2018年全国各地高考数学试题及分类汇编(16 随机变量及其分布)
2018年全国各地高考数学(理科试卷及答案)
2018年高考数学理科试卷(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=⋂B A .2.若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π,则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB为直径的圆C 与直线l 交于另一点D .若0=⋅CD AB ,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==Nn n x x A ,12|,{}*∈==N n x x B n,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC = BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分. 解:(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以, 因此.因为,所以, 因此,.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立, 即11,1d 3,32d 5,73d 9,得. 112(,)n n n a n d b -=-=1 12|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). ①当时,, 当时,有,从而.因此,当时,数列单调递增,故数列的最大值为. ②设,当x >0时,, 所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减,故数列的最小值为. 因此,d 的取值范围为.75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)x f x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC .又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt △OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB ==因此,直线l 被曲线C截得的弦长为. D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩ 不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CCCC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
2018年各地高考真题分类汇编概率统计学生版完整版.doc
概率统计1.(2018年全国一·文科3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018年全国二·文科5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.3.(2018年全国三·文科5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.74.(2018年全国三·文科14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.5.(2018年全国一·文科19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水00.1,0.10.2,0.20.3,0.30.4,0.40.5,0.50.6,0.60.7,0.60.50.40.3量频数1 32 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量00.1,0.10.2,0.20.3,0.30.4,0.40.5,0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)6.(2018年全国二·文科18)(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;y y t t 1,2,,17L ?30.413.5y t t 1,2,,7L ?9917.5y t(2)你认为用哪个模型得到的预测值更可靠?并说明理由.7.(2018年全国三·文科18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式m m m mm(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.8.(2018年北京·文科17)电影公司随机收集了电影的有关数据,经分类整理得到下表:22()()()()()n adbc K a b c d a c b d 2()0.0500.0100.0013.8416.63510.828P K k k电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510 好评率0.4 0.2 0.15 0.25 0.2 0.1 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)9.(2018年天津·文科15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.学&科网(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.高考赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
2018全国各地高考数学试题汇编附解析
2018全国各地高考数学试题汇编(附解析)2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}B=-,那么A B=▲.A=,{1,1,6,8}[答案]{1,8}2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲.[答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.[答案]85.函数()f x=的定义域为▲.[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一条渐近线,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]2210.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]3411.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ . [答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B 均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. [答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2018年各地高考真题分类汇编数列学生版完整版.doc
(2018年全国一·文科)17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.(2018年全国二·文科)17.(12分) 记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.(2018年全国三·文科)17.(12分)等比数列中,. (1)求的通项公式;(2)记为的前项和.若,求.(2018年北京·文科)(15)(本小题13分)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求12e e e n a a a +++L .(2018年天津·文科)(18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.n S {}n a n 17a =-315S =-{}n a n S n S {}n a 15314a a a ==,{}n a n S {}n a n 63m S =m(2018年江苏)14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .(2018年浙江)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .1324,a a a a <<B .1324,a a a a ><C .1324,a a a a <>D .1324,a a a a >>(2018年上海)20.(本题满分15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.高考一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
2018年高考试题分类汇编(统计与概率)
2018年高考试题分类汇编(统计与概率)考点1 简单计数1.(2018·浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成____个没有重复数字的四位数.(用数字作答)2.(2018·全国卷Ⅰ理科)从2位女生,4位男生中选3位参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)考点2 随机事件的概率考法1古典概型1. (2018·全国卷Ⅱ文科)从2名男同学和3名女同学中任选2人参加社区服务,则选中的两人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.32.(2018·全国卷Ⅱ理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示成两个素数的和”.例如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1183.(2018·江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.4.(2018·上海卷)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是_ __.(结果用最简分数表示)5.(2018·天津卷文科)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用,,,,,,A B C D E F G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(1)试用所给字母列举出所有可能的抽取结果;(2)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.考法2 几何概型1.(2018·全国卷Ⅰ文理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB ,AC .ABC ∆的三边所围成的区域记为Ⅰ,黑色区域记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A.12p p =B. 13p p =C. 23p p =D. 123p p p =+考法3 互斥事件与相互独立事件 1.(2018·全国卷Ⅲ文科)某群中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C . 0.6D .0.72.(2018·全国卷Ⅲ理科)某群中的每位成员使用移动支付的概率都为p ,各成 员的支付方式互相独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)p X =<(6)p X =,则p =A .0.7B .0.6C .0.4D .0.3考点3 统计初步考法1 抽样方法1.(2018·全国卷Ⅲ文科)某公司有大量客户,且不同年龄段客户对其服务的平价有较大的差异.为了解客户的平价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最适合的抽样方法为 . 考法2 统计图表1.(2018·江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .2.(2018·全国卷Ⅰ文理)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解高该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:4% 6% 30% 60% 养殖收入 其他收入 第三产业收入 种植收入 建设前经济收入构成比例5% 28% 30% 37% 养殖收入 其他收入 第三产业收入 种植收入 建设后经济收入构成比例 8 9 9 9 0 1 1则下面结论中不正确的是A.新农村建成后,种植收入减少B.新农村建成后,其他收入增加一倍以上C.新农村建成后,养植收入增加一倍D.新农村建成后,养植收入与第三产业收入的总和超过了经济收入的一半考点4 统计与概率考法1 分布列、期望、方差1.(2018·天津卷理科)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(1)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(2)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.2.(2018·全国卷Ⅰ理科)某工厂的某种产品成箱包装,每箱200件,每箱产品在交付用户之前要对产品作检验,如检验出不合格产品,则更换为合格产品.检验时,先从这箱产品种任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为(01)<<,且各件产品是否为不合格产品互相独立.p p(Ⅰ)记20件产品中恰有2件不合格品的概率为()p.f p的最大值f p,求()0(Ⅱ)现对一箱产品检验了20件,结果恰有2件不合格品,以(Ⅰ)中确定的p0作为p的值.已知每件产品的检验费为2元,若有不合格品进入用户手中,则工厂要对每件不合格产品支付25元的赔偿费用.(1)若不对该产箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(2)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?3.(2018·北京卷文科)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)4.(2018·北京卷理科)好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(1,2,3,4,5,6k =).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.考法2 线性回归分析1.(2018·全国卷Ⅱ文理)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图,为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016的数据(时间变量t 的值依次为1,2,,17 )建立模型① 30.413.5y t =-+;根据2010年至2016的数据(时间变量t 的值依次为1,2,,7 )建立模型② 9917.5y t =+.(Ⅰ)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (Ⅱ)你认为哪个模型的预测值更可靠?并说明理由.考法3 用样本估计总体1.(2018·全国卷Ⅰ文科)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用节水龙头50天的日用水量数据,得到频率分布表如下:(Ⅰ)在答题卡上作出使用了节水龙头50天的日用水量频率分布直方图: (Ⅱ)估计该家庭使用了节水龙头后,日用水量小于3(Ⅲ)估计该家庭使用了节水龙头后,一年 能节省多少水?(一年按365天计算,同一 组中的数据以这组数据所在区间的中点的值 作代表.) 2000 2001 2002 20032004 2005 2006 2008 2007 2009 2010 2012 2014 2013 2015考法4 独立性检验1.(2018·全国卷Ⅲ文理)某工厂为了提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20名工人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(Ⅰ)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(Ⅱ)求40名工人完成生产任务所需的时间的中位数m , 并将完成生产任务所(Ⅲ)根据(Ⅱ)中列联表,能否有99%把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++第一种生产方式 第二种生产方式 8 8 7 6 5 5 6 8 9 0 1 2 2 3 4 5 6 6 8 1 4 4 5 09 9 7 6 2 9 8 7 7 6 5 4 3 3 2 2 1 1 0 0。
2018年全国各地高考数学试题及解答分类汇编大全(16 随机变量及其分布)
2018年全国各地高考数学试题及解答分类汇编大全(16概率、随机变量及其分布 正态分布)一、选择题1.(2018浙江)设0<p <1则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小1..答案:D解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.2.(2018全国新课标Ⅲ理)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.32.答案:B解答:由~(10,)X B p ,∴10(1)2.4D X p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.二、填空三、解答题1.(2018假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.1.【答案】(1)概率为0025.;(2)概率估计为035.;(3)142536D D D D D D ξξξξξξ>>=>>. 【解析】(1)由题知,样本中电影的总部数是140503002008005102000+++++=,第四类电影中获得好评的电影部数是20002550⨯=..故所求概率为5000252000=..(2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”.故所求概率为()()()()()()()()()11P AB AB P AB P AB P A P B P A P B +=+=-+-. 由题意知,()P A 估计为025.,()P B 估计为02.. 故所求概率估计为0250807502035⨯+⨯=...... (3)142536D D D D D D ξξξξξξ>>=>>.2.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. (i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 2.【答案】(1)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)①答案见解析;②.【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)(1)随机变量X 的所有可能取值为0,1,2,3.()()34337C C 0,1,2,3C k kP X k k -⋅===.随机变量X 的数学期望()0123353535357E X =⨯+⨯+⨯+⨯=. (2)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A B C =,且B 与C 互斥,由(1)知,()()2P B P X ==,()()1P C P X ==, 故()()()627()1P A P B C P X P X ===+==. 所以,事件A 发生的概率为67.。
【高三数学试题精选】2018年高考真题理科数学概率归类汇编
2018年高考真题理科数学概率归类汇编5 P(c)=1- P= ,解得P= ………………………………4 分(2)由题意,P( =0)=P( =1)=P( =2)=P( =3)=所以,随机变量的概率分布列为0123P故随机变量X的数学期望为E =0 ……………………12分[点评]本小题主要考查相互独立事,独立重复试验、互斥事、随机变量的分布列、数学期望等概念及相关计算,考查运用概率知识与方法解决实际问题的能力10.【2018高考湖北理20】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X(单位)对工期的影响如下表降水量X工期延误天数 02610历年气象表明,该工程施工期间降水量X小于300,700,900的概率分别为03,07,09 求(Ⅰ)工期延误天数的均值与方差;(Ⅱ)在降水量X至少是的条下,工期延误不超过6天的概率【答案】(Ⅰ)由已知条和概率的加法式有,所以的分布列为0261003040201于是,;故工期延误天数的均值为3,方差为(Ⅱ)由概率的加法式,又由条概率,得故在降水量X至少是的条下,工期延误不超过6天的概率是11【2018高考江苏25】(10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.(1)求概率;(2)求的分布列,并求其数学期望.【答案】解(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有对相交棱。
∴ 。
(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,∴ ,。
∴随机变量的分布列是∴其数学期望。
【考点】概率分布、数学期望等基础知识。
【解析】(1)求出两条棱相交时相交棱的对数,即可由概率式求得概率。
(2)求出两条棱平行且距离为的共有6对,即可求出,从而求出(两条棱平行且距离为1和两条棱异面),因此得到随机变量的分布列,求出其数学期望。
2018年高考数学试题汇编(精校Word版)全国各地试卷高考真题汇总含答案
2018年全国统一考试高考数学试题汇编(精校版Word版含答案)2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版答案-------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版------------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版答案------ 2018年全国卷文科数学高考真题(全国卷II)Word版--------------- 2018年全国卷文科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷理科数学高考真题(全国卷II)Word版--------------- 2018年全国卷理科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版答案------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版答案-------- 2018年文科数学高考真题(北京卷)Word版含答案---------------- 2018年理科数学高考真题(北京卷)Word版含答案----------------- 2018年文科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(上海卷)Word版含答案---------------- 2018年理科数学高考真题(浙江卷)Word版含答案----------------绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B = ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC -B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值范围是A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知s i n s i n 4s i n s b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
高考最新-2018年全国高考试题分类汇编及解析(数学)数列、解析几何、立体几何解析几何部分参考答案精
2018年全国高考试题分类汇编免费教育资源网解析几何部分参考答案、选择题二、填空题1.22x2y2411.用代数的方法研究图形的几何性质2 152 .2x y2 112. 5 23 1 13.44.5 14.[-1,3]15.455(0,-1) 1 2 a 1 216.2x- y+4=06.x 2+(y+1) 2=1 1-2 ≤ a≤1+ 2 17.213 18.11[ ,0) (0, ]7( ,13)10 1048.(5,0) 19.22(x 1)2 (y 1)2 259.22(x- 2)2+(y+3) 2=520.12210. (x- 2)2+(y+3) 2=5三、解答题1.(本小题主要考查直线和双曲线的概念和性质,综合解题能力 .满分 14 分 .解:( I)由 C 与 t 相交于两个不同的点,故知方程组x2y2 1,2y21,a x y 1.平面向量的运算等解析几何的基本思想和有两个不同的实数解 .消去 y 并整理得(1-a2)x2+2a2x-2a2=0. ① ⋯⋯ 2 分双曲线的离心率即离心率 e 的取值范围为 ( 6, 2) ( 2, ). 6分II)设 A(x 1,y 1),B(x 2,y 2), P 1(0,1)2. 本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和 综合解题能力。
满分 12 分。
解:(Ⅰ) C 的焦点为 F(1, 0),直线 l 的斜率为 1,所以 l 的方程为y x 1.22将 y x 1代入方程 y 2 4x ,并整理得 x 26x 1 0.设A (x 1, y 1),B (x 2,y 2),则有 x 1 x 2 6,x 1x 2 1.OA OB (x 1, y 1) (x 2,y 2) x 1x 2 y 1y 2 2x 1x 2 (x 1 x 2) 1 3. | OA ||OB | x 12y 12x 22y 22x 1x 2[x 1x 2 4(x 1 x 2) 16] 41.OA OB 3 14 cos(OA, OB) . |OA| |OB | 41314 所以 OA 与OB 夹角的大小为 arccos3 14. 41(Ⅱ)由题设 FB AF 得 (x 2 1,y 2)(1 x 1, y 1),即x 2 1 (1 x 1), ①y2y1.②所以 21 a 20. 4 2 24a 4 8a 2(1 a 2) 0.解得 0 a 2且a 1.e1 a 212 1. 0 a 2且 a 1, a 255 PA 5 PB, (x 1,y 1 1) 5(x 2,y 2 1). 12 12由此得 x 1 152x 2. 8分 由于 x 1,x 2 都是方程①的根,且 所以 17 x 2 12 22 1a12 17.13.14分 5 x 222a 2 2a 2 2891 a2 .消去, x 2 ,得 1 a 2 60 由 a 0,所以 a2a 2y12 4x1,y22 4x2, ∴ x22x1. ③联立①、③解得x2 ,依题意有0.∴B( ,2 ),或B( , 2 ),又 F(1,0),得直线 l方程为( 1)y 2 (x 1)或( 1)y 2 (x 1),当[4,9]时,l 在方程 y轴上的截距为2或 1由②得y22 2y12,2 2 2 11 可知2在[4,9]上是递减的,4,4 23,3 134,4直线 l 在 y 轴上截距的变化范围为[ 43 3] [3,4].4] [4,3]. 以及综合. 满分 14 分 .解:( 1)由题设有m 0,c m.设点 P的坐标为(x0,y0),由PF1 PF2,得y0x0 cy0x0 c1,化简得x02y02m. ①2 将①与x0 m1y021联立,解得 2x02m 1 2,y0由m 0,x021 0,得 m 1. 所以 m 的取值范围是1.2)准线 L 的方程为m 1.设点 Q的坐标为(x1,y1),则m x1m 1.mm1m |QF2 | x1 c m|PF| c x m x2 m1 |QF2| 22m m 1.将x0 代入②,化简得.满分 12 分 .2m1代入②,化简得由题设 |QF 2| | PF 2 |2 3 ,得 mm 21 2 3 ,无解 .将 x.满分 12 分 .m|QF 2 | 1m m 2 1.|PF 2 | m m 21由题设 ||QPF F22 || 2 3 ,得 m m 21 2 3.解得 m=2.从而 x 03, y 02,c 2, 得到 PF 2 的方程22y ( 3 2)(x 2).4.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力 满分 12 分 . 解: y ′ =2x+1.直线 l 1 的方程为 y=3 x - 3.设直线 l 2过曲线 y=x 2+x -2 上 的点 B( b, b 2+b -2),则 l 2的方程为y=(2b+1) x -b 2-2 1因为 l 1⊥ l 2,则有 2b+1= ,b 1 231 x所以直线 l 2的方程为 y2 322II )解方程组 y 3x 3,1 22yx391 x, 6 5 y2(1, 5).(6, 2).221,0)、 ( ,0).3所以直线 l 1和 l 2 的交点的坐标为 l 1、l 2与 x 轴交点的坐标分别为(2 32 125.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力 解:直线 l 的方程为 x y1,即 bx ay ab 0.aba 1ly 1 2(y 2 2),∴y 1 y 24d1b(a 1)a 2b 2同理得到点(- 1, 0) b(a 1)2到直线 l 的距离 d 2a2 bs d 1 d 22ab2aba 2b 2由 s4c,得 2ab 4c,5 c 5即 5a c 2 a 2 2c 2.于是得 5 e 2 1 2e 2,即4e 425e 225 0.解不等式,得 54 e 25.由于 e 1 0,所以 e 的取值范围是25 e 5.26.(Ⅰ)由已知条件 ,可设抛物线的方程为 y 2∵点 P(1,2) 在抛物线上 , ∴ 222p 1, 得 p =2.2故所求抛物线的方程是 y 2准线方程是 x=-- 1.(Ⅱ ) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB , ∵PA 与 PB 的斜率存在且倾斜角互补 ,∴k PA k PB .由 A(x 1,y 1), B(x 2,y 2)在抛物线上 ,得2 y14x 1, ① 4x 2, ②2 y 2 221221 y2 14 2 y2y 1 1 4 y 1由① --②得直线 AB 的斜率y2 y1 4 4kAB1(x1 x2). (14 分)x2 x1 y1 y2 47.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力、满分 14 分。
2018年高考文科数学全国各地试题汇编(精校Word版含答案
2018年全国各地高考数学真试题精校Word版汇总(全国各地文科数学试卷汇编含答案) 2018年全国卷高考文科数学真题(全国卷Ⅰ) Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ) Word版答案-------- 2018年全国卷文科数学高考真题(全国卷II) Word版--------------- 2018年全国卷文科数学高考真题(全国卷II) Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年文科数学高考真题(北京卷) Word版含答案---------------- 2018年文科数学高考真题(天津卷) Word版含答案---------------- 2018年数学高考真题(上海卷)Word版含答案---------------- 2018年数学高考真题(浙江卷)Word版含答案---------------- - 1 - 绝密★启用前 2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项: 1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.(= B=0, 2.设z{ A.}0,2{=,则A1.已知集合A}1,0,1,2-2,-{=,B}一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2 1,{ B.}) 2 }0{C.(=2i,则z+i-2,1-{ D.}1,0,1,2- i+) 1 B.A.0 1 2 C.1 D.2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半(=2,则a3=S4,a1+S2=的前n项和.若3S3}an{- 2 - 4.记Sn为等差数列 12-)A. 10-B. C.10 D.12 - 3 - 0,((在点)x(f=为奇函数,则曲线y)x(ax.若f+x2)1-a(+x3=)x(处的切线方程为5.设函数f)0 2x-=) A.y (=6.在△ABC 中,AD为BC边上的中线,E为AD的中点,则EB x-=) A.C. B.y 2x=C.y AC-x 31AB=D.y AC+4431AB 44 AC 44 7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(+AC 4413AB-B.D.13AB ) A.217 B.25 C.3 (=FN⋅2,FM-(4x的焦点为F,过点=且斜率为8.设抛物线C:y2)D.2 0 ) 2的直线与C交于M,N两点,则3A.5 B.6 C.7 a(+x+)x(f=)x(,f⎨=)x(ex,x≤09.已知函数f⎧D.8 1,-[ A.)围是 0⎩0>存在2个零点,则a的取值范lnx,x)x(),若g )∞+,[B. 1, - 4 -[ D.)∞+1,-[ C.)∞+ 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则() p2=A.p1 p3=B.p1p3=C.p2 (=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的3交点分别为M,N.若△OMN为直角三角形,则MN=y2-p3 x211.已知双曲线C:+p2=D.p1 ) A. 3 2 B.3 C.23 的x的取值范围是()2x(f<)1+x(,则满足f⎨=)x(x,x≤012.设函数f-2⎧D.4 ]1⎩0>) 1,y )∞+,∞-(A.)1,0-(0, C.(B.)0 ________.=1,则a=)3(a,若f+log2x2=)x(,二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数f∞-(D. ________.=0交于A,B两点,则AB=3-2y+y2+1与圆x2+x= 15.直线y)(⎩y≤0⎪2y的最大值为________.+3x=1≥0,则z+y-x⎨14.若x,y满足约束条件⎪2≤0-2y-x⎧ 8,则△ABC的面积为________.=a2-c2+csin16.△ABC 的内角A,B,C的对边分别为a, - 5 - a4siBnsC,b2+b,c,已知bsinC=B 三、解答题(共70分。
2018年全国各地高考数学试题及解答分类汇编大全(16随机变量及其分布)
2018年全国各地高考数学试题及解答分类汇编大全 (16概率、随机变量及其分布 正态分布)一、选择题则当p 在(0, 11..答案:D解答:E(x) =0? 1 -p 1? 1 2? p p+ 1 ,1-222 23) D(x): p?(p y + 1? (p 1、2 )+舟?(2 2 2 2 2 2 2 1 -(p- 1 2 1_ - p + p + 4 _ ' 1) +2,所以当p 在(0,1)内增大时,D (x )先增大后减小,故选 D.2. ( 2018全国新课标川理) 某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, DX =2.4 , P X =4 ::: P X =6 ,则 p =()A . 0.7B . 0.6C . 0.4D . 0.32.答案:B解答:由 X ~ B(10,p) ,••• DX =10p(1 - pH 2.4 ,••• 10p 2 -10p 2.4= 0,解之得口 =0.4,p 2 =0.6,由 P(X =4) :: P(X =6),有 p =0.6.二、 填空 三、 解答题假设所有电影是否获得好评相互独立.(I )从电影公司收集的电影中随机选取 1部,求这部电影是获得好评的第四类电影的概率; (n )从第四类电影和第五类电影中各随机选取 1部,估计恰有1部获得好评的概率; (川)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ 1=1 ”表示第k 类电影得到人们喜欢,“ I =0”表示第k 类电影没有得到人们喜欢(k=1, 2, 3, 4, 5, 6).写出方差D ^ , D © , D-3, D © , D 冷,D 绪的大小关系.1. ( 2018浙江)设A • D (3减小C •D ( 3)先减小后增大 B • D (E )增大 D • D ( 3)先增大后减小第1页(共2页)1. 【答案】(1)概率为 0.025 ; (2)概率估计为 0.35 ; (3)D ! . D ; -D ^D 5 D 3 D 6 • 【解析】(1)由题知,样本中电影的总部数是 140 50 300 - 200 800 51^2000 , 第四类电影中获得好评的电影部数是 200 0.25 =50 .故所求概率为50=0 025 .2000(2)设事件A 为从第四类电影中随机选出的电影获得好评”,事件B 为 从第五类电影中随机选出的电影获得好评 ”.故所求概率为 P AB AB = P AB P AB 二 P A 1「P B ]厂门一P A P B .由题意知,P A 估计为0.25 , P B 估计为0.2 . 故所求概率估计为 0.25 0.8 0.75 0.2 =0.35 . (3) D ! D 4 D 2 = D 5 D 3 D 6 .2. ( 2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为 样的方法从中抽取 7人,进行睡眠时间的调查.(I) 应从甲、乙、丙三个部门的员工中分别抽取多少人?(II) 若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这 身体检查•(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工” ,求事件A 发生的概率•2.【答案】(1)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.t(2 [①答案见解析;②-.7【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3 : 2 : 2,由于采用分层抽样的方法从中抽取 7人, 因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2) (1)随机变量X 的所有可能取值为 0, 1 , 2, 3.c k c 3»P X =k 二 4C 33 k =0,1,2,3 .随机变量X 的数学期望E X =0丄,1 122183 —二12.35 35 35 35 7(2)设事件B 为抽取的3人中,睡眠充足的员工有 1人,睡眠不足的员工有 2人”; 事件C 为 抽取的3人中,睡眠充足的员工有 2人,睡眠不足的员工有 1人”, 则A =B C ,且B 与C 互斥,由(1)知,P B ]=P X =2 , P C 产P X =1 ,6故 P A =P(B C) =P X =2 P X =1 =~ . 所以,事件 A 发生的概率为-.724, 16, 16.现采用分层抽 7人中随机抽取3人做进一步的 X 的分布列与数学期望;第2页(共2页)。
2018全国各地高考数学试题及解答分类汇编大全[数列]
2018年全国各地高考数学试题及解答分类汇编大全一、选择题1.(2018北京文、理)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f ,则第八个单音频率为( )A B C . D . 【答案】D【解析】因为每一个单音与前一个单音频率比为,()12n n a n n -+∴=≥∈N ,,又1a f =,则7781a a q f ===,故选D .2.(2018浙江)已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.3.(2018全国新课标Ⅰ理)记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a ( ) A .12-B .10-C .10D .12答案:B 解答:11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.二、填空1.(2018北京理)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 【答案】63n a n =-【解析】13a =Q ,33436d d ∴+++=,6d ∴=,()36163n a n n ∴=+-=-.2.(2018江苏)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有 元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . 【答案】27 【解析】设=2k n a , 则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解, 此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.3.(2018上海)记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
2018年高考真题全国卷分类汇编
2018年高考真题全国卷分类汇编集合1.(全国1理)已知集合,则=A C R( )A .B .C .D .2.(全国1文)已知集合{}02A =,,{}21012B =--,,,,,则A B =I ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 3.(全国2理)已知集合,则中元素的个数为 ( )A .9B .8C .5D .44.(全国2文)已知集合,,则( ) A .B .C .D .5.(全国3理)已知集合,,则( ) A . B . C .D . 6.(全国3文)已知集合,,则( )A .B .C .D .复数1.(全国1文理)设,则( ) A . B . C . D2.(全国2理)( ) A . B .C .D .3.(全国2文)( ) A . B . C . D . 4.(全国3文理)( )A .B .C .D .平面向量1.(全国1文理)在中,为边上的中线,为的中点,则( )A .B .C .D .2.(全国2文理)已知向量,满足,,则( ) A .4 B .3 C .2 D .03.(全国3文理)已知向量,,.若,则________.{}220A x x x =-->{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->U }{}{|1|2x x x x ≤-≥U (){}223A x y xy x y =+∈∈Z Z ,≤,,A {}1,3,5,7A ={}2,3,4,5B =A B =I {}3{}5{}3,5{}1,2,3,4,5,7{}|10A x x =-≥{}012B =,,A B =I {}0{}1{}12,{}012,,{|10}A x x =-≥{0,1,2}B =A B =I {0}{1}{1,2}{0,1,2}1i2i 1i z -=++||z =012112i12i +=-43i 55--43i 55-+34i 55--34i 55-+()i 23i +=32i -32i +32i --32i -+()()1i 2i +-=3i --3i -+3i -3i +ABC △AD BC E AD EB =u u u r3144AB AC -u u u r u u u r 1344AB AC -u u u r u u u r 3144AB AC +u u u r u u u r 1344AB AC +u u ur u u u r a b ||1=a 1⋅=-a b (2)⋅-=a a b ()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=函数1.(全国1理)已知函数.若g (x )存在2个零点,则a 的取值范围是( ) A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)2.(全国1文)设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞, 3.(全国1文)已知函数()()22log f x x a =+,若()31f =,则a =________.4.(全国2文理)已知是定义域为的奇函数,满足.若,则( )A .B .0C .2D .50 5.(全国3理)设,,则( )A .B .C .D . 6.(全国3文)下列函数中,其图像与函数的图像关于直线对称的是( ) A .B .C .D .7.(全国3文)已知函数,,则________.导数1.(全国1文理)设函数.若为奇函数,则曲线在点处的切线方程为( )A .B .C .D .2.(全国2理)曲线在点处的切线方程为__________. 3.(全国2文)曲线在点处的切线方程为__________. 4.(全国2文理)函数的图像大致为( )5.(全国3文理)函数的图像大致为( )e 0()ln 0x xf x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab +<<0ab a b <<+ln y x =1x =ln(1)y x =-ln(2)y x =-ln(1)y x =+ln(2)y x =+())1f x x =+()4f a =()f a -=32()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =2ln(1)y x =+(0,0)2ln y x =(1,0)()2e e x xf x x --=422y x x =-++6.(全国3理)曲线在点处的切线的斜率为,则________. 7.(全国1理)已知函数. (1)讨论的单调性;(2)若存在两个极值点,证明:. 8.(全国1文)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.9.(全国2理)已知函数.(1)若,证明:当时,; (2)若在只有一个零点,求.10.(全国2文)已知函数.(1)若,求的单调区间; (2)证明:只有一个零点.11.(全国3理)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.12.(全国3文)已知函数. (1)求曲线在点处的切线方程; (2)证明:当时,.三角函数1.(全国1理)已知函数,则的最小值是_____________. 2.(全国1文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为43.(全国1文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 2α=,则a b -=( )A .15BCD .14.(全国1文)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.5.(全国2文理)在中,,,,则( ) A . BCD .()1e xy ax =+()01,2-a =1()ln f x x a x x=-+()f x ()f x 12,x x ()()12122f x f x a x x -<--2()e x f x ax =-1a =0x ≥()1f x ≥()f x (0,)+∞a ()()32113f x x a x x =-++3a =()f x ()f x ()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a 21()exax x f x +-=()y f x =(0,1)-1a ≥()e 0f x +≥()2sin sin2f x x x =+()f x ABC △cos2C =1BC =5AC =AB =6.(全国2理)若在是减函数,则的最大值是( )A .B .C .D .7.(全国2文)若在是减函数,则的最大值是( )A .B .C .D .8.(全国2理)已知,,则__________.9.(全国2文)已知,则__________. 10.(全国3文理)若,则( )A .B .C .D .11.(全国3文理)的内角的对边分别为,,,若的面积为,则( ) 12(全国3理).函数在的零点个数为________.13.(全国3文)函数的最小正周期为( )A .B .C .D .14.(全国1理)在平面四边形中,,,,.(1)求;(2)若,求.数列1.(全国1理)记为等差数列的前项和.若,,则( ) A . B . C . D . 2.(全国1理)记为数列的前项和.若,则_____________. 3.(全国1文)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.4.(全国2文理)记为等差数列的前项和,已知,.(1)求的通项公式; (2)求,并求的最小值. 5.(全国3文理)等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.()cos sin f x x x =-[,]a a -a π4π23π4π()cos sin f x x x =-[0,]a a π4π23π4πsin cos 1αβ+=cos sin 0αβ+=sin()αβ+=5π1tan()45α-=tan α=1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,2tan ()1tan xf x x=+4π2ππ2πABCD 90ADC ∠=o45A ∠=o2AB =5BD =cos ADB∠DC =BC n S {}n a n 3243S S S =+12a ==5a 12-10-1012n S {}n a n 21n n S a =+6S =n S {}n a n 17a =-315S =-{}n a n S n S {}n a 15314a a a ==,{}n a n S {}n a n 63m S =m不等式1.(全国1文理)若,满足约束条件,则的最大值为_____________.2.(全国2文理)若满足约束条件 则的最大值为__________. 3.(全国3文)若变量满足约束条件则的最大值是________.立体几何1.(全国1文理)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )A .B .C .3D .2 2.(全国1理)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD3.(全国1文)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为() A . B.12π C.D .10π 4.(全国1文)在长方体1111ABCDA B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .C .D .5.(全国2理)在长方体中,,则异面直线与所成角的余弦值为( )A .B C D 6.(全国2理)已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.x y 220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩32z x y =+,x y 25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,z x y =+x y ,23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,13z x y =+M A N B M N 172521111ABCD A B C D -1AB BC ==1AA 1AD 1DB 15S SA SB 78SA SAB △7.(全国2文)在正方体中,为棱的中点,则异面直线与所成角的正切值为( )A . BCD8.(全国2文)已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________. 9.(全国3文理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )10.(全国3文理)设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( )A .B .C .D . 11.(全国1理)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面; (2)求与平面所成角的正弦值.12.(全国1文)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.1111ABCD A B C D -E 1CC AE CD 2S SA SB SA 30︒SAB △8A B C D ABC △D ABC -ABCD ,E F ,AD BC DF DFC △C P PF BF ⊥PEF ⊥ABFD DP ABFD13.(全国2理)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值. 14.(全国2文)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.15.(全国3理)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.16.(全国3文)如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.圆锥曲线1.(全国1理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=( )A .5B .6C .7D .8P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC M PA C --30︒PC PAM P ABC-AB BC ==4PA PB PC AC ====OAC PO ⊥ABC M BC 2MC MB =C POM ABCD »CD M »CDC D AMD ⊥BMC M ABC -MABMCD ABCD »CD M »CD C D AMD ⊥BMC AM P MC ∥PBD 23FM FN ⋅u u u u r u u u r2.(全国1理)已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若为直角三角形,则|MN |=( )A .B .3C .D .43.(全国1文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13 B .12 CD4.(全国1文)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.5.(全国2文理)双曲线,则其渐近线方程为()A . B. C . D .6.(全国2理)已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A. B . C . D . 7.(全国2文)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为( )A .B .CD8.(全国3文理)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A .B .C .D .9.(全国3理)设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )AB .2 CD10.(全国3理)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.11.(全国3文)已知双曲线,则点到的渐近线的距离为()AB .C .D .2213x y -=OMN △3222221(0,0)x y a b a b -=>>y =y =y =y =1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 231213141F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12-120x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C ()11M -,24C y x =:C k C A B 90AMB =︒∠k =22221(00)x y C a b a b-=>>:,(4,0)C2212.(全国1理)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:.13.(全国1文)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.14.(全国2文理)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程(2)求过点,且与的准线相切的圆的方程.15.(全国3理)知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.16.(全国3文)已知斜率为的直线与椭圆交于,两点.线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:.概率与统计1.(全国1文理)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上22:12x C y +=F F l C ,A B M (2,0)l x AM O OMA OMB ∠=∠24C y x =:F F (0)k k >l C A B ||8AB =l A B C k l 22143x y C +=:A B AB ()()10M m m >,12k <-F C P C FP FA FB ++=0u u u r u u u r u u u r FA u u u r FP u u u rFB u u u rk l 22143x y C +=:A B AB (1,)(0)M m m >12k <-F C P C FP FA FB ++=0u u u r u u u r u u u r2||||||FP FA FB =+u u u r u u u r u u urC .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(全国1理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 33.(全国1理)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)4.(全国2理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .B .C .D .5.(全国2文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A .B .C .D .6.(全国3文理)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A .B .C .D . 7.(全国3文)某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )A .0.7B .0.6C .0.4D .0.3 8.(全国1理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?9.(全国1文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:ABC △30723=+1121141151180.60.50.40.320x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣p X 2.4DX =()()46P X P X =<=p =)10(<<p p )(p f )(p f 0p 0p p X EX((2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)10.(全国2文理)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.11.(全国3文理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
2018年各地高考真题分类汇编-概率统计---学生版
概率统计1.(2018年全国一·文科3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018年全国二·文科5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .B .C .D .3.(2018年全国三·文科5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.74.(2018年全国三·文科14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.5.(2018年全国一·文科19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表0.60.50.40.3使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)6.(2018年全国二·文科18)(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;y y t t 1,2,,17L ˆ30.413.5y t =-+t 1,2,,7L ˆ9917.5y t =+(2)你认为用哪个模型得到的预测值更可靠?并说明理由.7.(2018年全国三·文科18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:m m m(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.8.(2018年北京·文科17)电影公司随机收集了电影的有关数据,经分类整理得到下表:22()()()()()n ad bc K a b c d a c b d -=++++2()0.0500.0100.0013.8416.63510.828P K k k ≥好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)9.(2018年天津·文科15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.学&科网(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地高考数学试题及解答分类汇编大全
(16概率、随机变量及其分布 正态分布)
一、选择题
1.(2018浙江)设0<
则当p 在(0,1)内增大时,A .D (ξ)减小 B .D (ξ)增大
C .
D (ξ)先减小后增大
D .D (ξ)先增大后减小
1..答案:D
解答:111
()0122222
p p E p x -=?
??+, 222
11113()()()()222222
p p D p p p x -=?+?+?
2
2111()422
p p p =-++=--+,
所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.
2.(2018全国新课标Ⅲ理)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )
A .0.7
B .0.6
C .0.4
D .0.3
2.答案:B
解答:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴2
1010 2.40p p -+=,解之得
120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.
二、填空
三、解答题
1.(
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,
6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.
1.【答案】(1)概率为0025.;(2)概率估计为035.;(3)142536D D D D D D ξξξξξξ>>=>>.
【解析】(1)由题知,样本中电影的总部数是140503002008005102000+++++=,
第四类电影中获得好评的电影部数是20002550⨯=..故所求概率为50
00252000
=..
(2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”.
故所求概率为()()()
()()()()()()11P AB AB P AB P AB P A P B P A P B +=+=-+-.
由题意知,()P A 估计为025.
,()P B 估计为02.. 故所求概率估计为0250807502035⨯+⨯=.
..... (3)142536D D D D D D ξξξξξξ>>=>>.
2.(2018天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 2.【答案】(1)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)①答案见解析;②.
【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2, 由于采用分层抽样的方法从中抽取7人,
因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)(1)随机变量X 的所有可能取值为0,1,2,3.
()()343
37
C C 0,1,2,3C k k
P X k k -⋅===.
随机变量X 的数学期望()0123353535357
E X =⨯
+⨯+⨯+⨯=. (2)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A B C =,且B 与C 互斥,
由(1)知,()()2P B P X ==,()()1P C P X ==,
故()()()627
()1P A P B C P X P X ===+==. 所以,事件A 发生的概率为67
.。