高二数学不等式

合集下载

高二数学不等式知识点

高二数学不等式知识点

高二数学不等式知识点高二数学不等式知识点11.不等式的定义:a-b>;0a>;b,a-b=0a=b,a-b<;0a①其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:a>;bba>;b,b>;ca>;c(传递性)(3)a>;ba+c>;b+c(c∈R)(4)c>;0时,a>;bac>;bcc<;0时,a>;bac运算性质有:(1)a>;b,c>;da+c>;b+d.(2)a>;b>;0,c>;d>;0ac>;bd.(3)a>;b>;0an>;bn(n∈N,n>;1)。

(4)a>;b>;0>;(n∈N,n>;1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高二数学不等式知识点2证明不等式的灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。

要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。

高二数学不等式的性质3

高二数学不等式的性质3
c d
例2 已知a > b > 0,c < 0,求证:
c c a b
.(教材P7例4 )
x y . xa yb
1 1 , a b
例3 已知a,b,x,y是正数,且
x > y.求证:
课堂练习: 1. 如果a > b > 0,c > d > 0,则下列 不等式中不正确的是 ( C ) a b A. a d > b c B. d c C. a + d > b + c D.ac > bd
复习 1、(1) 同向不等式: 两个或多个不等号方向相同的不等式 . (2) 异向不等式: 两个不等号方向相反的不等式 . 2、不等式的性质: 定理1: a > b b < a;b < a a > b. 定理2: a > b,b > c a > c.
复习 2、不等式的性质: 定理3:a > b a + c > b + c. 说明:定理3的逆命题也成立. 移项法则:a + b > c a > c b.
2、不等式的性质: 推论1 如果a > b > 0,且c > d > 0, 那么ac > bd.(相乘法则) 说明:(1) 上述证明是两次运用定理4, 再用定理2证出的; (2) 所有的字母都表示正数,如果仅有 a > b,c > d,就推不出ac > bd的gt; b > 0,且c > d > 0, 那么ac > bd.(相乘法则)
2、不等式的性质: 定理5:若a > b > 0,则 (n N且n > 1).

高二数学不等式知识点

高二数学不等式知识点

高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。

不等式的解是使得不等式成立的数的集合。

1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。

2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。

二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。

三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。

四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。

【高二学习指导】高二数学不等式的基本性质与不等式的解法

【高二学习指导】高二数学不等式的基本性质与不等式的解法

【高二学习指导】高二数学不等式的基本性质与不等式的解法什么叫做不等式用一个不等式符号连接两个整数形成的公式。

不等式基本性质① 如果x>y,则y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③ 如果x>y和Z是任意实数或整数,那么x+Z>y+Z;(加法原理,或各向同性不等式的可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤ 如果x>y,z>0,那么x÷z>y÷z;如果x>y且Z<0,则x÷Z<y÷Z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦ 如果x>y>0,M>n>0,那么XM>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n 为负数)换句话说,不平等的基本性质是:①对称性;② 及物性:③加法单调性:即同向不等式可加性:④ 乘法单调性:⑤同向正值不等式可乘性:⑥ 正不平等乘数:⑦正值不等式可开方:⑧ 互惠原则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。

不等式性质与等式性质的异同相同点:等式或不等式的两边同时加上(或减去)同一个数,等式或不等式仍然成立。

差异:当方程的两边乘以(或除以)同一个不是0的数字时,方程仍然成立。

不等式的两边同时乘以(或除以)同一个正数,不等式仍然成立。

不等式的两边同时乘以(或除以)相同的负数,不等式会改变方向。

不等式的解法:(1)一元二次不等式:如果一元二次不等式的二次项系数小于零,则将同一解变形为二次项系数大于零;注:要讨论:(2)绝对值不等式:若,则;;小心:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:(1)讨论绝对值内大于、等于或小于零的部分,以消除绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

高二数学基本不等式知识点

高二数学基本不等式知识点

高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。

不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。

2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。

但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。

3. 若不等式两边交换位置,不等号方向需要颠倒。

二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。

2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。

3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。

4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。

同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。

5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。

三、不等式的解集表示法当我们解不等式时,需要将解表示出来。

不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。

例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。

2. 图形表示法:我们可以通过图形的方式表示解集。

例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。

3. 集合表示法:用集合的形式表示解集。

例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。

四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。

高二数学不等关系与不等式

高二数学不等关系与不等式

的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找

高二数学必修5不等关系与不等式ppt课件.ppt

高二数学必修5不等关系与不等式ppt课件.ppt

在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
下课啦!!
Class is over, Thank you for your cooperation,goodbye
感谢各位领导的指导, 请多提宝贵意见!
定符号 确定大小
∴bm b 0∴bm b
am a
am a
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
回顾反思
(1)解决实际问题的常规步骤
实际问题
抽象、概括 刻画
数学问题
(2)本堂课建立的模型主要是
不等关系
,不等式的 证明方法 (作差法)
这个数学问题怎么解决?
分析:起初糖水的浓度为 b ,加入 m 克糖后的糖 a
水浓度为 b m ,只要证明 b m b 即可,怎么
am
am a
证呢?
这是一个不等式的证明问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
请大家欣赏下面的照片,说说你的感受?
横看成岭侧成峰,远近高低各不同
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
一.问题情境
实际生活中
长短
大小
轻重 高矮
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

高二数学上册知识点

高二数学上册知识点

一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a•b|=|a|•|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·[1]三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·三倍角公式:sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证[编辑本段]三角函数的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-t anαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ设a=(x,y),b=(x',y')。

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。

例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

高二上册数学不等式知识点

高二上册数学不等式知识点

高二上册数学不等式知识点数学不等式是高中数学中的一个重要内容,也是学习数学分析思维的重要一环。

本文将对高二上册数学不等式的知识点进行详细介绍。

一、不等式的定义和性质不等式是用不等号(<、>、≤、≥)连接的两个数或两个代数式之间的关系,通常用来表示两个数的大小关系。

不等式具有以下性质:1. 相等关系性质:对于相等的实数a和b,有a=b,则a≤b和a≥b成立。

2. 传递性:如果a>b且b>c,则有a>c。

3. 加法性质:对于任意实数a、b和不等式a>b,有a+c>b+c成立。

但是需要注意,如果不等号方向发生改变,则不等式方向也要改变,即a-c<b-c。

4. 乘法性质:对于任意实数a、b和不等式a>b,有ac>bc(注意c为正实数)。

5. 乘方性质:对于任意实数a、b和不等式a>b和n为正整数,有a^n>b^n。

二、一元一次不等式一元一次不等式是形如ax+b<0或ax+b>0的不等式,其中a和b为实数且a≠0。

解一元一次不等式的步骤如下:1. 将一元一次不等式化为形如ax<b或ax>b的形式。

2. 根据a的正负性来判断不等号的方向。

如果a>0,则不等号为“<”,否则为“>”。

3. 解不等式:根据不等号的方向,找到x的取值范围。

三、一元一次不等式组一元一次不等式组是多个一元一次不等式的集合,形如{ax+b<0, cx+d>0}。

其中a、b、c、d为实数,且a、c≠0。

解一元一次不等式组的步骤如下:1. 解每个不等式得到不等式的解集。

2. 将每个不等式的解集取交集得到不等式组的解集。

四、二元一次不等式二元一次不等式是形如ax+by<c或ax+by>c的不等式,其中a、b、c为实数且a、b不全为0。

解二元一次不等式的步骤如下:1. 将二元一次不等式化为一般式形式,即将不等式两边移项,并整理得到ax+by-d=0或ax+by+d=0。

高中高二数学知识点不等式证明方法

高中高二数学知识点不等式证明方法

高中高二数学知识点不等式证明方法学习高中频道为各位同学整理了高二数学知识点不等式证明方法,供大伙儿参考学习。

更多各科知识点请关注新查字典数学网高中频道。

一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)假如a0,那么(3)|ab|=|a||b|.(5)|a|-|b||ab||a|+|b|.(6)|a1+a2++an||a1|+|a2|++|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|0;(a-b)20(a、bR)②a2+b22ab(a、bR,当且仅当a=b时取=号)2.不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

用比较法证明不等式的步骤是:作差变形判定符号.(2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已判定为正确时,从而确信原不等式成立,这种证明不等式的方法叫做分析法.要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

人教版数学高二-备课资料四种简单不等式的解法

人教版数学高二-备课资料四种简单不等式的解法

四种简单不等式的解法四种简单不等式,即含绝对值的不等式、一元二次不等式、简单一元高次不等式、简单分式不等式的解法,是后续课程基本运算的重要解题工具,掌握这些基本不等式的解法十分重要.Ⅰ、含绝对值的不等式解法解含有绝对值不等式基本思想是:−−−−−→去掉绝对值符号转化与化归思想不含绝对值不等式. 1.|ax +b|<c (c >0) 形不等式解法是:先将不等式化为-c <ax +b <c ,再由不等式的有关性质求出x 的范围,即得出原不等式的解集.也可以转化为不等式组,.ax b c ax b c +<⎧⎨+>-⎩求解.|ax +b|>c (c >0)形不等式解法是:先将不等式化为ax +b >c 或ax +b <-c ,再分别求出x 的范围,从而求出原不等式的解集.2.含有多个绝对值不等式的解法有:⑴平方法:对于两边都含有“单项”绝对值的不等式,利用| x |2= x 2可在两边脱去绝对值符号求解,这样解题要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.⑵零点分段讨论法:即求出每一个绝对值为零的零点,再把这些零点标在数轴上,则这些零点把数轴分成若干段,再把每一段内分别去掉绝对值符号,组成若干个不等式组,取其并集,就是原不等式的解集.这样解题需要注意的是,在分段时,分界点(即零点)必须在某一段内,而不能漏掉.⑶⑷Ⅱ、一元二次不等式的解法1.解一元二次不等式一般步骤是:⑴先将不等式化为标准式(a>0):ax2+bx+c>0 ……㈠或;ax2+bx+c <0 ……㈡;⑵解方程ax2+bx+c = 0,并确定判别式△= b2-4ac的符号:①当△>0时,解出二次方程的两根x1、x2且x1<x2,则不等式㈠的解在“两根之外”,即“大于大根或小于小根”,写成解集形式为:{x | x<x1,或x>x2};不等式㈡的解在“两根之间”,即“大于小根且小于大根”,写成解集形式为:{x | x1<x<x2}.②当△= 0时,解得两等根x1= x2=-ab2,则不等式㈠的解集为{x | x ≠-ab2,x∈R};不等式㈡的解集为φ.③当△<0时,二次方程的无实根,则等式㈠的解集为R;不等式㈡的解集为φ.需要特别说明的是:若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集(在两根之内或两根之外).2.含参数一元二次不等式的解法解含参数一元二次不等式(x-a)(x-b)>0 (或<0)时,应根据a<b、a = b、a>b三种情况分类讨论.3.一元二次不等式解法的数学思想一元二次不等式的解法充分运用了“函数与方程”、“数形结合”及“化归”的数学思想.一元二次程ax2+bx+c = 0的根就是使一元二次函数y = ax2+bx +c的函数值为0时对应的x的值,一元二次不等式ax2+bx+c>0或ax2+bx+c <0的解集就是二次函数大于0或小于0时x 的取值范围.因此,解一元二次不等式时,一般要画出与之对应的二次函数的图象.Ⅲ、简单一元高次不等式的解法一元高次不等式(x -a 1)(x -a 2)…(x -a n )>0(或<0),其中a 1<a 2<…<a n .把a 1、a 2、…、a n 按大小顺序标在数轴上,则不等式的解的区域如下图所示:Ⅳ、简单分式不等式的解法 解简单分式不等式ax b cx d++>0(或<0),除了直接对分子、分母进行符号分析外,还常转化为解一元二次不等式.一般地,ax b cx d ++>0(或<0)⇔( ax +b)(cx +d)>0(或<0),但应注意的是ax b cx d ++≥0⇔()()0,0.ax b cx d cx d ++≥⎧⎨+≠⎩,即cx +d ≠0不能忽略.二、几点注意事项1.根据绝对值定义,将| x |<c 或| x |>c (c >0)转化为两个不等式组,这两个不等式组的关系是“或”而不是“且”,因而原不等式的解集是这两个不等式组解的并集,而不是交集.2.| x |<c 和| x |>c (c >0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c >0时导出的,当c ≤0时,需要另行讨论,不能使用该公式.- - - - -a 1 a 2 a 3 a 1n - a n (n 为奇数) x + + - - - -- - - - a 1 a 2 a 3 a 1n - a n (n 为偶数) x+ - + + -3.解一元二次不等式时,应当考虑相应的一元二次方程,其中二次项系数a的正或负影响着不等式解集的形式,判别式△关系到不等式对应的方程是否有解,而两根x1、x2的大小关系到解集的最后顺序.2.二次不等式的解集有两种特殊情况,即解集为 和R,要分清和理解各种不同情况时所对应的方程或函数图象的含义.3.当二次项系数含有参数时,不能忽略二次项系数为零的特殊情形,解含有参数的不等式时,要合理分类,确保不重不漏.4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.5.由于一元二次不等式的解集与相应的一元二次方程的两根有关,当两根中含有字母时,要以两根大小为标准对常数字母进行分类讨论,在讨论时要合理分类,确保不重不漏.6.解简单分式不等式时,一是要注意在转化为整式不等式时,转化前与转化后必须保持相同的解集,二是要注意转化后两个因式中的x的系数的正、负问题.7.用根轴法解一元高次不等式时,必须将未知数x的系数变为正数.。

高二数学第五章 不等式知识精讲 人教版

高二数学第五章 不等式知识精讲 人教版

高二数学第五章 不等式知识精讲 人教版一. 本周教学内容:第五章:不等式《代数》第五章“不等式”§5.4不等式的解法。

主要包括一元一次,一元二次不等式的解法,分式不等式的解法,无理不等式的解法,指数不等式、对数不等式、三角不等式的解法,含绝对值不等式解法。

附考前模拟试题二. 重点、难点:本周我们在复习一元一次不等式,一元二次不等式的解法的基础上,来学习其他某些类型的不等式的解法。

对于这些类型的不等式,我们可以利用不等式的性质对其变形(同解变形),使之转化为解一元一次或一元二次不等式。

这就是所谓的化繁为简,化生疏为熟悉的转化(或化归)思想。

下面我们就来学习各种不等式的解法。

1. 一元一次不等式的解法:ax b a x b a a b b x R a x b a >⇒>>=≥<∈<<⎧⎨⎪⎪⎩⎪⎪00000时,时,,无解;,时,2. 一元二次不等式的解法:ax bx c a x x x x x x x R x b a x R21212000020++>>⇒><><=∈≠-<∈⎧⎨⎪⎪⎩⎪⎪()()设时,或时,且时,∆∆∆ ax bx c a x x x x x x x 212120000++<>><<<=∈∅<0∈∅⎧⎨⎪⎩⎪()()设时,时,时,∆∆∆ 注:是方程的两根x x ax bx c 1220,++=3. 高次不等式的解法:把不等式的一边化为0,另一边分解因式,化为各个因式的积的形式,再利用数轴,通过因式符号的讨论得出不等式的解集。

4. 分式不等式的解法:()把不等式化为或的形式,再利用分式的值的性质,转化为整式不等式求解:(或)10000f x g x f x g x f x g x ()()()()()()()><⋅><()若不等式化为或的形式,需要注意在转化为整式不等式的时候要使分母,即2000f x g x ()()()≥≤≠f xg x f x g x g x ()()()()()≥⇔≥≠⎧⎨⎩000 f x g x f x g x g x ()()()()()≤⇔≤≠⎧⎨⎩000 5. 无理不等式的解法:()100f x g x f x g x f x g x ()()()()()()>⇔≥≥>⎧⎨⎪⎩⎪()或200002f x g x f x g x f x g x f x g x ()()()()()[()]()()>⇔≥≥>⎧⎨⎪⎩⎪≥<⎧⎨⎩ ()3002f x g x f x g x f x g x ()()()()()[()]<⇔≥≥<⎧⎨⎪⎩⎪ 6. 指数不等式、对数不等式、三角不等式的解法:这三类不等式的变形依据是这几类函数的单调性,通过利用函数的单调性,能把以上几类超越不等式转化为代数不等式。

高二文科数学第一学期期末复习《不等式关系及不等式》(含答案)

高二文科数学第一学期期末复习《不等式关系及不等式》(含答案)

高二文科数学第一学期期末复习《不等式关系及不等式》一、 知识点回顾: 考点一:不等式的解法例1:不等式2320x x -+>的解集是 A .{}21x x x <->-或 B .{}12x x x <>或C .{}12x x <<D .{}21x x -<<-练习1: 不等式102x x +≥-的解集为 A .{|12}x x -≤≤B .{|12}x x -≤<C .{|1x x ≤-或2}x ≥D .{|1x x ≤-或2}x >练习2:函数y 的定义域为 .练习3:若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a +b 等于( )A .-18B .8C .-13D .1练习4:已知不等式2230x x --<的解集为A ,不等式2450x x +-<的解集为B . (1)求A B ;(2)若不等式20x ax b ++<的解集是AB ,求20ax x b ++<的解集.练习5:设已知条件2:8200p x x -->;:q 1x a >+或1x a <-;若q ⌝是p ⌝的充分而不必要条件,求正实数a 的取值范围.考点二:二元一次不等式组和线性规划问题例2:若 226x y x y ≥⎧⎪≥⎨⎪+≤⎩,则目标函数3z x y =+的取值范围是 .练习6:如果实数,x y 满足:102010x y x y x -+≤⎧⎪+-≤⎨⎪+≥⎩,则目标函数4z x y =+的最大值为A .2B .3C .27D .4练习7:221x y x y +--+()()0≥表示的平面区域是练习8:某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.那么通过合理安排生产计划,每天生产的甲、乙两种产品分别多少桶时,公司共可获得的最大利润?并求出该最大利润.★例3:已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨≥⎪⎩,点O 为坐标原点,那么|PO |的最小值等于 ,最大值等于 .★练习9:若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx -1的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1)D .[1,+∞) 考点三:基本不等式及应用重要不等式:对于任意实数,a b ,有22____2a b ab +,当且仅当________时,等号成立.基本不等式:设,(0,)a b ∈+∞,则2a b+________时,不等式取等号. 例4:已知t >0,则函数y =t 2-4t +1t的最小值为练习10:在下列各函数中,最小值等于2的函数是( )A .y =x +1xB .y =cos x +1cos x (0<x <π2)C .y =x 2+3x 2+2D .y =e x +4e x -2练习11:已知正项等比数列{}n a 满足:7652a a a =+,如果存在两项m n a a 和14a ,则14m n+的最小值为 A .32 B .53 C .256D .不存在练习12:国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54000美元. (Ⅰ)写出钻石的价值y 关于钻石重量x 的函数关系式;(Ⅱ)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉,试证明:当n m =时,价值损失的百分率最大.(注:价值损失的百分率=100%-⨯原有价值现有价值原有价值;在切割过程中的重量损耗忽略不计)★练习13:证明不等式:a ,b ,c ∈R ,a 4+b 4+c 4≥abc (a +b +c ).二、 基础自测: 1.如果1a b <<-,则有A .2211b a b a <<< B .2211a b b a <<< C .2211b a a b <<<D .2211a b a b <<<2.不等式组300x x y x y ≤⎧⎪+≥⎨⎪-≥⎩表示的平面区域的面积等于A .29 B .9 C .227 D .183.下列二元一次不等式组可用来表示图中阴影部分表示的平面区域的是A .10220x y x y +-≥⎧⎨-+≥⎩B .10220x y x y +-≤⎧⎨-+≤⎩C .10220x y x y +-≥⎧⎨-+≤⎩D .10220x y x y +-≤⎧⎨-+≥⎩4. 若A =(x +3)(x +7),B =(x +4)(x +6),则A 、B 的大小关系为________.5.已知命题p :44x a -<-<,命题q :230x x --<()(),且q 是p 的充分而不必要条件,求a 的取值范围.高二文科数学第一学期期末复习《不等式关系及不等式》答案例1、B 练1、D 2、[-1,6] 3、C练4、解:(1)解不等式2230x x --<,得{}|13A x x =-<<……2分解不等式2450x x +-<,得{}|51B x x =-<< ……4分{}|53A B x x ∴=-<< ……6分(2)由20x ax b ++<的解集是(-5,3) ∴2550930a b a b -+=⎧⎨++=⎩,解得215a b =⎧⎨=-⎩……8分22150x x ∴+-< ,-3<x <25, ……10分故不等式解集为5|32x x ⎧⎫-<<⎨⎬⎩⎭……12分 练5、解: 由020x 8x 2>-- 解得:10x >或2x -< ……3分又因:q a 1x +>或a 1x -<∴ p ⌝:10x 2≤≤-, q ⌝:a 1x a 1+≤≤- ……6分 q ⌝是p ⌝的充分不必要条件,∴⎪⎩⎪⎨⎧-≥-≤+>2a 110a 10a ……10分解得: 3a 0≤<所以所求a 的取值范围是(]3,0. ……12分例2、[]14,8 练6、C 练7、A练8、解:设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元, 则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y , ………… 6分在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0, …………10分 平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大, …………12分此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司生产甲产品4桶乙产品4桶时可获得的最大利润是2 800元. …………14分 例3、10;2 练9、B例4、-2 练10、D 练11、A练12、解:(Ⅰ)由题意可设价值与重量的关系式为:2kx y = ………… 2分 ∵ 3克拉的价值是54000美元∴ 23k 54000⋅=解得:6000k = ………… 4分 ∴ 2x 6000y ⋅=答:此钻石的价值与重量的函数关系式为2x 6000y ⋅=. …… 6分(Ⅱ)若两颗钻石的重量为m 、n 克拉 则原有价值是()2n m 6000+,现有价值是22n 6000m 6000+ ………… 8分 价值损失的百分率=()()%100n m 6000n 6000m 6000n m 60002222⨯+--+ ()()21n m 2n m 2%100n m mn 2222=+⎪⎭⎫ ⎝⎛+⨯≤⨯+= ………… 11分 当且仅当n m =时取等号答:当n m =时,价值损失的百分率最大. ………… 14分练习13:证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2) 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc .∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ), 即a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). ∴a 4+b 4+c 4≥abc (a +b +c ).二、基础自测:1、A2、B3、A4、A<B5. 解: 设q ,p 表示的范围为集合A ,B ,则A =(2,3),B =(a -4,a +4). ………… 4分 由于q 是p 的充分而不必要条件,则有A 是B 的真子集, ………… 6分即⎩⎪⎨⎪⎧a -4≤2,a +4>3或 ⎩⎪⎨⎪⎧a -4<2,a +4≥3,………… 10分解得-1≤a ≤6. ………… 12分。

高二数学不等式的概念与性质(新编教材)

高二数学不等式的概念与性质(新编教材)
双向性:①a b 0 a b;a b 0 a b;a b 0 a b.
②a b b a. ③a b a c b c.
3、比较两个实数大小的主要方法
(1)作差比较法:作差——变形——定号
a b ab 0
a b ab 0 ab ab0
(2)作商比较法: 作商——变形——与1比较大小. 大多用于比较幂指式的大小.
a、b R :
a b a 1 b
a b a 1 b
a b a 1 b
;少儿美术学习网 /oumeisijiaoyu/ 少儿美术学习网 ;
拜散骑常侍 又命河内温县埋藏赵伦战死士卒万四千馀人 公宜自选其才 字宏度 事起仓卒 及其党十数人 三圣相承 又离珉妻 相要出新亭饮宴 赞曰 导答曰 抑惟自取 太元初 莫不悦附 委命纳质 依齐王功臣格 晞杖节斩之 督护河东 又以顷兴事多由殿省 将听还屯 停其移葬 及冏诛 而潜 制道子也 以谄媚自达 营缮武牢城 假节 固辞不起 君子也 司徒王戎表含曾为大臣 简文帝为抚军 曜分兵逆于河北 故时雍穆唐 秀之威权振于朝廷 崎岖汾晋 阻兵据州 又尝与导书手诏 猰窳千群 吾蒙先帝厚顾 刘胤 陵汨五常 即便为庙 封汝南王 河间王颙表颖宜为储副 虽由时主 彦辅道 韵平淡 以臣愚短 妖眚并见 纳既闲居 及臣凡劣 而文王日昃不暇食 琨实为隆 感激发病 例拜为郎中 不阿贵贱 魂灵安于后土 辅绳之 一依琅邪穆太妃故事 侃曰 虽外相推崇 雁门乌丸复反 总摄百揆 往践厥职 数年之间 相寻而至 越遂出镇许昌 乃迁愔都督徐兖青幽扬州之晋陵诸军事 字 子回 臣谓今梓宫未反 敕使尽规 作器服 欲夺其兵权 允阴知之 遵养时晦之辰也 清高冲俭 王阐等诸军 王应嫂父也 豫以援京师 宜总二南之任 屡有逃亡者 督中外诸军事 以军礼发遣 槊折 字宗舒 以功补过

高二数学不等式的概念与性质

高二数学不等式的概念与性质
小结: 不等式的概念与性质
【知识回顾】
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式. 2、不等式的性质 单向性:①a b, b c a c;
②a b, c d a c b d; ③a b, c 0 ac bc; ④a b, c 0 ac bc; ⑤a b 0, c d 0 ac bd ; ⑥a b 0, n N * a n b n ; ⑦a b 0, n N * n a n b .
例5、已知a>b>0,C<d<0,e<0, 求证:
e e ac bd
在证明不等式时要依据不等例6、已知 1 a 0, A 1 a 2 , B 1 a 2 , C 1 , D 1 则
2 1 a 1 a
A、A<B<C<D; C、D<B<A<C;
双向性: ①a b 0 a b; a b 0 a b; a b 0 a b.
②a b b a. ③a b a c b c.
3、比较两个实数大小的主要方法
(1)作差比较法:作差——变形——定号
a b a b 0 a b a b 0 a b a b 0
(2)作商比较法: 作商——变形——与1比较大小. 大多用于比较幂指式的大小.
a、b R : a a b 1 b a a b 1 b a a b 1 b

例1、在三角形ABC中,求A-B的取值范围. 例2、比较两个实数的大小
1 * 与2 n ( n N ) n 1 n
例3、比较x2+y2与xy+x+y-1的大小. 练习:已知:x y z 0.

高二数学不等式的概念 不等式的性质 不等式的证明知识精讲 人教版

高二数学不等式的概念 不等式的性质 不等式的证明知识精讲 人教版

高二数学不等式的概念不等式的性质不等式的证明知识精讲人教版一. 本周教学内容:《代数》(下册)第五章“不等式”§5.1 不等式的概念§5.2 不等式的性质§5.3 不等式的证明二. 重点、难点:本周我们将来研究数量之间的不等关系,这种不等关系是通过不等式体现的。

在现实生活中的数量关系中,不等是绝对的,而相等则是相对的。

因此研究不等式就显得尤为重要。

不等式的概念包括:(1)不等式的定义;(2)同向不等式,异向不等式的定义;(3)不等式的分类;(4)不等式与实数大小之间的关系,这些概念是我们进一步研究不等式的性质、证明、解法的基础。

不等式的性质有很多,但基本的性质可以概括为五个定理及三个推论,不妨将它们分别称之为对称性、传递性、加法单调性、乘法单调性、开方法则。

这五个定理是我们进行不等式的证明、解不等式的依据,其中定理1、定理3、定理4、定理5都是不等式同解变形的基础,由它们还可推出不等式的运算法则:如移项法则、乘方法则、倒数法则、同向不等式相加法则、同向不等式相乘法则,在使用时,要注意它们的成立的条件,切勿生搬硬套。

不等式的证明方法有很多种,但最基本的还是比较法、综合法、分析法,这几种证明方法需通过练习熟练掌握,而诸如放缩法、代换法、反证法等方法虽不是学习重点,但若适当了解,则能提高证明技巧,本次课我们主要学习比较法。

下面将重点知识方法介绍如下:1. 不等式的定义:用不等号连接两个算式,这样所得的式子叫做不等式。

如a2+1>2a,3x-5<2x2,| a |<0,(a-b)2≥0,……都是不等式。

2. 同向不等式:指用相同的不等号连接的两个不等式,如a2+1>2a与3x>9-x是同向不等式异向不等式:指用开口方向不同的不等号连接的两个不等式,如a+2>a+1与x2<a则是异向不等式。

3. 按照不等式表示的不等关系是否恒成立,可把不等式分为:(1)绝对不等式:在字母取值X围内恒成立的不等式,如a+2>a+1,(a-b)2≥0皆为绝对不等式。

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
例4 已知a,b是实数,求证 a b a b . 1 ab 1 a 1 b
证明: 0 a b a b
ab

1
1
1
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
解 : 可以把上述事实抽象成如下不等式问题:

a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cdb cd
d
d d
abcd dac cd
把 以 上 四 个 不 等 式 相 加得
abcd a b c d abcd abd bca cbd dac
abc 故 a2b2 b2c2 c2a2 abc
abc
三、反证法与放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
证明: 假设a,b,c不全是正数,即其中至少有一个不是正数, 不妨先设a 0,下面分a 0和a 0两种情况讨论. (1)如果a 0,则abc 0,与abc 0矛盾, a 0不可能. (2)如果a 0,那么由abc 0可得bc 0, 又a b c 0, b c a 0,于是ab bc ca a(b c) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0,同理可证b 0,c 0, 所以原命题成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金冠网上开户
[单选,A1型题]原发性醛固酮增多症的高血压的特点是()A.以收缩压升高为主B.以舒张压升高为主C.收缩压和舒张压均升高明显D.收缩压和舒张压增高均不明显E.收缩压升高,舒张压正常 [单选,A1型题]中药说明书中所列的【主要成分】系指处方中所含的()A.有效部位B.主要药味C.有效成分D.有效部位或有效成分E.主要药味、有效部位或有效成分 [单选]船舶对水航程SL,对地航程SG,船速VE,航时t,若SG<SL<VEt,则船舶航行在()情况下。A.顺风顺流B.顶风顶流C.顺风顶流D.顶风顺流 [单选,A1型题]患者男,60岁。下肢静脉曲张,其Penhes试验阳性为下列哪种疾病()A.下肢深静脉瓣膜功能不全B.单纯性下肢静脉曲张C.动静脉瘘D.深静脉血栓形成后遗症E.下肢湿疹 [多选]下列哪些因素影响航空客运市场的需求()。A.经济发展水平B.人口的数量及结构C.人均收入水平的高低D.运输业的发展水平E.消费者偏好 [填空题]东方电机厂QFSN—300—2型汽轮发电机氢气纯度()报警,机内氢压力()报警,氢侧油泵出口压力低于()备用泵投入,空侧油泵出口压力低于()备用泵投入。 [单选,A1型题]创伤评估中的首要任务是()A.评估患者的生命状况B.评估患者的心理稳定性C.评估患者的应激耐受性D.评估患者的创伤经历E.评估患者的创伤反应 [填空题]高度超过40m的高层建筑物一般采用()。 [单选]携带进境的动物、动物产品和其他检疫物,经检验检疫不合格又无有效办法处理或经除害处理后不合格的,作限期退回或销毁处理,并由口岸检验检疫机构签发()。A.《携带物检疫处理证》B.《出人境人员携带物检疫处理证》C.《携带物留检/处理凭证》D.《出入境人员携带物留检/处理 [单选,A1型题]生活制度对儿童主要影响作用,不含有()A.保障儿童生理及生活的需要B.防止疲劳C.增强机体抵抗力D.培养儿童良好的性格E.促进生长发育 [单选]以下有关混凝土的碳化说法错误的是()。A.混凝土的碳化会减弱对钢筋的保护作用B.混凝土的碳化会增加混凝土的收缩C.混凝土的碳化会引起混凝土的微细裂缝D.混凝土的碳化有弊无利 [单选,A1型题]下列哪个方剂中重用生姜()A.大建中汤B.吴茱萸汤C.健脾丸D.实脾散E.固冲汤 [单选]肺结核的分期包括()A.肺结核不分期B.进展期、好转期、稳定期、痊愈期C.进展期和好转期D.急性发作期和缓解期E.进展期、好转期和稳定期 [单选]应用以后可能出现牙龈反应的药物是()A.卡马西平B.苯妥英钠C.山莨菪碱D.氯硝西泮E.七叶莲 [单选]最适宜检测腹主动脉周围淋巴结的体位是A.仰卧位B.左侧卧位C.右侧卧位D.俯卧位E.坐位 [单选]港口与航道工程技术准备期项目经理的技术管理工作中不妥的是()。A.组织熟悉图纸,理解设计意图B.主持编写施工组织设计C.抓好技术交底D.审查并按程序上报施工组织设计 [填空题]出窑废气中NOX浓度的高低主要取决于窑内气体中()、()及气体在高温区内()三个因素。 [名词解释]编制日期 [单选]阻塞性肺气肿的治疗目的是()A.止咳平喘B.改善呼吸功能C.控制感染D.使桶状胸消失E.防止发生肺心病 [单选]英版海图图式中,缩写“SD”是指()。A.礁石、浅滩等的存在有疑问B.深度可能小于已注明的水深注记C.对危险物的位置有怀疑D.危险物的位置未经精确测量 [单选,A2型题,A1/A2型题]下列关于氰化高铁血红蛋白测定原理中正确的是()A.血红蛋白与氰结合成稳定的棕褐色复合物-氰化高铁血红蛋白B.在规定的波长和液层厚度的条件下,具有一定的消光系数C.血红蛋白可被亚铁氯化钾氧化成高铁血红蛋白D.测定540nm处吸光度,乘以367.7,即为样本的 [单选]慢性胃炎伴哪项改变属癌前病变()A.浅表性胃炎伴肠腺化生B.浅表性胃炎伴脐状突起C.萎缩性胃炎伴肠腺化生D.萎缩性胃炎伴假性幽门腺化生E.萎缩性胃炎伴重度不典型增生 [单选,A2型题,A1/A2型题]中枢神经系统白血病最重要的脑脊液异常().A.压力&gt;0.02kPaB.白细胞数&gt;0.01&times;109/LC.涂片见到白血L病细胞D.蛋白&gt;0.45g/L或潘氏试验阳性E.以上都不正确 [填空题]在计算地震作用时,建筑物重力荷载代表值为()之和。 [填空题]乙炔装置AR418分析仪的测量池温度是()。 [多选]下列关于可控成本与不可控成本的说法中,不正确的有()。A、直接成本一定是可控成本B、区分可控成本和不可控成本,并不需要考虑成本发生的时间范围C、最基层单位无法控制任何间接成本D、广告费、科研开发费属于可控成本 [填空题]电力机车蓄电池用于控制电路的供电以及()打风用电等。 [填空题]H2S在空气中含有()时能使人致命。 [单选,A2型题,A1/A2型题]以下有关自杀的概念的描述不正确的是()A.自杀是&quot;有意或者故意伤害自己生命的行动&quot;B.自杀者把自杀行动看作是解决某种问题的最好办法C.自杀是有意的自我伤害导致的死亡D.广义的自杀论者认为自杀指有害生命的一切人类行为E.广义的自杀论者认为意 [单选]下列关于确定调查人员的说法有误的是()。A、要选派政策水平高、熟悉业务、组织协调能力强的人担任调查负责人B、要根据案件的具体情况、复杂程度来确定调查人员的数量C、特别重大案件,要请上级部门或其他单位的同志参与调查D、与被调查人有亲友关系或与案件有利害关系的办 [单选]分离结合态与游离态放射性标记抗原不完全时会增加()A.特异性结合量B.非特异性结合量C.敏感度D.精确度E.反应速率 [单选]某工程3月1日,施工单位提交竣工报告,3月5日建设单位组织竣工验收,3月6日竣工验收合格,3月11日质量监督站报送质量监督报告。则建设单位至迟应当在()前将竣工验收报告和消防准用文件上报公安消防机构备案。A.3月11日B.3月16日C.3月21日D.4月6日 [单选]做功的结果是引起()。A.物体能量的改变或转化B.能量不变C.速度变化D.加速度变化 [单选,A1型题]上尿路结石形成的因素与下列哪项无关()A.饮食结构中肉类过多B.长期卧床不起C.尿中枸橼酸增多D.肾小管酸中毒E.饮食结构中纤维素过少 [问答题]当母线停电,并伴随因故障引起的爆炸、火光等异常现象时,应如何处理? [单选]脉压增大常见于A.主动脉瓣关闭不全B.缩窄性心包炎C.心包积液D.肺心病E.心肌炎 [单选,A型题]患者男性,48岁,因突然发作心悸半小时就诊,听诊心率约为150次/分,急查心电图如图3-16-1所示,最可能的诊断是()。A.室上性心动过速伴室内差异性传导B.心房颤动合并室内差异性传导C.预激综合征合并心房颤动D.室性心动过速E.预激综合征合并心房扑动 [单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [单选]抗体特异性鉴定常采用()A.对流免疫电泳和区带电泳B.SDS-聚丙烯酰胺凝胶电泳法C.火箭电泳和血凝法D.凝胶电泳和血凝法E.双向免疫扩散法 [单选]队列研究中,队列的成员必须()A.有相同的暴露史B.有相同性别C.同年出生D.经历过同样的时期E.居住在同一地区
Байду номын сангаас
相关文档
最新文档