平面图形的认识(一)单元测试卷(含答案解析)

合集下载

七年级上册数学 平面图形的认识(一)单元测试卷(含答案解析)

七年级上册数学 平面图形的认识(一)单元测试卷(含答案解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.2.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB 的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC∴∠BOM=∠BOC=60°又∵∠MON=90°∴∠BON=∠MON−∠BOM=90°−60°=30°(2)解:设的余角为x°,则由题意得:,x=15,3x=45,所以的度数为45°(3)解:(0°< <90°)..【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。

第6章平面图形的认识(一)》单元测试卷2021-2022学年苏科版七年级数学上册

第6章平面图形的认识(一)》单元测试卷2021-2022学年苏科版七年级数学上册

第6章平面图形的认识(一)一、选择题1.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角2.∠A=60°,则∠A的补角是()A.160°B.120°C.60°D.30°3.在同一平面内的三条直线,如果要使其中两条且只有两条平行,那么它们()A.有三个交点B.只有一个交点C.有两个交点D.没有交点4.直线a、b、c是三条平行直线.已知a与b的距离为5cm,b与c的距离为2cm,则a与c 的距离为()A.2cmB.3cmC.7cmD.3cm或7cm5如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm6下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等7一条直线截另外一条直线,形成的对顶角有()A.4对B.3对C.2对D.1对8.为了估计池塘A,B两点之间的距离,小明在池塘的一侧选取一点C,测得AC=3m,BC =6m,则A,B两点之间的距离可能是()A.11m B.9m C.7m D.3m9.如图,AB是一段高铁行驶路线图图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制()种车票.A.10 B.11 C.20 D.2210.直线经过两个整点(横纵坐标都为整数的点)是该直线经过无数个整点的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题11. 22.5°=度分.12.∠α=35°,则∠α的补角为度.13.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是.14.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=145°,则∠BOC= .15.如图,为了把河中的水引到处,可过点作于,然后沿开渠,这样做可使所开的渠道最短,这种设计的依据是________.16如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.17已知∠AOB=60°,过O作射线OC(不同于OA、OB),并且满足∠AOC=∠BOC,则∠AOC=度或度.18用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE与AB交于点A,∠DAB=.三、解答题19.按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.用适当的语句表述图中点与直线的关系.(至少4句)21.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=BD,点F是BE的中点,求线段CF的长.22.请你做裁判:过三点中的两点作直线,小明说有一条,小林说有三条,小红说不是一条就是三条,你认为他们三人谁的说法正确?为什么?23如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.24.如图,已知线段AB的长度是xcm,线段BC的长度比线段AB的长度的2倍多1cm,线段AD的长度比线段BC长度的2倍少1cm,求线段BC,AD和CD的长.25.有一艘渔船上午九点在A处沿正东方向航行,在A处测得灯塔C在北偏东60°方向上,行驶2小时到达B处,测得灯塔C在北偏东15°方向,求∠C的度数.第6章平面图形的认识(一)一、选择题1.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【考点】余角和补角;对顶角、邻补角;垂线.【专题】计算题.【答案】B【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.2.答案为:B3.答案为:C4.答案为:D5如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm【考点】两点间的距离.【答案】C【分析】先根据CB=5cm,DB=9cm求出CD的长,再根据D是AC的中点即可得出AC的长.【解答】解:∵CB=5cm,DB=9cm,∴CD=DB﹣CB=9﹣5=4cm,∵D是AC的中点,∴AC=2CD=8cm.故选:C.6下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等【考点】直线、射线、线段;直线的性质:两点确定一条直线;余角和补角.【答案】B【分析】分别利用直线的性质以及射线的性质和余角与补角的性质分析得出答案.【解答】解:A、两点确定一条直线,正确,不合题意;B、射线AB也可以写作射线BA,错误,符合题意;C、等角的余角相等,正确,不合题意;D、同角的补角相等,正确,不合题意;故选:B.7一条直线截另外一条直线,形成的对顶角有()A.4对B.3对C.2对D.1对【考点】对顶角、邻补角.【专题】线段、角、相交线与平行线;几何直观.【答案】C【分析】根据题意的画图,由对顶角的定义可得∠1=∠3,∠2=∠4,即可得出答案.【解答】解:根据题意可得,如图,互为对顶角有:∠1=∠3,∠2=∠4,所以形成的对顶角有2对.故选:C.8.解:根据三角形的三边关系定理得:6﹣3<AB<6+3,即:3<AB<9,则A,B两点之间的距离在3和9之间,故选:C.9.解:5×(5﹣1)=20,故选:C.10.解:分两步,充分性,设直线经过(x1,y1),(x2,y2),x1、y1、x2、y2都是整数,y﹣y1=(x﹣x1),设:p=y1﹣y2,q=x1﹣x2,则直线y=(x﹣x1)+y1,当x﹣x1=nq,即x=nq+x1时,y=np+y1为整数,n=1、2、3.....所以直线经过无数个点.必要性:∵直线经过无数个整点,∴直线必经过两个整点.故选:C.11. 22.5°=度分.【考点】度分秒的换算.【答案】见试题解答内容【分析】进行度、分、秒的转化运算,注意以60为进制.【解答】解:22.5°=22°+(0.5×60)′=22°30′.故答案为:22、30.12.【答案】 145【考点】余角、补角及其性质【解析】【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.【分析】和为180º的两个角叫做互为补角,根据定义即可得出答案。

平面图形的认识(一)单元测试卷附答案

平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.3.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.4.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.5.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.6.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补(1)试判断直线AB与直线CD的位置关系,并说明理由(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)【答案】(1)解:如图,∵∠1和∠2互补,∠2和∠3互补,∴∠1=∠3∴AB∥CD(2)解:如图,由(1)得AB∥CD,∴∠BEF+∠EFD=180°又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF∵GH⊥EG,∴PF∥GH.(3)解:∠HPQ的大小不发生变化,理由如下:∵EG⊥HG,∴∠KGP=90°∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3∵∠3=2∠6,∴∠EPK=90°+2∠6∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠6∴∠HPQ=∠QPK-∠6=45°∴∠HPQ的大小不发生变化,一直是45°【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。

七年级上册平面图形的认识(一)单元综合测试(Word版 含答案)

七年级上册平面图形的认识(一)单元综合测试(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.4.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.5.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.6.如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.【答案】(1)证明:∵BE平分∠ABC,∴∠ABE= ∠ABC.又∵∠ABC=2∠E,即∠E= ∠ABC,∴∠E=∠ABE.∴AB∥EF(2)解:结论:AF⊥BE.理由:∵∠ADE+∠ADF=180°,∠ADE+∠BCF=180°,∴∠ADF=∠BCF,∴AD∥BC;∴∠DAB+∠CBA=180°,∵∠OAB= DAB,∠OBA= ∠CBA,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∴AF⊥BE【解析】【分析】(1)由BE平分∠ABC,得∠ABE=∠ABC,结合∠ABC=2∠E,得∠E=∠ABC,等量代换得∠E=∠ABE,则内错角相等两直线平行,AB平行EF;(2)由同角的补角相等得∠ADF=∠BCF,则同位角相等两直线平行,AD∥BC,由于∠DAB和∠CBA是同旁内角,得∠DAB+∠CBA=180°,由于∠OAB和∠OBA分别是∠DAB和∠CBA的一半,则∠OAB和∠OBA之和为90°,即AF⊥BE。

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷一、选择题1.如图所示,下列说法中正确的是( )A.∠ADE就是∠D B.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE是不同的两个角2.如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线3.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是( )A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.如图,遵义的红军烈士陵园集中了建国后在遵义各处找到的红军遗骨,故又称红军山,陵园正面是在纪念遵义会议五十周年时兴建的一座别具特色的纪念碑.从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .同一平面内垂直于同一条直线的两直线平行5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .①②④D .①③④6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若,123180∠+∠+∠= 则、、互为补角.其中正确的说法有( )1∠2∠3∠A .4个B .3个C .2个D .1个7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC128.点P 为直线外一点,点A ,B ,C 在直线l 上,若PA=4cm ,PB=5cm ,PC=6cm ,则点P 到直线l 的距离是( )A. 4cmB. 5cmC. 不大于4cm D. 6cm 9.如果线段AB=5cm ,BC=4cm ,且A ,B ,C 在同一条直线上,那么A 、C 两点的距离是( ) A. 1cm B. 9cm C. 1cm 或9cmD. 以上答案都不正确10.同一平面内,三条不同直线的交点个数可能是( )个.A. 1或3B. 0、1或3C. 0、1或2 D. 0、1、2或3二、填空题11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_____.12将30°15′36″换算成度:30°15′36″= °.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.15如图,点A位于点O的 方向上.16.从12点整开始到1点,经过____分钟,钟表上时针和分针的夹角恰好为99°.三、解答题17.如图,已知同一平面内的四个点A、B、C、D,根据要求用直尺画图.(1)画线段AB,∠ADC;(2)找一点P,使P点既在直线AD上,又在直线BC上;(3)找一点Q,使Q到A、B、C、D四个点的距离和最短.18线段AB依次被分为2:3:4三部分,已知第一部分和第三部分中点的距离是5.4 cm,求线段AB的长.19.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.20已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)21.如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.22.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.24.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=②如图1,若∠AOC=α,则∠DOE=(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE 的度数,(用含α的代数式表示)答案一、选择题1.B2.解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.3.解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.4.解:从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是:两点之间,线段最短.故选:B.5.A 6.D 7.C8. C【考点】点到直线的距离解:∵4<5<6,∴根据从直线外一点到这条直线上所有点连线中,垂线段最短,可知点P到直线l的距离是4cm或比4cm小的数,即不大于4cm,故选C.【分析】根据垂线段最短得出点P到直线l的距离是4cm或比4cm小的数,即可得出选项9. C【考点】两点间的距离解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.10. D【考点】点到直线的距离解:如图,三条直线的交点个数可能是0或1或2或3.故选D.【分析】根据两直线平行和相交的定义作出图形即可得解.二、填空题11.两点之间线段最短12将30°15′36″换算成度:30°15′36″= °.【考点】度分秒的换算.见试题解答内容【分析】先把36″除以60化为0.6′,再加上15′为15.6′,再除以60化为度,与30合并在一起即可.解:36″=36÷60=0.6′;30°15′36″=30+15.6÷60=30.26°.故30.26.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.【考点】角平分线的定义;垂线.见试题解答内容【分析】根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.解:∵AB⊥CD,∴∠ABD=90°,∵EF平分∠ABD,∴∠DBE=45°,∴∠CBF=45°.故45.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.【考点】角平分线的定义.见试题解答内容【分析】根据角平分线的定义求解.解:∵∠AOC=25°,OC平分∠AOB,∴∠AOB=2∠AOC=50°,故答案为50°.15如图,点A位于点O的 方向上.【考点】方向角.见试题解答内容【分析】根据方位角的概念直接解答即可.解:点A 位于点O 的北偏西30°方向上.16.18或52211三、解答题17.解:(1)如图所示,线段AB 、∠ADC 即为所求;(2)直线AD 与直线BC 交点P 即为所求;(3)如图所示,点Q即为所求.18.73°.19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=1220.解:AB=8.1 cm21.解:(1)若∠COE =40°,∵∠COD =90°,∴∠EOD =90°﹣40°=50°,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =100°,∴∠BOD =180°﹣100°=80°;(2)∵∠COE =α,∴∠EOD =90﹣α,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =2(90﹣α)=180﹣2α,∴∠BOD =180°﹣(180﹣2α)=2α;(3)如图2,∠BOD +2∠COE =360°,理由是:设∠BOD =β,则∠AOD =180°﹣β,∵OE 平分∠AOD ,∴∠EOD = ∠AOD = =90°﹣β,121802β︒-12∵∠COD =90°,∴∠COE =90°+(90°﹣β)=180°﹣β,1212即∠BOD +2∠COE =360°.故(1)80°;(2)2α;(3)∠BOD +2∠COE =360°,理由见详解.22.解:(1)如图中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°,故答案为120°;(2)如图中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE =165°,当D ′E ′∥AB 时,∠E ′CB =∠ECM =15°,∴当ED ∥AB 时,∠BCE 的度数为165°或15°;(3)存在.如图,①CD ∥AB 时,∠BCE =30°,②DE ∥BC 时,∠BCE =45°,③CE ∥AB 时,∠BCE =120°,④DE ∥AB 时,∠BCE =165°,⑤当AC ∥DE 时,∠BCE =135°综上所述,当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺存在一组边互相平行,∠BCE 的值为30°或45°或120°或165°或135°.23.(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).111PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).故BD =2PC.212BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).122PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).故BD =2PC.224BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以(cm).PC t =因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以(cm).故BD =2PC.2BD t =因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.13AP AB =13BQ AP AB ==故.因为AB =12cm ,所以(cm).13PQ AB AP BQ AB =--=1112433PQ AB ==⨯=(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.故.13AP AB =13BQ AP AB ==1433AQ AB BQ AB AB AB =+=+=因为AB =12cm ,所以(cm).411233PQ AQ AP AB AB AB =-=-==综上所述,PQ 的长为4cm 或12cm.24.解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=40°,∴∠BOD=50°,∴∠BOC=∠COD+∠BOD=90°+50°=140°,∵OE 平分∠BOC,∴∠BOE=∠BOC=70°,∴∠DOE=∠BOE-∠BOD=20°,12②如图1,由(1)知:∠AOC+∠BOD=90°,∵∠AOC=α,∴∠BOD=90°﹣α,∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,∵OE 平分∠BOC,∴∠BOE=∠BOC=90°﹣α,1212∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,1212(2)(1)中的结论还成立,理由是:如图2,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;1212(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.1212。

七年级上册数学 平面图形的认识(一)单元试卷(word版含答案)

七年级上册数学 平面图形的认识(一)单元试卷(word版含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.4.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.5.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。

平面图形的认识(一)单元测试卷附答案

平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

苏科版初一数学上册《平面图形的认识(一)》单元测试卷及答案解析

苏科版初一数学上册《平面图形的认识(一)》单元测试卷及答案解析

苏科版初一数学上册《平面图形的认识(一)》单元测试卷及答案解析一、选择题1、钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为A.B.C.D.2、如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.120°C.90°D.60°3、以下四个说法中:①在同一直线上的4点A、B、C、D只能表示出5条不同的线段;②经过两点有一条直线,并且只有一条直线;③两条直线相交,有且只有一个交点;④在同一平面内,两条直线的位置关系只有相交和平行.正确的是()A. ②③B. ①④C. ②③④D. ①②③4、下列语句错误的是( )A.锐角的补角一定是钝角B.一个锐角和一个钝角一定互补C.互补的两角不能都是钝角D.互余且相等的两角都是45°5、下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°6、下列说法中正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个7、如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOC C.图中共有三个角:∠AOB,∠AOC,∠BOC D.∠AOC 也可用∠O来表示8、∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角B.锐角C.钝角D.以上三种都有可能9、如果A、B、C三点在同一直线上,且线段AB="6" cm,BC="4" cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定10、如果∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,则∠2与∠4的数量关系是()A.∠2=∠4 B.∠2<∠4 C.∠2>∠4 D.无法判断二、填空题11、从3:15到3:30,钟表上的分针转过的角度是__度.12、从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票__种.13、如图,以图中的A、B、C、D为端点的线段共有___条.14、已知一个角的补角是130º,则这个角的度数是________15、如果∠3+∠4=180°,∠5+∠3=180°,则∠4与∠5的关系是_______,理由是___________________________.16、一个角为n°(n<90),则它的余角为________,补角为__________.17、已知如图:直线AB和CD相交于点O,若AOD=5AOC,则BOC=___________。

数学七年级上册 平面图形的认识(一)单元测试卷附答案

数学七年级上册 平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.3.如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=25°,∠ACB=?;若∠ACB=150°,则∠DCE=?;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1)【解答】∵∠ECB=90°,∠DCE=25°∴∠DCB=90°﹣25°=65°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°∴∠DCB=150°﹣90°=60°∵∠ECB=90°∴∠DCE=90°﹣60°=30°.故答案为:155°,30°(2)【解答】猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°(3)【解答】∠DAB+∠CAE=120°理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.【解析】【分析】(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.4.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN分别平分∠ACP和∠PCD,分别交射线AB于点M,N.(1)求∠MCN的度数.(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)解:∵A B∥CD,∴∠ACD=180°﹣∠A=140°,又∵CM,CN分别平分∠ACP和∠PCD,∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,故答案为:70°.(2)解:∵AB∥CD,∴∠AMC=∠MCD,又∵∠AMC=∠ACN,∴∠MCD=∠ACN,∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,∴∠ACM=∠MCP=∠NCP=∠NCD,∴∠ACM= ∠ACD=35°,故答案为:35°.(3)解:不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.5.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.6.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.7.已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?【答案】(1)解:如图1,过C作CP∥EF.∵EF∥MN,∴EF∥MN∥CP.∵EF∥MN,∴∠NBD=180°-∠FDB=180°-120°=60°.∵BD平分∠CBN,∴∠CBD=∠NBD=60°,∴∠MBC=180°-∠CBD-∠NBD=180°-60°-60°=60°.∵CP∥MN,∴∠PCB=∠MBC=60°,∴∠ACP=∠ACB-∠BCP=90°-60°=30°.∵EF∥CP,∴∠EAC=∠ACP=30°(2)解:∠GHB为定值50°.理由如下:∵∠CBN是△CBG的外角,∴∠BCG=∠CBN﹣∠AGB.∵GH平分∠AGB,BD平分∠CBN,∴∠HGB∠AGB,∠DBN∠CBN.∵∠DBN是△HGB的外角,∴∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN ﹣∠AGB)∠BCG(180°-80°)=50°,故∠GHB是定值50°.【解析】【分析】(1)过C作CP∥EF,进而得到EF∥MN∥CP,根据平行线的性质,求出∠DBN的度数,进而求出∠MBC、∠EAC的度数;(2)根据∠CBN是△CBG的外角,得到∠BCG=∠CBN﹣∠AGB.根据角平分线的定义得到∠HGB∠AGB,∠DBN∠CBN.由三角形外角的性质得到∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN﹣∠AGB)∠BCG,即可得出结论.8.如图(1),AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图(2),已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF 之间的关系.(3)如图(3),已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系.(直接写结论) 【答案】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF(2)解:如图2由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ∴(3)解:如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴(4)解:由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴【解析】【分析】(1)如图1,过点P作PG∥AB,根据两直线平行,内错角相等,可得∠AEP=∠1,∠CFP=∠2,从而可得∠AEP+∠CFP=∠EPF.(2)由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,利用角平分线的定义,可得∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP),利用平角定义,可得∠BEP+∠DFP=360°-(∠AEP+∠CFP)=360°-∠EPF,从而可得∠EPF+2∠EQF=360°.(3)同(2)方法,即可得出∠P+3∠Q=360°.(4)同(2)方法,即可得出结论.9.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【答案】(1)解:由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的处(2)解:如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ= AB,∴(3)解:② 的值不变.理由:如图,当点C停止运动时,有CD= AB,∴CM= AB,∴PM=CM-CP= AB-5,∵PD= AB-10,∴PN= AB-10)= AB-5,∴MN=PN-PM= AB,当点C停止运动,D点继续运动时,MN的值不变,所以【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM= AB.10.如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD 分别平分∠ABP和∠PBN.(1)求∠ABN的度数(2)当点P运动时,∠CBD的度数是否随之发生变化?若不变化,请求出它的度数。

平面图形的认识(一)单元测试题(含答案)

平面图形的认识(一)单元测试题(含答案)

平⾯图形的认识(⼀)单元测试题(含答案)⼀、选择题(每⼩题3分,共30分)1.如图,已知点P 是直线a 外的⼀点,点A 、B 、C 在直线a 上,且PB ⊥a ,垂⾜是B ,P A ⊥PC ,则下列错误的语句是()A.线段PB 的长是点P 到直线a 的距离B.P A 、PB 、PC 三条线段中,PB 最短C.线段AC 的长是点A 到直线PC 的距离D.线段PC 的长是点C 到直线P A 的距离2.如图,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是() A.两点确定⼀条直线B.在同⼀平⾯内,经过⼀点有且只有⼀条直线与已知直线垂直C.在同⼀平⾯内,过⼀点只能作⼀条垂线D.垂线段最短3.⽤⼀副学⽣⽤的三⾓板的内⾓(其中⼀个三⾓板的内⾓是45°,45°,90°;另⼀个是30°,60°,90°)可以画出⼤于0°且⼩于等于150°的不同⾓度的⾓共有()种. A.8B.9C.10D.114.如果∠α与∠β是邻补⾓,且∠α>∠β,那么∠β的余⾓是()A.21(∠α+∠β) B.21∠α C.21(∠α-∠β) D.不能确定 5.已知α、β都是钝⾓,甲、⼄、丙、丁四⼈计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有⼀⼈计算正确,他是() A.甲B.⼄C.丙D.丁6.下列语句:①⼀条直线有且只有⼀条垂线;②不相等的两个⾓⼀定不是对顶⾓;③两条不相交的直线叫做平⾏线;④若两个⾓的⼀对边在同⼀直线上,另⼀对边互相平⾏,则这两个⾓相等;⑤不在同⼀直线上的四个点可画6条直线;⑥如果两个⾓是邻补⾓,那么这两个⾓的平分线组成的图形是直⾓. 其中错误的有() A.2个B.3个C.4个D.5个7.如图,AC ⊥BC ,AD ⊥CD ,AB =a ,CD =b ,则AC 的取值范围是() A.⼤于bB.⼩于aC.⼤于b 且⼩于aD.⽆法确定8.如图,B 是线段AD 的中点,C 是BD 上⼀点,则下列结论中错误的是()、 A.BC =AB -CDB.BC =21错误!未找到引⽤源。

第六章《平面图形的认识(一)》综合测试卷(含解析)

第六章《平面图形的认识(一)》综合测试卷(含解析)

第六章《平面图形的认识(一)》综合测试卷一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm 4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.49.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.①若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;②若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】C【解析】根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误,C是由两条直线相交构成的图形,正确,故选C.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°【解答】D【解析】∵∠AOB=60°,射线OC平分∠AOB,∴∠AOC=∠BOC AOB=30°,又∠COP=15°①当OP在∠BOC内,∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,②当OP在∠AOC内,∠BOP=∠BOC+∠COP=30°+15°=45°,综上所述:∠BOP=15°或45°.故选D.3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm【解答】C【解析】如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∵M、N分别为AB、BC的中点,∴BM=6cm,BN=5cm,①如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,②如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选C.4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个【解答】A【解析】①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选A.5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④【解答】D【解析】①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④90°+45°=135°,可以用一副三角板画出来;⑤145°不可以用一副三角板画出来;故选D.6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°【解答】D【解析】如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选D.7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.【解答】B【解析】∵AB=9,∴AC AB=3,∵M是AB的中点,∴AM AB∴MC=AM﹣AC3故选B.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.4【解答】C【解析】∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD∠ACD,∠DCH=∠HCB∠DCB,∠BCG=∠ECG∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,故④正确.故选C.9.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间【解答】A【解析】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故选A.10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【解答】C【解析】①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选C.11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个【解答】B【解析】①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故①正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE 和∠ADC互补,故②正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=90°+90°+90°+40°=310°,故③错误;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④错误.故选B.12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】A【解析】①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条【解答】D【解析】如图,共有5条.故选D.二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.【解答】25°或45°【解析】(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC,又∵∠AOB=70°,∴∠AOC35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.【解答】12cm【解析】∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为12cm.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.【解答】45°【解析】由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF∠ABC90°=45°,故答案为45°.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.【解答】(1)北偏东70°;(2)70°【解析】(1)由图知:∠AOB=15°+40°=55°,∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.故答案为北偏东70°;(2)∵∠BOC=∠AOB+∠AOC=55°×2=110°,∴∠COD=180°﹣∠BOC=180°﹣110°=70°故答案为70°18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.【解答】45【解析】两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为45.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.【解答】45°【解析】∵OM是∠DOC平分线,ON是∠COB的平分线,∴∠COM=∠DOM∠COD,∠BON=∠CON∠BOC,∵∠BOC+∠COD=∠BOD=90°,∴∠COM+∠CON∠BOD=45°=∠MON,故答案为45°20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.【解答】7.5【解析】如图,∵点C在线段AB上,AC BC,即BC=3AC,∴AC+BC=AB=12即4AC=12AC=3∴BC=9∵M为BC的中点,∴CM BC=4.5∴AM=AC+CM=7.5cm.故答案为7.5.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为【解答】18°52′或116°10′【解析】如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.【解答】110【解析】如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,故答案为110.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.【解答】110°或70°【解析】分两种情况进行讨论:①如图1所示,若OM在AC上方,∵OD平分∠BOC,∴∠COD=∠BOD,∵4∠BOE+∠BOC=180°,∠AOB+∠BOC=180°,∴∠AOB=4∠BOE,即∠AOE=3∠BOE,设∠BOE=α,则∠AOE=3α,∠BOD=70°﹣α=∠COD,∵∠AOC为平角,∴∠AOE+∠DOE+∠COD=180°,即3α+70°+70°﹣α=180°,解得α=20°,∴∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠BOE+∠MOB=20°+90°=110°;②如图2所示,若OM在AC下方,同理可得,∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠MOB﹣∠BOE=90°﹣20°=70°;综上所述,∠MOE的度数为110°或70°.故答案为110°或70°.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;(2)若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).【解答】(1)120°;(2)(160﹣x)【解析】(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°,故答案为120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°,故答案为(160﹣x).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【解答】150【解析】假设车站距离1号楼x米,则总距离S=|x|+2|x﹣50|+3|x﹣100|+4|x﹣150|+5|x﹣200|,①当0≤x≤50时,S=2000﹣13x,最小值为1350;②当50≤x≤100时,S=1800﹣9x,最小值为900;②当100≤x≤150时,S=1200﹣3x,最小值为750(此时x=150);当150≤x≤200时,S=5x,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.【解答】(1)33;(2)72【解析】(1)∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB=38°,∴∠COE=180°﹣∠DOE=142°,∵OF平分∠COE,∴∠COF=∠FOE∠COE=71°,∴∠BOF=∠FOE﹣∠EOB=33°.故答案为33°.(2))∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB,∵OF平分∠COE,∴∠COF=∠FOE∠COE,∵∠AOC=180°﹣∠COF﹣∠BOF=180°﹣(∠EOB+∠BOF)﹣∠BOF=108°﹣∠EOB=108°∠AOC∴∠AOC=72°.故答案为72°.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.【解答】(1)20°;(2);(3)见解析【解析】(1)∵∠BOD=40°,∠AOD+∠BOD=180°,∴∠AOD=180°﹣40°=140°,∵OE平分∠AOD,∴∠DOE∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣70°=20°;(2)∠COE.∵∠BOD=a,∠AOD+∠BOD=180°,∴∠AOD=180°﹣a,∵OE平分∠AOD,∴∠DOE∠AOD,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣();(3)∠AOC=360°﹣2∠DOF.理由:∵OF平分∠BOC,∴∠BOC=2∠COF,∵∠COD=90°,∴∠COF=∠DOF﹣90°,∵∠AOC+∠BOC=∠AOC+2∠COF=180°,∴∠AOC=180°﹣2∠COF,∴∠AOC=180°﹣2(∠DOF﹣90°)=360°﹣2∠DOF.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.【解答】(1)78°;(2);(3)t或【解析】(1)∵∠AOD=156°,∠BOD=96°,∴∠AOB=156°﹣96°=60°,∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=30°,∠BON=48°,∴∠MON=∠BOM+∠BON=78°;(2)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM∠AOB,∠BON∠BOD,∵∠MON=∠BOM+∠BON(∠AOB+∠BOD)∠AOD,∴;(3)∵∠BOC在∠AOD内绕点O以2°/秒的速度逆时针旋转t秒时,∴∠AOC=(52+2t)°,∠BOD(126﹣2t)°,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM═(26+t)°,∠DON=(63﹣t)°,当∠AOM=2∠DON时,26+t=2(63﹣t),则t;当∠DON=2∠AOM时,63﹣t=2(26+t),则t.故当t或时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.【解答】(1)30;(2)50;(3)见解析【解析】(1)∵∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∴∠AOC=∠BOD,∵∠AOD=120°,∠AOB=75°,∴∠AOC=∠BOD=120°﹣75°=45°,∴∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为50;(3)不变;∵∠COD=∠AOB=75°,∠AOC=∠BOD,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.【解答】(1)45°;(2)∠ACE=∠BCF;(3)45°【解析】(1)∵CF平分∠ACB,∴∠BCF=∠ACF∠ACB90°=45°,∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;(2)∠ACE=∠BCF,∵∠BCF+∠ACF=90°=∠ACE+ACF,∴∠ACE=∠BCF;(3)∠BCF﹣∠ACD=45°,∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,即:∠BCF﹣∠ACD=45°.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.【解答】(1)55°;(2)∠BOE=2∠COF;(3)20°【解析】(1)∵∠BOE=110°,∴∠AOE=180°﹣∠BOE=70°∵OF平分∠AOE∴∠EOF AOE=35°∵∠COE=90°∴∠COF=∠COE﹣∠EOF=55°答:∠COF的度数为55°;(2)∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF,理由如下:∵OF平分∠AOE∴∠AOE=2∠AOF∴∠BOE=180°﹣∠AOE=180°﹣2∠AOF=180°﹣2(∠AOC+∠COF)=180°﹣2(90°﹣∠BOE+∠COF)=2∠BOE﹣2∠COF∴∠BOE=2∠COF;答:∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF;(3)∵OF平分∠AOE∴∠FOE=∠AOF∴4∠COF﹣3∠BOE=20°4(∠COE+∠EOF)﹣3(180°﹣∠EOA)=20°4(90°+∠EOF)﹣3(180°﹣2∠EOF)=20°∴∠EOF=20°答:∠EOF的度数为20°.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【解答】(1)①相等,②∠BOD+∠COE=180°;(2)①相等,②依然成立【解析】(1)①∠COD=∠BOE,∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即:∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.。

七年级上册数学 平面图形的认识(一)单元测试卷附答案

七年级上册数学 平面图形的认识(一)单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。

人教版七年级上册数学 平面图形的认识(一)单元综合测试(Word版 含答案)

人教版七年级上册数学 平面图形的认识(一)单元综合测试(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.3.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.4.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.5.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.6.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.7.如图(1),AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图(2),已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF 之间的关系.(3)如图(3),已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ= ∠BEP,∠DFQ= ∠DFP,则∠P与∠Q有什么关系.(直接写结论) 【答案】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF(2)解:如图2由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ∴(3)解:如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴(4)解:由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∴∠Q=∠BEQ+∠DFQ∴【解析】【分析】(1)如图1,过点P作PG∥AB,根据两直线平行,内错角相等,可得∠AEP=∠1,∠CFP=∠2,从而可得∠AEP+∠CFP=∠EPF.(2)由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,利用角平分线的定义,可得∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP),利用平角定义,可得∠BEP+∠DFP=360°-(∠AEP+∠CFP)=360°-∠EPF,从而可得∠EPF+2∠EQF=360°.(3)同(2)方法,即可得出∠P+3∠Q=360°.(4)同(2)方法,即可得出结论.8.问题情境:如图1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为________度。

七年级上册数学 平面图形的认识(一)单元综合测试(Word版 含答案)

七年级上册数学 平面图形的认识(一)单元综合测试(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.【答案】(1)解:∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4)(2)解:如图(1),连接OD,∴S△ACD=S△ACO+S△DCO﹣S△AOD=﹣=16(3)解:∠M=45°,理由是:如图(2),连接AC,∵AB∥CD,∴∠DCB=∠ABO,∵∠AOB=90°,∴∠OAB+∠ABO=90°,∴∠OAB+∠DCB=90°,∵∠OAB与∠OCD的角平分线相交于点M,∴∠MCB=,∠OAM=,∴∠MCB+∠OAM==45°,△ACO中,∠AOC=∠ACO+∠OAC=90°,△ACM中,∠M+∠ACM+∠CAM=180°,∴∠M+∠MCB+∠ACO+∠OAC+∠OAM=180°,∴∠M=180°﹣90°﹣45°=45°.【解析】【分析】(1)利用B的坐标,可得OB=3,从而求出OC=5,利用平移的性质了求出点D的坐标.(2)如图(1),连接OD,由S△ACD=S△ACO+S△DCO+S△AOD,利用三角形的面积公式计算即得.(3)连接AC,利用平行线的性质及直角三角形两锐角互余可得∠OAB+∠DCB=90°,利用角平分线的定义可得∠MCB+∠OAM==45°,根据三角形的内角和等于180°,即可求出∠M的度数.3.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.4.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.5.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.【答案】(1)解:如图1,∵点B对应数是90,∴OB=90.又∵ OA+50=OB,即 OA+50=90,∴OA=120.∴点A所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,PM=|2t﹣(90﹣8t)|=|10t﹣90|,又∵MN=PM,∴|﹣120+5t|=|10t﹣90|,∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M、N之间的距离等于点P、M之间的距离(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,RO=45+4t,PN=(90+8t)﹣(﹣120﹣7t)=210+15t,则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.6.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.7.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.8.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,(1)分别计算:当∠A分别为700、800时,求∠A1的度数.(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确,请写出正确结论,并求出其值.【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线∴∠A1BC= ∠ABC,∠A1CD= ∠ACD由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:∠A1= (∠ACD-∠ABC)= ∠A;当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°(2)∠A=2∠A1(3)∠A5= ∠A(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),化简得:∠A1+∠Q=180°故①的结论是正确,且这个定值为180°【解析】【解答】解:(2)由(1)可知∠A1== ∠A即∠A=2∠A1(3)同(1)可求得:∠A2= ∠A1= ∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A;当n=5时,∠A5= ∠A= ∠A【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.9.如图1,△ABC中,D、E、F三点分别在AB,AC,BC三边上,过点D的直线与线段EF 的交点为点H,∠1+∠2=180°,∠3=∠C.(1)求证:DE∥BC;(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,探究:要使∠1=∠BFH成立,请说明点F 应该满足的位置条件,在图2中画出符合条件的图形并说明理由.(3)在(2)的条件下,若∠C=α,直接写出∠BFH的大小________.【答案】(1)证明:如图1.∵∠1是△DEH的外角,∴∠1=∠3+∠4.又∵∠1+∠2=180°,∴∠3+∠4+∠2=180°.∵∠3=∠C,∴∠C+∠4+∠2=180°,即∠DEC+∠C=180°,∴DE∥BC(2)解:如图2.∵∠1是△DEH的外角,∴∠1=∠3+∠DEF,①∵∠BFE是△CEF的外角,∴∠BFH=∠2+∠C.当∠1=∠BFH时,∠1=∠2+∠C,②由①②得:∠3+∠DEF=∠2+∠C.∵∠3=∠C,∴∠DEF=∠2,即EF平分∠DEC,∴点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)90°+【解析】【解答】(3)∵EF平分∠DEC,∴∠DEF=∠2.∵DE∥BC,∴∠DEC+∠C=180°,∴2∠2+α=180°,∴∠2= = .∵∠BFH=∠2+∠C= = .【分析】(1)欲证明DE∥BC,只需推知∠DEC+∠C=180°即可,因此先根据外角性质,将∠1转化为∠3+∠4,再根据∠1与∠2互补,得到∠3+∠4+∠2=180°,最后将∠3=∠C代入即可得出结论;(2)点F运动到∠DEC的角平分线与边BC的交点位置时,∠1=∠BFH成立.(3)根据平行线的性质和角平分线的定义,得出∠2的度数,再由三角形外角的性质即可得出结论.10.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?【答案】(1)30(2)解:∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线(3)解:设∠COD=x,则∠AOE=5x.∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,∴5x+90°+x+60°=180°,解得x=5°,即∠COD=5°.∴∠BOD=∠COD+∠BOC=5°+60°=65°∴∠BOD的度数为65°【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;【分析】(1)根据角的和差,由∠COE=∠BOE-∠COB即可算出答案;(2)根据角平分线的定义得出∠COE=∠AOE=∠COA,根据角的和差及平角的定义得出∠AOE+∠DOB=90°,∠COE+∠COD=90°,根据等角的余角相等得出∠COD=∠DOB,故 OD所在射线是∠BOC的平分线;(3)设∠COD=x,则∠AOE=5x ,根据平角的定义得出5x+90°+x+60°=180°,求解算出x的值,从而求出∠COD的度数,进而根据∠BOD=∠COD+∠BOC 即可算出答案。

第六章 平面图形的认识(一) 检测卷(含答案)

第六章 平面图形的认识(一) 检测卷(含答案)

第六章平面图形的认识(一) 检测卷(总分100分时间90分钟)一、选择题(每小题3分,共30分)1.图中射线AB、线段MN能和直线PQ相交的是 ( )2.如图,若 AB=DE,则 ( ) A.AD=EB B.AC=ECC.BC=DC D.AB=BC3.已知∠α=32°,求∠α的补角为 ( )A.58°B.68°C.148°D.168°4.借助一副三角尺,你能画出下面哪个度数的角?( )A.65°B.75°C.85°AHA12GAGGAGAGGAFFFFAFAFD.95°5.如图,直线AB、CD交于O点,OE平分∠AOD,OF⊥OE 于O点,若∠BOC=80°,则∠DOF等于 ( )A.100°B.120°C.130°D.115°6.下列语句中,正确的是 ( )A.射线AB与射线BA表示同一条射线B.经过一点有且只有一条直线与已知直线平行C.经过一点有且只有一条直线与已知直线垂直.D.直线l1∥l2,l2//l3,则l1∥l3,理由是等量代换7.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余两角的对数分别为 ( ) A.3;3 B.4;4C.5;4 D.7;5AHA12GAGGAGAGGAFFFFAFAF8.点P是直线l外一点,A,B,C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是 ( )A.2cm B.小于2cm C.不大于2cm D.4cm9.已知AB=8cm,BC=3cm,则线段AC的长是 ( )A.5 cm B.11cm C.5 cm或11 cm D.不确定10.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于( )AHA12GAGGAGAGGAFFFFAFAFA.120°B.120°或60°C.30°D.30°或90°二、填空题(每小题3分,共30分)11.如图,用文字或字母符号表达它们的关系_______.12.如图,以OD为一边的角有_______,它们之间的大小关系用“>”连接为_______.13.如图,C是线段AB上的一点,M是线段AC的中点,若BM=5cm,BC=2cm,则AB的长是_______.14.计算:71°28'36"-35°31'42"=_______.15.一次测验从开始到结束,手表的时针转了50°的角,这次测验的时间是_______.16.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOD=104°,则∠BOM=_______.AHA12GAGGAGAGGAFFFFAFAF17.如图,OA的方向是北偏东15°,OB的方向是北偏西40°.(1)若∠AOC=∠AOB,则OC的方向是_______,(2)OD是OB的反向延长线,OD的方向是_______.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内不同的n个点最多可确定15条直线,则n的值为_______.19.如图是幼儿园跷跷板的图形,其横板AD通过点O,它可以绕点O上下转动,若∠OCA=90°,∠CAO=20°,且∠CAO+∠AOC=90°,则小朋友玩该跷跷板时,上下最多可转动_______度的角.AHA12GAGGAGAGGAFFFFAFAF20.把一张长方形纸条按图6-10的方式折叠后,量得∠AOB'=110°,则∠B'OC=_______.三、解答题(本题共6小题,共40分)21.(4分)如图,在方格纸上有一条线段AB和一点C.AHA12GAGGAGAGGAFFFFAFAF(1)过点C画出与AB平行的直线;(2)过点C画出与AB垂直的直线.22.(6分)如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到_______的距离,_______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是_______(用“<”号连接),其根据是___________.23.(5分)一个角的补角比它的余角的4倍还多15°,求AHA12GAGGAGAGGAFFFFAFAF这个角的度数.24.(5分)如图,AOC为一直线,OD是∠AOB的平分线,∠BOE=12∠EOC,∠DOE=72°.求∠EOC的度数.AHA12GAGGAGAGGAFFFFAFAF25.(6分)已知A、B、C三点在同一条直线上,AB=100cm,BC=35AB,E是AC的中点,求BE的长.26.(8分)如图,已知∠AOB,画射线OC⊥OA,射线OD⊥OB.(1)画出符合要求的图形;(2)如果∠AOB=30°,其他条件不变,则∠COD=_______°;(3)如果(2)中∠AOB=α°,其他条件不变,则∠COD=_______°;(4)结合(1)中画图和(2)(3)的结果,你从中能看出什么规律?(用一句话来归纳)AHA12GAGGAGAGGAFFFFAFAF27.(8分)如图①,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=_______cm;(2)若AC=4cm,求DE的长;(3)试说明不论AC取何值(不超过12cm),DE的长不变;(4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.AHA12GAGGAGAGGAFFFFAFAF参考答案1—10 DACBC CCCDB11.直线AB和直线BC相交于点B12.∠DOA,∠DOB,∠DOC;∠DOA>∠DOB>∠DOC13.8 cm14.35°56'54"15.100分钟16.142°17.(1)北偏东70°;(2)南偏东40°18.六19.40°20.35°21.如图所示,(1)直线CD即为所画平行线;(2)CB即为所画垂线.AHA12GAGGAGAGGAFFFFAFAF22.(1)(2)如图答.(3)OA,CP的长度,PH<PC<OC,垂线段最短.23.65°24.72°.25.80cm或20cm26.(1)有4种情况,如图所示:(2)30°或150°;(3)a°或(180°-a°);(4)如果一个角AHA12GAGGAGAGGAFFFFAFAF的两边分别与另一个角的两边互相垂直,那么这两个角相等或互补.AHA12GAGGAGAGGAFFFFAFAF27.(1)6 (2)6cm如有侵权请联系告知删除,感谢你们的配合!fw34776 87D8 蟘~37986 9462 鑢37008 9090 邐32459 7ECB 绋32012 7D0C 紌e28078 6DAE 涮;K33352 8248 艈sCAHA12GAGGAGAGGAFFFFAFAF。

数学七年级上册 平面图形的认识(一)单元测试卷(解析版)

数学七年级上册 平面图形的认识(一)单元测试卷(解析版)

一、初一数学几何模型部分解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.3.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.4.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.(1)求证:;(2)如图2,平分交于点F,平分交于点G,求的度数;(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,∴∴∴∴∴(2)解:作,,设,,由(1)知:,,,∴,∴,同理:,∴(3)【解析】【解答】解:(3)结论:或,I.∠NCD在∠BCD内部时,过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=3y.∵a∥b,∴∴,,,∴,,∴,∴∴II. 在外部时,如图3(2):过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=y.∵a∥b,∴IG∥a∥∴,,,∴,,∴,∴∴.故答案为:.【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出即可解答;(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.5.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.(1)探究:求∠C的度数.(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+90°,∴∠ABD=∠BAC+45°,又∵∠ABD=∠BAC+∠C,∴∠C=45°(2)解:不变.理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,∴∠ABE=∠OAB+90°,∵BD是∠ABE的平分线,AC平分∠OAB,∴∠ABE=2∠ABD,∠OAB=2∠BAC,∴2∠ABD=2∠BAC+∠AOB,∴∠ABD=∠BAC+ ∠AOB,又∵∠ABD=∠BAC+∠C,∴∠C=∠AOB=45°(3)解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°﹣(∠A+∠B+∠E)=50°,∴∠P=∠FCD﹣∠CDP=(∠DCB﹣∠CDG)=∠G= ×50°=25°【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.6.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.7.已知:如图所示,直线,另一直线交于,交于,且,点为直线上一动点,过点的直线交于点,且 .(1)如图1,当点在点右边且点在点左边时,的平分线与的平分线交于点,求的度数;(2)如图2,当点在点右边且点在点右边时,的平分线与的平分线交于点,求的度数;(3)当点在点左边且点在点左边时,的平分线与的平分线所在直线交于点,请直接写出的度数,不说明理由.【答案】(1)解:过点作 .∵平分 .∴ .∴(两直线平行,内错角相等).同理可证..∴ .(2)解:过点作 .∵ .∴ .∵平分 .∴ .∴(两直线平行,同旁内角互补).∵平分 .∴(两直线平行,内错角相等).∴ .(3)解:过点作 .∵平分 .∴(两直线平行等,内错角相等).∴平分 ..∴ .∴(两直线平行,同旁内角互补)..【解析】【分析】(1)过点作,由角平分线定义可得,利用两直线平行内错角相等,可得,同理可得∠CPE=∠PCA= ∠DCA=25°,从而求出∠BPC的度数.(2)过点作 . 利用邻补角定义可得∠DBA=100°,由角平分线定义可得∠DBP= ∠DBA=50°,根据两直线平行,同旁内角互补可得∠BPE=130°.根据角平分线定义及两直线平行,内错角相等角可得∠PCA=∠CPE= ∠DCA=25°,从而求∠BPC的度数.(3)过点作 . 根据两直线平行,内错角相等角可得∠DBP=∠DPE=40°,根据邻补角可求出∠CPE的度数,由角平分线的定义可得∠PCA= ∠DCA=65°,根据两直线平行,同旁内角互补可求出∠CPE的度数,继而求出∠BPC的度数.8.如图(1)图中,∠ABC的两边和∠DEF的两边分别互相平行,既AB∥DE,BC∥EF,试说明∠ABC=∠DEF.(2)一个角的两边分别平行于另一个角的两边,除了图1中相等情形外,是否存在其他不相等情形,探究此情形下两个角的关系(画出图形,写出结论并说明理由).(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(画出图形,直接写出结论)(4)如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是什么关系?(画出图形,直接写出结论)【答案】(1)∵ AB∥DE,∴∠E=∠EOB,∵BC∥EF ,∴∠EOB=∠B,∴∠ABC=∠DEF;(2)如图,∵ AB∥DC,∴∠1=∠DMB,∵BE∥FD ,∴∠BMD+∠2=180°,∴∠2+∠1=180°;(3)此题分两种情况,如图①∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P+∠O=360°-∠PEO-∠PFO=180°;如图② ∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P=∠O;综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;(4)如图所示,①∵AB∥EH,∴∠ABC=∠BDE,∵BC⊥EG,∴∠CFE=90°,∴∠BDE+∠E=90°,∴∠E+∠ABC=90°;②∵BC⊥EG,∴∠CFE=90°,∵AB∥EH∴∠MBC=∠HDB,∵∠HDB=∠E+∠CFE=∠E +90°,∴∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。

七年级数学上册平面图形的认识(一)单元测试卷 (word版,含解析)

七年级数学上册平面图形的认识(一)单元测试卷 (word版,含解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,则





分别为

∴ ∵ ∴
的平分线所在直线
(3):1:2:2 【解析】【解答】解:(3)∵




∵ ∴ ∴


.ቤተ መጻሕፍቲ ባይዱ
故答案为:
.
【分析】(1)过点 C 作
点Q作
,则
,则
,再利用平行线的性质求解即可;(2)过
,再利用平行线的性质以及角平分线的性质得出
,再结合(1)的结论即可得出答案;(3)由(2)的结论可
的代数式表示) (4)若 OE 将∠ BOA 分成 1︰2 两部分,AF 平分∠ BAD , ∠ ABO= (30°< α <90°) ,求 ∠ OGA 的度数.(用含 的代数式表示) 【答案】 (1)21° (2)14° (3)解:∵ ∠ BOA=90°,∠ OBA=α, ∴ ∠ BAD=∠ BOA+∠ ABO=90°+α, ∵ ∠ BOA=90°,∠ GOA= ∠ BOA,∠ GAD= ∠ BAD ∴ ∠ GAD=30°+ α,∠ EOA=30°,
3.已知如图,∠ COD=90°,直线 AB 与 OC 交于点 B , 与 OD 交于点 A , 射线 OE 与射线 AF 交于点 G.
(1)若 OE 平分∠ BOA , AF 平分∠ BAD , ∠ OBA=42°,则∠ OGA=________; (2)若∠ GOA= ∠ BOA , ∠ GAD= ∠ BAD , ∠ OBA=42°,则∠ OGA=________; (3)将(2)中的“∠ OBA=42°”改为“∠ OBA= ”,其它条件不变,求∠ OGA 的度数.(用含
即可; ( 4 ) 讨 论 : 当 ∠ EOD : ∠ COE=1 : 2 时 , 利 用 ∠ BAD=∠ ABO+∠ BOA=α+90° , ∠ FAD=∠ EOD+∠ OGA 得到 2×30°+2∠ OGA=α+90°,
则∠ OGA= α+15°;当∠ EOD:∠ COE=2:1 时,则∠ EOD=60°,同理得∠ OGA= α-15°.
,理由如下:

等于多少度时
(2)解:如图①,设
,则

由(1)可得



(3)解:分两种情况:
①如图 1 所示,当
时,




②如图 2 所示,当
时,



.
综上所述,
等于
或 时,
.
【解析】【分析】(1)由∠ BCD=∠ ACB+∠ ACD=90°+∠ ACD,即可求出∠ BCD+∠ ACE 的度
数.
4.如图,∠ AOB=90°,∠ BOC=30°,射线 OM 平分∠ AOC,ON 平分∠ BOC.
(1)求∠ MON 的度数; (2)如果(1)中,∠ AOB=α,其他条件不变,求∠ MON 的度数; (3)如果(1)中,∠ BOC=β(β 为锐角),其他条件不变,求∠ MON 的度数; (4)从(1)、(2)、(3)的结果中,你能看出什么规律? 【答案】 (1)解:∠ AOB=90°,∠ BOC=30°, ∴ ∠ AOC=90°+30=120°.
∴ ∠ OGA= α+15°; 当∠ EOD:∠ COE=2:1 时,则∠ EOD=60°,
同理得到∠ OGA= α−15°,
即∠ OGA 的度数为 α+15°或 α−15°. 【解析】解:(1)∵ ∠ BOA=90°,∠ OBA=42°,
∴ ∠ BAD=∠ BOA+∠ ABO=132°, ∵ AF 平分∠ BAD,OE 平分∠ BOA,∠ BOA=90°,
∴ ∠ OGA=∠ GAD−∠ EOA= α.
(4)解:当∠ EOD:∠ COE=1:2 时,
∴ ∠ EOD=30°, ∵ ∠ BAD=∠ ABO+∠ BOA=α+90°, ∵ AF 平分∠ BAD,
∴ ∠ FAD= ∠ BAD, ∵ ∠ FAD=∠ EOD+∠ OGA, ∴ 2×30°+2∠ OGA=α+90°,
∴ ∠ GAD= ∠ BAD=66°,∠ EOA= ∠ BOA=45°, ∴ ∠ OGA=∠ GAD−∠ EOA=66°−45°=21°; 故答案为 21°; ⑵∵ ∠ BOA=90°,∠ OBA=42°, ∴ ∠ BAD=∠ BOA+∠ ABO=132°,
∵ ∠ BOA=90°,∠ GOA= ∠ BOA,∠ GAD= ∠ BAD, ∴ ∠ GAD=44°,∠ EOA=30°, ∴ ∠ OGA=∠ GAD−∠ EOA=44°−30°=14°; 故答案为 14°; 【分析】(1)根据三角形外角的性质求出∠ BAD,求出∠ GOA 和∠ GAD,根据三角形外角 性质求出即可; (2)根据三角形外角的性质求出∠ BAD,求出∠ GOA 和∠ GAD,根据三角形外角性质求出 即可; (3)根据三角形外角的性质求出∠ BAD,求出∠ GOA 和∠ GAD,根据三角形外角性质求出
得出
,又因为
,因此
,联立即可求
出两角的度数,再结合(1)的结论可得出
的度数,再求答案即可.
2.将一副三角板中的两个直角顶点 叠放在一起(如图①),其中


.
(1)猜想

的数量关系,并说明理由;
(2)若
,求
的度数;
(3)若按住三角板 不动,绕顶点 转动三角 ,试探究
,并简要说明理由.
【答案】 (1)解:
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图,已知:点
不在同一条直线,
.
(1)求证:
.
(2)如图②,
分别为
的平分线所在直线,试探究 与
的数量关系;
(3)如图③,在(2)的前提下,且有
,直线
交于点 ,

请直接写出
________.
【答案】 (1)证明:过点 C 作
,则

∵ ∴ ∴
(2)解:过点 Q 作
由角平分线的性质可知:∠ MOC= ∠ AOC=60°,∠ CON= ∠ BOC=15°. ∵ ∠ MON=∠ MOC﹣∠ CON, ∴ ∠ MON=60°﹣15°=45°
(2)解:∠ AOB=α,∠ BOC=30°, ∴ ∠ AOC=α+30°.
(2)如图①,设∠ ACE=a,可得∠ BCD=3a,结合(1)可得 3a+a=180°,求出 a 的度
数,即得∠ BCD 的度数.
(3)分两种情况讨论, ①如图 1 所示,当 AB∥ CE 时,∠ BCE=180°-∠ B=120°,②如
图 2 所示,当 AB∥ CE 时, ∠ BCE=∠ B=60°,分别求出∠ BCD 的度数即可.
相关文档
最新文档