件的概率,特别地:
P{a X b} P{ { X xi }} pi
a xi b a xi b
26
以 n, p ( np ) 为参数的二项分布 ,当 n 时趋 于以 为参数的泊松分布 ,即

概率论课件第二章

概率论课件第二章
第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。

2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt

x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法

第二章随机变量及其概率分布(概率论)

第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25

⎧0
x<0
F
(
x)
=
⎪⎪ ⎨

0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3

概率论与数理统计第二章

概率论与数理统计第二章


这样,我们就掌握了X这 个随机变量取值的概率 规律。
一、离散型随机变量概率分布的定义
1、定义 设离散型随机变量X的所有可能取值为xk (k=1, 2, …),称X取各个可能值的概率,即事件 {X=xk}的概率, P{X=xk}=pk, (k=1, 2, …) 为X的分布律或概率分布(Probability distribution )。也可以表示为 X x1 x2 … xk … pk p1 p2
② 进行5次试验,事件D={试验成功一次},F={试 验至少成功一次},G={至多成功3次} X:试验成功的次数
二、引入随机变量的意义
随机变量概念的引入是概率论走向成熟的一个标 志,它弥补了随机试验下的随机事件种类繁多, 不易一一总结它们取值规律的缺陷,因为如果知 道随机变量的分布, 随机试验下任一随机事件 的概率也随之可以得到;另外引入随机变量后, 可以使用高等数学的方法来研究随机试验。
0-1分布 b n, p) 二项分布 B ((n,p) p 泊松分布 P( ) ()
正态分布的概率计算
均匀分布 U(a,b) N (m ,2)2) 正态分布 N(a, ) 指数分布 EE(q) (
§2.1 随机变量
一、随机变量概念的产生
在实际问题中,有些随机试验的结果本身就是 数值(如班级的平均分数),而许多并不是数 值(掷硬币的结果)。我们对数值的处理比较 得心应手。因此,如果能用数值来表示样本空 间的样本点,就会非常方便。由此就产生了随 机变量的概念。
1, X (e ) 0,
e = H; e = T.
再如:将一枚硬币抛掷三次,观察出现正面和反
面的情况,则样本空间是S={HHH, HHT, HTH,
THH, HTT, THT, TTH, TTT}。令X表示三次投掷

概率论课件:第二章随机变量及其概率分布

概率论课件:第二章随机变量及其概率分布

π 3π ⎞ ⎛ π 0 ⎟ 22.设随机变量 X 的分布律为 ⎜ 2 2 ⎟ ,求 Y 的分布律: ⎜ ⎝ 0.3 0.2 0.4 0.1 ⎠
(1) Y = ( 2 X − π ) ;
2
(2) Y = cos( 2 X − π ). ⎧2 x , 0 < x < 1 f ( x) = ⎨ ⎩0 , 其它
它意味着第 i 次( i ≥ k )成功,且 i − 1 次试验中成功 k − 1 次,设这两个事件分别为A1 ,A2,
则A = A 1 A 2 , 且P(A) = P(A 1 A 2 ) = P(A 1 )P(A 2 )(A 1与A 2 独立 ), 而 P(A 1 ) = p,
1 k −1 1 k −1 i − k P( A2 ) = Cik−− ⋅ q i −1−( k −1) = Cik−− q . 1 p 1 ⋅ p
, ( 2,6),
, (6,1),
例如(6,1) , (6,6)} .这里,
8
5 36
9
4 36
10
3 36
11
2 36
12
1 36
PK
1 36
2 36
3 36
4 36
5 36
6 36
概率 P{X = k }, k = 0,1,2,3.
2、分析: 显然 X 服从离散型概率分布,而且 X 的可能取值为 0,1,2,3.问题归结为求
∴ X 的分布律为:
P{X = 0} = P ( A1 ) = 1 / 2; P{X = 1} = P ( A1 A2 ) = 1 / 2 2 ; P{X = 2} = P ( A1 A2 A3 ) = 1 / 2 3 ;
X Pi

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布

第二章随机变量及其概率分布【授课对象】理工类本科二年级【授课时数】8学时【授课方法】课堂讲授与提问相结合【基本要求】1、了解随机变量的概念;2、理解离散型随机变量的概念及其分布律的概念和性质;3、理解连续型随机变量的概念及其概率密度函数的概念和性质;4、理解分布函数的概念,并知道其性质;5、会利用分布律、概率密度函数及分布函数计算有关事件的概率;6、会求简单的随机变量函数的概率分布;7、了解二维随机变量的概念,知道二维随机变量的边缘(边际)分布、联合分布函数等概念;8、了解二维连续型随机变量的联合概率密度函数的概念及性质,进一步掌握其边缘分布与联合分布的关系,并会计算有关事件的概率;了解二维连续型随机变量独立性的概念。

【本章重点】随机变量的概念;连续型(离散型)随机变量的密度函数(分布律)的概念和性质以及它们的分布函数的概念和性质;二维随机变量的边缘分布、联合分布函数等概念;随机变量函数的概率分布以及二维随机变量独立性的概念。

【本章难点】随机变量的概念及性质;连续型随机变量的概率密度函数及分布函数的性质与相关计算;二维连续型随机变量的边缘分布与联合分布的关系以及独立性的概念。

【授课内容及学时分配】§2.1 随机变量的概念在第一章里,我们主要研究了随即事件及其概率,同学们可能会注意到在某些例子中,随即事件和实数之间存在着某种客观的联系。

例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时期在工作的车床数;在电话问题中关心的是某一段时间内的话务量等。

对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。

然而,有些初看起来与数值无关的随机现象,也常常能联系数值来描述。

比如,在投硬币问题中,每次实验出现的结果为正面或反面,与数值没有联系,但我们可以通过指定数“1”代表正面,“0”代表反面,为了计算n 次投掷中出现的正面就只须计算其中“1”出现的次数了,从而使这一随机试验的结果与数值发生联系。

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为0­1分布或两点分布,并记为X~0­1分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。

概率论 第二章 随机变量与概率分布

概率论 第二章 随机变量与概率分布
(2)P{0 X 2}, P{0 X 2}.
解 (1)X的分布函数为
0,
x 1
F
(
x)
1313,
1 2
5 6
,
1 x 1 1 x 2
1
1
1
1,
2 x
3 2 6
解 (2)P{0 X 2} F (2) F (0) 1 1 2 ,
33 P{0 X 2} P{0 X 2} P{X 2} 21 1.
a-b ab
2
0 1
x
2
解得:a=1/2 b=1/
X的密度为: f(x) = F(x) =
1 (1+ x2 )
(-<x<)
P{X2>1}=1-P{-1X 1}
=1-{F(1)-F(-1)}=1/ 2
例6. 设随机变量X的密度函数为:
ke-3x x>0
事件:{取到2白、1黑}={X=2}={Y=1}
4. 随机变量的分类 通常分为两类:
所有取值可以逐 个一一列举
离散型随机变量
随 机 变 量
全部可能取值不仅
如“取到次品的个数”,无穷多,而且还不能
一一列举,而是充满
“收到的呼叫数”等. 满一个或几个区间.
连续型随机变量 非离散型随机变量
非离散型非连续型
§4. 连续型随机变量的概率密度 1. 定义:对于随机变量X的分布函数F(x), 如果存在非负函数f(x),使对于任意实数x有:
F( x) x f (t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称概率密度。
概率密度的性质:
(1). f(x)0;
(2).
f
(
x)dx

概率论第二章随机变量以其分布第3节随机变量的分布函数

概率论第二章随机变量以其分布第3节随机变量的分布函数
F () 1, 知 1 P{ X 2}
2 (a b) (2 a) 3 2a b 2 , 3
且 a b 1.
由此解得 a 1 , b 5 . 66
27
因此有
0,
1 ,
F
(
x
)
6 1
,
2
1,
从而 X 的分布律为
X 1
1
P
6
x 1, 1 x 1,
1 x 2, x 2.
分别观察离散型、连续型分布函数的图象,可以看 出,分布函数 F(x) 具有以下基本性质:
10 F (x) 是一个不减的函数.F(x)
即当x2 x1时, 1 F(x2 ) F(x1).
01 2 3
x
返回主目录
证明 由 x1 x2 { X x1} { X x2 },
得 P{X x1} P{X x2}, 又 F ( x1) P{X x1}, F ( x2 ) P{X x2}, 故 F ( x1) F ( x2 ).
(3) 若 x 2 , 则 {X x} 是必然事件,于是
F(x) P{X x} 1.
返回主目录
§3 随机变量的分布函数
0,
F ( x)
x2 4
,
1,
x 0, 0 x 2,
x 2.
F(x) 1
01 2 3
x
返回主目录
§3 随机变量的分布函数
3. 分 布 函 数 的 性 质
x
x
o
x
同样,当 x 增大时 P{ X x}的值也不会减小,而
X (, x), 当 x 时, X 必然落在 (,)内.
o
x
16
§3 随机变量的分布函数
30 F(x 0) F(x), 即 F(x)是右连续的.

概率论与数理统计第二章--随机变量及其分布

概率论与数理统计第二章--随机变量及其分布

第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )

概率与数理统计 第二章-2-离散型随机变量及其分布律

概率与数理统计 第二章-2-离散型随机变量及其分布律

(0–1)分布的分布律也可以写成:
P{X k} pk (1 p)1k , k 0,1,0 p 1.
两点分布的模型为:
(1)Ω= {1, 2}, 只有两个基本事件。
P({1}) = p , P({2}) = 1-p =q.

X
()
1, 0,
1, 2,
(2) W A A ,有两个结果。
1
2
P 0.04 0.32 0.64
PX 0 0.2 0.2 0.04
PX 1 0.80.2 0.20.8 0.32
PX 2 0.8 0.8 0.64
(2) ∵是并联电路 ∴ P{线路接通} =P{只要一个继电器接通} =P{X≥1} =P{X=1}+P{X=2}=0.32+0.64=0.96
所以,X 的概率分布为
P{X k } C4k p k (1 p )4k ,
k 0, 1, 2, 3, 4 .
(1) 伯努利试验 若随机试验E只有两个可能的结果: 事件A发生与事件A不发生,则称这样的 试验为伯努利(Bermourlli)试验。记
P(A) p, P(A) 1 p q (0 p 1),
P{X=1}:o o o Co41 p1(1 p)41
P{X=2}:o o oo oo oo C42opo2(1oop)42
P{X=3}:ooo oo o o oo oooC43 p3(1 p)43 P{X=4}:oooo C44 p4(1 p )44 p4
其中“×”表示未中,“○”表示命中。
P(A) p, P(A) 1 p ;
③ 各次试验相互独立。
我们关心的问题是:
n次的独立伯努利试验中,事件A发生的次数 及A发生k次的概率。

第二章 随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布§2.1 随机变量与分布函数§2.2 离散型随机变量及其概率分布一、 填空题1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,)2.0()8.0(33=-k C k k k ;2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ;3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤-<=1 ,110 ,10,0)(x x p x x F ;4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布函数)(x F =0 10.2 120.5 231 3x x x x <⎧⎪≤<⎪⎨≤<⎪⎪≥⎩,,,,;5. 设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=3,131 ,8.011 ,4.01, 0)x x x x x F (, 则X 的概率分布为(1)0.4,(1)0.4,(3)0.2P X P X P X =-=====。

二、选择题设离散型随机变量X 的分布律为λ>=λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 11-=b λ. 三、 计算下列各题1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。

解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(51041===-k C C k X P k所以X 的分布列为2. 一批元件的正品率为4,次品率为4,现对这批元件进行有放回的测试,设第X 次首次测到正品,试求X 的分布列。

随机变量及其概率分布

随机变量及其概率分布

第二章随机变量及其概率分布【内容提要】一、随机变量及其分布函数设是定义于随机试验的样本空间上的实值函数,且,是随机事件,则称为随机变量,而称为其概率分布函数。

随机变量的概率分布函数具有如下性质:⑴.非负性:,有;⑵.规范性:;⑶.单调性: 若,则;⑷.右连续性:,有。

二、离散型随机变量1.离散型随机变量及其概率分布律若随机变量只取一些离散值,且取到这些值的概率满足,则称为离散型随机变量,而称为其概率分布律,记为,也可用下表来表示:而其概率分布函数是单增、右连续的阶梯形函数。

2.常用离散型分布⑴.单点分布:为常数;⑵.二项分布:;特别当时,二项分布退化为两点分布;⑶.超几何分布:;⑷.分布:;特别当时,分布退化为几何分布;⑸.分布:。

三、连续型随机变量1.连续型随机变量及其概率密度函数若随机变量的一切可能取值充满了某一区间,且存在一个实值函数,使其概率分布函数,且,则称为连续型随机变量,而称为其概率密度函数,记为。

连续型随机变量的密度函数与分布函数之间有满足。

2.常用连续型分布⑴.分布:设为常数,则分布的密度函数为:,特别当时,分布即均匀:;⑵.分布:设为常数,则分布的密度函数为:,特别当时,分布即指数分布:;⑶.正态分布:。

四、随机变量函数的分布设为随机变量,而为连续的确定型函数。

⑴.若为离散型随机变量,且,则也是离散型随机变量,其概率分布律为: ;⑵.若为连续型随机变量,且,则也是连续型随机变量,其概率密度函数为:。

【第二章作业】1、从的自然数中随机地取出个数,用表示所取的个数中的最大值,求其概率分布。

解:发生所取的个数中有一个是,其余个是从中取到的,故,,即2、将一枚均匀的硬币连掷次,用表示出现的正、反面次数之差,求其概率分布。

解:用表示将一枚均匀的硬币连掷次时,正面出现了次,则,即3、设随机变量的概率分布如下,求:0 1 2 3 4 5解:由题设知所求概率为:,,。

4、设随机变量的概率分布为,求常数。

概率论第二章

概率论第二章

将 p = 0.5 代入,得
1 0 X ~ 0 .5 0.25 2 0.125 3 0 .0625 0 .0625 4
下面,重点介绍三种离散型随机变量的概率分 布。 (一)0-1分布 分布 若X 的分布律为 k 1− k P { X = k } = p (1 − p ) , k = 0 ,1 或者 0 1 X p pk 1− p 则称随机变量 X 服从参数为 的0-1分布 参数为p的 分布. 参数为 如果试验的结果只有两个:成功与失败,并且成 功的概率为p,则成功的次数 X 服从参数为p的0-1 分布。
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.99) − 20(0.01)(0.99) = 0.0169 设A为“四个人中至少有一个人来不及维修”这 一事件,则有
20 19
P( A) ≥ P{ X ≥ 2} = 0.0169
P{ X ≥ 2} = 1 − P{ X = 0} − P{ X = 1}
= 1 − (0.98)
400
− 400(0.02)(0.98)
399
直接计算上式比较麻烦,为此需要一个近似计算 公式。我们先引入一个重要的分布。
(三) 泊松分布 三 泊松分布(Poisson Distribution) 如果随机变量 X 的分布律为:
例6 社会上定期发行某种奖券,中奖率为p.某人 每次购买一张奖券,如果没有中奖则下次继续购买1 张,直至中奖为止.求该人购买次数的分布律. 解 设该人购买的次数为X ,则X的可能取值为
1, 2 , L .
{X = 1} 表示第一次购买就中奖,其概率为p.

概率论第二章

概率论第二章

三。几种常用的离散型分布 (一)二项分布
B ( n, p )
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示在 次试验中事件 发生的次数 并设随机变量 表示在n次试验中事件 发生的次数, 表示在 次试验中事件A发生的次数 则称X服从二项分布,记作 则称 服从二项分布,记作X~ B ( n, 服从二项分布 其分布列为: p ) ,其分布列为: k k n−k 。 ) P{ X = k} = Cn p (1 − p) , k = 0,1,..., n (2。3) 特别, 特别,当n=1时,X~ B (1, 时
G ( p)
在贝努里试验中,如果每次试验事件 发生的概率为 发生的概率为P, 在贝努里试验中,如果每次试验事件A发生的概率为 ,即
P ( A) = p,0 < p < 1, q = 1 − p
并设随机变量X表示事件 首次发生的试验次数 则称X 并设随机变量 表示事件A首次发生的试验次数,则称 表示事件 首次发生的试验次数, 服从几何分布, 其分布列为: 服从几何分布, 几何分布 记作 X ~ G ( p ) ,其分布列为:
0 3 3 解:P ( X = 0) = C2 C3 / C5 = 1 / 10,
1 3 P( X = 1) = C2C32 / C5 = 6 / 10, 2 1 3 P( X = 2) = C2 C3 / C5 = 3 / 10,
通式为: 通式为:
2
k 3 3 P( X = k ) = C2 C3 − k / C5 , k = 0,1,2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档