七年级数学下册专题二实数习题课件新版新人教版
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
第6章 实数(复习课件)七年级数学下册(人教版)
③④⑦
随堂检测
人教版数学七年级下册
7.如图所示,数轴上与1,
对应的点分别是为A、B,点B关
于点A的对称点为C,设点C表示的数为x,则 x 2 = 2 2 2 .
0
C A B
1
2
随堂检测
人教版数学七年级下册
8.计算
(1) × × ;
=60
(2)− −( − ) .
-a (a<0)
随堂检测
1.在-7.5,
个数是(
A.1个
人教版数学七年级下册
, 4,
,
,
,中,无理数的
B )
B.2个
C.3个
D.4个
随堂检测
人教版数学七年级下册
2.实数a,b在数轴上的对应点的位置如图6-J-1所示,则正
确的结论是 (
D)
A. a>-2
B. a<-3
C. a>-b
D. a<-b
随堂检测
− =
;
所以这个数为 .
人教版数学七年级下册
谢谢聆听
,
随堂检测
人教版数学七年级下册
12.一个数的算术平方根为2-6,它的平方根为±( − ),
求这个数.
解:因为一个数的算术平方根为2-6,它的平方根为
± ( − )
① − = − ;解得 = ,
− = −(舍去);
② − = − + ;解得 = ,
B. − >
C. >
D. + >
随堂检测
5.下列说法中,不正确的有( B )
人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习
6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
人教版七年级数学下册 6.3 第1课时 实数 (共19张PPT)
反过来,任何有限小数或无限循环小数 也都是有理数.
想一想:所有的数都可以写成有限小数或无限循环 小数的形式吗?
在前面的学习中,我们知道:
π=3.1415926535897932384626… 1.01001000100001…(两个1之间依次多一个0) 你有什么发现呢? 无限不循环小数,叫做无理数.
4
9
负实数: 16, 3 8, 5
方法 对每个数都要进行判断,分类标准不同结果不同.
练一练
把下列各数分别填入相应的集合内:
22 , 7
64,
3,
4,
0.101,
π ,
3
2, 5
2.121, 0.3737737773
...
有理数集合
...
无理数集合
二、实数与数轴上的点
思考1: 如图,直径为1个单位长度的圆从原点沿数 轴向右滚动一周,圆上一点从原点到达A点,则数轴 上表示点A的数是多少?
2、判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (
)
(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
3、把下列各数填入相应的括号内:
9 35
64
π
•
0. 6
3 4
3 9
0.13
(1)有理数: {
典例精析
例1 将下列各数分别填入下列相应的括号内:
3 9, 1, 7 , π, 16, 5, 3 8,
4
4 , 0, 25, 0.3232232223
最新人教版七年级数学下册《实数》平方根立方根习题课
3) 已知x-2的平方根 2,2x+y+7的立方根是3, 求x y 的平方根
2 2
4) 如果A= B
2 a b 1
a 2b 3 2
a 3b为a 3b的算术平方根,
2
1-a 为1-a 的立方根,
求A+B的平方根
5) 如果A= B
4 a b
a b
a为a的算术平方根,
b 1为b 1的立方根,
6、当x为 X>3 时, 3-x 无意义
7、如果
3x 5 有意义,则x可以取得最小整数为 2
.
8、与 10 最接近的两个整数是 3、4 . 9、 7 的整数部分是 2 ,小数部分是 7 2 .
10、若 7.16 =2.676, a =26.76,则a的值是 716 . 11、若 3.4 =1.844,则 340 = 18.44 , 0.034 = 0.1844. 12、已知 259 =16.09,则 2.59 = 1.609 , 25900 =160.9 .
19、2是 8 的立方根,-0.001 立方根是-0.1 20、3 27 是 4 64
3
的立方,(-3) 的立方根 -3 .
3
21、(-2) 的立方根是 -2 ,平方根 没有 .
22、算术平方根大于它本身的数x的取值范围 是 0<x<1 .
练习: 二、双基延伸 1、下列各式中正确的是( B)
A
-8
1) x 2 2) x2 3) a
4) 3 2x-1
2x 1 7) x
5) x-2- 2-x
x 8) x 1
6) 2-x 3 x-2
2 x 9) 2x 1
3
七年级数学下册6实数专题课堂二实数课件新版新人教版
• • • • • • • • • • • • • • • • • • • •
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。 10、一句简单的问候,是不简单的牵挂;一声平常的祝福,是不平常的感动;条消息送去的是无声的支持与鼓励,愿你永远坚强应对未来,胜利属于你! 11、行为胜于言论,对人微笑就是向人表明:我喜欢你,你使我快乐,我喜欢见到你。最值得欣赏的风景,就是自己奋斗的足迹。 12、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 13、当机会呈现在眼前时,若能牢牢掌握,十之八九都可以获得成功,而能克服偶发事件,并且替自己寻找机会的人,更可以百分之百的获得成功。 14、相信自己,坚信自己的目标,去承受常人承受不了的磨难与挫折,不断去努力去奋斗,成功最终就会是你的! 15、相信你做得到,你一定会做到。不断告诉自己某一件事,即使不是真的,最后也会让自己相信。 16、当你感到悲哀痛苦时,最好是去学些什么东西。领悟会使你永远立于不败之地。 17、出发,永远是最有意义的事,去做就是了。当一个人真正觉悟的一刻,就是他放弃追寻外在世界的财富,开始追寻他内心世界的真正财富。 18、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 19、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己“亲密”的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
实数(第1课时)-七年级数学下册讲练课件(人教版)
故选:C.
【点评】本题考查了实数的比较大小,绝对值,注意负数的绝对值等于它的相反数.
感受中考
4.(3分)(2021•天津6/25)估计 17 的值在(
A.2和3之间
B.3和4之间
)
C.4和5之间
D.5和6之间
【解答】解:∵ 17 4.12 ,
∴ 17 的值在4和5之间.
故选:C.
)
典例分析
例1:将下列各数分别填入下列相应的括号内:
3
1
9 , , 7 , π, 16, 5, 3 8,
4
4
25, 0.3232232223
, 0,
9
无理数: 9,
3
7, π, 5, 0.3232232223
1
4
,
3
, 0, 25
有理数: 4 16, 8,
9
1
4
为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点 A,那么点 A 表示的数
是
.
(3)如图 3,网格中每个小正方形的边长为 1,若能把阴影部分剪拼成一个新的正方形,
求新的正方形的面积和边长.
解:
(1)设拼成的正方形的边长为 a,
则 a2=5,
a= 5,
即拼成的正方形的边长为 5,
故答案为: 5;
整数
有理数:
有限小数或无限循环小数
实
数
分数
含开方开不尽的数
无理数:
无限不循环小数
含有
π 的数
有规律但不循环的小数
(2)按性质分:
=﹣3 5 +3;
(4)| 6 − 2|+| 2 −1|﹣|3− 6|
第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
6。3实数(课时2)课件(新人教版七年级数学下)
(a b) c a (b c)
ab ba (ab)c a (bc)
a b ba
你认为这些运算律在实数范围内是否适用呢?
尝试应用
【例2】计算下列各式的值:
(1)( 3 2) 2
(2) 3 32 3
解: ( 3 2) 2 3 ( 2- 2) _____, 8 ____, 3
3
2 _____, 3
2 1.4 . 1.7 1.4 2 __________ 3 1.7 3 _______,
课中探究 3.(1)在数从有理数扩充到实数后,
我们已经学过哪些运算? 答:___________________________. 加、减、乘、除、乘方、开方 (2)你能说出其中有哪些规定吗? 答:除法运算中除数不为_____, ____数及____ 0 0 而且只有 正 可以进行开平方运算,任何一个实数都可以进行开立方 运算. (3)你还记得有理数满足哪些运算律吗(用字母表达)? 加法交换律:________________________. 加法结合律:_________________. 乘法交换律:________________________. 乘法结合律:___________________________. 分配律:______________________. m(a b) am bm
创设情境
同学们,想一想有理数的运算法则和 运算律有哪些? 这些运算法则和运算律在实数范围内 是否也适用呢?
课中探究
比较下列各组数里两个数的大小 (用“>、=或 ﹤”连接起来)
> (1) 2 ____1.4,
﹤ 6, (2) 5 ____
﹤ (3) 2 ____
新人教版初中数学七年级数学下册第二单元《实数》测试题(有答案解析)(1)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D .2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 4.下列说法中,正确的是( ) A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数5.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 6.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1 8.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6 9.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a->>10.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 11.下列等式成立的是( ) A .1±1B 4=±2C 3216- 6D 393 12.在0,3π5227,9 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题13.求出x 的值:()23227x +=14.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.15.若则2|1|2(3)0a b c -+-=,()c a b +=______.1681________,25的相反数是________.17.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当2时,()()1*-3*=x x x ______18.比较大小:312___________12 19.2(1)10a b -+=,则20132014a b +=___________.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).三、解答题21.计算: (1)﹣12327-﹣(﹣2)9(2331)+32|22.(1223143)8-; (2)求 (x -1)2-36=0中x 的值.23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.25.(1)计算:231698(2)-3121125|63|6--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.26.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 3.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.C解析:C根据实数的概念和分类即可判断.【详解】A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误;故选:C .【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 5.C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.6.D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 7.D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;7=,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题;综上,真命题的个数是1个,故选:D.【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.8.B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.9.C解析:C【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.10.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.11.A解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.12.C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.二、填空题13.x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.14.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 15.-1【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】解:∵∴a-1=0b+2=0c-3=0∴a=1b=-2c=3∴【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用解析:-1【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】解:∵2|1|(3)0a c --=,∴a-1=0,b+2=0,c-3=0,∴a=1,b=-2,c=3,∴()3()12=1c a b +=--. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.3;【分析】根据平方运算可得一个数的算术平方根根据相反数的性质在这个数前加一-化简即可【详解】解:∵;∴的算术平方根是3∵∴的相反数是故答案为:3;【点睛】本题考查了算术平方根和相反数的性质注意先求解析:2.【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.【详解】解:∵9=3=;∴= ∴3,∵222--=-=, ∴22,故答案为:2.【点睛】9的算术平方根,熟悉相关性质是解题的关键. 17.【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴) 2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;18.<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴12<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=, 故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键.20.515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.22.(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.23.(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.24.(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.25.(1)①13;②9-2)③65x =±;④5x =. 【分析】①先计算根式,再加减计算.②先计算根式和绝对值,再加减计算.(2)③两边除以25,再开算术平方根.④先除以-1,再开立方根.【详解】(1)-+1322=-+13=|3|-1153=-+-9=-(2)③22536x =23625x =65x =± ④3(1)64x --=3(641)x -=-14x -=-5x =【点睛】本题考查根式的化简求值,关键在于化简. 26.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
最新人教版七年级数学下册《实数的概念及分类》优质教学课件
知识点2 实数的分类 概念:有理数和无理数统称实数.
有限小数或无限循环
例2 下列说法中,正确的有___④__⑤___.(填序号) ①实数可分为有理数、无理数和零三类;②实数可分为整数和分数 两类;③实数可分为整数、分数、有理数、无理数四类;④实数可分为 零、正实数和负实数三类;⑤实数可分为有理数和无理数两类.
4.如图,数轴上表示实数 40 的点可能是( C )
A.点 A
B.点 B
C.点 C D.点 D
第4题图
5.写出一个无理数x,使得1<x<4,则x可以是___2__(答__案__不__唯__一__) _.
(写出一个满足条件的x即可)
6.比较下列各组数的大小:
(1) 8 ___<_____ 10 ;
9.将实数 3, 10 ,-π2 ,3 -64 ,75 近似地表示在数轴上,并比较它们的大 小,用“<”号连接.
第99题题图答图 解:实数在数轴上的表示如答图所示.
比较大小为3 -64 <-π2 <75 <3< 10 .
核心素养
10.【数形结合】实数a,b,c在数轴上的对应点的位置如图所示,
则正确的结论是( A )
(2)- 40 ___<_____-6.3;
(3)
5+1 2
____>____32
.能Leabharlann 提升7.如图,数轴上A,B两点表示的数分别为和5.1,则A,B两点之
间表示整数的点共有( C )
A.6个
B.5个
C.4个 D.3个
第7题图
人教版七年级数学下册6.3.2实数(2)课件(共25张PPT)
第六章 实数
1.了解实数的运算法则及运算律,会 学 进行实数的运算。2.会用计算器进行 习 实数的运算。3.进一步感受实数与数 目 轴上的点一一对应的关系,体验数形 标 结合的优越性。4.发展学生的类比与 归纳能力。 重 实数的有关性质及利用实数的性质解 点 决相关问题 难 能准确无误地进行实数运算 点
2)
2; (2)3 3 2 3
解: (1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
4. 计算:
(1)2 2 3 2;
(2) 2 32 2.
例3:计算(结果保留小数点后两位)
(1) 5 π ;(2) 3 2
1.无理数
无理数 . (1)无限不循环小数叫做________ (2)无理数的常见形式: ①圆周率π及一些含有π的数;
②开不尽方的数,如 2
;
③有一定的规律,但不循环的无限小数,如 0.101 001 000 1…. 2.实数的概念 _______ _ 和________ 无理数 统称实数. 有理数
解: (1) 5 π 2.236+3.142 5.38 (2) 3 2 1.732 1.414 2.45
注意:计算过程中要多保留一位!
1.计算
(1) 2 3 3 2 5 3 3 2
3 3
(2)
3 2 3 1
1
3 ___________
.
(3) 2
人教版七年级下册数学实数ppt课件
进行实数运算时,有理数的运算法 则及性质等同样适用
例:计算下列各式的值
(1)( 3 2) 2; (2)3 3 2 3
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
例:计算(结果保留小数点后两位)
(1) 5 π;(2) 3 2 解:(1) 5 π 2.236+3.142 5.38 (2) 3 2 1.7321.414 2.45
☆无理数的特征:
1.圆周率 及一些含有
的数
2
、2
1
2.开方开不尽数 2、3 5
注意:带根号
3.有一定的规律,但 的数不一定是
不循环的无限小数 无理数
0.6363363336 (每两个6之间依次增加一个3)
随堂练习 判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( )
A.a+c
B.-a-2b+c
C.a+2b-c
D. -a-c
3.已知 (a4)2 a 4,求a的取值范围。
a4
任务3实数的运算
阅读课本85页 自学实数的运算法则和性质
3.实数运算
当数从有理数扩充到实数以后,实数之间不仅
可以进行加 减 乘 除 乘方运算,又增加了非
负数的开平方运算,任意实数可以进行开立方运 算。
}
无理数集合{ 2 , 3 5 }
3
分数集合{
3, 7
•
0. 8 , 3.14159265 }
2、 求下列各数的相反数和绝对值:
3的相反数是__3_; 1 3的绝对值是 _3__1
这节课你有什么新发现?知道了哪些新 知识?
最新人教版七年级数学下册《实数(第2课时)》优质教学课件
输出的数值为______.(用科学计算器计算或笔算).
输入x
16
4
÷2
+1
2
3
2.下列各式中正确的是( D )
A. 4 = ±2
2
3
C. 4 = 2
B. (−3)2 = −3
3
D. 8 − 2 = 2
2 2
输出
随 堂 检 测
1.下列各数中,互为相反数的是( C )
A.3
C.
1
与 B. 互为倒数
2与(−2)2
(2)− 的相反数是 ; − 的相反数是 − .
(3) −的绝对值是4.
(4) 绝对值是 3的数是 3或− 3 .
巩 固 练 习
分别求下列各数的相反数和绝对值.
3
(1) −27 ;
(2) 225 ;
(3) 11.
解:(1)∵ − =-3,
∴ −的相反数是3,绝对值是3.
(b+c)a =________(乘法对于加法的分配律);
ba+ca
(-b)
(9) 实数的减法运算规定为a-b = a+_____;
(10)对于每一个非零实数a,存在一个实数b,满足a·b = b·a =1,
倒数
我们把b叫作a的___;
1
(11)实数的除法运算(除数b≠0),规定为a÷b = a· ;
0
0 的相反数是_____;
π , 0 = _____
(2) 2 =_____,
0 .
2 -π = _____
新 知 探 究
结合有理数相反数和绝对值的意义,你能说说实数
关于相反数和绝对值的意义吗?
人教版七年级下册数学作业课件 第六章 实数 第二课时 实数的性质及运算
15.老师在上完了本章的内容后设计了如下问题: 定义:把形如 a+b m 与 a-b m (a、b 为有理数且 b≠0, m 为正整数且开方开不尽)的两个实数称为共轭实数. (1) 请你举出一对共轭实数; 解:如 8-2 5 与 8+2 5 (答案不唯一).
(2)3 2 与 2 3 是共轭实数吗?-2 3 与 2 3 呢? 解:3 2 与 2 3 不是共轭实数,-2 3 与 2 3 是共轭实数.
与
2 3
4.在数轴上表示- 3 的点与原点的距离是 3 ,
与原点的距离是 5 的点所表示的实数是 5 .
5.求下列等式中的 x 的值: (1)|x|= 7 ; 解:x=± 7 .
(2)|x|= 2 -1. 解:x= 2 -1 或 1- 2 .
知识点二 实数的运算
6.计算 25 - 3 27 的结果是
12.若规定一种运算为:a★b= 2 ×(b-a),如 3★5= 2 ×(5-3)=2 2 .则 2 ★ 3 8 = 2 2 2 .
【解析】 2 ★ 3 8 = 2 ★2= 2 (2- 2 2 2 2 )=2 2 - 2.
13.计算:
(1)|
3
-2|-(-2)2+2×
3 2
;
解:原式=2- 3 -4+ 3 =-2.
(3)共轭实数 a+b m ,a-b m 是有理数还是无理数? 解:共轭实数 a+b m ,a-b m 是无理数.
(4)共轭实数 a+b m 与 a-b m 的和、差分别是有理数还 是无理数? 解:∵a+b m +a-b m =2a,(a+b)-(a-b)=2b m , ∴共轭实数的和为有理数,差为无理数.
(4)3( 2 + 3 )-2( 2 - 3 ); 解:原式= 2 +5 3 .