高一数学集合的含义与表示教学设计.doc

合集下载

1.1.1 集合的含义及其表示教案

1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。

○3无序性:集合中的元素间是无次序关系的。

(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。

(2)我国的小河流。

2.说出集合A={a,b,c}和集合B={b, a,c}的关系。

(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。

人教版数学高一-新课标 集合的含义及其表示 教案

人教版数学高一-新课标  集合的含义及其表示  教案

§1.1 集合的含义及其表示(2)【教学目标】1.进一步加深对集合的概念理解;2.认真理解集合中元素的特性;3. 熟练掌握集合的表示方法,逐渐培养使用数学符号的规范性.【考纲要求】1. 知道常用数集的概念及其记法.2. 理解集合的三个特征,能判断集合与元素之间的关系,正确使用符号∈.【课前导学】1.集合()(){}3,2,1,0=A ,则集合A 中的元素有 个.2.若集合{}|0,x ax x R =∈为无限集,则a = .3. 已知x 2∈{1,0,x },则实数x 的值 .4. 集合12|,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A = . 【例题讲解】例1、 观察下面三个集合,它们表示的意义是否相同?(1){}2|1A x y x ==+(2){}2|1B y y x ==+(3){}2(,)|1C x y y x ==+例2、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,求20112011a b +.例3、已知集合{}222,(1),33A a a a a =++++,若1A ∈,求a 的值.【课堂检测】1. 用适当符号填空:(1){}2|,1_____A x x x A ==- (2){}2|60,3____B x x x B =+-=(){}C R x x x C ___52,,22|3∈≤=2.设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -= . 3.将下列集合用列举法表示出来: (){};6|1N m N m m A ∈-∈=且 ()⎭⎬⎫⎩⎨⎧∈∈-=N x N x x B ,99|2【教学反思】。

学年人教版高中数学必修一 教师用书word文件

学年人教版高中数学必修一 教师用书word文件

1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例: (1)某公司的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念 定义表示元素 一般地,我们把研究对象统称为元素 通常用小写拉丁字母a ,b ,c ,…表示 集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A ,B ,C ,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:“知识点一”中的实例(3)组成的集合的元素是什么?提示:2,3.问题2:“知识点一”中的实例(4)组成的集合的元素是什么?提示:2,3.问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[提出问题]某中学2017年高一年级20个班构成一个集合.问题1:高一(6)班、高一(16)班是这个集合中的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么? 提示:不是.高一年级这个集合中没有高二(3)班这个元素. [导入新知]1.元素与集合的关系(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 2.常用的数集及其记法常用的数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR[化解疑难]1.对“∈”和“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的. 2.常用数集关系网集合的基本概念[例1] (1)上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解] (1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]判断下列每组对象能否构成一个集合. (1)著名的数学家;(2)某校2017年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[例2](1)设集合A只含有一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0B.1C.2 D.3解析:选B实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.集合中元素的特性及应用[例3]已知集合A中含有两个元素a和a,若1∈A,求实数a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a =1时,a =a 2,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1. [类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]已知集合A 中含有三个元素1,0,x ,若x 2∈A ,求实数x 的值.解:∵x 2∈A ,∴x 2是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 2=0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若x 2=1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x=±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:①若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.②若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.③若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由②知不合题意.综上可知a=0或a=1.答案:0或1[随堂即时演练]1.下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍解析:选C根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:选A由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).解析:因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)素数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3 D.4解析:选C(1)正确;(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确;(3)也正确,任何一个素数都在此集合中,不是素数的都不在;(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉MD .0∉M,2∉M解析:选B 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .3.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于选项A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而选项B ,C ,D 中元素不相同,所以P 与Q 不能表示同一个集合.4.已知集合M 中的元素x 满足x =a +b 2,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是( )①0;②-1;③32-1;④23-22;⑤8;⑥11-2. A .0 B .1 C .2 D .3解析:选A 当a =b =0时,x =0;当a =-1,b =0时,x =-1;当a =-1,b =3时,x =-1+32;23-22=2(3+22)(3-22)(3+22)=6+42,即a =6,b =4;当a =0,b =2时,x=22=8;11-2=1+2(1-2)(1+2)=-1-2,即a =-1,b =-1.综上所述:0,-1,32-1,23-22,8,11-2都是集合M 中的元素.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中最多有两个元素.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ______A ,ab _____A .(填“∈”或“∉”)解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为________.解析:∵a ∈A ,且3a ∈A ,∴⎩⎪⎨⎪⎧a <6,3a <6, 解得a <2. 又∵a ∈N , ∴a =0或a =1. 答案:0或1 三、解答题9.已知集合M 由三个元素-2,3x 2+3x -4,x 2+x -4组成,若2∈M ,求x . 解:当3x 2+3x -4=2时,即x 2+x -2=0,x =-2或x =1,经检验,x =-2,x =1均不合题意;当x 2+x -4=2时,即x 2+x -6=0,x =-3或x =2,经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =- 2.11.数集M 满足条件:若a ∈M ,则1+a1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M , ∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M ,∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.12.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.解:根据已知条件“若a ∈A ,则11-a ∈A (a ≠1)”逐步推导得出其他元素.(1)其他所有元素为-1,12.(2)假设-2∈A ,则13∈A ,则32∈A .其他所有元素为13,32.(3)A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.证明如下:由已知,若a ∈A ,则11-a ∈A 知,11-11-a =a -1a ∈A ,11-a -1a =a ∈A .故A 中只能有a ,11-a,a -1a 这3个元素.下面证明三个元素的互异性:若a =11-a ,则a 2-a +1=0有解,因为Δ=1-4=-3<0,所以方程无实数解,故a ≠11-a. 同理可证,a ≠a -1a ,11-a≠a -1a .结论得证.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示.[导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.[化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a1,a2,…,a n};(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题]观察下列集合:(1)不等式x-2≥3的解集;(2)函数y=x2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗?提示:不能.问题2:如何表示这两个集合?提示:利用描述法.[导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x 的取值范围A 需写明确,但若从上下文的关系看,x ∈A 是明确的,则x ∈A 可以省略,只写元素x .用列举法表示集合[例1] (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( ) A .1 B .2 C .3D .9(2)用列举法表示下列集合:①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解] 选B (1)∵x ∈A , ∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.[活学活用]已知集合A={-2,-1,0,1,2,3},对任意a∈A,有|a|∈B,且B中只有4个元素,求集合B.解:对任意a∈A,有|a|∈B.因为集合A={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A,知0,1,2,3∈B.又因为B中只有4个元素,所以B={0,1,2,3}.用描述法表示集合[例2](1)①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.[解](1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.[答案](1)①∈∉②∈[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R|x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z|x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z|x =2k ,k ∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R|x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等. [活学活用] 下列三个集合: ①A ={x |y =x 2+1}; ②B ={y |y =x 2+1}; ③C ={(x ,y )|y =x 2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A ) A .{x |x =2n ±1,n ∈N} B .{x |x =(-1)n (2n -1),n ∈N} C .{x |x =(-1)n (2n +1),n ∈N} D .{x |x =(-1)n -1(2n +1),n ∈N}(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .[解] 选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.(2)①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N.所以1∈B,2∉B . ②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}. 解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1. ∴A ={(-1,1),(0,0),(1,1)}.1.集合与方程的综合应用[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.[解]当a=0时,原方程变为2x+1=0,,符合题意;此时x=-12当a≠0时,方程ax2+2x+1=0为一元二次方程,当Δ=4-4a=0,即a=1时,原方程的解为x=-1,符合题意.故当a=0或a=1时,原方程只有一个解,此时A中只有一个元素.[多维探究]解答上面例题时,a=0这种情况极易被忽视,对于方程“ax2+2x+1=0”有两种情况:一是a=0,即它是一元一次方程;二是a≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如:1.在本例条件下,若A中至多有一个元素,求a的取值范围.解:A中至多有一个元素,即A中有一个元素或没有元素.当A中只有一个元素时,由例题可知,a=0或a=1.当A中没有元素时,Δ=4-4a<0,即a>1.故当A中至多有一个元素时,a的取值范围为{a|a=0或a≥1}.2.在本例条件下,若A中至少有一个元素,求a的取值范围.解:A中至少有一个元素,即A中有一个或两个元素.由例题可知,当a=0或a=1时,A中有一个元素;当A中有两个元素时,Δ=4-4a>0,即a<1.∴A中至少有一个元素时,a的取值范围为{a|a≤1}.3.若1∈A,则a为何值?解:∵1∈A,∴a+2+1=0,即a=-3.4.是否存在实数a,使A={1},若存在,求出a的值;若不存在,说明理由.解:∵A={1},∴1∈A,∴a+2+1=0,即a=-3.又当a=-3时,由-3x2+2x+1=0,得x=-1或x=1,3即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的. 其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A={-1,-2,0,1},B={x|x=|y|,y∈A},则B=________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x-1)(x-2)=0的解集;(6)不等式2x-1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x|x是梯形}或{梯形}.(4){x|x=3n,n∈Z}.(5){1,2}.(6){x|x>3}.[课时达标检测]一、选择题1.下列集合的表示,正确的是()A.{2,3}≠{3,2}B.{(x,y)|x+y=1}={y|x+y=1}C.{x|x>1}={y|y>1}D.{(1,2)}={(2,1)}解析:选C{2,3}={3,2},故A不正确;{(x,y)|x+y=1}中的元素为点(x,y),{y|x+y =1}中的元素为实数y,{(x,y)|x+y=1}≠{y|x+y=1},故B不正确;{(1,2)}中的元素为点(1,2),而{(2,1)}中的元素为点(2,1),{(1,2)}≠{(2,1)},故D不正确.2.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M解析:选D 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M .当x ,y ,z 都小于零时,代数式的值为-4,所以-4∈M .当x ,y ,z 有两个为正,一个为负时,或两个为负,一个为正时,代数式的值为0.所以0∈M .综上知选D.3.集合{x ∈N *|x -3<2}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:选B ∵x -3<2,x ∈N *, ∴x <5,x ∈N *, ∴x =1,2,3,4.4.已知集合A ={x |x =2m -1,m ∈Z},B ={x |x =2n ,n ∈Z},且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 解析:选D 集合A 表示奇数集,B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.5.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时,集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19.二、填空题6.若集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a -b =________.解析:由题意知a ≠0,a +b =0,b =1,则a =-1, 所以a -b =-2. 答案:-27.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:{a |a ≤-2}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0},得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值. 解:①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去. ②若(a +1)2=1,则a =0或a =-2. 当a =0时,A ={3,1,2},满足题意; 当a =-2时,由①知不符合条件,故舍去. ③若a 2+2a +2=1,则a =-1, 此时A ={2,0,1},满足题意. 综上所述,实数a 的值为-1或0. 10.用适当的方法表示下列集合: (1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10的图象上的所有点组成的集合. 解:(1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2,y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的所有点”用描述法表示为{(x ,y )|y =x 2-10}.11.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z ,求M ;(2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x∈Z x ∈N ,求C . 解:(1)∵x ∈N ,61+x ∈Z ,∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x ∈Z ,且x ∈N ,∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.12.若集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0有且只有一个元素,试求出实数k 的值,并用列举法表示集合A .解:当k =0时,方程组⎩⎪⎨⎪⎧ y =kx 2-2x -1,y =0可化为⎩⎪⎨⎪⎧y =-2x -1,y =0,解得⎩⎪⎨⎪⎧x =-12,y =0,此时集合A 为-12,0;当k ≠0时,要使集合A 有且只有一个元素,则方程kx 2-2x -1=0有且只有一个根,所以⎩⎪⎨⎪⎧k ≠0,Δ=(-2)2+4k =0,解得k =-1,代入⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0中得⎩⎪⎨⎪⎧y =-x 2-2x -1,y =0, 解得⎩⎪⎨⎪⎧x =-1,y =0,即A ={(-1,0)}.综上可知,当k =0时,A =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0;当k =-1时,A ={(-1,0)}.1.1.2 集合间的基本关系子 集[提出问题]具有北京市东城区户口的人组成集合A ,具有北京市户口的人组成集合B . 问题1:集合A 中元素与集合B 有关系吗? 提示:有关系,集合A 中每一个元素都属于集合B . 问题2:集合A 与集合B 有什么关系? 提示:集合B 包含集合A . [导入新知] 子集的概念定义一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A,此时记作A B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是.是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识。

高中数学:1.1集合的含义与表示教案新课标人教A版必修1

高中数学:1.1集合的含义与表示教案新课标人教A版必修1

1.1集合的含义与表示[三维目标]一、知识与技能1,理解集合的含义,知道常用数集及其记法2,了解元素与集合的关系及符号表示;了解有限集、无限集、空集的意义3,掌握集合表示法的基本框架二、过程与方法1,通过学生看书及事例汇总出集合的含义,引出集合的特性及元素与集合的关系2,通过例子辨别表示法及有限、无限集合,用自己熟悉的表示法表示集合三、情感态度和价值观1,通过组织学生预习→教师汇总→学生应用的方式,表达以学生为主体的思想特征2,通过汇总,培养学生找不足、差距及联系的观点,并比较与初中学习方法的不同[重点] 集合的含义及表示方法[难点] 集合的表示方法[过程]一,看书P1---P5,教师版书:集合的含义及表示例1:看下面事例⑴15的正约数⑵新华中学高一年级的全体学生⑶所有的自然数⑷老人⑸方程x+1=0的解⑹身材较高的人⑺抛物线y=x2上所有的点二、教师汇总1、集合的含义象⑴⑵⑶⑸⑺这样具有确定的共同属性的对象的全体就构成一个集合,其中的每个对象称这个集合的一个元素,元素的个数为有限个称有限集如⑴⑵⑸,无限的称无限集⑶⑺,将不含有任何元素的集合称空集,如:x2+1=0的实数解根据集合的含义可以知道,一个集合具有:确定性:任何一个事物要么在这个集合中,要么不在,不能摸棱两可。

在时称属于这个集合,符号∈;不在时称不属于这个集合,符号∉或∈;象⑷⑹由于不确定,就不是集合互异性:集合中的元素不能出现重复无序性:集合中的元素顺序可以任意互换集合的相等:只要构成两个集合的元素是一样的,那么称这两个集合是相等的。

问题:集合如何表示呢?2、集合的表示还是从例1来说⑴可以表示为:{1,3,5,15},这种一个个列举出的方法称列举法⑵可以表示为:{新华中学高一年级的学生}或{x|x为新华中学高一年级的学生};这两种表示方法称描述法:其中前者称文字描述〔自然语言〕,由于集合含义中已经含有了全部的意义,所以要去掉诸如全体、所有等全称量词;后者称属性描述法,用集合所含元素的共同特征表示集合的方法。

人教A版必修1-集合的含义与表示-教案设计.docx

人教A版必修1-集合的含义与表示-教案设计.docx

必修一第一章 1.1.1集合的含义与表示【教学目标】1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.【重点难点】重点:集合的基本概念与表示方法.难点:选择适当的方法表示具体问题屮的集合.【教学策略与方法】问题引导讲练结合【教学过程】教学流程教师活动学生活动设计意图环节- •:一、创设情境;(1)集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(1)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域屮,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.在教师的引导下,帮助学生从最熟悉的生活情境出发,來认识和学习“集合”的概念。

让学生感受到数学来源于生活。

环节二二、探究新知;1.中国的四大发明;2.高一(1)班的全体学生;3.到线段两端距离相等的点.4.正整数;1,2,3..…问题1•你能举出一些相似的例子吗?(1)集合的含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set).学生根据观察分析,自己举出一些集合的例子;并对举出的例子进行分析交流,从而为抽象出集合的概念做好准备。

由问题思考,引导学生观察思考,为集合概念的理解做好铺垫。

问题2;(1) A={所有素质好的人},能否表示为集合?B琨身材较高的人}呢?(2)A={2, 2, 4},表示是否准确?(3)A={太平洋,大西洋}, B={大西洋,太平洋},是否表示为同一集合?(2)结论:集合中的元素具有三个特征:_确定性_、互异性、无序性问题3;元素与集合的关系;a是集合Bp 的元素,就说a属于集合B,记作ae B; a 不是集合A中的元素,就说a不屈于集合A,记作a^A.因此元素与集合的关系有两种,即属于和不属于.问题4;常用数集及记法1)自然数集:全体非负整数的集合记作N, 2)正整数集:非负整数集内排除0的集记作N*或N+ ,3)整数集:全体整数的集合记作乙4)有理数集:全体有理数的集合记作Q,5)实数集:全体实数的集合记作R, 问题5;集合的表示方法1、列举法:把集合中的元素一一列举出來,写在大括号内表示集合例如,由方程扌一1 =。

(完整word版)高中数学必修一集合的含义及其表示教案

(完整word版)高中数学必修一集合的含义及其表示教案

第一章集合与函数概念1.1集合1.1.1 集合的含义及其表示教学目的:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法一一列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我;我来自燕山中学;省溧中高一(1)班;我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1 •集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。

集合常用大写的拉丁字母来表示,如集合A、集合B .........集合中的每一个对象称为该集合的元素(element),简称元。

集合的元素常用小写的拉丁字母来表示。

女口a、b、c、p、q ..........指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市;(2)省溧中高一(1)班全体学生;(3)较大的数(4)you ng中的字母;(5)大于100的数;(6)小于0的正数。

2 •关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3 •集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a是集合A的元素,就说a属于A,记作a € A(2)如果a不是集合A的元素,就说a不属于A,记作a A (“€”的开口方向,不能把a€ A颠倒过来写.)4 •有限集、无限集和空集的概念:5•常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合•记作N,N 0,1,2,(2)正整数集:非负整数集内排除0的集.记作N*或N+ N* 1,2,3,(3)整数集:全体整数的集合+记作Z , Z 0, 1, 2,(4)有理数集:全体有理数的集合+记作Q ,Q 整数与分数(5)实数集:全体实数的集合+记作R R 数轴上所有点所对应的数注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数 0.(2)非负整数集内排除0的集.记作N *或N + *Q 、Z 、R 等其它数集内排除0的集,也是这样 表示,例如,整数集内排除0的集,表示成Z6 •集合的表示方法:集合的表示方法,常用的有列举法和描述法(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

高中数学1.1.1集合的含义与表示教案新人教版必修1

高中数学1.1.1集合的含义与表示教案新人教版必修1

1.1集合的含义与表示一、关于教学内容的思考教学任务:帮助学生理解集合及集合相等的含义,掌握集合的两种表示方法,理解集合的三个属性,熟记四个常用集合的表示记号,教学目的:引导学生初步认识和运用集合语言.教学意义:培养学生抽象概括能力,严谨的表达能力.二、教学过程1.引言学习集合是现代数学的基本语言,用它表达数学内容简洁,准确。

2.通过教材的例子等,给出集合概念的描述性说明:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(质数:也称素数,指除1和自身外不能被其他自然数整除的数)只要是构成两个集合的元素是一样的,我们称这两个集合是相等的。

3.阐述元素与集合的关系。

“属于”记为“∈”;“不属于”记为“∉”。

一般地,元素用小写字母表示;集合用大写字母.4.常用集合记法:①全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集使称为正整数集,记作*N 或N +;②全体整数组成的集合称为整数集,记作Z;③全体有理数组成的集合称为有理数集,记作Q;④全体实数组成的集合称为实数集,记作R。

5.结合教材“思考”,通过举例帮助学生明确集合的三个属性:集合中的元素确定性;互异性,无序性。

6.通过教材思考与例题介绍表示集合的方法:①列举法(用于其元素有限个,或元素个数较少时)②描述法(用于其元素无限个,或元素不宜一个个列举)三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子1.下列各组对象能否构成一个集合:①著名的数学家;×②某校高一(6)班所有高个子的同学;×③不超过10的非负数;√④方程x x =2在实数范围内的解;√2.给出下列命题的正确性进行判断:①Q ∈7.0;√②}0{0∈;√③N ∈0;√④若N a ∉-,则N a ∈;×⑤若a N ∈,则a N -∉;×⑥若,a N b N ∈∈,则a b +的最小值是2;×3.设b a ,是非零实数,那么bb a a ||||+可能取的值组成集合的元素是 .2,-2,0 4.由实数332,|,|,,x x x x x --所组成的集合,最多含几个元素?25.用恰当的表示方法表示下列集合①所有奇数;②所有偶数;③大于3的全体偶数;}1,2|{Z k k k x x ∈>=且④直角坐标系内所有第一象限的点;}0,0|),{(>>y x y x (R y R x ∈∈,此处可省略) ⑤所有被4除余1的正整数;},14|{N k k x x ∈+=6.说说这三个集合}1{},1{},1|{==y y y 的关系。

集合的含义与表示教案

集合的含义与表示教案

§1 集合的含义与表示(1课时)一、教材分析《集合的含义与表示》是在学生系统地学习了初中课程,并对集合有了感性认识的基础上对集合的含义与表示进行学习,在这里只是将集合作为一种语言来学习,为进一步学习数学奠定基础,集合是高中数学中最原始的概念,高中数学的运算结果,大都需要使用集合语言来描述,所以正确使用最基本的集合语言表示有关的数学对象,提高运用数学语言进行交流的能力正确使用集合语言处理高中数学各种数与形的问题,是一项极为重要的基本功。

《集合的含义与表示》教学在《大纲》中用一个课时完成:主要通过实例了解集合的含义,体会元素与集合的“属于”关系;能够选择自然语言、图形语言、集合语言(列举法或者描述法)描述不同的具体问题,提高语言的转换能力,感受集合语言表示数学内容的简洁性和准确性。

二、学情分析通过初中阶段的学习,学生对集合的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生学习了圆的定义、线段的垂直平分线的概念之后,对于集合已经有了一定的感性认识。

能力层面:学生在初中已经掌握了圆的定义,初步具备了抽象概括的能力。

情感层面:高中生活伊始,学生对数学新内容《集合的含义与表示》学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡。

三、教学方法和手段采用引导-发现式,合作-讨论式教学方式,配合多媒体、投影等辅助教学。

四、教学过程的设计为尽可能地让学生经历知识的形成与发展过程,更好地使不同层次的学生形成自己对集合的含义、表示方法、常用数集,集合分类的理解和掌握,结合本单元教材的特点,教学中采用了“自主探究”教学模式。

五、教学目标及重难点【目标呈现】1、通过举例(与本班有关的或生活中集合实例)让学生观察,能够说出集合,元素的概念,会用符号表示他们之间的关系;2、了解集合中元素的三大特征;内容识记常用的数集及其专用符号;3、阅读课本P44、会用描述法或列举法表示集合;5、能区分有限集、无限集;教学重点:描述法或列举法表示集合教学难点:描述法表示集合六、教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

人教版高中数学必修一《集合的含义与表示》教学设计

人教版高中数学必修一《集合的含义与表示》教学设计

1.1.1集合的含义与表示教学设计一、教学目标1、知识与技能(1)通过实例了解集合的含义,体会元素与集合的从属关系.(2)知道常用数集及其专用记号.(3)了解集合中元素的确定性、互异性、无序性.(4)掌握集合的表示方法----列举法和描述法,并能进行自然语言和集合语言间的相互转换.(5)会用集合语言表示有关数学对象.2、过程与方法(1)通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一.因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养.(2)教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力.3、情感态度与价值观培养数学的特有文化——简洁精练,体会从感性到理性的思维过程.二、教学的重点与难点:教学重点:集合的含义及其符号表示,集合中元素的特性,元素与集合的关系及其符号表示,列举法和描述法的定义及应用.教学难点:集合中元素的确定性和互异性,如何选择适当的方法表示集合.三、学法与教学用具1、学法:创设问题情境,采用实例归纳,注重引导学生自主探索,合作交流的学习意识,注意启发式和探索式的教学方法.2、教学用具:投影仪、黑板。

四、教学过程教学导图(一)将下列各数填入它所在的数集的圈里:1.1,2,0,3有理数 自然数第一个是由有理数组成的数集,第二个是由自然数组成的数集,数集是集合. 师:如何理解数学中集合的含义?它是怎么表示的呢?点出课题.(二)、讲解新课看下面的例子:(1).1~20以内的所有素数;(2).我国从1991~2003年的13年内所发射的所有人造卫星;师生共同概括2个例子的特征。

(1)中,我们把1~20以内的每一个素数作为元素,这些元素的全体就组成一个集合;同样地,(2)中,把我国从1991~2003年的13年内所发射的所有每颗人造卫星作为元素,这些元素的全体也组成一个集合,这些元素的全体也组成一个集合由此得出结论.1、集合的含义概念:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称集)。

新教材高一数学必修一教案,集合的定义

新教材高一数学必修一教案,集合的定义

《集合的含义与表示》教案(一)教学目标1 •知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义•理解集合相等的含义(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2. 过程与方法(1)通过实例,初步体会元素与集合的属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法•3. 情感、态度与价值观(1)了解集合的含义,体会元素与集合的属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合. 通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识概念形成第一组实例(幻灯片一):(1)“小于10”的自然数0,1 ,2, 3,……, 9.(2)满足3x - >x+3的全体实数.(3)所有直角二角形.(4 )到两定点距离的和等于两定点间的距离的点.(5 )咼一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不冋的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2 .集合的兀素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?……学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1 )参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点0的距离等于r 的点的全体构成的集合.3.兀素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的兀素与集合之间是什么关系?③例(2)中数0,- 是这个集合的元素吗?学生讨论交流,弄清兀素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.(1)小于10的所有自然数组成的集合;(2)方程x2 = X的所有实数根组成的集合;(3 )由1〜20以内的所有质数组成的集合•描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法•具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2试分别用列举法和描述法表示下列集合:(1)方程x2乞=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合•由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法•例如:A = {9 , 8, 7, 6, 5, 4, 3, 2, 1 , 0}.(2)设方程x2 = x的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1〜20以内的所有质数组成的集合为C,那么C = {2 , 3, 5, 7, 11, 13, 17, 19}.例2解答:(1)设方程x2 -2 = 0的实数根为x,并且满足条件x -2 =0,因此,用描述法表示为2A = {x€ R| x - = 0}.方程x2- = 0有两个实数根 2 , -2,因此,用列举法表示为A = { 2,—. 2}.(2)设大于10小于20的整数为x,它满足条件x€ Z,且10v x v 20. 因此,用描述法表示为B = {x€ Z | 10v x v 20}.大于10小于20的整数有11, 12, 13, 14, 15, 16, 17, 18, 19,因此,用列举法表示为B = {11 , 12, 13, 14, 15, 16, 17,备选例题例1 (1 )禾9用列举法表法下列集合:①{15的正约数}:②不大于10的非负偶数集(2)用描述法表示下列集合:①正偶数集;②{1,-3, 5,-7,…,439, 41}.【分析】考查集合的两种表示方法的概念及其应用【解析】(1)①{1 , 3, 5, 15}②{0 , 2, 4, 6, 8, 10}(2)①{x | x = 2n, n € N*}②{x | x = ( -) n-• (2n -1), n€ N*且n< 21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集例2用列举法把下列集合表示出来:9(1)A = {x € N € N };9 _x(2) B = {9€ N | x € N };9 -x(3) C :={ y = y = - + 6 , x € N , y € N }; (4) D : 2 ={(x , y) | y =+6 , x € N }; (5) E = p ={x 1= x , p + q = 5 , p € N , q € N *}qA 的元素是自然数 x ,它必须满足条件 -L 也9—x是自然数;集合 B 中的元素是自然数匕,它必须满足条件 x 也是自然数;集合 C 中的元素9—x是自然数y ,它实际上是二次函数 y = — + 6 (x € N )的函数值;集合 D 中的元素是点,这些点 必须在二次函数y = -2+ 6 (x € N )的图象上;集合E 中的元素是x,它必须满足的条件是 x =卫,q 其中 p +q = 5,且 p € N , q € N *.【解析】(1)当x = 0, 6, 8这三个自然数时, —=1, 3, 9也是自然数.9—x(5 )依题意知 p + q = 5 , p € N , q € N * ,则 p =0, P =1, p =2, p =3, p =4, q =5,q =4, q =3,q =2, q =1.Px 要满足条件x =-,q• E = {0,丄,2, 3 , 4}.4 3 2【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3已知-€ A = {a -3 , 2a -1, a 2 + 1},求a 的值及对应的集合 A.-3€ A ,可知是集合的一个元素,则可能 a 43 =3 或2a -1 =-,求出a ,再代入A , 求出集合A.【解析】由占€ A ,可知,a H3 = 或2a - =£,当a£ =,即a = 0时,A = {,-,1}【分析】先看五个集合各自的特点:集合•-A = {0 , 6, 9}(2 )由(1)知,B = {1 , 3, 9}.(3 )由 y = — + 6 , x € N , y € N 知 y < 6.••• x = 0 , 1 , 2 时,y = 6 , 5 , •-C = {2 , 5 , 6}.(4)点{x , y}满足条件 x =0, x =1, x =2, y =6, y =5,y =2.• D = {(0 , 6) (1, 5) (2 ,2符合题意. 2承 + 6 , x € N , y € N ,则有:2) }当2a -1 = H3,即a =-时,A = { -4 , £ , 2}.以此展开讨【评析】元素与集合的关系是确定的,43 € A,则必有一个式子的值为论,便可求得a.。

高一数学必修1第一章教学计划:集合的含义与表示-文档资料

高一数学必修1第一章教学计划:集合的含义与表示-文档资料

高一数学必修1第一章教学计划:集合的含义与表示集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体。

小编准备了高一数学必修1第一章教学计划,希望你喜欢。

教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的属于和不属于关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2019级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

高一数学1.1.1集合的含义与表示教案新人教版必修1

高一数学1.1.1集合的含义与表示教案新人教版必修1

1.1.1 集合的含义与表示教学设计教学过程:一、创设情境,新课引入(1)请第一组的全体同学站起来?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是第一组的同学)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

二、师生互动,新课讲解1、集合的有关概念集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

课本P2:例子(1)—(8),都构成一个集合。

2、集合的表示方法:(1)集合通常用大写的拉丁字母表示,如A,B,C,P,Q,X,Y,等;集合的元素通常用小写的拉丁字母表示,如a,b,c, 等。

(2)如果a是集合A的元素,就说 a 属于集合A,记作a A;如果a 不是集合A的元素,就说a不属于A,记作a A(或a A)。

3、常用的数集及其记法:全体非负整数的集合通常简称非负整数集(或自然数集),记作:N;(注意:0.是自然...数.)所有正整数组成的集合称为正整数集,记作:N+或N*。

全体整数的集合通常简称整数集,记作:Z;全体有理数的集合通常简称有理数集,记作:Q;全体实数的集合通常简称实数集,记作:R。

学生练习:用符号或填空:1 N ,0 N, -3 N, 0.5 N,2 N1 Z , 0 Z, -3 Z, 0.5 Z,2 Z,1 Q , 0 Q, -3 Q, 0.5 Q,2 Q,1 R , 0 R, -3 R, 0.5 R,2 R.4、集合的表示方法:先介绍记号:大括号“{ }”,在集合里表示总体,而后提出集合的两种表示方法:(1)列举法:把集合中的元素一一列举出来,写出大括内表示集合的方法。

例如:“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋,印度洋,北冰洋}。

集合的含义与表示教案-高一上学期数学人教A版必修1

集合的含义与表示教案-高一上学期数学人教A版必修1

集合的含义与表示教学目标1.要求学生初步理解集合的概念,理解元素与集合间的关系。

2.掌握集合的表示法,知道常用数集及其记法。

教学重点要求学生初步理解集合的概念,理解元素与集合间的关系。

教学难点掌握集合的表示法,知道常用数集及其记法。

一、导入新课设置情境:新学期,向全班同学介绍自己的家庭、学校和班级,思考:家庭、学校和班级等概念有什么共同特征?这些涉及到的范围与学生之间又有什么样的关系?在此基础上,师生共同总结归纳集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合中的每一个对象称为该集合的元素,简称元。

引出课题,学习《集合的含义与表示》。

二、探究新知师生活动:师生共同探讨集合的含义的生成其实在生活中,我们会遇到各种各样的事物,为了方便讨论,我们需要在一定范围内,按照一定标准对所讨论的事物进行分类,分类后,我们会用一些术语来描述它们,例如“群体”、“全集”、“集合”等。

一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合中的每一个对象称为集合的元素,简称元。

师:好,知道了集合的含义,老师现在考考大家例:请同学们观察“亚洲国家的首都”这一集合中的元素,看看他的元素有哪些?学生自由回答完后引导学生拓展出-发现纽约、巴黎不在集合中,强调元素的确定性。

请大家写出book 中的字母组成的集合,强调元素的互异性。

追问1:我们班每个星期都会换座位,我们班所有同学组成的集合改变了吗?生:没变说明只要构成两个集合的元素是一样的,我们就称这两个集合是相等的-老师总结特地的为了,自然数集记作N,正整数集记作N*或者N,整数集记作Z,有理数集记作Q,实数集记作R.三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A 五.集合的含义与表示——典例剖析例1. 用例举法表示集合答案:例2.下列命题:若,则;表示只有一个元素的集合;方程的解的集合可表示成;其中正确的命题个数是()答案:(2) 例3.已知,且,求实数的值。

高一数学 集合的含义与表示教案_1

高一数学 集合的含义与表示教案_1

诚西郊市崇武区沿街学校师范大学附属中学高一数学教案:1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从1991~2021的13年内所发射的所有人造卫星;⑶金星汽车厂2021年消费的所有汽车;⑷2004年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹黄图盛中学2021年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征〔1〕确定性:设A是一个给定的集合,x是某一个详细对象,那么或者者者是A的元素,或者者者不是A 的元素,两种情况必有一种且只有一种成立.〔2〕互异性:一个给定集合中的元素,指属于这个集合的互不一样的个体〔对象〕,因此,同一集合中不应重复出现同一元素.〔3〕无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断以下各组对象能否构成一个集合⑴2,3,4⑵〔2,3〕,〔3,4〕⑶三角形⑷2,4,6,8,…⑸1,2,〔1,2〕,{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于〞和“不属于〞表示:〔1〕假设a是集合A的元素,就说a属于A,记作a∈A〔2〕假设a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集〔或者者自然数集〕,记作N;除0的非负整数集,也称正整数集,记作N*或者者N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:〔1〕集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是〔〕A直角三角形B锐角三角形C钝角三角形D等腰三角形〔2〕说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式〔1〕列举法:把集合中的元素一一列举出来,写在大括号内;〔2〕描绘法:用集合所含元素的一一共同特征表示的方法.〔详细方法〕 例1、用列举法表示以下集合:〔1〕小于10的所有自然数组成的集合;〔2〕方程x2=x 的所有实数根组成的集合;〔3〕由1~20以内的所有质数组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学——集合第一讲集合的含义与表示【教学目标】:(1)通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生体会元素与集合的“属于”关系(3)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;【重点难点】:1.重点:集合的基本概念与表示方法2.难点: 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合【教学过程】:用具:一副扑克牌、本教室内的学生及老师一、知识导向或者情景引入二、给学生15分钟看书,学会预习(一)、课前预习的意义1、预习可以提前消灭听课中的“拦路虎”。

通过预习,必然仍有部分内容弄不懂。

为什么看不懂呢?原因很多,其中一个原因是没有掌握好有关的旧知识,也可以说没有掌握好新课的预备知识。

预习,就像“火力侦察”,可以发现自己知识上的薄弱环节,在上课前迅速补上这部分知识,不使它成为听课时的“拦路虎”。

这样,在学习和理解新知识时就会很顺利。

有的学生,所以听讲效果差,有一条原因,就是没有准备好听课前所必需的旧知识,从而给听课带来了困难,很难做到当堂理解。

结果,上课的时间被白白浪费,而预习,就可避免这种局面的出现。

2、预习可以提高听讲水平。

一般来说,预习不可能把新教材全都理解了,总会遗留下一些不懂的问题,盼着上课时解决。

这样,听讲的目的明确,态度积极,注意力也容易集中,听讲效果好。

比那些老师讲什么听什么、主观上没有思想准备,没有重点、没有具体目标的学生,要主动得多。

当老师讲到自己预习时已经理解的部分时,就可以把注意力集中在老师如何提出出问题、分析问题和解决问题上,拿自己的思路与教师的思路进行比较,看教师高明在什么地方,自己还有哪些理解不够的地方,取人之长,补己之短。

可见,预习后上课不是没事干,而是听有重点,看有“门道”,学目标,重在思考。

这样做,不仅有利于掌握新知识,而且有利于思维能力的发展。

3,预习可以提高笔记水平。

由于预习时看过课本,所以老师讲的内容及教师板书,书上有没有,心里一清二楚。

凡是书上有的,上课可以不记或少记,也可留下空白待课后记。

上课时,着重记书上没有的或自己不太清楚的部分,以及老师反复提醒的关键问题。

这样做,就可以把更多的时间用在思考理解问题上。

有的同学课前不预习,不知教师板书的内容书上有没有,从头抄到底,顾不上听课,更来不及思考,失去了许多宝贵时间。

后来翻翻书,原来许多内容书上都有。

根本用不着抄。

这种盲目性的听课,大大影响了学习效果。

(二)、课前预习的设计依据1、根据老师的要求预习。

当然,老师们一般都要求学生预习,但要求各有差别。

有的教师每节新授课前都要求预习,如数学,物理,化学等科,有的教师要求对新授的一篇文章进行预习,如语文课,有的教师要求对新授的某一部分进行预习,如政治、地理、历史等科。

如此,同学们必须依据老师的要求,具体安排每天的预习范围。

2、根据课程的特点预习。

尤其对预习的方式方法,是精细的,还是粗略的,精细到什么程度,粗略到什么程度,都要在预习前想到。

如对历史课,事实多,不难学,只要理清纲要就可以,可做粗略地预习,而数学课,逻辑性强,难度较大,最好采用精细的方式预习。

3、根据个人的学习情况预习。

对自己学习较差的一科或几科,可加强预习(多用点时间,搞得精细一点),对学习较好的几科,可一般用力,但要把握学习效果,一旦感到成绩有下降趋势,需及时调整对自己学习情趣很浓的学科,可多花点时间预习,精力主要放在课外参考书对教材的阐发上。

当然,兴趣有赖于个人的学习实践,由没兴趣到有兴趣,由淡到浓是在不断变化的卜目的是合理地发展自己的特长,同时弥补薄弱学科。

4、根据教师的教学特点预习。

教与学,本来就是对立的统一,是你中有我,我中有你的事。

预习也必须考虑教师授课的特点。

有的教师多采用演译法,环环相扣,层层推演,有的教师常用归纳法,例举各异,求同于一,有的教师善于提取书中要点,系统地列出标题。

预习最好摹仿教师,一为听课做准备,二为检验自己学习的本事。

除上,预习还要根据时间的多少自学能力的强弱以及个人学习的习惯来安排(三)、预习方法应该怎样预习呢?1、是要妥善安排时间。

最好在前一天晚上预习第二天早上的新课,这样印象较深。

新课难道度大,就多预习一些时间,难度小就少预习一些时间。

应选择那些自己学起来吃力,又轮到讲新课的科目进行重点预习,其它的科目大致翻翻即可。

某些学科,也可以利用星期天,集中预习下一周要讲的课程,以减轻每天预习的负担。

2、是要明确任务。

预习总的任务是先感知教材,初步处理加工,为新课的顺利进行扫清障碍。

具体任务,要根据不同科目,不同内容来确定。

一般有:①巩固复习旧概念,查清理解新概念,查不清,理解不透的记下来。

②初步理解新课的基本内容是什么?思路如何?在原有知识结构上向前跨进了多远?⑨找出书中重点、难点和自己感到费解的地方。

④把本课后面的练习尝试性地做一做,不会做可以再预习,也可记下来,等教师授课时注意听讲或提出。

3、是要看、做、思结合。

看,一般是把新课通读一遍,然后用笔勾画出书上重要的内容,需要查的就查,需要想的就想,需要记的就记。

做,在看的过程中做需要动手的准备工作以及本课后的练习题。

思,指看的时候要想,做到低头看书,抬头思考,手在写题,脑在思考。

预习以后,还要合上书本,小结一下。

(四)、搞好预习应注意的问题1.如果以前没有预习的习惯,现在想改变方法,先预习后上课,一下子全面铺开,科科课课都搞提前预习,时间就会不够用,弄得十分紧张,质量也未必能够保证。

解决的办法是,先选一两门自己学起来感到吃力的学科进行预习试点,等尝到了甜头取得了经验后,在时间允许的前提下,再逐渐增加学科,直到全面展开。

2.预习应在当天作业做完之后再进行。

时间多时,就多预习几门,钻得深一点,否则就少预习几门,钻得浅一点。

切不可每天学习任务还未完成就忙着预习,打乱了正常的学习秩序。

3.学习差的同学,上课听不懂,课后花大量时间补缺和做作业,整天忙得晕头转向,挤不出时间预习。

其实,这种同学差的根本原因可能就在“不预习”上,因为前面一环欠债”,而影响了下面环节的顺利运行。

这些同学在短时间内要多吃点苦,在完成每天学习任务之后,加班个把小时预习。

这样做虽然费时间,但上课能听得懂,减少因上课听不懂而浪费的时间。

时间一长,学习的被动局面就改变了。

三、提问(集合例子)1、教材第2页的(3)-(8)例子中元素是什么?集合是什么?2、2008年厦门市中考所有考生,元素是什么?集合是什么?3、本教室内所有人,元素是什么?集合是什么?4、一副扑克牌,元素是什么?集合是什么?5、《魔兽》游戏超级爱好者?能否组成集合,每天玩一小时、二小时、三小时叫超级爱好者?无法确定将学生分成几组(4个人一组),每组提出四个集合的例子和2个不是集合的例子,对这些例子大家讨论是对是错。

四、关于集合概念的提问大家对集合、元素已有一定的概念,那么从特殊到一般,我们对元素、集合给一个定义。

1、那么什么叫元素?集合?定义:一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

(通俗一点说:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.)集合通常用大写的拉丁字母表示,如A 、B 、C 、……元素通常用小写的拉丁字母表示,如a 、b 、c 、……2、集合中的元素的有哪些特征?(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:集合中的元素没有固定的顺序.(这一点教材中的例1中有一句话,可举例,让教室中的同学坐到不同的位置,问本教室内所有人,这个集合是否有变化)3、什么叫集合是相等的?集合相等:构成两个集合的元素完全一样4、如何表示元素与集合的关系?(1)如果a 是集合A 的元素,就说a 属于(belong to )A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作a ∉A例如:1、扑克牌的黑桃为集合A ,则红心2∉A ,黑桃2∈A5、常用数集及其记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + , {} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R , {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *练习:用符号“∈”或“∉”填空:2 N 0 N 0 N + 0 Z3 Q2 Q 7 R 1.5 Z五、集合的表示方法1、列出集合的表示方法:自然语言、列举法和描述法表示集合。

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

2、列举法列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;例1.(课本例题)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

用列举法必须注意的事项:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素. a 表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.有些集合的元素是列举不完的,此时就要用下面的方法来表示。

3、描述法描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x 2+1},{直角三角形},…;例2.(课本例2)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。

相关文档
最新文档