上海高三数学模拟试卷

合集下载

上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)

上海高中2024年高三第一次模拟考试(数学试题含解析)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 3.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]2,2- 4.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>5.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( )A .23-B .23C .3D .-36.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:参加用户比 40% 40% 10% 10%脱贫率 95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 7.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( )A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)28.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2 9.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12 11.下列与函数y x=定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x =12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ).A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。

上海市浦东新区2024届高三下学期三模数学试卷

上海市浦东新区2024届高三下学期三模数学试卷

浦东新区高三三模数学试卷一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内填写结果,14题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知全集U =R ,集合{}2320A x x x =-+≥,则A =______.2.已知复数2iiz -=(i 为虚数单位),则z =______.3.若正数a 、b 满足21a b +=,则11a b+的最小值为______.4.已知数列{}n a 为等比数列,58a =,81a =,则81ii a==∑______.5.有3名男生与2名女生排成一队照相,2名女生互不相邻的概率为______.6.若()62601261x a a x a x a x -=+++⋅⋅⋅+,则126a a a ++⋅⋅⋅+的值为______.7.已知lg5a =,则lg20=______(用a 表示)8.已知()()321,0,0x x x g x f x x ⎧+-≥⎪=⎨<⎪⎩为偶函数,若()11f a =,则a =______.9.一袋中装有大小与质地相同的2个白球和3个黑球,从中不放回地摸出2个球,记2球中白球的个数为X ,则[]D X =______.10.如图,某体育公园广场放置着一块高为3米的大屏幕滚动播放各项体育赛事,大屏幕下端离地面高度3.5米,若小明同学的眼睛离地面高度1.5米,则为了获得最佳视野(最佳视野指看到大屏幕的上下夹角最大),小明应在距离大屏幕所在的______平面米处观看?(精确到0.1米)11.已知点A 、B 位于抛物线()220y px p =>上,20AB =,点M 为线段AB 的中点,记点M 到y 轴的距离为d .若d 的最小值为7,则当d 取该最小值时,直线AB 的斜率()0k k >为______.12.已知实数1x 、2x 、1y 、2y 满足22111x y +=,22223x y +=,1221x y x y -=1212x x y y +=______.二、选择题(本大题满分18分)本大题共4题,每题有且只有一个正确答案考生必在答题纸的相应编号上,将代表答案的小方格涂黑,13-14题每题选对得4分,15-16题每题选对得5分,否则一律得零分。

2023-2024学年上海市高考数学模拟试题(三模)含解析

2023-2024学年上海市高考数学模拟试题(三模)含解析

2023-2024学年上海市高考数学模拟试题(三模)一、填空题1.已知集合{}{}1,1,1,3,5A xx B =≤=-∣,则A B = __________.【正确答案】{}1,1-【分析】化简A ,根据交集运算得解.【详解】因为{}{}1[1,1],1,1,3,5A xx B =≤=-=-∣,所以{}1,1A B ⋂=-,故答案为.{}1,1-2.复数12i 3iz -=+的模为__________.【正确答案】2【分析】由复数的四则运算以及模长公式计算即可.【详解】()()()()12i 3i 12i 17i ,3i 3i 3i 102z z ----===∴=++-.故23.不等式301x x +≥-的解集为__________.【正确答案】(](),31,∞∞--⋃+【分析】将分式不等式等价转化为二次不等式组,求解即得.【详解】原不等式等价于()()31010x x x ⎧+-≥⎨-≠⎩,解得3x ≤-或1x >,故答案为.(](),31,∞∞--⋃+4.已知幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,则()2f -=________【正确答案】18-【分析】设幂函数()f x x α=,将1,82⎛⎫ ⎪⎝⎭代入,求得3α=-,进而可得结果.【详解】设幂函数()f x x α=,因为幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,所以311822α-⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,解得3α=-,所以()()()331,22,8f x x f --=-=-=-故答案为18-.本题主要考查幂函数的解析式,属于基础题.5.已知函数()2sin2f x x x =+,则函数()f x 的最小正周期是__________.【正确答案】π【分析】根据三角恒等变换化简函数解析式,进而可得函数的最小正周期.【详解】()2sin2sin22sin 23f x x x x x x π⎛⎫=+==+ ⎪⎝⎭,故22T ππ==,故π.6.方程42log 17x x +=的解为_________.【正确答案】4x =【分析】设函数()42log x f x x =+,()0,x ∈+∞,由函数的单调性,结合特殊值,即可求得方程42log 17x x +=的解.【详解】设函数()42log x f x x =+,()0,x ∈+∞,由于函数42,log x y y x ==在()0,x ∈+∞上均为增函数,又()4442log 416117f =+=+=,故方程42log 17x x +=的解为4x =.故答案为.4x =7.81(x的展开式中含x 项的系数为______.【正确答案】28【分析】化简二项式定理展开式通项()()38218C 1k k k T x -+=⋅-⋅,求出k 值,代入即可.【详解】设展开式中第1k +项含x 项,则(()()83821881C C 1k k k k k k k T x x --+⎛⎫=⋅⋅=⋅-⋅ ⎪⎝⎭,令3812k -=,解得6k =,代入得,()6678C 128T x x=⋅-⋅=故28.8.某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:党史学习时间(小时)7891011党员人数610987则该单位党员一周学习党史时间的第40百分位数是___.【正确答案】8.5/172【分析】根据百分位数的定义即可求出结果.【详解】党员人数一共有61098740++++=,4040%16⨯=,那么第40百分位数是第16和17个数的平均数,第16和17个数分别为8,9,所以第40百分位数是898.52+=,故8.59.若存在实数a,使得1x =是方程2()3x a x b +=+的解,但不是方程x a +则实数b 的取值范围是__________.【正确答案】()3,-+∞【分析】根据1x =是2()3x a x b +=+的解,不是x a +.【详解】由题意知,2(1)3a b +=+,且1a +≠()1a =-+,显然30b +≥,即3b ≥-,若3b =-,此时显然不满足题意,故()3,b ∞∈-+.故()3,-+∞10.随机变量()2N 105,19X,()2N 100,9Y ,若()()P X A P Y A ≤=≤,那么实数A 的值为__________.【正确答案】95.5【分析】由正态分布性质可得()105N 0,119X -,()100N 0,19Y -,由此可利用对称性构造方程求得结果.【详解】()2N 105,19X ,()2N 100,9Y ,()105N 0,119X -∴,()100N 0,19Y -,()()P X A P Y A ≤=≤ ,105100199A A --∴=,解得.95.5A =故答案为.95.511.已知曲线1C :2y x =+与曲线2C :22()4x a y -+=恰有两个公共点,则实数a 的取值范围为__________.【正确答案】(){}4,02-⋃【分析】根据2y x =+与22()4x a y -+=的位置关系分析可得.【详解】如图:2y x =+与x 轴焦点为()2,0A -,当点A 在圆2C 外,则2y x =+表示的两条射线与圆相切与2C 相切时恰有两个公共点,联立22()4x a y -+=得()222420x a x a +-+=,由()2242420a a ∆=--⨯⨯=,得2a =-±因2y x =+,所以2x ≥-,故2a =-+当点A 在圆2C 上,如图,此时2y x =+与22()4x a y -+=有3个或1个交点不符合题意,当点A 在圆2C 内,如图,此时2y x =+与22()4x a y -+=有2个交点符合题意,此时,22(2)04a --+<,得40a -<<综上a 的取值范围为.(){}4,0222-⋃-故答案为.(){}4,0222-⋃12.函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21f x x =+,若存在12,,,n x x x ⋯满足120n x x x ≤<<< ,且()()()()()()122312023n n f x f x f x f x f x f x --+-++-=,则n n x +最小值为__________.【正确答案】1518.5【分析】根据题意,先求出函数一个周期的值域,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,再利用函数的周期性求解.【详解】解: 函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21,f x x =+∴函数的值域为[]3,1-,对任意(),,1,2,3,,i j x x i j m = ,都有()()min ()()4i j max f x f x f x f x -≤-=,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,()()()()()()12122310,2023n nn x x x f x f x f x f x f x f x -≤<<<-+-++-= ,n ∴的最小值估计值为20231506.754+=,故n 的最小值取507,相应的n x 最小值为1011.5,则n n x +的最小值为1518.5.故1518.5二、单选题13.设R λ∈,则“1λ=”是“直线()311x y λ+-=与直线()12x y λλ+-=平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据直线一般式中平行满足的关系即可求解.【详解】若直线()311x y λ+-=与直线()12x y λλ+-=平行,则()()3110λλλ---=,解得1λ=或3λ=-,经检验1λ=或3λ=-时两直线平行.故“1λ=”能得到“直线()311x y λ+-=与直线()12x y λλ+-=平行”,但是“直线()311x y λ+-=与直线()12x y λλ+-=平行”不能得到“1λ=”故选:A14.函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【正确答案】D【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.15.已知函数()21f x ax x a =+++为偶函数,则不等式()0f x >的解集为()A .∅B .()()1,00,1-UC .()1,1-D .()(),11,-∞-⋃+∞【正确答案】B 【分析】先求得参数a 的值,再去求不等式()0f x >的解集【详解】因为()f x 为偶函数,所以()()11f f -=,即2a a a a++=+解之得1a =-,经检验符合题意.则()2f x x x=-+由20x x -+>,可得()()1,00,1x ∈-U 故()20f x x x =-+>的解集为()()1,00,1-U ,故选:B.16.已知*n ∈N ,集合πsin N,0k A k k n n ⎧⎫⎛⎫=∈≤≤⎨⎬ ⎪⎝⎭⎩⎭∣,若集合A 恰有8个子集,则n 的可能值有几个()A .1B .2C .3D .4【正确答案】B【分析】根据子集个数可得集合元素个数,再由正弦函数性质即可确定n 的取值.【详解】由题意易知,π2ππsin0,sin ,sin ,,sin n n n n ,均是集合A 中的元素,又集合A 恰有8个子集,故集合A 只有三个元素,有πsin0sin sin πn n==,则结合诱导公式易知,n 可取的值是4或5.故选:B三、解答题17.已知{}n a 为等差数列,{}n b 为等比数列,111a b ==,5435()a a a =-,5434()b b b =-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:22*1()n n n S S S n N ++∈<;【正确答案】(1)n a n =,12n n b -=;(2)证明见解析【分析】(1)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(2)利用(1)的结论首先求得数列{}n a 的前n 项和,然后利用作差法证明即可.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,11a =,5435()a a a =-得,145=+a d d ,故1d =,于是1(1)n a n n =+-=;由11b =,5434()b b b =-得,4324()q q q =-,又等比数列公比0q ≠,得到2244(2)0q q q -+=-=,故2q =,于是12n n b -=.(2)由(1)得,(1)2n n n S +=,故2(1)(2)(3)4n n n n n n S S ++++=,2221(1)(2)4n n n S +++=,作差可得[]221(1)(2)(1)(2)(3)(1)(2)042n n n n n n n n n n n S S S ++++++=+-++--=<,即221n n n S S S ++<得证.18.如图,PD ⊥平面ABCD ,四边形ABCD 为直角梯形,,90,222AB CD ADC PD CD AD AB ∠===== ∥.(1)求异面直线AB 与PC 所成角的大小;(2)求二面角B PC D --的余弦值.【正确答案】(1)π433【分析】(1)根据AB DC 可得异面直线所成的角,利用直角三角形求解即可;(2)以点D 为坐标原点,建立坐标系,再由向量法得出二面角B PC D --的余弦值.【详解】(1)由AB CD ,则异面直线AB 与PC 所成角即为PCD ∠,由题意知,PD ⊥平面ABCD ,又CD ⊂平面ABCD ,故PD CD ⊥,所以tan 1PD PCD CD ∠==,即π4PCD ∠=,即异面直线AB 与PC 所成角为4π.(2)因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,又PD DC ⊥,AD DC ⊥,所以以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系:则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2D A B C P ,则()()()()0,2,2,1,1,0,0,0,2,1,0,2PC BC DP PA =-=-==- ,设平面PBC 的法向量为(),,n x y z =r ,则2200n PC y z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取1x =,得1,1y z ==,得()1,1,1n = ,取平面PDC 的法向量为()1,0,0DA = ,设二面角B PC D --的大小为θ,由图形知,θ为锐角,所以cos n DA n DAθ⋅== ,所以二面角B PC D --19.流行性感冒简称流感,是流感病毒引起的急性呼吸道感染,也是一种传染性强、传播速度快的疾病.了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义,某科研团队在培养基中放入一定是某种细菌进行研究.经过2分钟菌落的覆盖面积为248mm ,经过3分钟覆盖面积为264mm ,后期其蔓延速度越来越快;菌落的覆盖面积y (单位:2mm )与经过时间x (单位:min )的关系现有三个函数模型:①x y ka =0k >1a >,②log b y x =(1b >),③y q =(0p >)可供选择.(参考数据:lg20.301≈,lg30.477≈)(1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过2300mm ?(结果保留到整数)【正确答案】(1)答案见解析;(2)至少经过9min 培养基中菌落的覆盖面积能超过2300mm .【分析】(1)根据题意,分析三个函数模型的增长速度快慢,选择x y ka =,并求出解析式;(2)根据题意,4273003x⎛⎫⨯> ⎪⎝⎭,求出x 的取值范围,进而得出结果.【详解】(1)因为x y ka =0k >1a >的增长速度越来越快,log b y x =(1b >)和y q =(0p >)的增长速度越来越慢,所以应选函数模型x y ka =0k >1a >.由题意得234864ka ka ⎧=⎨=⎩,解得4327a k ⎧=⎪⎨⎪=⎩,所以该函数模型为4273xy ⎛⎫=⨯ ⎪⎝⎭(0x ≥);(2)由题意得4273003x ⎛⎫⨯> ⎪⎝⎭,即410039x ⎛⎫> ⎪⎝⎭,所以43100log 9x >,又341001g100221g3220.4779log 8.3684921g2lg320.3010.4771g 3--⨯==≈≈-⨯-.所以至少经过9min 培养基中菌落的覆盖面积能超过2300mm .20.在平面直角坐标系xOy 中,若椭圆22:143x y E +=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B.(1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与直线4x =相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB 与MAB △的面积分别是1S ,2S ,若213S S =,求点M 的坐标.【正确答案】(1)6;(2)4-;(3)()2,0或212,77⎛⎫-- ⎪⎝⎭.【分析】(1)由椭圆方程的性质可求12AF F ∆的周长;(2)设(),0P t ,求出直线AP 方程,解出Q 点坐标,计算OP QP ⋅ ,利用二次函数求出最下值;(3)由题意可知:M 到直线AB 距离2d 是O 到直线AB 距离1d 的3倍,求出2d 的值,则点M 的坐标为与直线AB 平行的直线和椭圆的交点,求出直线方程与椭圆联立可解出点M .【详解】解:(1)由椭圆方程可知.2,1a c ==所以12AF F △的周长为1212226AF AF F F a c =++=+;(2)由椭圆方程得31,2A ⎛⎫ ⎪⎝⎭,设(),0P t ,则直线AP 方程为()321y x t t=--,又4x =,所以直线AP 与4x =的交点为344,21t Q t -⎛⎫⋅ ⎪-⎝⎭,()22,0344,214(2)44t t t OP QP t t t t -⎛⎫--⋅= ⎪-⎝⎭⋅=⋅-=--≥- ,当2t =时,()min 4OP QP ⋅=- (3)若213S S =,设O 到直线AB 距离1d ,M 到直线AB 距离2d ,则2111322AB d AB d ⨯⨯=⨯⨯⨯,即213d d =,31,2A ⎛⎫ ⎪⎝⎭,1(1,0)F -,可得直线AB 方程为()314y x =+,所以135d =,295d =.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为340x y m -+=,与直线AB 的距离为95,求得6m =-或12,当6m =-时,直线l 为3460x y --=,联立方程:223460143x y x y --=⎧⎪⎨+=⎪⎩,可得27120y y +=,解得()2,0M 或212,77⎛⎫-- ⎪⎝⎭,当12m =时,直线l 为34120x y -+=,联立方程:2234120143x y x y -+=⎧⎪⎨+=⎪⎩可得:2724270y y ++=,∆<0此时方程无解.综上所述,M 点坐标为()2,0或212,77⎛⎫-- ⎪⎝⎭.21.记()(),f x g x ''分别为函数()(),f x g x 的导函数.若存在,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“兰亭点”.(1)证明:函数()f x x =与()222g x x x =+-不存在“兰亭点”;(2)若函数()21f x ax =-与()ln g x x =存在“兰亭点”,求实数a 的值;(3)已知函数()()2e ,x bf x x ag x x =-+=.对存在实数0a >,使函数()f x 与()g x 在区间()0,∞+内存在“兰亭点”,求实数b 的取值范围.【正确答案】(1)证明见解析(2)e2(3)()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭【分析】(1)根据题中“兰亭点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“兰亭点”的定义列两个方程,解方程组可得a 的值;(3)通过构造函数以及结合“兰亭点”的定义列两个方程,再由方程组有解即可求得结果.【详解】(1)函数()()2,22f x x g x x x ==+-,则()()1,22f x g x x '='=+.由()()f x g x =且()()f x g x ⅱ=,得222122x x x x ⎧=+-⎨=+⎩,此方程组无解,因此,()f x 与()g x 不存在“兰亭点”.(2)函数()()21,ln f x ax g x x =-=,则()()12,f x ax g x x''==.设0x 为()f x 与()g x 的“兰亭点”,由()0f x =()0g x 且()0f x '=()0g x ',得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎨=⎩,(*)得01ln 2x =-,即120e x -=,则2121e 22e a -==⎛⎫ ⎪⎝⎭.当e 2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“兰亭点”.因此,a 的值为e 2.(3)()()()()2e 12,0x b x f x x g x x x -=-='≠',函数()y f x =与()y g x =在区间()0,∞+内存在“兰亭点”,记为x t =,所以()22e e 12tt b t a t b t t t ⎧-+=⎪⎪⎨-⎪-=⎪⎩,解得()3233121e t t t a t t b t ⎧-=⎪-⎪⎨⎪=⎪-⎩,由于0a >,解得01t <<或3t >,而()321e t t b t =-,所以()()2222330(1)1et t t t b t t '-+=>≠-,所以函数()321e t t b t =-在(0,1),(3,)∞+上为增函数,因为0=t 时0b =,1t →时,b →+∞,3t =时,327e b =-,t →+∞时,0b →,所以01t <<时,()0,b ∈+∞;3t >时,327,0e b ⎛⎫∈- ⎪⎝⎭.综上,实数b 的取值范围是()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭.方法点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

上海市2022届高三模拟卷(一)数学试题

上海市2022届高三模拟卷(一)数学试题

一、单选题1. 锐角的内角,,的对边分别为,,且,,若,变化时,存在最大值,则正数的取值范围是( )A.B.C.D.2. 已知函数的零点是以为公差的等差数列.若在区间上单调递增,则的取值范围为( )A.B.C.D.3. 现有茶壶九只,容积从小到大成等差数列,最小的三只茶壶容积之和为0.5升,最大的三只茶壶容积之和为2.5升,则从小到大第5只茶壶的容积为( )A .0.25升B .0.5升C .1升D .1.5升4. 如图,为正四棱锥的底面中心,,分别是,上的动点,若是边长为2的正三角形,则的最小值为()A .1B.C .2D.5. 如图,在直四棱柱中,,,,,点,,分别在棱,,上,若,,,四点共面,则下列结论错误的是()A .任意点,都有B .任意点,四边形不可能为平行四边形C .存在点,使得为等腰直角三角形D .存在点,使得平面6. 已知函数,设方程的四个实根从小到大依次为,对于满足条件的任意一组实根,下列判断中一定成立的是( )A.B.上海市2022届高三模拟卷(一)数学试题上海市2022届高三模拟卷(一)数学试题二、多选题三、填空题C.D.7.若将函数的图象向左平移个单位长度,再向下平移1个单位长度,得到函数的图象,则的一个对称中心为( )A.B.C.D.8. 设是等差数列,,,则这个数列的前6项之和等于 ( )A .12B .24C .36D .489. 下列不等式正确的是( )A.B.C.D.10. 已知定义在上的函数,对于给定集合,若,当时都有,则称是“封闭”函数.则下列命题正确的是( )A .是“封闭”函数B .定义在上的函数都是“封闭”函数C .若是“封闭”函数,则一定是“封闭”函数D .若是“封闭”函数,则不一定是“封闭”函数11. 已知数据①:,,,…,的平均数为10,方差为5,数据②:,,,…,,则下列说法正确的有( )A .数据①与数据②的极差相同B.数据②的平均数为C .数据①与数据②的中位数不同D.数据②的标准差为12. 若函数(,,)的图象如图,且,,则下列说法正确的是()A .函数的周期为5B.函数的对称轴为,C .函数在内没有单调性D.若将的图象向左平移()个单位长度,得到的函数图象关于轴对称,则的最小值为113. 是坐标原点,是双曲线右支上的一点,是的右焦点,延长分别交于两点,已知,且,则的离心率为______.14.已知函数的部分图象如图所示,若,,则__________.四、解答题15.若函数对定义域D内的每一个,都存在唯一的,使得成立,则称f (x )为“自倒函数”.给出下列命题:①是自倒函数;②自倒函数f (x )可以是奇函数;③自倒函数f (x )的值域可以是R ;④若都是自倒函数,且定义域相同,则也是自倒函数.则以上命题正确的是_______(写出所有正确命题的序号).16.已知是数列的前项和,.(1)求数列的通项公式;(2)求.17. 经研究,中小学生户外活动时间太少,长时间看近处是导致近视的主要原因,现通过随机抽样的方式调查某地100名中小学生每天进行户外活动的时间和孩子的视力情况(规定每天户外活动时间不足1小时的为居家型,其余为户外型),经统计得到如下列联表:不近视近视合计居家型30户外型30总计50100(1)请将列联表补充完整,并判断是否有95%以上的把握认为“是否为居家型与近视与否”有关?(2)从这50名不近视的学生中按是否居家型采取分层抽样的方法抽取一个容量为5的样本,现从这5名学生中随机选取3名做深度采访,求这3名学生中恰有2名居家型的概率.参考数据:0.0500.0100.0013.8416.63510.828(参考公式:,其中.)18.已知抛物线,其准线方程为,直线过点且与抛物线交于、两点,为坐标原点.(1)求抛物线方程;(2)证明:的值与直线倾斜角的大小无关;(3)若为抛物线上的动点,记的最小值为函数,求的解析式.19. 已知函数.(1)当时,求的单调区间;(2)讨论的零点的个数,并确定每个零点的取值范围(不要求范围“最小”).20. 某校开展了“学党史”知识竞赛活动,竞赛试题由若干选择题和填空题两种题型构成,每位选手共需要回答三个问题.对于每一个问题,若回答错误得0分;若回答正确,填空题得30分,选择题得20分.现设置了两种活动方案供选手选择.方案一:只回答填空题;方案二:先回答填空题,后续选题按如下规则:若上一题回答正确,则下一次选择填空题;若上题回答错误,则下一次选择选择题.已知甲、乙两位同学能正确回答填空题的概率均为,能正确回答选择题的概率均为,且能正确回答问题的概率与回答次序无关.(1)若甲同学采用方案一答题,求甲得分不低于60分的概率;(2)乙同学应该选择何种方案参加比赛更加有利?并说明理由.21. 根据社会人口学研究发现,一个家庭有个孩子的概率模型为:1230概率其中,.每个孩子的性别是男孩还是女孩的概率均为且相互独立,事件表示一个家庭有个孩子(),事件表示一个家庭的男孩比女孩多(例如:一个家庭恰有一个男孩,则该家庭男孩多.)(1)为了调控未来人口结构,其中参数受到各种因素的影响(例如生育保险的增加,教育、医疗福利的增加等),是否存在的值使得,请说明理由;(2)若,求,并根据全概率公式,求.。

2025届上海市12校联考高三第一次模拟考试数学试卷含解析

2025届上海市12校联考高三第一次模拟考试数学试卷含解析

2025届上海市12校联考高三第一次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()f x 满足当0x ≤时,2(2)()f x f x -=,且当(2,0]x ∈-时,()|1|1f x x =+-;当0x >时,()log (0a f x x a =>且1a ≠).若函数()f x 的图象上关于原点对称的点恰好有3对,则a 的取值范围是( )A .(625,)+∞B .(4,64)C .(9,625)D .(9,64)2.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( )A .1eB .1eC .12eD .21e 3.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定4.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 5.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)6. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A .75B .65C .55D .457.抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,若点(1,0)A -,则PFPA的最小值为( ) A .12B .22C .32D .2238.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-9.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .10.已知复数,则的共轭复数在复平面对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是( )A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行 C .过点D 只能作唯一平面与BC 垂直 D .过AD 一定能作一平面与BC 垂直12.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则UM N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞二、填空题:本题共4小题,每小题5分,共20分。

上海市2023届高三模拟数学试题

上海市2023届高三模拟数学试题

一、单选题二、多选题1.已知,若是纯虚数(是虚数单位),则( )A .-1或1B .0C .-1D .0或12. 设全集,,,则( )A.B.C.D.3.复数的虚部为( )A.B.C.D.4. 若的展开式的二项式系数最大的项只有第项,则展开式中,的系数为( )A.B.C.D.5. 已知实数a 、b满足,则下列判断正确的是( )A.B.C.D.6. 已知直线和圆满足对直线上任意一点,在圆上存在点,使得,则实数的取值范围是( )A.B.C.D.7. 已知圆锥曲线统一定义为“平面内到定点F 的距离与到定直线l 的距离(F 不在l 上)的比值e 是常数的点的轨迹叫做圆锥曲线”.过双曲线的左焦点的直线l (斜率为正)交双曲线于A ,B 两点,满足.设M 为AB 的中点,则直线OM 斜率的最小值是( )A.B.C.D.8.一台机器在一天内发生故障的概率为,若这台机器一周个工作日不发生故障,可获利万元;发生次故障获利为万元;发生次或次以上故障要亏损万元,这台机器一周个工作日内可能获利的数学期望是()万元.(已知,)A.B.C.D.9. 某次音乐节,评委给支乐队的评分(十分制)如下图,下列说法正确的是()A .支乐队评分的极差为B.支乐队中评分不低于分的有支C .支乐队评分的平均数约为D.第支到第支乐队的评分逐渐降低10. 重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒上海市2023届高三模拟数学试题上海市2023届高三模拟数学试题三、填空题四、解答题卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中,,动点P 在上(含端点),连结OP 交扇形OAB的弧于点Q,且,则下列说法正确的是()A .若,则B .若,则C.D.11.设函数的图象与的图象关于直线对称,且当时,恒成立,求满足条件的的值可以为( )(参考数据:)A .0B .1C .2D .312. 甲同学投掷骰子次,并请乙同学将向上的点数记录下来,计算出平均数和方差.由于记录遗失,乙同学只记得这五个点数的平均数为,方差在区间内,则这五个点数( )A.众数可能为B.中位数可能为C.一定不会出现D .出现的次数不会超过两次13.如图正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①与所成角的正切值是;②;③的体积是;④平面⊥平面;⑤直线与平面所成角为.其中正确的有__________.(填写你认为正确的序号)14. 正项等比数列{a n }中,,则的前9项和_____.15. 若数列为等差数列,且,,则该数列的前项和为_________.16.已知抛物线的焦点为F ,点P 在抛物线上,O为坐标原点,且.(1)抛物线E 的标准方程;(2)如图所示,过点和点分别作两条斜率为k 的平行弦分别和抛物线E 相交于点A ,B 和点C ,D ,得到一个梯形ABCD .记梯形两腰AD 和BC 的斜率分别为和,且.(i)试求实数k的值;(ii)若存在实数,使得,试求实数的取值范围.17. 已知函数.(1)若的导函数为,试讨论的单调性;(2)若对任意的恒成立,求实数的取值范围.18. 已知函数.(1)讨论的单调性;(2)设函数,求证:当时,恰有两个零点.19. 已知函数(,).(1)求函数的极值;(2)若函数的最小值为0,,()为函数的两个零点,证明:.20. 已知函数.(1)判断函数的奇偶性;(2)判断函数的单调性(不必证明);(3)若不等式恒成立,求实数的取值范围.21. 为了巩固拓展脱贫攻坚成果,不断提高群众的幸福感,政府积极引导某村农户因地制宜种植某种经济作物,该类经济作物的质量以其质量指标值来衡量,质量指标值越大表明质量越好.为了解该类经济作物在该村的种植效益,该村引进了甲、乙两个品种,现随机抽取了这两个不同品种的经济作物各100份(每份1千克)作为样本进行检测,检测结果如下表所示:(同一区间的数据取该区间的中点值作代表)分别记甲、乙品种质量指标值的样本平均数为和,样本方差为和.(1)现已求得,,试求及,并比较样本平均数与方差的大小;(2)该经济作物按其质量指标值划分等级如下表:质量指标值作物等级二级一级特级利润(元/千克)102050现利用样本估计总体,试从样本利润平均数的角度分析该村村民种植哪个品种的经济作物获利更多.。

2025届上海市徐汇、金山、松江区高三第一次模拟考试数学试卷含解析

2025届上海市徐汇、金山、松江区高三第一次模拟考试数学试卷含解析

2025届上海市徐汇、金山、松江区高三第一次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()()241xf x x x e =-+⋅的大致图象是( )A .B .C .D .2.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则12n x x ⎛⎫- ⎪⎝⎭的展开式中2x 项的系数为( )A .60B .80C .90D .1203.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A .B .C .1D .24.已知圆锥的高为33体积的比值为( ) A .53B .329C .43D .2595.已知3log 2a =ln3b =,0.992c -=,则,,a b c 的大小关系为( ) A .b c a >>B .a b c >>C .c a b >>D .c b a >>6.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( ) A .甲B .乙C .丙D .丁7.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=-⎪⎝⎭,则sin C =( ) A .37B .217C .2112D .57198.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知4cos sin 3b B C c =,则B =( )A .6π或56πB .4πC .3π D .6π或3π 9.已知各项都为正的等差数列{}n a 中,23415a a a ++=,若12a +,34a +,616a +成等比数列,则10a =( ) A .19B .20C .21D .2210.已知复数1z i =-,z 为z 的共轭复数,则1zz +=( ) A .32i+ B .12i+ C .132i- D .132i+ 11.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .12.若复数z 满足3(1)1z z i +=,复数z 的共轭复数是z ,则z z +=( ) A .1B .0C .1-D .132-+ 二、填空题:本题共4小题,每小题5分,共20分。

2023-2024学年上海市徐汇区高三下册高考数学模拟试题(三模)附答案

2023-2024学年上海市徐汇区高三下册高考数学模拟试题(三模)附答案

2023-2024学年上海市徐汇区高三下学期高考数学模拟试题(三模)一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合,,则______.{}1,2,6M ={}2,3N =M N = 2.已知,则______.()()2log ,02,0x x f x f x x >⎧=⎨+≤⎩()1f -=3.已知复数z 满足,则的最小值为______.z i -=z4.已知向量,,则在上的投影向量的模为______.(a = ()b = ab 5.已知,则的最大值为______.2x y +=()y x y -6.已知扇形的弧长为,面积为,则扇形所在圆的半径为______.2π3π7.在中,内角A ,B ,C 的对边是a ,b ,c .若,且,则ABC △(222a b =+⋅b c =______.A =8.将一枚质地均匀的骰子连续抛掷6次,得到的点数分别为1,2,4,5,6,x ,则这6个点数的中位数为4的概率为______.9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是2nx ⎛- ⎝314______.10.已知两个等差数列2,6,10,…,202和2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为______.11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1ax by +=x y +二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.设,则“”是“”的( )x R ∈0x <()ln 10x +<A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.要得到函数的图像,只需将函数的图像( )()ln 2y x =ln y x =A .每一点的横坐标变为原米的2倍B .每一点的纵坐标变为原来的2倍C .向左平移ln2个单位D .向上平移ln2个单位15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .316.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 三、解答题(本大题共有5题,满分78分)17.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知向量,,其中,若,且函数()2sin ,cos 2m x x =ωω ),1n x =ω0ω>()f x m n =⋅的最小正周期为π.()y f x =(1)求的单调增区间;()y f x =(2)在中,若,,求的值.ABC △()2f B =-BC =sin B A =BA BC ⋅18.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.在四面体中,,.D ABC -2AB BC BD AC ====AD DC ==(1)求证:平面ADC ⊥平面ABC ;(2)对角线BD 上是否存在一点E ,使得直线AD 与平面ACE 所成角为30°.若存在求出的值,若不存在说明理由.BEED19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.为了解人们是否喜欢跑步,某机构在一小区随机抽取了40人进行调查,统计结果如下表.喜欢不喜欢合计男12820女101020合计221840(1)根据以上数据,判断能否有95%的把握认为人们对跑步的喜欢情况与性别有关?附:,其中,()()()()()22n ad bc a b c d a c b d -χ=++++n a b c d =+++()2 3.8410.05P χ≥≈(2)该小区居民张先生每天跑步或开车上班,据以往经验,张先生跑步上班准时到公司的概率为,张先生跑步上班迟到的概率为.对于下周(周一~周五)上班方式张先生作出2313如下安排:周一跑步上班,从周二开始,若前一天准时到公司,当天就继续跑步上班,否则,当天就开车上班,且因公司安排,周五开车去公司(无论周四是否准时到达公司).设从周一开始到张先生第一次开车去上班前跑步上班的天数为X ,求X 的分布及数学期望E[X].20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x 21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =答案一、填空题1.;2.;;4.;5.;6.;7.; 8.; {}1,2,3,601-012356π169.; 10.; 11.45166616-11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.【正确答案】16-对于图(A ),沿彩绳展开正四棱柱,则彩绳长度的最小值为对于图(B ),彩绳长度的最小值为16,因为A 比图B 最多节省的彩绳长度.16>16-12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1axby +=x y +构造,(,),(,)OP a y OQ x b ==, ,|||1,1OP OQ OP OQ ==⋅= 4POQ π∠=问题转化为一个等腰直角三角形绕着点转动,OPQ O 因为,所以点位于点的左上方,[0,],[0,]a x b y ∈∈P Q 设,则,QOM θ∠=4POM πθ∠=+所以,||cos ,||4xQN y PM πθθ⎛⎫====+ ⎪⎝⎭所以cos sin 2cos 4x y πθθθθ⎛⎫+=+=+ ⎪⎝⎭)θϕ=+≤所以x y +二、选择题13.B14.D15.C16.D14.D15.C16.D 15.C 16.D15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .3【正确答案】C 对于①, 且与相互独立, 则()()1,3P A P B ==A B ,①错误;()()()()13P A B P A P B P AB ⋃=+-=11153339+-⨯=对于②,()()()(),|3P CAP C A PCA P A ==()()()()()3|1213P CAP CA P A C P CA P C ===-故, 故②正确;()()2|P CA P A C =对于③,则,()()1,||2P C B P C B +=()()()|P CB P C B P B =()()()|,P C B P C B P B=故, 即 (1),()()112233P C B P CB +=()()631P CB P C B +=若互斥,则, 满足(1)式,BC ()()()10,3P BC P C B P C ===故, 即与互斥, 故③正确.故选:C.()0P BC =B C 16.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 【正确答案】D对于选项: 例如, 可知即为等差数列, 也为等比数列,AB 1n a ={}n a 则, 但不存在, 使得所以不为内和数列, 故错误;122a a +=*m N ∈2,m a ={}n a AB 对于选项C: 例如:数列:显然是所有正整数的排列, 可知为内和数列, 2,1,3,4,5,⋯{}n a {}n a 且的伴随数列为递增数列,但不是递增数列, 故C 错误.{}n a {}n a 对于选项D: 因为,对任意, 可知存在,0n a >*1212,,n n N n n ∈<*12,m m N ∈使得,,11123m n a a a a a =+++⋯+22123m n a a a a a =+++⋯+则即,21112120m m n n n a a a a a ++-=++⋯+>21m m a a >所以其伴随数列为递增数列, 故D 正确;故选D.{}n b三.解答题17.(1)(2),,36k k k Z ππ⎡⎤π-π+∈⎢⎥⎣⎦32-18.(1)证明略(2)BEED=19.(1)否(2),分布列如下()6527E X =20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x【正确答案】(1)(2)(3)存在,12e =()504,3,⎛± ⎝04x =(1)由题意可得:,.2c a ==12c e a ∴==(2),椭圆的方程为:5,4a b ==Γ2212516x y += 3.c ==点是椭圆上一点, 且位于轴的上方,若, 则.P Γx 12PF PF =()04P ,若, 设,212F F PF =()P x,y,,226,12516x y =+=()()55,04x ,y ,∈-∈联立解得,.53x =-53y P ⎛=∴- ⎝若, 设, 根据对称性可得.211F F PF =()P x,y 53P ⎛ ⎝综上可得点的坐标为.P ()504,3,⎛± ⎝(3), 椭圆的方程为,2,a b ==Γ221,143x y c +===()210,F ,∴把代入椭圆方程可得, 解得.1x =211,043y y +=>33,122y A ,⎛⎫=∴ ⎪⎝⎭设直线的方程为:,, 设,l ()(01,y k x C x =-())01k x -()()1122,M x ,y N x ,y 联立, 化为()221122y k x x y ⎧=-⎪⎨+=⎪⎩()22223484120,k x k x k +-+-=0,Δ>假设存在定直线, 使得动直线与的交点221212228412,,3434k k x x x x k k -∴+==++00:l x x =l 0l 满足直线的斜率总是成等差数列,则,C ,,AM AC AN 2AC AM AN k k k =+,,()01201233312222111k x y y x x x ----∴⨯=+---()()11221,1y k x y k x =-=-代入化为:而012211111x x x =+---()12121212211111x x x x x x x x +-+=---++, 解得.22220228222234313412813434k k x k k k k -+==∴=---+++04x =因此存在定直线, 使得动直线与的交点满足直线的斜率总是成0:4l x =l 0l C ,,AM AC AN 等差数列.21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =【正确答案】(1)是(2) (3)见解析03m <≤(1) 函数,当时,,3y x =-[1,2]x ∈[1,2]y ∈因此区间是函数的一个“美好区间”.[1,2]3y x =-(2),2()23(1)(3)f x x x x x '=--=+-由得,所以或()f m m =2(3)(12)0m m --=3m =m =当时,在上严格减,所以,满足题意;03m <≤()f x [0,]m ()[(),12]f x f m ∈当时,,所以且,无解;3m >min ()(3)3f x f ==12m ≥()f m m ≤所以,;03m <≤(3)证明:对于任意区间,[],()I a b a b =< 记由已知得在上单调递减, 故(){}|,S f x x I =∈()f x I ()(),S f b ,f a ⎡⎤=⎣⎦因为, 即的长度大于的长度, 故不满足性质①,()()f a f b b a ->-S I 所以若为的 “美好区间”, 必满足性质②), I ()f x 这只需,即只需或,S I ⋂=∅()f a a <()f b b >由显然不恒成立, 所以存在常数使得,()f x x =c ()f c c ≠如, 取,区间满足性质②;()f c c <a c =[],()I a b a b =<综上,函数一定存在 “美好区间”;()f x 记, 则图象连续不断, 下证明有零点:()()g x f x x =-()g x ()g x因为在上是减函数,所以在上是减函数, 记,()f x R ()g x R ()0f t =若, 则是的零点,0t =00x =()g x 若, 则, 即,,0t >()()0f t f t <=()00g >()0g t <由零点存在性定理, 可知存在, 使得,()00x ,t ∈()00g x =若, 则, 即,,0t <()()0f t f t >=()0g t >()00g <由零点存在性定理, 可知存在, 使得,()00x t ,∈()00g x =综上,有零点, 即,()g x 0x ()00f x x =因为的所有 “美好区间”都满足性质②, 故,(否则, 与性质②()f x I 0x I ∉()00f x x I =∈不符),即不属于的任意一个“美好区间”, 证毕.0x ()f x。

上海市静安区、青浦区2025届高三第二次模拟考试数学试卷含解析

上海市静安区、青浦区2025届高三第二次模拟考试数学试卷含解析

上海市静安区、青浦区2025届高三第二次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知F 为抛物线24y x =的焦点,点A 在抛物线上,且5AF =,过点F 的动直线l 与抛物线,B C 交于两点,O 为坐标原点,抛物线的准线与x 轴的交点为M .给出下列四个命题: ①在抛物线上满足条件的点A 仅有一个;②若P 是抛物线准线上一动点,则PA PO +的最小值为213; ③无论过点F 的直线l 在什么位置,总有OMB OMC ∠=∠;④若点C 在抛物线准线上的射影为D ,则三点B O D 、、在同一条直线上. 其中所有正确命题的个数为( ) A .1B .2C .3D .42.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.记M 的最大值和最小值分别为max M 和min M .若平面向量a 、b 、c ,满足()22a b a b c a b c ==⋅=⋅+-=,则( ) A .max372a c+-=B .max372a c-+=C .min372a c+-= D .min372a c-+=4.已知函数()(),12,1x e x f x f x x ⎧≤⎪=⎨->⎪⎩,若方程()10f x mx --=恰有两个不同实根,则正数m 的取值范围为( )A .()1,11,12e e -⎛⎫-⎪⎝⎭B .(]1,11,12e e -⎛⎫-⎪⎝⎭C .()1,11,13e e -⎛⎫-⎪⎝⎭D .(]1,11,13e e -⎛⎫-⎪⎝⎭5.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .6.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1B .()31±-C .()31±+D .5±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M点,MF 的中点恰好在双曲线C 上,则C 的离心率为( ) A .51-B .2C .3D .58.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,(5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>9.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .4010.设n S 为等差数列{}n a 的前n 项和,若3578122()3()66a a a a a ++++=,则14S = A .56 B .66 C .77D .7811.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -12.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 二、填空题:本题共4小题,每小题5分,共20分。

2024年上海市七宝中学高三高考三模考试数学试卷含详解

2024年上海市七宝中学高三高考三模考试数学试卷含详解

2024年上海高三数学模拟试卷2024.051.已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a ______.2.设()211iz m m =-+-(i 为虚数单位),若z 为纯虚数,则实数m 的值为______.3.422x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数是__________.4.不等式()lg 11x +>的解集为______.5.某校高三年级10名男生的身高数据(单位:cm )如下:168、171、173、176、176、180、183、184、186、191.该组数据的第80百分位数为______cm .6.已知椭圆C 的焦点1F 、2F 都在x 轴上,P 为椭圆C 上一点,12PF F △的周长为6,且1PF ,12F F ,2PF 成等差数列,则椭圆C 的标准方程为______.7.设平面向量()sin ,1a θ=,(cos b θ=,若a,b 不能组成平面上的一个基底,则tan θ=______.8.若m ∈R ,()2,0,1,02x x x f x x ⎧≥⎪=⎨<⎪⎩,则满足()()23f m f m -≥+的m 的最大值为______.9.已知n ∈N ,关于n 的方程10C 0nk -=有且仅有一个解,则实数k =______.10.已知点C 在以AB 为直径的球面上,若2BC =,则AB BC ⋅=______.11.如图,河宽50米,河两岸A 、B 的距离为100米,一个玩具气垫船(不计大小)可以从A 走水路直接到B ,也可以从A 先沿着岸边行驶一段距离,再走水路到B .已知该气垫船在水中的速度是10米/分钟,岸上的速度是20米/分钟,则从A 到B 的最短时间为______分钟,(精确到小数点后两位)12.已知有穷数列{}n a 的首项为1,末项为12,且任意相邻两项之间满足{}11,2n n a a +-∈,则符合上述要求的不同数列{}n a 的个数为______.二、选择题(本大题满分18分,第13-14题每题4分,第15-16题每题5分,每题有且只有一个,正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑)13.在空间中,“a 、b 为异面直线”是“a 、b 不相交”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.设一组成对数据的相关系数为r ,线性回归方程为 y axb =+ ,则下列说法正确的为().A .a越大,则r 越大 B. a越大,则r 越小C .若r 大于零,则 a一定大于零 D.若r 大于零,则 a一定小于零15.已知函数()y f x =的定义域为()0,2,则下列条件中,能推出1一定不是()y f x =的极小值点的为()A.存在无穷多个()00,2x ∈,满足()()01f x f <B.对任意有理数()()00,11,2x ∈⋃,均有()()01f x f <C.函数()y f x =在区间()0,1上为严格减函数,在区间()1,2上为严格增函数D.函数()y f x =在区间()0,1上为严格增函数,在区间()1,2上为严格减函数16.设集合(){}22,|0,R,R U x y xy x y =+≠∈∈,点P 的坐标为(),x y ,满足“对任意(),a b U ∈,都有ax by bx ay ++-≤”的点P 构成的图形为1Ω,满足“存在(),a b U ∈,使得ax by bx ay ++-≤”的点P 构成的图形为2Ω.对于下述两个结论:①1Ω为正方形以及该正方形内部区域;②2Ω的面积大于32.以下说法正确的为().A.①、②都正确B.①正确,②不正确C.①不正确,②正确D.①、②都不正确三、解答题(本大题满分78分,第17-19题每题14分,第20-21题每题18分,解答下列各题必须在答题纸的相应位置写出必要的步骤)17.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且CB BP CD DP ⊥⊥,,2PA =,点E F ,分别为PB PD ,的中点.(1)求证:PA ⊥平面ABCD ;(2)求点P 到平面AEF 的距离.18.掷两颗骰子,观察掷得的点数.(1)设A :掷得的两个点数之和为偶数,B :掷得的两个点数之积为偶数,判断A 、B 是否相互独立.并说明理由;(2)已知甲箱中有3个白球,2个黑球;乙箱中有2个白球,3个黑球.若掷骰子所得到的两个点数奇偶性不同,则从甲箱中任取两个球;若所得到的两个点数奇偶性相同,则从乙箱中任取两个球、求取出白球个数的分布和期望.19.某集团投资一工厂,第一年年初投入资金5000万元作为初始资金,工厂每年的生产经营能使资金在年初的基础上增长50%.每年年底,工厂向集团上缴()0m m >万元,并将剩余资金全部作为下一年的初始资金,设第n 年的初始资金为n a 万元.(1)判断{}2n a m -是否为等比数列?并说明理由;(2)若工厂某年的资金不足以上缴集团的费用,则工厂在这一年转型升级.设2600m =,则该工厂在第几年转型升级?20.已知双曲线Γ:()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F .(1)若Γ的长轴长为2,焦距为4,求Γ的渐近线方程:(2)若4b =,双曲线Γ左支上任意点T 均满足12TF a ≥,求a 的最大值;(3)若双曲线Γ的左支上存在点P 、右支上存在点Q 满足12FP PQ QF ==,求Γ的离心率e 的取值范围.21.若曲线C 的切线l 与曲线C 共有n 个公共点(其中n ∈N ,1n ≥),则称l 为曲线C 的“n T -切线”.(1)若曲线()y f x =在点()1,2-处的切线为2T -切线,另一个公共点的坐标为()3,4,求()1f '的值;(2)求曲线323y x x =-所有1T -切线的方程;(3)设()sin f x x x =+,是否存在π(0,)2t ∈,使得曲线()y f x =在点()()t f t ,处的切线为3T -切线?若存在,探究满足条件的t 的个数,若不存在,说明理由.2024年上海高三数学模拟试卷2024.051.已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a ______.【答案】3【分析】根据给定条件,利用交集的结果直接列式计算即得.【详解】集合{}1,3,4A =,{},1B a a =+,由A B B = ,得B A ⊆,又11a a +-=,因此143a a +=⎧⎨=⎩,所以3a =.故答案为:32.设()211i z m m =-+-(i 为虚数单位),若z 为纯虚数,则实数m 的值为______.【答案】1-【分析】根据给定的条件,利用纯虚数的定义列式计算即得.【详解】由()211i z m m =-+-为纯虚数,得21010m m ⎧-=⎨-≠⎩,解得1m =-,所以实数m 的值为1-.故答案为:1-3.422x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数是__________.【答案】8【分析】写出二项式展开式的通项公式,令x 的指数为1,解出r ,可得结果.【详解】422x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为44314422C C 2rr r r r rr T x xx --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,(其中0,1,2,3,4r =),令431r -=,解得1r =,即二项式展开式中x 的系数为14C 28⨯=.故答案为:84.不等式()lg 11x +>的解集为______.【答案】(9,)+∞【分析】利用对数函数单调性求出不等式的解集.【详解】由不等式()lg 11x +>,得110x +>,解得9x >,所以不等式()lg 11x +>的解集为(9,)+∞.故答案为:(9,)+∞5.某校高三年级10名男生的身高数据(单位:cm )如下:168、171、173、176、176、180、183、184、186、191.该组数据的第80百分位数为______cm .【答案】185【分析】利用80百分位数的定义求解即得.【详解】显然该组数据已由小到大排列,由1080%8⨯=,得该组数据的第80百分位数为1841861852+=.故答案为:1856.已知椭圆C 的焦点1F 、2F 都在x 轴上,P 为椭圆C 上一点,12PF F △的周长为6,且1PF ,12F F ,2PF 成等差数列,则椭圆C 的标准方程为______.【答案】22143x y +=【分析】根据给定条件,结合等差中项的意义及椭圆的定义列式求出,a c 即可得解.【详解】令椭圆长半轴长为a ,半焦距为c ,依题意,1212121262PF PF F F PF PF F F ⎧++=⎪⎨+=⎪⎩,即22624a c a c +=⎧⎨=⎩,解得2,1a c ==,则椭圆短半轴长b ==所以椭圆C 的标准方程为22143x y +=.故答案为:22143x y +=7.设平面向量()sin ,1a θ=,(cos b θ= ,若a ,b 不能组成平面上的一个基底,则tan θ=______.【答案】33【分析】利用基底的定义可得//a b,再利用共线向量的坐标表示求解即得.【详解】由a,b 不能组成平面上的一个基底,得//a b ,而()sin ,1a θ=,(cos b θ=,cos θθ=,所以sin 3tan cos 3θθθ==.故答案为:338.若m ∈R ,()2,0,1,02x x x f x x ⎧≥⎪=⎨<⎪⎩,则满足()()23f m f m -≥+的m 的最大值为______.【答案】12-##0.5-【分析】先判断函数()f x 的奇偶性与单调性,然后利用偶函数的单调性列不等式,最后解不等式即可得到m 的最大值.【详解】当0x >时,0x -<,即()()122x x f x f x -===-,当0x <时,0x ->,即()()122xx x f x f --===,于是,在(),-∞+∞上,()()f x f x -=都成立,即()f x 为偶函数.由指数函数的单调性可知,()f x 在()0,∞+上单调递增,因此,不等式()()23f m f m -≥+等价于23m m -≥+,即()()2223m m -≥+,解得12m ≤-.故m 的最大值为12-.故答案为:12-.9.已知n ∈N ,关于n 的方程10C 0nk -=有且仅有一个解,则实数k =______.【答案】252【分析】根据给定条件,利用组合数的性质求解即得.【详解】由组合数的性质知,101010C C ,10,N nnn n -=≤∈,当5n ≠时,使得10C nk =的n 有两个,当5n =时,使得10C n k =的n 只有一个,而关于n 的方程10C 0nk -=有且仅有一个解,所以510C 252k ==.故答案为:25210.已知点C 在以AB 为直径的球面上,若2BC =,则AB BC ⋅=______.【答案】4-【分析】根据给定条件,可得ACBC ⊥,再利用空间向量数量积的运算律计算得解.【详解】由点C 在以AB 为直径的球面上,得ACBC ⊥,所以2()4AB BC AC CB BC AC BC BC ⋅=+⋅=⋅-=- .故答案为:4-11.如图,河宽50米,河两岸A 、B 的距离为100米,一个玩具气垫船(不计大小)可以从A 走水路直接到B ,也可以从A 先沿着岸边行驶一段距离,再走水路到B .已知该气垫船在水中的速度是10米/分钟,岸上的速度是20米/分钟,则从A 到B 的最短时间为______分钟,(精确到小数点后两位)【答案】8.66【分析】按“胡不归”模型解决问题.【详解】如图设气垫船先沿着岸边行驶一段距离AC ,再走水路CB .在R t ABG 中,50AG =,100AB =,所以30ABG ∠=︒.如图,作30CAD ∠=︒,且CD AD ⊥于D 点,则2AC CD =,所以2010AC CD=.所以从A 到B 所用的时间为:2010101010AC BC CD BC CD BCt +=+=+=.过B 作BE AD ⊥,垂足为E ,则100cos30BC CD BE +≥=⨯︒=所以8.66t ≥≈.故答案为:8.6612.已知有穷数列{}n a 的首项为1,末项为12,且任意相邻两项之间满足{}11,2n n a a +-∈,则符合上述要求的不同数列{}n a 的个数为______.【答案】144【分析】首末项相差11,从首项到末项的运算方法进行分类,结合组合计数问题列式计算即得.【详解】依题意,首项和末项相差11,而任意相邻两项之间满足{}11,2n n a a +-∈,112(,N)k m k m =+∈,当0k =时,即后一项与前一项的差均为1,数列{}n a 的个数为1;当1k =时,即后一项与前一项的差出现一个2,九个1,数列{}n a 的个数为110C ;当2k =时,即后一项与前一项的差出现两个2,七个1,数列{}n a 的个数为29C ;当3k =时,即后一项与前一项的差出现三个2,五个1,数列{}n a 的个数为38C ;当4k =时,即后一项与前一项的差出现四个2,三个1,数列{}n a 的个数为47C ;当5k =时,即后一项与前一项的差出现五个2,一个1,数列{}n a 的个数为56C ,所以符合上述要求的不同数列{}n a 的个数为123451098761C C C C C 144+++++=.故答案为:144【点睛】关键点点睛:按后一项与前一项的差2出现的次数分类是解决本问题的关键.二、选择题(本大题满分18分,第13-14题每题4分,第15-16题每题5分,每题有且只有一个,正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑)13.在空间中,“a 、b 为异面直线”是“a 、b 不相交”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】A【分析】利用异面直线的定义及充分条件、必要条件的定义判断即得.【详解】直线a 、b 为异面直线,则直线a 、b 不相交,反之,直线a 、b 不相交,直线a 、b 可能平行,也可能是异面直线,所以在空间中,“a 、b 为异面直线”是“a 、b 不相交”的充分非必要条件.故选:A14.设一组成对数据的相关系数为r ,线性回归方程为 y axb =+ ,则下列说法正确的为().A. a越大,则r 越大 B. a越大,则r 越小C.若r 大于零,则 a一定大于零 D.若r 大于零,则 a一定小于零【答案】C【分析】利用 a与r 的含义判断AB ,根据r 大于零时两变量正相关即可得 a 一定大于零判断CD.【详解】 a影响的是回归直线的斜率,r 影响是两个变量之间的相关性,所以 a与r 之间数值大小没有关系,但符号有影响,故选项AB 错误;若r 大于零,则说明两个变量之间成正相关,故 a一定大于零,故选项C 正确,D 错误.故选:C15.已知函数()y f x =的定义域为()0,2,则下列条件中,能推出1一定不是()y f x =的极小值点的为()A.存在无穷多个()00,2x ∈,满足()()01f x f <B.对任意有理数()()00,11,2x ∈⋃,均有()()01f x f <C.函数()y f x =在区间()0,1上为严格减函数,在区间()1,2上为严格增函数D.函数()y f x =在区间()0,1上为严格增函数,在区间()1,2上为严格减函数【答案】B【分析】举例说明判断ACD ;利用极小值的意义推理判断A.【详解】对于A ,函数11,(0,]2()11,(,2)2x f x x x ⎧-∈⎪⎪=⎨⎪-∈⎪⎩的图象如图,显然函数()f x 满足题设条件,而1是()f x 的极小值点,A 错误;对于B ,在1x =附近的任意区间内,总存在有理数,这些有理数的函数值小于(1)f ,因此1一定不是极小值点,B 正确;对于C ,函数()|1|,(0,2)f x x x =-∈在()0,1上为严格减函数,在()1,2上为严格增函数,1是()f x 的极小值点,C 错误;对于D ,函数1,1()11,(0,1)(1,2)x f x x x -=⎧=⎨--∈⋃⎩图象如图,函数()f x 在()0,1上为严格增函数,在()1,2上为严格减函数,1是()f x 的极小值点,D 错误.故选:B 16.设集合(){}22,|0,R,R U x y xy x y =+≠∈∈,点P 的坐标为(),x y ,满足“对任意(),a b U ∈,都有ax by bx ay ++-≤”的点P 构成的图形为1Ω,满足“存在(),a b U ∈,使得ax by bx ay ++-≤”的点P 构成的图形为2Ω.对于下述两个结论:①1Ω为正方形以及该正方形内部区域;②2Ω的面积大于32.以下说法正确的为().A.①、②都正确B.①正确,②不正确C.①不正确,②正确D.①、②都不正确【答案】C【分析】先确定ax by bx ay ++-≤所表达的意义,了解满足该条件的点P 的轨迹,再求P 点轨迹区域的面积,可以得到问题的答案.【详解】因为(){}22,|0,R,R U x y xy x y =+≠∈∈,表示除原点外的平面内的所有点.ax by bx ay ++-≤⇒4≤,所以(),P x y 表示到直线0ax by +=和0bx ay -=的距离之和不大于4的点.如图:易知直线0ax by +=和0bx ay -=垂直,则4OE OF +≤,222OP OE OF =+.当4OE OF +=时,()2224OP OE OE=+-()2224OE ⎡⎤=-+⎢⎥⎣⎦.因为04OE <<,所以2816OP ≤<⇒4OP ≤<.所以1Ω是以原点为圆心,半径在)4⎡⎣范围内的圆形以及该圆形的内部区域(原点除外),故①不正确;当)4OP ⎡∈⎣时,存在OP 使得2π32OP ⋅>,故②正确.故选:C【点睛】关键点点睛:本题的关键是把条件ax by bx ay ++-≤4≤,借助点到直线的距离公式,明确P 点坐标满足的条件.三、解答题(本大题满分78分,第17-19题每题14分,第20-21题每题18分,解答下列各题必须在答题纸的相应位置写出必要的步骤)17.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且CB BP CD DP ⊥⊥,,2PA =,点E F ,分别为PB PD ,的中点.(1)求证:PA ⊥平面ABCD ;(2)求点P 到平面AEF 的距离.【答案】(1)证明见解析;(2)233.【分析】(1)根据给定条件,利用线面垂直的判定、性质推理即得.(2)利用等体积法求出点到平面的距离.【小问1详解】由底面ABCD 为正方形,得CB AB ⊥,又,,,CB BP AB BP B AB BP ⊥⋂=⊂平面ABP ,于是CB ⊥平面ABP ,而PA ⊂平面ABP ,则CB PA ⊥,同理CD PA ⊥,又,,CB CD C CB CD ⋂=⊂平面ABCD ,所以PA ⊥平面ABCD .【小问2详解】由(1)得PA AB ⊥,点E 为PB 的中点,在Rt PAB 中,AE =F 为PD 的中点,同理AF =,在PBD △中,12EF BD ==,因此1222AEF S ==△,在直角PAB 中,1122122APE S =⨯⨯⨯=△,由(1)知CB ⊥平面ABP ,则AD ⊥平面ABP ,于是点F 到平面APE 的距离为112AD =设点P 到平面AEF 的距离为h ,由P AEF F AEP V V --=,得13111323h ⨯⨯=⨯⨯,解得233h =,所以点P 到平面AEF 的距离为3.18.掷两颗骰子,观察掷得的点数.(1)设A :掷得的两个点数之和为偶数,B :掷得的两个点数之积为偶数,判断A 、B 是否相互独立.并说明理由;(2)已知甲箱中有3个白球,2个黑球;乙箱中有2个白球,3个黑球.若掷骰子所得到的两个点数奇偶性不同,则从甲箱中任取两个球;若所得到的两个点数奇偶性相同,则从乙箱中任取两个球、求取出白球个数的分布和期望.【答案】(1)不相互独立(2)分布列见解析,期望为1.【分析】(1)利用古典概率结合组合计数问题求出(),(),()P A P B P A B ,再利用相互独立事件的定义判断即得.(2)求出取得白球个数X 的可能值,并求出各个值对应的概率,列出分布列并求出期望.【小问1详解】依题意,2222233133(),()16264P A P B +===-=,2231()64P A B == ,显然()()()P A B P A P B ⋂≠,所以A 、B 不是相互独立的.【小问2详解】两个点数奇偶性不同的概率为23333162⨯+⨯=,两个点数奇偶性相同的概率也是12,记取出白球的个数为X ,则X 可能的取值为:0,1,2,22322255C C 111(0)2C 2C 5P X ==⨯+⨯=,111123232255C C C C 113(1)2C 2C 5P X ==⨯+⨯=,22322255C C 111(2)2C 2C 5P X ==⨯+⨯=,所以X 的分布为:X012P153515期望()1310121555E X =⨯+⨯+⨯=.19.某集团投资一工厂,第一年年初投入资金5000万元作为初始资金,工厂每年的生产经营能使资金在年初的基础上增长50%.每年年底,工厂向集团上缴()0m m >万元,并将剩余资金全部作为下一年的初始资金,设第n 年的初始资金为n a 万元.(1)判断{}2n a m -是否为等比数列?并说明理由;(2)若工厂某年的资金不足以上缴集团的费用,则工厂在这一年转型升级.设2600m =,则该工厂在第几年转型升级?【答案】(1)答案见解析;(2)9.【分析】(1)根据给定条件,可得132n n a a m +=-,再利用构造法推理得解.(2)由(1)的结论,取2600m =,再结合已知利用单调性解指数不等式即得.【小问1详解】依题意,15000a =,()21150%7500a a m m =+-=-,13(150%)2n n n a a m a m +=+-=-,即132(2)2n n a m a m +-=-,而当2500m =,即120a m -=时,{}2n a m -不是等比数列;当0m >且2500m ≠时,数列{}2n a m -是一个以32为公比,50002m -为首项的等比数列.【小问2详解】当2600m =时,由(1)知数列{}2n a m -是一个以200-为首项,32为公比的等比数列,则135200200()2n n a --=-⨯,即135200200()2n n a -=-⨯,设第n 年转型升级,则135********nn a +⎛⎫=-⨯< ⎪⎝⎭,则3262n⎛⎫> ⎪⎝⎭,数列3{()2}n是递增数列,8936561319683()26,()2622562512=<=>,而*N n ∈,则min 9n =,所以该工厂在第9年转型升级.20.已知双曲线Γ:()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F .(1)若Γ的长轴长为2,焦距为4,求Γ的渐近线方程:(2)若4b =,双曲线Γ左支上任意点T 均满足12TF a ≥,求a 的最大值;(3)若双曲线Γ的左支上存在点P 、右支上存在点Q 满足12FP PQ QF ==,求Γ的离心率e 的取值范围.【答案】(1)y =;(2;(3)(2,)+∞.【分析】(1)根据给定条件,由,,a b c 求出渐近线方程.(2)设出点T 的坐标,利用两点间距离公式求出1||PF 有最小值,再结合已知求解即得.(3)设112212(,),(,),,P x y Q x y x a x a ≤-≥,结合已知可得120x x +=,再按12y y =和12y y =-分类建立不等式求出e 的范围.【小问1详解】令双曲线的半焦距为c ,依题意,1,2a c ==,由222c a b =+,得b =,则ba=所以双曲线Γ的渐近线方程为y =.【小问2详解】设点T 的坐标为(,),x y x a ≤-,1(,0)F c -,则22222()b y x a a=-,于是1c TF x a a==--,当x a =-时,1min ||PF c a =-,因此2c a a -≥,即229c a ≥,则2229a b a +≥,又4b =,解得a ≤因此a .【小问3详解】设点112212(,),(,),,P x y Q x y x a x a ≤-≥,12(,0),(,0)F c F c -,由12F P QF =,得22221122()()x c y x c y++=++,整理得:212122([(]0))2c x x x x c a+-+=,由122x x a -≤-,得2122()20c x x c a-+<,因此120x x +=,当12y y =时,由1F P PQ =,得222111()4x c y x ++=,整理得:222112(420c x cx a a---=,解得12a x e =-或12a x e =-+(舍),由2aa e≤--,解得23e <≤;当12y y =-时,由1F P PQ =,得22221111()44x c y x y ++=+,整理得:222211232340c x cx a c a-+-=,在1x a ≤-有解,故22232340c ac a c ++-≤,即2230e e --≥,解得:3e ≥或1e ≤-(舍),综上,曲线Γ的离心率e 的取值范围是(2,)+∞.【点睛】方法点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).21.若曲线C 的切线l 与曲线C 共有n 个公共点(其中n ∈N ,1n ≥),则称l 为曲线C 的“n T -切线”.(1)若曲线()y f x =在点()1,2-处的切线为2T -切线,另一个公共点的坐标为()3,4,求()1f '的值;(2)求曲线323y x x =-所有1T -切线的方程;(3)设()sin f x x x =+,是否存在π(0,)2t ∈,使得曲线()y f x =在点()()t f t ,处的切线为3T -切线?若存在,探究满足条件的t 的个数,若不存在,说明理由.【答案】(1)3;(2)31y x =-+;(3)存在,唯一一个.【分析】(1)利用斜率坐标公式求出斜率,再利用导数的几何意义得解.(2)求出函数323y x x =-在32000(,3)-x x x 处的切线方程,再利用1T -切线的定义求解即得.(3)求出函数()f x 的导数,由曲线()y f x =在点(,())t f t 处的切线方程,构造函数()g x ,利用导数探讨极值,由()g x 有3个零点建立关系并求解即得.【小问1详解】依题意,该切线的斜率为4(2)331--=-,因此(1)3f '=.【小问2详解】由323y x x =-,求导得236y x x '=-,则曲线323y x x =-在32000(,3)-x x x 处的切线方程为:()32200000(3)(36)y x x x x x x --=--,令3223232000000()3(36)363h x x x x x x x x x x =---+--+,整理得200()()(23)h x x x x x =-+-,此切线为1T -切线,等价于方程()0h x =有且仅有一个根,即0032x x =-,即01x =,所以曲线323y x x =-的1T -切线仅有一条,为31y x =-+.【小问3详解】由(sin )1cos x x x '+=+,得曲线()y f x =在点(,())t f t 处的切线方程为:sin (1cos )()y t t t x t --=+-,即(1cos )sin cos y t x t t t =++-,令()(sin )[(1cos )sin cos ]g x x x t x t t t =+-++-sin cos sin cos x x t t t t =--+,求导得()cos cos g x x t '=-,由π(0,)2t ∈,得cos (0,1)t ∈,对Z k ∈,当(2π,2π)x k t k t ∈-+时,()cos cos 0,()g x x t y g x '=->=为严格增函数;当(2π,2π2π)x k t k t ∈++-时,()cos cos 0,()g x x t y g x '=-<=为严格减函数,函数()y g x =所有的极大值为(2π)2πcos g k t k t +=-,当0k =时,极大值等于0,即()0g t =,当k 为正整数时,极大值全部小于0,即()y g x =在(,)t ∞+无零点,当k 为负整数时,极大值全部大于0,函数()y g x =所有的极小值为(2π)(22π)cos 2sin g k t t k t t -=--,当0k =时,极小值()2cos 2sin 2cos (tan )0g t t t t t t t -=-=-<,且随着k 的增大,极小值(22π)cos 2sin t k t t --越来越小,因此()y f x =在点π(,())(0)2t f t t <<处的切线为3T -切线,等价于()y g x =有三个零点,等价于(22π)cos 2sin 0t t t +-=,即tan πt t -=有解,令()tan h t t t =-,则221()1tan 0cos h t t t'=-=>,因此()y h t =为π(0,)2上的严格增函数,因为3(0)0π,()12.6π2h h =<≈>,于是存在唯一实数π(0,)2t ∈,满足tan πt t -=,所以存在唯一实数π(0,)2t ∈,使得曲线()y f x =在点(,())t f t 处的切线为3T -切线.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

上海市市辖区(新版)2024高考数学统编版模拟(自测卷)完整试卷

上海市市辖区(新版)2024高考数学统编版模拟(自测卷)完整试卷

上海市市辖区(新版)2024高考数学统编版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知为坐标原点,椭圆:的右焦点为,点在上,且为等边三角形,则的长轴长为()A.B.2C.D.第(2)题记为等差数列的前项和,已知,则使得的的取值范围为()A.B.C.D.第(3)题已知,则()A.B.C.D.第(4)题已知为单位向量,向量满足,,则的最大值为()A.4B.2C.D.5第(5)题已知集合,,则()A.B.C.D.第(6)题已知集合,则子集的个数为()A.2B.3C.4D.8第(7)题已知双曲线的左、右焦点分别为,过的直线与的左、右两支分别交于两点,,则实数()A.B.C.2D.4第(8)题半径为2m的圆盘边缘上有一个质点M,它的初始位置为.圆盘按逆时针方向做匀速圆周运动,其角速度为.如图,以圆盘圆心O为原点,建立平面直角坐标系,且,则点M的横坐标x关于时间t(单位:s)的函数解析式为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度为2,水槽侧面上有一个小孔E,点E到直线CD的距离为3,将该水槽绕CD倾斜(CD始终在桌面上)至恰有水从小孔流出,则在倾斜过程中,下列说法正确的有()A.没水的部分始终呈四棱柱形B.水面始终经过水槽的外接球的球心C.水面的面积为定值D.E到桌面的最小距离为第(2)题已知函数,的定义域为,是的导函数,且,,若为偶函数,则()A.B.C.D.第(3)题已知,是椭圆:()与双曲线:()的公共焦点,,分别是与的离心率,且是与的一个公共点,满足,则下列结论中正确的是()A.B.C.的最大值为D.的最大值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知三棱锥中,,,,且二面角的大小为,则三棱锥外接球的表面积为__________.第(2)题已知公差为的等差数列,其中,则____________.第(3)题已知在中,,为,所对的边,,,.则的最大值为________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题某市教育局为督促各学校保证学生充足的睡眠、合理的营养搭配和体育锻炼时间,减轻学生学习压力,准备对各校高三男生身高指数进行抽查,并制定了身高指数档次及所对应得分如下表:档次偏矮正常偏高超高男生身高指数(单位:)学生得分50708090某校为迎接检查,高三第一学期初通过调查统计得到该校高三男生身高指数服从正态分布,学校制定了相应的措施指导学生调整睡眠时间、合理的营养搭配和体育锻炼.5月中旬,教育局聘请第三方机构抽查的该校高三30名男生的身高指数频数分布表如下:档次偏矮正常偏高超高男生身高指数(单位:)人数39126(1)试求学校调整前高三男生身高指数的偏矮率、正常率、偏高率、超高率;(2)请你从偏高率、超高率、男生身高指数平均得分三个角度评价学校采取措施的效果.附:参考数据与公式:若,则①;②;③.第(2)题如图,在三棱台中,H在AC边上,平面平面,,,,,.(1)证明:;(2)若且的面积为.求与平面所成角的正弦值.第(3)题已知椭圆的离心率为,过右焦点且不与坐标轴垂直的直线交于P,Q两点,点关于轴的对称点为,且.(1)求的方程;(2)设点关于轴的对称点为,直线RP交轴于点,直线ST与的另一交点为,证明:直线关于直线对称.第(4)题对任意实数,不等式恒成立,求实数的取值范围.第(5)题在直角坐标系xOy中,曲线的参数方程为(为参数).以坐标原点为极点,轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程与曲线的普通方程;(2)已知点的直角坐标为,直线与曲线相交于A,B两点,求的值.。

上海高三数学一模试卷

上海高三数学一模试卷

上海高三数学一模试卷一、选择题(本题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的。

)1. 若函数f(x) = 2x^2 - 3x + 1,则f(-1)的值为:A. 0B. 4C. -4D. 62. 已知等差数列{a_n}的首项a_1 = 2,公差d = 3,则a_5的值为:A. 17B. 14C. 13D. 113. 已知圆C的方程为(x-2)^2 + (y-3)^2 = 25,圆心C到直线x + y - 5 = 0的距离为:A. 4B. 5C. 3D. 24. 若向量a = (3, -4),向量b = (-2, 3),则向量a与向量b的点积为:A. 5B. -5C. 2D. -25. 已知函数y = x^3 - 6x^2 + 9x + 1,求导数y'的值为:A. 3x^2 - 12x + 9B. x^3 - 6x^2 + 9C. 3x^2 - 12x + 1D. x^3 - 6x^2 + 9x6. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的值为:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}7. 已知函数f(x) = sin(x),g(x) = cos(x),则f(x)g(x)的值为:A. sin(x)cos(x)B. sin^2(x)C. cos^2(x)D. sin(x) + cos(x)8. 已知复数z = 3 + 4i,求|z|的值为:A. 5B. √7C. √25D. √419. 已知函数y = e^x,求y'的值为:A. e^xB. xC. 1D. ln(e)10. 已知矩阵A = [[1, 2], [3, 4]],B = [[2, 0], [1, 3]],则AB 的值为:A. [[2, 6], [7, 12]]B. [[5, 6], [3, 4]]C. [[4, 6], [3, 6]]D. [[2, 4], [6, 8]]二、填空题(本题共5小题,每小题4分,共20分。

2024届上海市闵行区高三一模数学试题及答案

2024届上海市闵行区高三一模数学试题及答案

上海市闵行区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.12一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知集合 0,1,1M a ,若1M ,则实数a .2.若1sin 3,则 sin .3.若4.5.6.7.则 8.的值最小,则a 9.10..11.已知数列 n a 为无穷等比数列,若12ii a,则1i i a的取值范围为.12.已知点P 在正方体1111ABCD A B C D 的表面上,P 到三个平面ABCD 、11ADD A 、11ABB A 中的两个平面的距离相等,且P 到剩下一个平面的距离与P 到此正方体的中心的距离相等,则满足条件的点P 的个数为.第12题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知a b R 、,a b ,则下列不等式中不一定成立的是().A 22a b ;.B 22a b ;.C 22a b ;.D 22a b .14.某校读书节期间,共120名同学获奖(分金、银、铜三个等级),从中随机抽取24名同学参加交流会,若按高一、高二、高三分层随机抽样,则高一年级需抽取6人;若按获奖等级分层随机抽样,则金奖获得者需抽取4人.下列说法正确的是().A 高二和高三年级获奖同学共80人;.B 获奖同学中金奖所占比例一定最低;.C 获奖同学中金奖所占比例可能最高;.D 获金奖的同学可能都在高一年级.15.已知复数1z 、2z 在复平面内对应的点分别为P 、Q ,5OP (O 为坐标原点),且221122sin 0z z z z ,则对任意R ,下列选项中为定值的是().A OQ 16.①“1x .A .C 三、17.如图,,且PA PD2a(1)(2)第17题图18.(本题满分14分,第1小题满分6分,第2小题满分8分)在ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2cos a c B c .(1)若1cos 3B,3c ,求b 的值;(2)若ABC 为锐角三角形,求sin C 的取值范围.19.B 表示事件已知04p ,曲线1 、2 的方程分别为22y px(08x ,0y )和22x py (08y ,0x ),1 与2 在第一象限内相交于点 ,K K K x y .(1)若OK p 的值;(2)若2p ,定点T 的坐标为 4,0,动点M 在直线y x 上,动点 ,N N N x y (04N x )在曲线2 上,求MN MT 的最小值;(3)已知点y x,求实数p 的已知a R , 32251ln f x a x x x a x .(1)若1为函数 y f x 的驻点,求实数a 的值;(2)若0a ,试问曲线 y f x 是否存在切线与直线10x y 互相垂直?说明理由;(3)若2a ,是否存在等差数列123,,x x x (1230x x x ),使得曲线 y f x 在点22,x f x 处的切线与过两点11,x f x 、33,x f x 的直线互相平行?若存在,求出所有满足条件的等差数列;若不存在,说明理由.参考答案与评分标准一. 填空题 1.2−; 2.13; 3.4; 4.6; 5.6π; 6.y x =±; 7.23π;8.3;9.18; 10.0,,22⎧⎪−⎨⎪⎪⎩⎭; 11.[)2,+∞;12.6.二. 选择题 13.C ; 14.D ; 15.A ; 16.C .三. 解答题17.(1) [证明]连接AC ,ABCD 为正方形且F 为BD 的中点, F ∴为AC 的中点,又E 为PC 中点,//EF PA ∴. …………………………………2分又EF 不在平面PAD 上,PA ⊂平面PAD ,//EF ∴平面PAD . ………………………………………6分 (2) [解] 2,2PA PD a AD a ===,PA PD ∴⊥, ∴PAD △为等腰直角三角形,取AD 中点M ,由等腰三角形性质可知PM AD ⊥, ………………………………8分 又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PM ABCD ∴⊥平面,……………………………………………10分连接BM ,则PBM ∠为直线PB 与平面ABCD 所成的角, ………………………12分由1,22PM a BM a ==,PMMB ⊥可得tan 5PBM ∠=, ∴直线PB 与平面ABCD 所成的角的正切值为5. ……………………………14分18.[解] (1)将1cos 3B =,3c =带入条件中可得5a =,………………………2分 由余弦定理2222cos b a c ac B =+−可得b =; …………………………6分 (2) 2cos a c B c −=,由正弦定理可得sin 2sin cos sin A C B C −=, ………8分 sin sin()sin cos cos sin A B C B C B C =+=+,sin cos sin cos sin B C C B C ∴−=,sin()sin B C C −=, ……………………10分(,),(0,)222B C C πππ−∈−∈,所以B C C −=,即2B C =,…………………12分 又因为ABC △为锐角三角形,(,)64C ππ∴∈,1sin (,22C ∈.………………14分19.[解](1)从这36名小青荷中随机抽取两名的方法数为236C ,……………………2分 抽取的两名都不会说日语的方法数为216C , ………………………………4分因此,抽取的两名中至少有一名会说日语的概率为21623617121C C −=; ………………6分(抽取的两名小青荷中至少有一名会说日语的方法数为211202016C C C + 给2分)(2)当6m =、12n =时,事件A 与B 相互独立, ……………………………8分M理由如下:从这些小青荷中随机抽取一名,事件A 发生的概率121()363P A ==, 事件B 发生的概率6121()362P B +==, …………………………………10分 事件A 与B 同时发生的概率61()366P A B ==, …………………………12分 111()()()326P A P B P A B ⋅=⨯==,因此,事件A 与B 相互独立. …………………………………14分(其它答案:当7m =、14n =时,1()3P A =,7147()3612P B +==,7()36P A B =;当8m =、16n =时,1()3P A =,8162()363P B +==,82()369P A B ==.)(2)[另解] 从这些小青荷中随机抽取一名,事件A 发生的概率121()363P A ==, 事件B 发生的概率()36m nP B +=, …………………………8分 事件A 与B 同时发生的概率()36mP AB =, …………………………10分 若事件A 与B 相互独立,则1()()()33636m n m P A P B P A B +⋅=⨯==, 整理得2n m =, …………………………12分 所以可取6m =、12n =或7m =、14n =或8m =、16n =. ……………14分 (学生只需写出三种情况中的一种即可)20.[解](1)联立2222y pxx py⎧=⎪⎨=⎪⎩,由点(,)K K K x y 在第一象限,得22K K x p y p=⎧⎨=⎩,…………………………2分 由||OK ==2p =; ……4分 (2)曲线1Γ和2Γ关于直线y x =对称,取N 关于y x =的对称点'N ,则'N 在曲线24(04,0)y x x y =≤≤≥上, ………………6分min min ()(')MN MT MN MT ∴+=+,又因为''MN MT TN +≥,所以只需求T 到24(04,0)y x x y =≤≤≥上动点'N 的距离'TN 的最小值,令'(4)N x x ≤≤,则'TN==,………8分当2x =时,'TN 的最小值为min ()MN MT ∴+=所以(当(8M −−,N 时)MN MT +的最小值为…10分(3)由(1)可得1|||AC x==,(102x p≤≤),2||BD x==,(228p x<≤),…………………………12分因此当12px=时,2m p=,当28x=时,t=,………………………………………14分由1[,2]2mt∈,得122≤≤,……………………………………………16分解得16160p−≤≤−.……………………………………………18分21.[解](1)由题意21()3(2)25ax a xxf x−=−−++',…………………2分由1为函数()y f x=的驻点,得(1)3(2)3(1)0a af=−++−=',因此1a=;……………………………………………4分(2)当0a=时,32()25lnf x x x x x=−−++,21()625f x x xx=−−++',………………………………………………6分原问题等价于是否存在x>,使得()10xf'+=,令21(())1626(0)x x x xxg x f+=−−++>='因为函数()y g x=在区间1[,1]2上是一段连续曲线,且111()022g=>,(1)10g=−<,……………………………………………8分由零点存在定理,存在1(,1)2x∈,使得00(())10x xg f'+==,即曲线()y f x=存在切线与直线10x y+−=互相垂直;……………………10分(3)当2a=时,2()5lnf x x x x=−+−,1()25xxf x=−+'−,假设存在等差数列123123,,(0)x x x x x x<<<满足题意,则31231()()()x xxxfxff−=−',即223131223131ln ln1255x x x xxx x x x x−−−+−=−+−−−,将1322x xx+=代入上式得,3131312()ln lnx xx xx x−=−+,………………………12分即3313112(1)ln01xxxx xx−−=+,令312(1),()ln(1)1x tt h t t tx t−==−>+,……………14分则22241(1)()0(1)(1)httt t t t−−=−=<++',因此函数()y h t =在(0,)+∞上为严格减函数, …………………………………16分由题意311x t x =>,(1)0h =,所以()0h t <,即31()0xh x <.因此,不存在等差数列123123,,(0)x x x x x x <<<满足题目条件.……………18分。

上海市(新版)2024高考数学统编版模拟(提分卷)完整试卷

上海市(新版)2024高考数学统编版模拟(提分卷)完整试卷

上海市(新版)2024高考数学统编版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,则()A.-3B.C.3D.第(2)题已知集合,,则()A.B.C.D.第(3)题已知正四棱锥的所有棱长均为为棱的中点,则异面直线与所成角的余弦值为()A.B.C.D.第(4)题已知抛物线的焦点为,直线与该抛物线交于两点,是线段的中点,过作轴的垂线,垂足为,若,则的值为( ) .A.B.C.D.第(5)题已知,,,则()A.B.C.D.第(6)题在半径为R的球内作内接于球的圆柱,则圆柱体积取得最大值时,圆柱的高为()A.R B.C.D.第(7)题()A.B.C.1D.第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题某学校为了调查学生某次研学活动中的消费支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在50元到60元之间的学生有60人,则()A.样本中消费支出在50元到60元之间的频率为0.3B.样本中消费支出不少于40元的人数为132C.n的值为200D.若该校有2000名学生参加研学,则约有20人消费支出在20元到30元之间第(2)题已知为抛物线的焦点,过的直线与抛物线交于两点(点在第一象限),过线段的中点作轴的垂线,交抛物线于点,交抛物线的准线于点,为坐标原点,则下列说法正确的是()A.当时,直线的斜率为B.C.的面积不小于的面积D.第(3)题已知,,,则下列结论正确的是()A.B.C.ab的最大值为D.的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.第(2)题已知双曲线,则点到的渐近线的距离为_______.第(3)题三棱锥中,是边长为的等边三角形,,平面平面,则该三棱锥的外接球的体积为______四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题抛物线:在第一象限上一点,过作抛物线的切线交轴于点,过作的垂线交抛物线于,(在第四象限)两点,交于点.(1)求证:过定点;(2)若,求的最小值.第(2)题如图,椭圆的左焦点为,离心率为,点在椭圆上.过点的直线交椭圆于,,过与轴平行的直线和过与垂直的直线交于点,直线与轴交于点.(1)求椭圆的方程;(2)求点的横坐标的取值范围.第(3)题已知椭圆C:的右焦点为F,过F作不平行于坐标轴的直线l与椭圆C相交于A,B两点,AM垂直x轴于点M,BN垂直x轴于点N,直线AN与BM相交于点P.(1)当直线l的斜率为1时,求;(2)求证:动点P的横坐标为定值.第(4)题已知数列满足,.(1)已知,①若,求;②若关于m的不等式的解集为M,集合M中的最小元素为8,求的取值范围;(2)若,是否存在正整数,使得,若存在,求出k的最小值,若不存在,请说明理由.第(5)题在直角坐标平面内,将函数及在第一象限内的图象分别记作,,点在上.过作平行于轴的直线,与交于点,再过点作平行于轴的直线,与交于点.(1)若,请直接写出的值;(2)若,求证:是等比数列;(3)若,求证:.。

2024届上海静安区高三一模数学试卷和答案

2024届上海静安区高三一模数学试卷和答案

上海静安区2023-2024学年第一学期期末教学质量调研高三数学试卷本试卷满分150分,考试时间120分钟.一、填空题(本大题共12小题,满分54分)第1小题至第6小题每个空格填对得4分,第7小题至第12小题每个空格填对得5分,考生应在答题纸的相应编号后填写答案,否则一律得零分.1.准线方程为10x +=的抛物线标准方程为______.2.32x x ⎛⎫+ ⎪⎝⎭的二项展开式中x 的系数为______.3.若一个圆柱的底面半径和母线长都是1,则这个圆柱的体积是______.4.已知R a ∈,i 是虚数单位,1i a -的虚部为______.5.计算123ii +∞=⎛⎫=⎪⎝⎭∑_____________.6.某果园种植了222棵苹果树,现从中随机抽取了20棵苹果树,算得这20棵苹果树平均每棵产量为28kg ,则预估该果园的苹果产量为______kg .7.下列幂函数在区间()0,∞+上是严格增函数,且图象关于原点成中心对称的是______(请填入全部正确的序号).①12y x =;②13y x =;③23y x =;④13y x-=.8.若不等式35x x a-+-≥对所有实数x 恒成立,则实数a 的取值范围是______.9.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是矩形,||||2AP AB ==,||4AD =,E 是BC 上的点,直线PB 与平面PDE 所成的角是3arcsin6,则BE 的长为______.10.不等式2log 42x x +<的解集为______.11.在国家开发西部的号召下,某西部企业得到了一笔400万元的无息贷款用做设备更新.据预测,该企业设备更新后,第1个月收入为20万元,在接下来的5个月中,每月收入都比上个月增长20%,从第7个月开始,每个月的收入都比前一个月增加2万元.则从新设备使用开始计算,该企业用所得收入偿还400万无息贷款只需______个月.(结果取整)12.记22()ln 2f x x x kx k =+-+,若存在实数a b 、,满足122a b ≤<≤,使得函数()y f x =在区间[],a b 上是严格增函数,则实数k 的取值范围是______.二、选择题(本大题共4小题,满分18分)第13题、14题各4分,第15题、16题各5分.每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑.13.已知α:1x >,β:11x <,则α是β的()A.必要非充分条件B.充分非必要条件C.充要条件D.既非充分又非必要条件14.设α是第一象限的角,则2α所在的象限为()A.第一象限B.第三象限C.第一象限或第三象限D.第二象限或第四象限15.教材在推导向量的数量积的坐标表示公式“1212a b x x y y ⋅=+(其中1122(,),(,)x y x y ==a b )”的过程中,运用了以下哪些结论作为推理的依据()①向量坐标的定义;②向量数量积的定义;③向量数量积的交换律;④向量数量积对数乘的结合律;⑤向量数量积对加法的分配律.A.①③④ B.②④⑤C.①②③⑤D.①②③④⑤16.记点P 到图形C 上每一个点的距离的最小值称为点P 到图形C 的距离,那么平面内到定圆C 的距离与到定点A 的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线三、解答题(本大题共5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.记22()sin cos cos ()f x x x x x x λ=-++∈R ,其中λ为实常数.(1)求函数()y f x =的最小正周期;(2)若函数()y f x =的图像经过点π,02⎛⎫⎪⎝⎭,求该函数在区间20,π3⎡⎤⎢⎥⎣⎦上的最大值和最小值.18.甲、乙两人每下一盘棋,甲获胜的概率是0.4,甲不输的概率为0.9.(1)若甲、乙两人下一盘棋,求他们下成和棋的概率;(2)若甲、乙两人连下两盘棋,假设两盘棋之间的胜负互不影响,求甲至少获胜一盘的概率.19.已知双曲线C :2212x y -=,点M 的坐标为()0,1.(1)设直线l 过点M ,斜率为12,它与双曲线C 交于A 、B 两点,求线段AB 的长;(2)设点P 在双曲线C 上,Q 是点P 关于y 轴的对称点.记k MP MQ =⋅,求k 的取值范围.20.如下图,某公园东北角处有一座小山,山顶有一根垂直于水平地平面的钢制笔直旗杆AB ,公园内的小山下是一个水平广场(虚线部分).某高三班级数学老师留给同学们的周末作业是:进入该公园,提出与测量有关的问题,在广场上实施测量,并运用数学知识解决问题.老师提供给同学们的条件是:已知10AB =米,规定使用的测量工具只有一只小小的手持激光测距仪(如下图,该测距仪能准确测量它到它发出的激光投射在物体表面上的光点之间的距离).(1)甲同学来到通往山脚下的笔直小路l 上,他提出的问题是:如何测量小山的高度?于是,他站在点C 处,独立的实施了测量,并运用数学知识解决了问题.请写出甲同学的解决问题方案,并用假设的测量数据(字母表示)表示出小山的高度H ;(2)乙同学是在一阵大风过后进入公园的,广场上的人纷纷议论:旗杆AB 似乎是由于在根部A 处松动产生了倾斜.她提出的问题是:如何检验旗杆AB 是否还垂直于地面?并且设计了一个不用计算就能解决问题的独立测量方案.请你写出她的方案,并说明理由;(3)已知(1)中的小路l 是东西方向,且与点A 所确定的平面垂直于地平面.又已知在(2)中的乙同学已经断定旗杆AB 大致向广场方向倾斜.如果你是该班级的同学,你会提出怎样的有实际意义的问题?请写出实施测量与解决问题的方案,并说明理由(如果需要,可通过假设的测量数据或运算结果列式说明,不必计算).21.如果函数()y f x =满足以下两个条件,我们就称()y f x =为L 型函数.①对任意的()0,1x ∈,总有()0f x >;②当12120,0,1x x x x >>+<时,总有1212()()()f x x f x f x +<+成立.(1)记21()2g x x =+,求证:()y g x =为L 型函数;(2)设R b ∈,记()ln()p x x b =+,若()y p x =是L 型函数,求b 的取值范围;(3)是否存在L 型函数()y r x =满足:对于任意的()0,4m ∈,都存在()00,1x ∈,使得等式0()r x m =成立?请说明理由.参考答案一.填空题:1、24y x =;2、6;3、π;4、211a +;5、2;6、6216;7、②;8、(,2]-∞;9、2;10、()0,4;11、10;12、9,4⎛⎫-∞ ⎪⎝⎭;二.选择题:13、B ;14、C ;15、D ;16、D ;三.解答题:17、(1)()cos 22f x x x =-+π2sin 26x ⎛⎫=- ⎪⎝⎭λ+.∴函数()y f x =的最小正周期为π.(2) π102f λ⎛⎫=+=⎪⎝⎭,∴1λ=-,则π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭.令2π6x t -=,则π7π,66t ⎡⎤∈-⎢⎥⎣⎦.当ππ266x -=-或7π6,即0x =或2π3时,()min 2f x =-.当ππ262x -=,即π3x =时,max ()1f x =.18、设事件A 表示甲获胜,事件B 表示和棋,事件C 表示甲不输.则C A B = .因为和棋与获胜是互斥的,由概率的可加性,得()()()()P C P A B P A P B ==+ .因为()0.9,()0.4P C P A ==,所以()0.90.40.5.P B =-=(2)设事件A 表示甲获胜,则A 表示甲未获胜.设下两次棋至少有一次获胜的事件为E ,则()()()E A A A A A A =⋂⋃⋂⋃⋂,因为两盘棋之间的胜负互不影响,且至少有一次获胜包括的三种情况是互斥的.所以()0.40.4(10.4)0.40.4(10.4)0.64P E =⨯+-⨯+⨯-=19、(1)直线l 的方程为112y x =+.由方程组2211,21,2y x x y ⎧=+⎪⎪⎨⎪-=⎪⎩得2480x x --=.设()()1122,,,A x y B x y ,则12124,8x x x x +==-,AB ===.(2)设点(),P x y ,则点Q 的坐标为(),x y -.(),1MP x y =- ,(),1MQ x y =--,∴()221k x y =-+-222221y y y =--+-+2221(1)y y y =---=-+.因为R y ∈,所以(],0k ∞∈-.20、(1)解一:(1)如图1,设点A 在水平面的投影点为O .用测距仪测得CA m =,CB n =.在ABC 中,22100cos 20m n BAC m +-∠=,在AOC 中,22100cos 20m n OAC m +-∠=-,所以22100cos 20n m H m OAC --=∠=.解二:如图2,在平面ABC 上,以点C 为原点,向量CO为x 轴,建立平面直角坐标系xCy ,设点(),A x H ,则(),10B x H +,用测距仪测得CA m =,CB n =,则()22222210x H mx H n⎧+=⎪⎨++=⎪⎩,解得22100.20n m H --=(2)如图,用电子尺测得CA m =,CB n =,在广场上从点C 移动至点D ,使得DB n =,再移至点E ,使得EA n =,此时再测量DA EA 、,若CA DA EA ==,则可知旗杆AB 垂直于地面,否则就是倾斜了.理由如下:已知CB DB =,CA DA =,设点M 是CD 的中点,则在等腰CBD △中,BM CD ⊥.同理AM CD ⊥,又,AM BM ⊂平面ABM ,所以AM ⊥平面ABM ;又因为AB ⊂平面ABM ,故AB CD ⊥.同理可证AB DE ⊥.综上所述,旗杆AB 垂直于地面.(3)提问:旗杆AB 向哪个方向倾斜多少角度?说明:用AB 在地平面上的投影来刻画AB 的倾斜方向是合理的,也可以采用在广场上确定一个位于在地平面上投影上的点来刻画,用AB 与小路l 的夹角刻画扣1分.关于如何刻画AB 倾斜多少角度的问题,既可以用AB 与垂直于地面的直线所成角的大小,也可以用AB 与地平面所成角的大小来刻画.解答方案1:如图,在地面画出离点A 距离相等的点的轨迹圆O ,再在圆O 上找到离点B 距离最近的点D ,作BH 垂直于地面,垂足为H ,则ABH ∠的大小就是旗杆AB 倾斜角度.理由如下:先证明OH 与圆O 的交点既是点D .只需证明:对于圆O 上任意一点M ,MB DB >.因为在MHD 中,ODM OMD ∠>∠,所以MH DH >,故MB DB >.如图5,从图4中的点D 向点A 的方向走到点P ,放置一个物体,测得PD 、PA 、DA 的长,利用余弦定理可得ADO ∠的大小.同理可得BDO ∠的大小.因此,可以求得图4中的BH 、AO 、DH 、DO 的长.在COD △中,三边已知,利用余弦定理可求得COD ∠,即旗杆AB 向西偏南COD ∠的方向倾斜.又由于DH 、DO 已求得,故AB 倾斜角度为arccos10DO DH-.测量倾斜角的大小方案2:如图5,从点D 向点A 的方向走到点P ,测得PD 、PA 、DA 的长,利用余弦定理可得ADO ∠的大小,从而求得A 点的高度1h .同理可求得B 点的高度2h .如图,1210h h +-即是由于旗杆倾斜旗杆顶点所下降的高度1B G.所以21AG h h =-,在Rt ABG △中,21arccos 10h h BAG -∠=即为所求,测量倾斜角的大小方案3:在图5中,以点O 为原点,以OA 为y 轴建立平面直角坐标系xOy ,则容易求出点A 与点B 的坐标(),A A x y 与(),B B x y ,故AB 的倾斜角为arctanB AB Ay y x x --.21、(1)当()0,1x ∈时,1()02g x >>,当1>0x ,20x >,121x x +<时,()()2121212g x x x x +=++,()()2212121g x g x x x +=++,则()()()()2221212121212111222g x g x g x x x x x x x x +-+=++-+-=-12142x x -=,121x x >+≥∴12140x x ->,∴()()()1212g x g x g x x +>+,∴21()2g x x =+为L 型函数.(2)当()0,1x ∈时,由()()ln 00p x b >+≥得1b ≥,当1>0x ,20x >,121x x +<时,()()1212ln p x x x x b +=++,()()()()1212ln ln p x p x x b x b +=+++,由()()()1212p x x p x p x +<+,得()()()1212ln ln ln x x b x b x b ++<+++,即()()1212x x b x b x b ++<++,即()2121212x x b x x b x x b ++<+++,即()()212121210b b x x x x x x ++-+-+>,令()()()21212121h b b b x x x x x x =++-+-+,则对称轴()12110,22x x b -+⎛⎫=∈ ⎪⎝⎭,所以()h b 在[)1,+∞上的最小值为()1h ,只要()10h >,则()0h b >,因为()()()2121212111h x x x x x x =++-+-+120x x =>,所以[)1,b ∈+∞.(3)存在,举例1:()r x =理由如下:当()0,1x ∈时,()()04r x ∈,符合()0r x >;当1>0x ,20x >,121x x +<时,()12r x x +=()()12r x r x +=,212x x =++,21212x x x x =+<++,故22<,∴<()()()1212r x x r x r x +<+,即()y r x =是L 型函数,且对任意的()0,4m ∈,存在()00,1x ∈,使得等式0()r x m =成立;举例2:()()1r x x =+;理由如下:当()0,1x ∈时,()()04r x ∈,,符合()0r x >,当1>0x ,20x >,121x x +<时,()()12121r x x x x +=++,()()()()121211r x r x x x +=+++,()()121212121111x x x x x x x x ++=+++>++ ,∴()()()1212111x x x x ++<+++,即()()()1212r x x r x r x +<+,即()y r x =是L 型函数,且对任意的()0,4m ∈,都存在()00,1x ∈,使得等式0()r x m =成立.由此可知存在L 型函数()y r x =满足:对于任意的()0,4m ∈,都存在()00,1x ∈,使得等式0()r x m =成立.。

2024届高三数学仿真模拟卷(上海卷)(考试版)

2024届高三数学仿真模拟卷(上海卷)(考试版)

2024年上海高考数学第三次模拟考试(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共21题。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.方程2(1)0x p x q --+=的解集为A ,方程2(1)0x q x p +-+=的解集为B ,已知{2}A B =- ,则A B =.2.复数z 满足(2)|34|i z i -=+,则z =.3.若(1,2)n =-是直线l 的一个法向量,则直线l 的倾斜角大小为.4.已知随机变量X 服从正态分布(1N ,2)(0)σσ>,若(0)0.9P X >=,则(12)P X <<=.5.某研究所收集、整理数据后得到如下列表:x23456y3791011由两组数据可以得到线性回归方程为ˆˆ1.9yx a =+,则ˆa =.6.底面半径都是3且高都是4的圆锥和圆柱的全面积之比为.7.若多项式344321234(1)(1)x x x a x a x a x a -++=++++,则123a a a ++=.8.高三年级某8位同学的体重分别为45,50,55,60,70,75,76,80(单位:)kg ,现在从中任选3位同学去参加拔河,则选中的同学中最大的体重恰好为这组数据的第70百分位数的概率是.9.已知数列{}n a 是等比数列,且2254a a =.设2log n n b a =,数列{}n b 的前n 项和为n S ,则7S =.10.已知函数()sin()(0,||2f x x πωϕωϕ=+><,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于.11.人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术.在人脸识别中,主要应用距离测试检测样本之间的相似度,常用测量距离的方式有曼哈顿距离和余弦距离.设1(A x ,1)y ,2(B x ,2)y ,则曼哈顿距离1212(,)||||d A B x x y y =-+-,余弦距离(e A ,)1cos(B A =-,)B ,其中cos(,)cos ,(A B OA OB O =〈〉为坐标原点).已知点(2,1)M ,(,)1d M N =,则(,)e M N 的最大值为.12.已知实数x ,y 满足223x y +=,则2214(2)(2)x y x y ++-的最小值为.二、选择题(本大题共有4题,满分18分,第13~14题每题4分,第15~16题每题5分)每题有且仅有一个正确选项,考生应在答题纸相应编号位置将代表正确选项的小方格涂黑。

2025届上海市七宝中学高三第二次模拟考试数学试卷含解析

2025届上海市七宝中学高三第二次模拟考试数学试卷含解析

2025届上海市七宝中学高三第二次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .192.已知函数2()4ln f x ax ax x =--,则()f x 在(1,4)上不单调的一个充分不必要条件可以是( )A .12a >-B .1016a <<C .116a >或102a -<<D .116a > 3.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个4.已知向量,a b 满足||1,||3a b ==,且a 与b 的夹角为6π,则()(2)a b a b +⋅-=( ) A .12 B .32- C .12- D .325.等比数列{},n a 若3154,9a a ==则9a =( )A .±6B .6C .-6D .1326.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥ 7.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①以BE 为直径的圆与抛物线准线相离;②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=.其中,所有正确判断的序号是( )A .①②B .①③C .②③D .①②③ 8.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1 C .0D .2 9.已知数列{}n a 满足11a =,1n n a a n --=(2n ≥),则数列{}n a 的通项公式n a =( )A .()112n n +B .()1312n n -C .2n n 1-+D .222n n -+10.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13C .12D .14 11.已知复数11i z i+=-,则z 的虚部是( )A .iB .i -C .1-D .1 12.已知函数()ln x f x x =,()x g x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221k x e x ⎛⎫ ⎪⎝⎭的最大值为( )A .2eB .eC .24eD .21e 二、填空题:本题共4小题,每小题5分,共20分。

2023年上海高考数学模拟试卷(附答案)

2023年上海高考数学模拟试卷(附答案)

2023年上海高考数学模拟试卷一、单选题1.设集合U ={1,2,3,4,5,6},A ={1,2,3},B ={3,4,5} 则A ∩(∁U B )=( )A .{3}B .{1,2}C .{1,2,6}D .{1,2,3,6}2.AB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗⃗ =( ) A .AD⃗⃗⃗⃗⃗⃗ B .DA⃗⃗⃗⃗⃗⃗ C .BD ⃗⃗⃗⃗⃗⃗ D .DB⃗⃗⃗⃗⃗⃗ 3.已知复数z 满足zi 5=1+2i 则 z ̅ 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图 在△ABC 中 已知AB =2 AC =8 ∠BAC =60° BC 、AC 边上的两条中线AM 、BN 相交于点P则∠MPN 的余弦值为( )A .2√77B .−2√77C .√77D .−√775.一个袋中装有四个形状大小完全相同的球 球的编号分别为1 2 3 4.先从袋中随机取一个球 该球的编号为m 将球放回袋中 然后再从袋中随机取一个球 该球的编号为n 则n <m+1的概率是( ) A .18B .38C .58D .786.已知函数f (x )=sinx+acosx (a∈R )图象的一条对称轴是x= π4 则函数g (x )=sinx+f (x )的最大值为( ) A .5B .3C .√5D .√37.若f (x )是定义R 上的奇函数 且当x >0时f (x )=lg (x+1) 则x <0时 f (x )=( )A .lg (1﹣x )B .﹣lg (x+1)C .﹣lg (1﹣x )D .以上都不对8.已知不等式 xlnx +x(k −ln4)+k <0 的解集中仅有2个整数 则实数 k 的取值范围是( ) A .(0,23ln2)B .(34ln 43,23ln2)C .[34ln 43,+∞)D .[34ln 43,23ln2)二、多选题9.下列结论正确的是( )A .若随机变量X 服从两点分布 P(X =1)=12 则D(X)=12B .若随机变量ξ服从二项分布B(4,12) 则D(ξ)=1C .若随机变量ξ服从二项分布B(4,12) 则P(ξ=3)=14D .若随机变量Y 的方差D(Y)=2 则D(3Y +2)=810.双曲线 C :x 2a 2−y 2b2=1 (a ,b >0) 的虚轴长为2 F 1,F 2 为其左右焦点 P ,Q ,R 是双曲线上的三点 过P 作 C 的切线交其渐近线于 A ,B 两点.已知 △PF 1F 2 的内心 I 到 y 轴的距离为1.下列说法正确的是( )A .△ABF 2 外心 M 的轨迹是一条直线B .当 a 变化时 △AOB 外心的轨迹方程为 x 2+a 2y 2=(a 2+1)24C .当 P 变化时 存在 Q ,R 使得 △PQR 的垂心在 C 的渐近线上D .若 X ,Y ,Z 分别是 PQ ,QR ,PR 中点 则 △XYZ 的外接圆过定点11.已知 a >0 b >0 且 e a +lnb >a +b 则下列结论一定正确的是( )A .a >bB .e a >bC .e a +b >2D .a +lnb >012.已知正n 边形的边长为a 内切圆的半径为r 外接圆的半径为R 则( )A .当n =4时 R =√2aB .当n =6时 r =√32aC .R =a2sin π2nD .R +r =a2tan π2n三、填空题13.某中学为了掌握学校员工身体状况 偶尔会采用抽检的方式来收集各部门员工的健康情况.为了让样本更具有代表性 学校对各部门采用分层抽样的方法进行抽检.已知该校部门A 、部门B 、部门C 分别有40、60、80人 各部门员工不存在交叉任职情况 若共抽检了90人 则部门A 抽检人数为 .14.若 ∫e12xdx=a则(x+ a x )6展开式中的常数项为 .15.定义在R 上的函数 f(x) 满足 f(−x)=f(x) 且对任意的不相等的实数 x 1 x 2∈[0,+∞) 有 f(x 1)−f(x 2)x 1−x 2<0 成立 若关于x 的不等式 f(2mx −lnx −3)≥2 f(3)− f(−2mx +lnx +3) 在 x ∈[1,3] 上恒成立 则实数m 的取值范围 .16.已知函数f(x)=x +m x (m >0) x ∈[12,1] 在函数f(x)的值域上任取三个数 都存在以这三个数为边长的三角形 求实数m 的取值范围为 .四、解答题17.已知数列{a n }的前n 项和为S n 且2S n =3a n −1.(1)求数列{a n }的通项公式(2)若数列{b n −a n }是等差数列 且b 1=2 b 3=14 求数列{b n }的前n 项和T n .18.已知数列{a n }满足a 1=1 a n =3a n−1+2(n ≥2,n ∈N ∗).(1)求证:数列{a n +1}是等比数列;(2)若b n =(2n +1)(a n+1−a n ) S n 为数列{b n }的前n 项和 求S n .19.在△ABC 中 角A 、B 、C 的对边分别为a 、b 、c 已知c −b =2b ⋅cosA .(1)若a =2√6 b =3 求c ;(2)若角C =π2 求角B .20.从去年开始 全国各地积极开展“一盔一带”安全守护行动 倡导群众佩戴安全头盔、使用安全带.为了解相关的情况 某学习小组统计了国内20个城市的电动自行车头盔佩戴率 x(%) 和电动自行车驾乘人员交通事故死亡率 y(%) 并整理得到下面的散点图.参考数据:∑x i20i=1=1000 ∑y i 20i=1=1080 ∑(x i −x̅)220i=1=6800 ∑(y i −y̅)220i=1=1700 .参考公式:相关系数r =∑(x i −x ̅)ni=1(y −y ̅)√∑(x i −x ̅)2ni=1∑(y i −y̅)2n i=1回归方程 y ̂=a ̂+b̂x 中斜率和截距的最小二乘估计公式分别为: b ̂=∑(x i −x ̅)ni=1(y i−y ̅)∑(x i −x ̅)2n i=1a ̂=y ̅−b ̂x ̅ . (1)求这20个城市的电动自行车头盔佩戴率大于50%的概率;(2)通过散点图分析 y 与 x 的相关关系 说明佩戴安全头盔的必要性;(3)有四名同学通过计算得到 y 与 x 的相关系数分别为0.97 0.62 −0.45 −0.98 请你从中选出最有可能正确的结果 并以此求出 y 关于 x 的线性回归方程.21.已知椭圆C : x 2a 2+y 2b2=1(a >b >0) 的短轴的一个顶点与两个焦点构成正三角形 且该三角形的面积为 √3 .(1)求椭圆C 的方程;(2)设 F 1 F 2 是椭圆C 的左右焦点 若椭圆C 的一个内接平行四边形的一组对边过点 F 1 和 F 2 求这个平行四边形的面积最大值.22.已知函数 f(x)=ax −(a +2)lnx −2x+2 其中 a ∈R . (1)当 a =4 时 求函数 f(x) 的极值;(2)若 0<a <2 试讨论函数 f(x) 在 (1,e) 上的零点个数.答案解析部分1.【答案】B2.【答案】A3.【答案】A4.【答案】A5.【答案】C6.【答案】C7.【答案】C8.【答案】D9.【答案】B,C10.【答案】A,D11.【答案】B,C12.【答案】B,D13.【答案】2014.【答案】16015.【答案】12e≤m≤6+ln3 616.【答案】(0,+∞)17.【答案】(1)解:当n=1时2S1=2a1=3a1−1所以a1=1当n≥2时因为2S n=3a n−1所以2S n−1=3a n−1−1两式作差得a n=3a n−1即a na n−1=3因为a1=1所以数列{a n}是首项为1 公比为3的等比数列故a n=3n−1(2)解:令c n=b n−a n则c1=b1−a1=1c3=b3−a3=14−9=5所以数列{c n}的公差d=c3−c12=5−12=2故c n=2n−1所以b n=c n+a n=2n−1+3n−1所以T n=n(1+2n−1)2+1−3n1−3=n2+3n−1218.【答案】(1)证明:因为a n=3a n−1+2(n≥2,n∈N∗)所以a n+1=3(a n−1+1)又a 1+1=2所以{a n +1}是以2为首项 以3为公比的等比数列; (2)解:由(1)知a n +1=2⋅3n−1 故a n =2⋅3n−1−1 所以b n =(2n +1)(2⋅3n −1−2⋅3n−1+1)=43(2n +1)⋅3n故S n =43[3×3+5×32+7×33+⋯+(2n +1)⋅3n ]则3S n =43[3×32+5×33+⋯+(2n −1)⋅3n +(2n +1)⋅3n+1]两式相减得−2S n =43[3×3+2×32+2×33+⋯+2⋅3n −(2n +1)⋅3n+1]=43[3+6(1−3n)1−3−(2n +1)3n+1] =−8n ⋅3n所以S n =4n ⋅3n .19.【答案】(1)解:由余弦定理得cosA =b 2+c 2−a 22bc∴c −b =2b ⋅b 2+c 2−a 22bc =b 2+c 2−a 2c即a 2=b 2+bc代入数值得(2√6)2=32+3c 解得c =5;(2)解:∵c −b =2b ⋅cosA ∴由正弦定理得sinC −sinB =2sinB ⋅cosA由C =π2可得A +B =π2 sinC =1 ∴1−sinB =2sin 2B即(2sinB −1)⋅(sinB +1)=0解得sinB =12或sinB =−1(舍去) 又∵0<B <π2 ∴B =π6.20.【答案】(1)解:电动自行车头盔佩戴率大于50%的城市有10个 故所求的概率为 12(2)解:由散点图可知 y 与 x 有较强的负相关关系 提高电动自行车头盔佩戴率能有效降低驾乘人员交通事故死亡率 所以佩戴安全头盔十分有必要 (3)解:最有可能正确的结果为 −0.98 .根据参考数据得 x ̅=120∑x i 20i=1=50y ̅=120∑y i 20i=1=54所以 b̂=∑(x i−x̅)20i=1(y i−y̅)∑(x i −x̅)220i=1=r ×√∑(y i −y̅)220√∑(x i −x̅)2i=1=−0.98×√17006800=−0.49â=y ̅−b ̂x ̅=54+0.49×50=78.5所以 y 关于 x 的线性回归方程为 y ̂=−0.49x +78.5 21.【答案】(1)解:依题意 {a 2=b 2+c 2,bc =1,b =c, 解得 {a =√2,b =1,即椭圆 C 的方程为 x 22+y 2=1 .(2)解:设过椭圆右焦点 F 2 的直线 l : x =ty +1 与椭圆交于 A B 两点 则 {x =ty +1,x 2+2y 2=2,整理得 (t 2+2)y 2+2ty −1=0 ∴y 1+y 2=−2t t 2+2 y 1y 2=−1t 2+2∴|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√8t 2+8t 2+2 =2√2√t 2+1t 2+2S ΔOAB =S ΔOF 2A +S ΔOF 2B=12|OF|⋅|y 1−y 2|=√2⋅√t 2+1t 2+2椭圆 C 的内接平行四边形面积为 S =4SΔOAB=4√2⋅√t 2+1t 2+2令 m =√1+t 2≥1 则 S =f(m)=4√2m m 2+1=4√2m+1m 注意到 S =f(m) 在 [1,+∞) 上单调递减 所以 S max =f(1)=4√2 当且仅当 m =1 即 t =0 时等号成立故这个平行四边形的面积最大值为 4√2 .22.【答案】(1)解:当 a =4 时 f(x)=4x −6lnx −2x +2 f ′(x)=4−6x +2x2=2(2x−1)(x−1)x 2x >0令 f ′(x)>0 得 (0,12) 或 (1,+∞) f ′(x)<0 得 (12,1)所以函数 f(x) 在 (12,1) 上单调递减 在 (0,12) (1,+∞) 上单调递增所以当 x =12 时 函数取得极大值 f(12)=6ln2当 x =1 时 函数取得极小值 f(1)=4(2)解: f ′(x)=a −a+2x +2x 2=(ax−2)(x−1)x 2令 f ′(x)=0 得 x 1=2a 或 x 2=1因为 0<a <2 所以 2a>1所以当 2a ≥e 即 0<a ≤2e时 f(x) 在 (1,e) 上单调递减若函数 f(x) 有零点 则 {f(1)=a >0f(e)=ae −a −2e <0解得: 0<a <2e(e−1) 若函数 f(x) 无零点 则 f(e)=ae −a −2e≥0 即 2e ≥a ≥2e(e−1)当 1<2a <e 时 即 2e <a <2 时 f(x) 在 (1,2a ) 上单调递减 在 (2a,e) 上单调递增 由于 f(1)=a >0 f(e)=a(e −1)−2e >2e (e −1)−2e =2−4e>0 令 g(a)=f(2a )=2−(a +2)ln 2a −a +2=(a +2)lna −(1+ln2)a +4−2ln2令 ℎ(a)=g ′(a)=lna +2a −ln2 则 ℎ′(a)=a−2a2<0所以 ℎ(a) 在 (2e ,2) 上递减 ℎ(a)>ℎ(2)=1>0 即 g′(a)>0所以 g(a) 在 (2e ,2) 上递增 g(a)>g(2e )=2−4e >0 即 f(2a)>0所以 f(x) 在 (1,e) 上没有零点综上 当 0<a <2e(e−1) 时 f(x) 在 (1,e) 上有唯一零点 当 2>a ≥2e(e−1) 时 f(x) 在 (1,e) 上没有零点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海高三数学模拟试卷高三数学模拟试卷班级 学号 姓名 得分 注意:本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1.设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a = .2.集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是 .3.二项式6)1(xx -的展开式中,系数最大的项为第 项.4.从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种.5.直线()2x tt y =+⎧⎪⎨=⎪⎩为参数被双曲线221x y -=截得的弦长为 .6.若函数2log ,0()(),0x x f x g x x >⎧=⎨<⎩是奇函数,则(8)g -= .7.半圆直径为2,则该几何体的体积 .8.已知数列{}n a 的通项公式为121n n a -=+,则01n a C +12n a C +23n a C ++1nn n a C += .9.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项的积为n T,则数列为等比数列,且通项为 .10.设,x y 满足约束条件112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,向量(2,),(1,1)a y x m b =-=-,且//a b ,则实数m 的最小值为 .11.已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 . 12.函数()421421x x xxk f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 .二、选择题(本大题共有4小题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.13.若a 与b c -都是非零向量,则“a b a c ⋅=⋅”是“()a b c ⊥-”的 ( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件14.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( ) (A )12t =,s 的最小值为6π (B)2t = ,s 的最小值为6π(C )12t =,s 的最小值为3π (D )32t =,s 的最小值为3π15.如图,在正方体1111ABCD A B C D -中,当动点M 在底面ABCD 内运动时,总有11DD A DD M ∠=∠,则动点M 在底面ABCD 内的轨迹是( )(A )椭圆的一部分 (B )双曲线的一部分 (C )抛物线的一部分 (D )圆的一部分16.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为32,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )(A ) 0条 (B ) 7条 (C ) 14条 (D ) 无数条三、解答题(本大题共有5小题,满分76分)解答下列各题必须写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且cos cos sin A B Ca b c+=. (1)证明:sin sin sin A B C =;(2)若22265b c a bc +-=,求tan B .18.(本题满分14分,第1小题满分7分,第2小题满分7分) 如图,已知直角梯形ACDE 所在的平面垂直于平面ABC ,90BAC ACD ∠=∠=︒,60EAC ∠=︒,AB AC AE ==.(1)在直线BC 上是否存在一点P ,使得//DP 平面EAB ?请证明你的结论; (2)求平面EBD 与平面ABC 所成的锐二面角的余弦值.19.(本题满分14分,第1小题满分5分,第2小题满分7分)椭圆E :12222=+b y a x ,)0(>>b a 的短轴长等于焦距,)1,0(P 在短轴CD 上,且1PC PD ⋅=-.(1)求椭圆E 的方程;(2)O 为坐标原点,过点P 的动直线与椭圆相交于B A ,两点,是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值.20.(本题满分16分,第1小题满分5分,第2小题满分5分 ,第3小题满分6分)已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2n n a -是等比数列,并求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项的和n S ;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.21.(本题满分18分,第1小题满分4分,第2小题满分6分 ,第3小题满分10分)对于函数()y f x =与常数a 、b ,若()()2f x af x b =+对()f x 的定义域内的任意x 都成立,则称(),a b 为函数()f x 的一个“P 数对”.设函数()y f x =的定义域为+R ,且()13f =.(1)若()1,1是()f x 的一个“P 数对”,求()()*2n f n ∈N ;(2)若()2,0-是()f x 的一个“P 数对”,且当[)1,2x ∈时()23f x k x =--,求()f x 在区间)()*1,2n n ⎡∈⎣N 上的最大值与最小值;(3)若()f x 是增函数,且()2,2-是()f x 的一个“P 数对”, 试比较下列各组中两个式子的大小,并说明理由:①()2n f -与22n -+()*n ∈N ; ②()f x 与22x +(()12,2,*n n x n N --⎤∈∈⎦.高三数学练习卷班级 学号 姓名 得分 注意:本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1.设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a = .1-2.集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是__1a ≤_ .3.二项式6)1(xx -的展开式中,系数最大的项为第 3或5 项.4.从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 48 种.5.直线()2x t t y =+⎧⎪⎨=⎪⎩为参数被双曲线221x y -=截得的弦长为.6.若函数2log ,0()(),0x x f x g x x >⎧=⎨<⎩是奇函数,则(8)g -= . 3- 【解析】()f x 为奇函数,所以2(8)(8)(8)log 83f g f -=-=-=-=-,即(8)3g -=-.7.半圆直径为2,则该几何体的体积___3242π-8.已知数列{}n a 的通项公式为121n n a -=+则01n a C +12n a C +33n a C ++1nn n a C += 23n +9.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}n b的首项为1b ,公比为q ,前n 项的积为n T ,则数列{}n n T 为等比数列,且通项为______121n n n T a q-=____.10.设,x y 满足约束条件112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,向量(2,),(1,1)a y x m b =-=-,且//a b ,则实数m 的最小值为 . 6-【解析】不等式对应的可行域是顶点为)2,4(),21,1(),8,1(C B A 的三角形及其内部,由//a b ,得2m x y =-,可知在)8,1(A 处2m x y =-有最小值6-.11.已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是55,55⎡⎤-+⎣⎦. 【解析】因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=,25PQ =点M 在以PQ 为直径的圆上运动,线段MN 的长度满足55FN MN FN -≤≤+即5555MN -≤≤+12.函数()421421x x xxk f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x x x k k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++ 当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需2213k +⋅≥,所以112k -≤<综上可得,142k -≤≤二、选择题(本大题共有4小题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分.13.若a 与b c -都是非零向量,则“a b a c ⋅=⋅”是“()a b c ⊥-”的 ( C ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件14.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( A ) (A )12t =,s 的最小值为6π (B )32t = ,s 的最小值为6π(C )12t =,s 的最小值为3π (D )32t =,s 的最小值为3π【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移s 个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以s 的最小值为π6. 15.如图,在正方体1111ABCD A B C D -中,当动点M 在底面ABCD 内运动时,总有11DD A DD M ∠=∠,则动点M 在底面ABCD 内的轨迹是( D )(A )椭圆的一部分 (B )双曲线的一部分 (C )抛物线的一部分 (D )圆的一部分解:因为满足条件的动点在底面ABCD 内运动时,动点的轨迹是以1D D 为轴线,以1D A 为母线的圆锥,与底面ABCD 的交线即圆的一部分. 16.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为32,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( C )(A ) 0条 (B ) 7条 (C ) 14条 (D ) 无数条【解析】如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x 2+4x ,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y 轴的抛物线条数是:7+7=14.三、解答题(本大题共有5小题,满分76分)解答下列各题必须写出必要的步骤.17.(本题满分14分,第1小题满分7分,第2小题满分7分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且cos cos sin A B Ca b c+=. (1)证明:sin sin sin A B C =;(2)若22265b c a bc +-=,求tan B .【解析】(1)证明:由正弦定理sin sin sin a b cA B C ==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+== ∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-= 原式得证。

相关文档
最新文档