高三二轮复习--函数与方程的思想方法

合集下载

2012届高三数学第二轮复习《函数方程思想》专题一

2012届高三数学第二轮复习《函数方程思想》专题一

2012届高三数学第二轮复习【函数、方程思想】专题一1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或运用方程的性质去分析、转化问题,使问题获得解决。

题型一 函数与方程思想在求最值或参数范围中的应用【例题1】若关于x 的方程22x kx x =+有四个不同的实数解,则实数k 的取值范围为 ; A .(0,1) B .(12,1) C .(12,+∞) D .(1,+∞)题型二 函数与方程思想在方程问题中的应用【例题2】若cos 2sin αα+=tan α= .题型三 函数与方程思想在不等式问题中的应用【例题3】已知[1,1]a ∈-,则2(4)420x a x a +-+->的解为 ;A .3x >或2x <B .2x >或1x <C .3x >或1x <D .13x <<题型四 函数与方程思想在数列问题中的应用【例题4】已知{n a }为等差数列,{n b }各项为正数的等比数列(q ≠1),11a b =且1111a b =,则6a 与6b 的关系是 .1.已知1230x x x >>>,则211log (22),x a x +=222log (22),x b x +=233log (22)x c x +=的 大小关系是 ( )A. b a c <<B. a b c >>C. a b c <<D. c a b <<2.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 ( )(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2)3.32()f x ax bx cx d =+++的图象如图,则 ( )A .(),0b ∈-∞B .()0,1b ∈C .(1,2)b ∈D .(2,)b ∈+∞4.方程m +1-x =x 有解,则m 的最大值为 ( )A .1B .0C .-1D .-2 5.已知函数(),(0,)m f x x x x=+∈+∞,若不等式()4f x <的解集是空集,则( ) A .4m ≥ B .2m ≥ C .4m ≤ D .2m ≤6.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1)]([+=x f f y 的零点个数是 ( )(A )4 (B )3 (C )2 (D )17.若12sin a x x a x ≤≤对任意的π02x ⎡⎤∈⎢⎥⎣⎦,都成立,则21a a -的最小值为 . 8.ABC ∆的三边,,a b c 满足8b c +=,a bc a 212520--+=,试确定ABC ∆的形状.9.已知函数f (x )=xa 11- (a >0,x >0),若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ), 求a 的取值范围.2011届高三数学第二轮复习【函数方程】解答【例题1】构造函数 令1,0()1,0x xf x x x >⎧==⎨-<⎩,()(2)g x kx x =+ 【例题2】2.【例题3】解答:不等式的左端看成a 的一次函数,2()(2)(44)f a x a x x =-+-+由22(1)560,(1)3201f x x f x x x -=-+>=-+>⇒<或3x >,正确答案为C.【例题4】66a b >1. 2.D 3. A. 5.A 6.A 7.答案:21- 4.由原式得m =x -1-x ,设1-x =t (t ≥0),则m =1-t 2-t =54-(t +12)2,∴m =54-(t +12)2在[0,+∞)上是减函数,∴t =0时,m 的最大值为1. 8.解析:因为b +c =8,bc a a =-+21252,所以b ,c 是方程t t a a 22812520-+-+=的两实根,故∆=---+=--+≥()()()841252412360222a a a a 即--≥4602()a ,所以a =6。

高三二轮复习教学案函数

高三二轮复习教学案函数

高三二轮复习教学案——函数(1)班级 学号 姓名一、考试内容及要求:1.已知函数f (x)=2x+1,x ∈[1,5],则f (2x -3)= ____________2.已知集合B={1,4},若2:x x f →是A 到B 的函数,则满足条件的集合A 有_____个3.若函数xx k k x f 212)(⋅+-=(k 为常数)在定义域上为奇函数,则k=____________4.已知函数f (x)是定义在实数集R 上的不恒为零的偶函数,f (-1)=0,且对任意实数x 都有)()1()1(x f x x xf +=+,则∑=∈2010))(2(k Z k kf 的值=____________5.设f (x)是定义在[-1,1]上的偶函数,f (x)与g (x)的图象关于直线x=1对称,且当x ∈[2,3]时,g (x)=a(x -2)-2(x -2)3 (a 为常数)(1)求f (x)的解析式(2)若f (x)在[0,1]上是增函数,求实数a 的范围 (3)若a ∈[-6,6],问能否使f (x)的最大值为46.已知函数),,()(R c b a cxb ax x f ∈++=满足f(-1)=0,并且对x>0,≤01)(-x f xx 2)1(2-≤恒成立.(1)求a ,b ,c 的值; (2)若xm x f x g 4)()(-=在(0,2]上是减函数,求实数m 的取值范围7.已知函数xx x f --=274)(2,x ∈[0,1].(1)求f(x)的值域;(2)设a ≥1,函数g(x)=x 3-3ax 一2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围.高三二轮复习教学案——函数(2)班级 学号 姓名1.已知f (x+2)=4x 2+4x+3,x ∈R ,则f (x)的值域为______________2.(1)函数g (x)= x 2-ax+3在),2[+∞上是增函数,则实数a 的取值范围是________________ (2)函数g (x)= x 2-ax+3的增函数为),2[+∞,则实数a 的取值范围是_________________ 3.已知二次函数f (x)=ax 2+bx+c 的导数为f ’(x),f ’(0)>0,对于任意实数x ,有f (x)≥0,则)0(')1(f f -的最小值为__________4.已知函数()(01)x x f x a ma a a -=+>≠且 是R 上的奇函数, 求函数2()g x m x ax m a =++的零点5.设a ∈R ,函数1||)(2+-+=a x x x f ,x ∈R ,求f(x)的最小值.6.将函数21()2f x ax a =-的图象向右平移1a个单位,再向下平移12a个单位,平移后得到函数()g x 的图象.(1)求函数()g x 的表达式;(2)若函数()g x 在2]上的最小值为()h a ,求()h a 的最大值。

高三数学第二轮复习方略

高三数学第二轮复习方略
规 律 . 中提 炼 出 思 想 方 法 , 住 复 习 的 主 动 权 , 从 抓 以适 应 大 跨 度 带
图形结 合起来 : 寻求解 题 的切人 点 ; 简化解 题过程 ; ① ② ③转换 命
题 ; 验 证 结 论 的正 确 与完 整 。 形 结 合 的 思 想 就 是 利 用 图 形 进 行 ④ 数
生成过程与用法 ; 回顾 已 往 做 错 的 题 目的正 确解 法 以 及 典 型 题 目 ,
以达 到 内化 基 础 知 识 和 基 本 联 系 的 目的 。系 统 地 对 数 学 知 识 进 行 整 理 、 纳 、 通 知识 间 的 内在 联 系 , 成 纵 向 、 向 知 识 链 , 造 归 沟 形 横 构 知 识 网络 , 知 识 的联 系 和整 体 上 把 握 基 础 知识 。 如 以 函数 为 主 从 例 线 的知 识 链 . 如 直 线 与 平 面 的 位 置 关 系 中 “ 行 ” “ 直 ” 知 又 平 与 垂 的 识链 。
化方法有 : 直接 转 化 法 、 元 转 化 法 、 形 结合 转 化 法 、 换 数 构造 模 型 转 化 法 、 数 转化 法 、 比转化 法 。 4数 形 结 合 思 想 : 形 结 合 思 想 是 参 类 ( ) 数 应 用 客 观 事 物 中数 与 形 的 对应 关 系 .把 抽 象 的数 学 语 言 与 直 观 的
思 维 简 缩 , 选 择 、 空 题 的求 解 住 住 能 大 大 简 化 思 维 过 程 , 取 对 填 争
来 的不 适 应 , 过 专 题 复 习 , 漏 补 缺 , 一 步 完 善 强 化 知 识 体 系 。 通 查 进
在 知 识 的深 化 过 程 中 , 忌 孤 立 对 待 知 识 、 法 , 是 自觉 地 将 其 切 方 而 前后联 系 . 横 比较 、 合 , 纵 综 自觉 地 将 新 知 识 及 时 纳 入 已 有 的 知 识 系 统 中去 , 汇 代 数 、 角 、 几 、 几 于 一 体 , 而 形 成 一 个 条 理 融 三 立 解 进 化 、 序化 、 络 化 的 高 效 的 有 机认 知 结 构 。 面 对 代 数 中 的 “ 个 有 网 如 四

上海高三数学高考二轮复习教案函数方程专题之函数与不等式(2)含答案

上海高三数学高考二轮复习教案函数方程专题之函数与不等式(2)含答案

沪教版(上海)高中数学度高三数学二轮复习函数方程专题之函数与不等式② 教学目标 理解并充分掌握基本的函数与不等式题型之间的转换问题,即函数题型用不等式来解,不等式题型用函数来做的思想.知识梳理函数与不等式(方程)是相互联系的,在一定条件下,他们可以相互转化,例如解方程()0f x =就是求函数的零点,解不等式()()f x g x >,就是当两个函数的函数值的大小关系确定后,求自变量的取值范围。

正确理解函数与不等式(方程)的这种对立统一关系,有利于提高综合运用知识分析问题和解决问题的能力.典例精讲例1.(★★★)已知函数()24f x mx =+,若在[2,1]-上存在唯一零点,则实数m 的取值范围是___________.解:由题意得:(2)(1)0f f -⋅≤,即(,2][1,)m ∈-∞-+∞例2.(★★★)函数3()log (3)1f x x =+-的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为___________. 解:由题意得点A 的坐标为(2,1)--,代入直线方程得:21m n +=.∴121244()(2)2244248n m n m m n m n m n m n m n +=++=+++=++≥+=,当且仅当4n m m n=.即1412m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立. 例3.(★★★)已知2()221f x x mx m =+++.(1)若函数有两个零点,且其中一个在区间(1,0)-,另一个在区间(1,2)内,求m 的取值范围(2)若函数的两个零点均在区间(0,1)内,求m 的取值范围.解:(1)(1)0122101(0)0210512(,)5(1)012210626(2)044210f m m m f m m f m m m f m m ->-++>⎧⎧⎧<-⎪⎪⎪<+<⎪⎪⎪⇒⇒⇒∈--⎨⎨⎨<+++<⎪⎪⎪>-⎪⎪⎪⎩>+++>⎩⎩. (2)221(22)1,2(1)x m x x m x --+=--=+.令1,(1,2)t x t =+∈. 所以221(1)11221212(2)()12222t t t m t t t t t t----+-=⋅=⋅=--+=-++. 所以212(1),222(1)3,122t m m m t +=--≤--<-<≤-. 课堂检测1.(★★)使2log ()1x x -<+成立的x 的取值范围是___________.解:结合函数图象可知:(1,0)x ∈-2.(★★★)设函数2()|45|f x x x =--,若在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方,则实数k 的取值范围是___________.解:由题意得:2345kx k x x +>-++在区间[1,5]-上恒成立. 即:2453x x k x -++>+在区间[1,5]-上恒成立, 由2453x x x -+++在[1,5]-上的最大值为2,得出2k >. 3.(★★★)三位同学合作学习,对问题“已知不等式222xy ax y ≤+,对于[1,2],[2,3]x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析” .乙说:“寻找x 与y 的关系,再作分析”.丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自己的其他解法,可求出实数a 的取值范围是___________.解:原式⇔ 22()y y a x x≥-在[1,2],[2,3]x y ∈∈上恒成立, 令[1,3]y t x=∈,则函数22t t -在[1,3]的最大值为1-,则1a ≥-. 4.(★★★★)已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c 满足a b c >>,0(,,)a b c a b c R ++=∈.(1)求证:两函数的图像交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影11A B 的长的取值范围.解:(1)222220444()y ax bx c ax bx c b ac b ac y bx⎧=++⇒++=⇒∆=-⇒∆=-⎨=-⎩. 因为a b c >>且0a b c ++=,所以0a >且0c <,20b ac ->,即0∆>.所以两函数图像有两个交点. (2)22221124()()13||221()2()24b ac a c ac c c c A B a a a a -+-===++=++ 因为0()()a b c b a c a a c c ++=⇒=-+⇒>-+>, 所以1(2,)2c a ∈--.故11||(3,23)A B ∈. 回顾总结1.在写不等式解集的时候一定要注意答案要写__________集合或区间形式.。

2022高考数学二轮复习讲义:专题1 第2讲 基本初等函数、函数与方程(学生版)

2022高考数学二轮复习讲义:专题1 第2讲 基本初等函数、函数与方程(学生版)

2022高考数学二轮复习讲义专题一 第2讲 基本初等函数、函数与方程【要点提炼】考点一 基本初等函数的图象与性质1.指数函数y =a x(a>0,a ≠1)与对数函数y =log a x(a>0,a ≠1)互为反函数,其图象关于y =x 对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同. 2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【热点突破】【典例】1 (1)已知f(x)=2x-1,g(x)=1-x 2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)( ) A .有最小值-1,最大值1 B .有最大值1,无最小值 C .有最小值-1,无最大值 D .有最大值-1,无最小值(2)已知函数f(x)=e x+2(x<0)与g(x)=ln(x +a)+2的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,1eB .(-∞,e)C.⎝ ⎛⎭⎪⎫-1e ,eD.⎝⎛⎭⎪⎫-e ,1e 【拓展训练】1 (1)函数f(x)=ln(x 2+2)-e x -1的大致图象可能是( )(2)已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-12的解集是( ) A .(-∞,-1) B .(-∞,-1] C .(1,+∞)D .[1,+∞)【要点提炼】考点二 函数的零点 判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1 函数零点的判断【典例】2 (1)(2020·长沙调研)已知函数f(x)=⎩⎪⎨⎪⎧xe x,x ≤0,2-|x -1|,x>0,若函数g(x)=f(x)-m 有两个不同的零点x 1,x 2,则x 1+x 2等于( )A .2B .2或2+1eC .2或3D .2或3或2+1e(2)设函数f(x)是定义在R 上的偶函数,且对任意的x ∈R ,都有f(x +2)=f(2-x),当x ∈[-2,0]时,f(x)=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程f(x)-log 8(x +2)=0在区间(-2,6)上根的个数为( )A .1B .2C .3D .4【特点突破】考向2 求参数的值或取值范围 【典例】3 (1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________.(2)已知函数f(x)=⎩⎪⎨⎪⎧x +3,x>a ,x 2+6x +3,x ≤a ,若函数g(x)=f(x)-2x 恰有2个不同的零点,则实数a 的取值范围为____________________.【拓展训练】2 (1)已知偶函数y =f(x)(x ∈R )满足f(x)=x 2-3x(x ≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x>0,-1x,x<0,则y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4(2)(多选)已知函数f(x)=⎩⎪⎨⎪⎧x +2a ,x<0,x 2-ax ,x ≥0,若关于x 的方程f(f(x))=0有8个不同的实根,则a 的值可能为( ) A .-6 B .8 C .9 D .12专题训练一、单项选择题1.(2020·全国Ⅰ)设alog 34=2,则4-a等于( )A.116B.19C.18D.162.函数f(x)=ln x +2x -6的零点一定位于区间( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)3.在同一直角坐标系中,函数f(x)=2-ax 和g(x)=log a (x +2)(a>0且a ≠1)的大致图象可能为( )4.(2020·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则( )A .a<b<cB .b<c<aC .c<a<bD .c<b<a5.(2020·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病典例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e-0.23t -53,其中K 为最大确诊病典例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66 D .696.(2020·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( )A .1<a<2B .0<a<2,a ≠1C .0<a<1D .a ≥27.(2020·太原质检)已知函数f(x)=⎩⎪⎨⎪⎧e x,x>0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g(x)=f(x)+kx 恰好有两个零点,则实数k 等于( ) A .-2e B .e C .-e D .2e 8.已知函数f(x)=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x|+1,x ≠0,若关于x 的方程2f 2(x)-(2a +3)f(x)+3a =0有五个不同的解,则a 的取值范围是( )A .(1,2)B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 二、多项选择题9.(2020·临沂模拟)若10a =4,10b=25,则( ) A .a +b =2 B .b -a =1 C .ab>8lg 22D .b -a>lg 610.已知函数f(x)=log a (x +1),g(x)=log a (1-x),a>0,a ≠1,则( ) A .函数f(x)+g(x)的定义域为(-1,1) B .函数f(x)+g(x)的图象关于y 轴对称 C .函数f(x)+g(x)在定义域上有最小值0 D .函数f(x)-g(x)在区间(0,1)上是减函数11.(2020·淄博模拟)已知函数y =f(x)是R 上的奇函数,对于任意x ∈R ,都有f(x +4)=f(x)+f(2)成立.当x ∈[0,2)时,f(x)=2x-1.给出下列结论,其中正确的是( )A .f(2)=0B .点(4,0)是函数y =f(x)图象的一个对称中心C .函数y =f(x)在区间[-6,-2]上单调递增D .函数y =f(x)在区间[-6,6]上有3个零点 12.对于函数f(x)=⎩⎪⎨⎪⎧sin πx ,x ∈[0,2],12f x -2,x ∈2,+∞,则下列结论正确的是( )A .任取x 1,x 2∈[2,+∞),都有|f(x 1)-f(x 2)|≤1B .函数y =f(x)在[4,5]上单调递增C .函数y =f(x)-ln(x -1)有3个零点D .若关于x 的方程f(x)=m(m<0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132三、填空题13.(2019·全国Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-e ax.若f(ln 2)=8,则a =________.14.已知函数f(x)=|lg x|,若f(a)=f(b)(a ≠b),则函数g(x)=⎩⎪⎨⎪⎧x 2+22x +5,x ≤0,ax 2+2bx,x>0的最小值为________.15.定义在R 上的奇函数f(x),当x ≥0时,f(x)=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1,1-|x -3|,x ∈[1,+∞,则函数F(x)=f(x)-1π的所有零点之和为________.16.对于函数f(x)与g(x),若存在λ∈{x ∈R |f(x)=0},μ∈{x ∈R |g(x)=0},使得|λ-μ|≤1,则称函数f(x)与g(x)互为“零点密切函数”,现已知函数f(x)=ex -2+x -3与g(x)=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.。

高中数学二轮复习关于求函数表达式的常用方法

高中数学二轮复习关于求函数表达式的常用方法

二轮复习关于求函数表达式的常用方法由实际问题建立函数关系式,一般可通过研究自变量与函数间的等量关系,再确定自变量的取值X 围。

根据条件求函数表达式是高中数学的重要内容,也是教学难点,本文介绍求函数表达式的常用方法。

常用方法主要有:1 定义法 (配方法)由已知条件f[g(x)]=F(x),可将F(x)改写成为g(x)的表达式,然后以x 代g(x),便得f(x)的表达式。

例1已知f(xx 1+)=221x x x ++,求f(x)的表达式。

解 ∵221x x x ++=⎪⎭⎫ ⎝⎛+x x 12–x x 1++1,∴ f(x)=x 2–x+1(x ≠1). 2 待定系数法由未知出发的转化,通常设一个函数,来求这个函数的系数。

例 2已知f(x+2)=x 2+x+2, 求f(x)的表达式。

解 设f(x)=ax 2+bx+c,∴f(x+2)=a(x+2)2+b(x+2)+c=ax 2+(4a+b)x+4a+2b+c,又f(x+2)=x 2+x+2,比较同类项的系数,得⎪⎩⎪⎨⎧=++-=+=.524,34,1c b a b a a ∴⎪⎩⎪⎨⎧=-==.15,7,1c b a ∴f(x)=x 2–7x+15,3 变量代换法由已知条件f[g(x)]=F(x),可令t=g(x),然后反解出x=g -1(t).代入F(x)即可得f(t)的表达式。

例3 已知f(e x-1)=2x 2–1,求f(x)的表达式。

解 令t=e x-1(t>0), 则x=1+lnt ,代入已知,得f(t)=2(1+lnt)2–1=2ln 2t+4lnt+1,即f(x)=2ln 2x+4lnx+1(x>0).4 函数方程法将f(x)作为一个未知数来考虑,建立方程(组),消去另外的未知数便得f(x)的表达式。

例4 已知af(x n ) +f(-x n )=bx ,其中a 2≠1,n 为奇数,试求f(x)的表达式。

分析 已知是关于f(x n ) 和f(-x n )的一个方程,利用n 为奇数,用–x 代x,又得到一个f(x n ) 和f(-x n )的一个方程。

高考数学文(二轮复习)课件 函数与方程思想

高考数学文(二轮复习)课件 函数与方程思想

(2)方程的思想,就是分析数学问题中变量间的等量关系, 建立方程或方程组,或者构造方程,通过解方程或方程组,或 者运用方程的性质去分析、转化问题,使问题获得解决.方程 的教学是对方程概念的本质认识,用于指导解题就是善于利用 方程或方程组的观点观察处理问题.方程思想是动中求静,研 究运动中的等量关系.
函数的主干知识、 函数的综合应用以及函数与方程思想的考 查一直是高考的重点内容之一.高考试题中,既有灵活多变的客 观性小题,又有一定能力要求的主观性大题,难度有易有难,可 以说是贯穿了数学高考整份试卷,高考中所占比重比较大.
(1)对于函数与方程思想, 在解题中要善于挖掘题目中的隐含 条件, 构造出函数解析式和妙用函数与方程的相互转化的关系是 应用函数与方程思想解题的关键. (2)当问题中出现多个变量时, 往往要利用等量关系减少变量 的个数, 如果最后能把其中一个变量表示成关于另一个变量的表 达式,那么就可有研究函数的方法将问题解决.
[回访名题] x2 若点O和点F(-2,0)分别是双曲线 a2 -y2=1(a>0)的中心和左 →· → 的取值范围为 焦点,点P为双曲线右支上的任意一点,则 OP FP ( ) A.[3-2 3,+∞)
7 C.-4,+∞ NhomakorabeaB.[3+2 3,+∞)
7 D.4,+∞
答案:B
解析:因为F(-2,0)是已知双曲线的左焦点,所以a2+1=
2 x 4,即a2=3,所以双曲线方程为 3 -y2=1.设点P(x0,y0),则有 2 x20 x → 0 2 3 -y0 =1(x0≥ 3),解得y20= 3 -1(x0≥ 3),因为 FP =(x0+
(4)解析几何中的许多问题,例如直线与二次曲线的位置关 系问题,需要通过解二元方程组才能解决,这都涉及二次方程 与二次函数的有关理论. (5)立体几何中有关线段的长、面积、体积的计算,经常需 要运用列方程或建立函数表达式的方法加以解决.

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

高三数学二轮复习讲义专题一函数性质与图象

高三数学二轮复习讲义专题一函数性质与图象

专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。

本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。

复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。

【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。

解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。

令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。

故集合A 中的元素最多为6个。

(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 思想方法训练1 函数与方程思想 理

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 思想方法训练1 函数与方程思想 理

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……思想方法训练1 函数与方程思想一、能力突破训练1.已知椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一个交点为P,则|PF2|=()A. B. C. D.42.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.13.已知函数f(x)=x2+e x- (x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A. B.(-∞,)C. D.4.已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8的值为()A.16B.32C.64D.625.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .6.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.7.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,则不等式f(x+2)<5的解集是.8.设函数f(x)=cos2x+sin x+a-1,已知不等式1≤f(x)≤对一切x∈R恒成立,求a的取值范围.9.在△ABC中,内角A,B,C所对边的边长分别是a,b,c.已知c=2,C=.(1)若△ABC的面积等于,求a,b的值;(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积.10.某地区要在如图所示的一块不规则用地上规划建成一个矩形商业楼区,余下的作为休闲区,已知AB ⊥BC,OA∥BC,且|AB|=|BC|=2|OA|=4,曲线OC是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.二、思维提升训练11.已知数列{a n}是等差数列,a1=1,a2+a3+…+a10=144.(1)求数列{a n}的通项a n;(2)设数列{b n}的通项b n=,记S n是数列{b n}的前n项和,若n≥3时,有S n≥m恒成立,求m的最大值.12.已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为时,求k的值.13.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求直线l在y轴上的截距b的取值范围.思想方法训练1函数与方程思想一、能力突破训练1.C解析如图,令|F1P|=r1,|F2P|=r2,则化简得解得r2=2.D解析因为函数f(x)是奇函数,所以f(-x)=-f(x).又因为f(x+2)是偶函数,则f(-x+2)=f(x+2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,所以f(8)=0;同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5),而f(5)=f(3+2)=f(-3+2)=f(-1)=-f(1)=-1,所以f(9)=1,所以f(8)+f(9)=1.故选D.3.B解析由已知得,与函数f(x)的图象关于y轴对称的图象的函数解析式为h(x)=x2+e-x- (x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图象,显然当a≤0时,函数y=ln(x+a)的图象与M(x)的图象一定有交点.当a>0时,若函数y=ln(x+a)的图象与M(x)的图象有交点,则ln a<,则0<a<综上a<故选B.4.C解析因为a1,a2,a5成等比数列,则=a1·a5,即(1+d)2=1×(1+4d),d=2.所以a n=1+(n-1)×2=2n-1,S8==4×(1+15)=64.5.- 解析f(x)=a x+b是单调函数,当a>1时,f(x)是增函数,无解.当0<a<1时,f(x)是减函数,综上,a+b=+(-2)=-6.[1,+∞)解析以AB为直径的圆的方程为x2+(y-a)2=a,由得y2+(1-2a)y+a2-a=0.即(y-a)[y-(a-1)]=0,则由题意得解得a≥1.7.{x|-7<x<3}解析令x<0,则-x>0,∵当x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x)=x2+4x,又f(x)为偶函数,∴f(-x)=f(x),∴当x<0时,f(x)=x2+4x,故有f(x)=再求f(x)<5的解,由得0≤x<5;由得-5<x<0,即f(x)<5的解集为(-5,5).由于f(x)的图象向左平移两个单位即得f(x+2)的图象,故f(x+2)<5的解集为{x|-7<x<3}.8.解f(x)=cos2x+sin x+a-1=1-sin2x+sin x+a-1=-+a+因为-1≤sin x≤1,所以当sin x=时,函数有最大值f(x)max=a+,当sin x=-1时,函数有最小值f(x)min=a-2.因为1≤f(x)对一切x∈R恒成立,所以f(x)max,且f(x)min≥1,即解得3≤a≤4,故a的取值范围是[3,4].9.解 (1)由余弦定理及已知条件,得a2+b2-ab=4.因为△ABC的面积等于,所以ab sin C=,得ab=4.联立解得a=2,b=2.(2)由题意得sin(B+A)+sin(B-A)=4sin A cos A,即sin B cos A=2sin A cos A,当cos A=0时,A=,B=,a=,b=,当cos A≠0时,得sin B=2sin A,由正弦定理得b=2a,联立解得a=,b=故△ABC的面积S=ab sin C=10.解以点O为原点,OA所在的直线为x轴建立平面直角坐标系,则A(-2,0),B(-2,4),C(2,4),设抛物线的方程为x2=2py,把C(2,4)代入抛物线方程得p=,所以曲线段OC的方程为y=x2(x∈[0,2]).设P(x,x2)(x∈[0,2])在OC上,过点P作PQ⊥AB于点Q,PN⊥BC于点N,故|PQ|=2+x,|PN|=4-x2,则矩形商业楼区的面积S=(2+x)(4-x2)(x∈[0,2]).整理,得S=-x3-2x2+4x+8,令S'=-3x2-4x+4=0,得x=或x=-2(舍去),当x时,S'>0,S是关于x的增函数,当x时,S'<0,S是关于x的减函数,所以当x=时,S取得最大值,此时|PQ|=2+x=,|PN|=4-x2=,S max=故该矩形商业楼区规划成长为,宽为时,用地面积最大为二、思维提升训练11.解 (1)∵{a n}是等差数列,a1=1,a2+a3+…+a10=144,∴S10=145,∵S10=,∴a10=28,∴公差d=3.∴a n=3n-2(n∈N*).(2)由(1)知b n==,∴S n=b1+b2+…+b n=,∴S n=∵S n+1-S n=>0,∴数列{S n}是递增数列.当n≥3时,(S n)min=S3=,依题意,得m,故m的最大值为12.解 (1)由题意得解得b=所以椭圆C的方程为=1.(2)由得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=所以|MN|===因为点A(2,0)到直线y=k(x-1)的距离d=,所以△AMN的面积为S=|MN|·d=由,解得k=±1.所以k的值为1或-1.13.解由(x≤-1)消去y,得(k2-1)x2+2kx+2=0.①∵直线m与双曲线的左支有两个交点,∴方程①有两个不相等的负实数根.解得1<k<设M(x0,y0),则由P(-2,0),M,Q(0,b)三点共线,得出b=,设f(k)=-2k2+k+2=-2,则f(k)在(1,)上为减函数,∴f()<f(k)<f(1),且f(k)≠0.∴-(2-)<f(k)<0或0<f(k)<1.∴b<--2或b>2.∴b的取值范围是(-∞,--2)∪(2,+∞).。

3-24函数与方程思想

3-24函数与方程思想

数学(理) 第3页
新课标· 高考二轮总复习
考情分析
化为方程模型加以解决.函数与方程思想几乎渗透到中 学数学的各个领域,在解题中有着广泛的应用.
数学(理) 第4页
新课标· 高考二轮总复习
要点串讲
函数与方程思想是高中数学的一条主线,也是数学 最本质的思想之一.函数思想使常量数学进入了变量数 学,高中数学中的初等函数、数列、不等式、解析几何 等问题都可以转化为函数与方程问题.
数学(理) 第19页
新课标· 高考二轮总复习
[证明] 令 f(n)= (n=2,3,„). 则 f(n+1)=
1 1 1+ 1 1+ 1+ „ 3 5 2n-1
1+2n
1 1 1+ 1 1+ 1 1+ 1+ „ 3 5 2n-1 2n+1

由③④可得所求实数 a 的取值范围是- 2 1- 10 ≤a≤ . 2
数学(理) 第31页
新课标· 高考二轮总复习
[点评] 此类已知恒成立的不等式求参数的问题,常 见的解题思路: 一是分离参数与已知范围的变化, 通过求 函数最值来确定参数的取值范围; 二是数形结合, 寻找参 数满足的关系式, 进而求出参数的取值范围. 在解题过程 中注意区分以下情形: (1)a>f(x)恒成立⇔a>f(x)max; (2)a<f(x)恒成立⇔a<f(x)min; (3)a>f(x)有解⇔a>f(x)min; (4)a<f(x)有解⇔a<f(x)max.
方程思想涉及的知识点多、知识面广,在概念性、理解
数学(理) 第6页
新课标· 高考二轮总复习
性、应用性等方面都有一定的要求,所以是高考考查的重 点.我们应用函数与方程思想解题时可以从以下几个方面去

备战高考数学二轮专题复习 专题1第3讲函数、方程及函数的应用课件 文 新人教版

备战高考数学二轮专题复习 专题1第3讲函数、方程及函数的应用课件 文 新人教版

第3讲 │ 主干知识整合
二、二分法 1.二分法的条件:函数 y=f(x)在区间[a,b]上的图 象是连续不断的一条曲线,并且 f(a)f(b)<0. 2.二分法的思想:通过二等分,无限逼近. 3.二分法的步骤:其中给定精确度 ε 的含义是区间 (a,b)长度|a-b|<ε,不能认为是函数零点近似值的精度.
第3讲 │ 要点热点探究
【解答】 (1)设相遇时小艇的航行距离为 S 海里,则 S= 900t2+400-2·30t·20-cos90°-30° = 900t2-600t+400 = 900t-132+300. 故当 t=13时 Smin=10 3,v=101 3=30 3,
3 即小艇以 30 3海里/小时的速度航行,相遇时小艇的航行 距离最小.
第3讲 │ 要点热点探究
【点评】 关于解决函数的实际应用问题,首先要在阅 读上下功夫,一般情况下,应用题文字叙述比较长,要耐心、 细心地审清题意,弄清各量之间的关系,再建立函数关系式, 然后借助函数的知识求解,解答后再回到实际问题中去.本 题中弄清“销量”、“售价”、“生产成本”、“促销费”、 “利润”等词的含义后列出函数关系式是解决本题的关键.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的 大小应为多少?
(2)为保证小艇在 30 分钟内(含 30 分钟)能与轮船相遇,试 确定小艇航行速度的最小值;
(3)是否存在 v,使得小艇以 v 海里/小时的航行速度行驶, 总能有两种不同的航行方向与轮船相遇?若存在,试确定 v 的 取值范围;若不存在,请说明理由.
又 t=0 时,x=1. ∴3-1=0+k 1,解得 k=2. ∴x 与 t 的关系式是 x=3-t+2 1(t≥0).
第3讲 │ 要点热点探究

2023届高考数学二轮复习导数经典技巧与方法:洛必达法则

2023届高考数学二轮复习导数经典技巧与方法:洛必达法则

第5讲洛必达法则知识与方法与函数导数相关的压轴题,一般需要确定函数的值域和参数的取值范围,其传统做法是构造函数,然后通过分类讨论,求导分析单调性进行,过程相对复杂繁琐,且分类的情况较多.并且我们采用分离参数时,往往还会出现最值难以求解的情况,这时,我们就可以考虑使用“洛必达法则”来简化解题过程,快速解题.下面,我们先来介绍一下洛必达法则:法则1:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=0及lim x→a g(x)=0;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f ′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.法则2:若函数f(x)和g(x)满足下列条件:(1)lim x→∞f(x)=0及lim x→∞g(x)=0;(2)∃A>0,f(x)和g(x)在(−∞,A)与(A,+∞)内可导,且g′(x)≠0;(3)lim x→∞f ′(x)g′(x)=l.那么lim x→∞f(x)g(x)=lim x→∞f′(x)g′(x)=l.法则3:若函数f(x)和g(x)满足下列条件:(1)lim x→a f(x)=∞及lim x→a g(x)=∞;(2)在点a的去心邻域内,f(x)与g(x)可导,且g′(x)≠0;(3)lim x→a f ′(x)g′(x)=l.那么lim x→a f(x)g(x)=lim x→a f′(x)g′(x)=l.利用洛必达法则解题时,应点睛意:①将上面公式中的x→a,x→∞换成x→+∞,x→−∞,x→a+,x→a−,洛必达法则也成立.②洛必达法则可处理00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型.③在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞0,00,∞−∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.④若条件符合,洛必达法则可连续多次使用,直到求出极限为止.典型例题【例1】已知f(x)=(x+1)lnx.(1)求f(x)的单调区间;(2)若对于任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立,求a的取值范围.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=lnx+1+1x,令g(x)=lnx+1+1x (x>0),则g′(x)=1x−1x2=x−1x2,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)≥g(1)=2>0,即f(x)在(0,+∞)上单调递增.所以f(x)的单调递增区间为(0,+∞),无减区间.(2)解法1:分离参数+洛必达法则对任意x≥1,不等式x[f(x)x+1−ax]+a≤0成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.当x=1时,a∈R;对任意x>1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x>1,a≥xlnxx2−1恒成立.记m(x)=xlnxx2−1(x>1),则m′(x)=(1+lnx)(x2−1)−2x2lnx(x2−1)2=x2−1−(1+x2)lnx(x2−1)2=1x2+1(1−2x2+1−lnx)(x2−1)2.记t(x)=1−21+x2−lnx(x>1),则t′(x)=4x(1+x2)2−1x=4x2−(1+x2)2x(1+x2)2=−(1−x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以x>1时,t(x)<0,m′(x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=lim x→1xlnxx2−1=lim x→1xlnxx+1−0x−1=lim x→1x+1−lnx(x+1)2=12.综上所述,实数a的取值是[12,+∞).解法2:直接讨论+分类讨论“对任意x≥1,不等式x[f(x)x+1−ax]+a≤0恒成立”等价于“对任意x≥1,不等式x(lnx−ax)+a≤0恒成立”.令ℎ(x)=xlnx−ax2+a(x≥1),则ℎ′(x)=1+lnx−2ax,令m(x)=1+lnx−2ax(x≥1),则m′(x)=1x−2a.①当2a≥1,即a≥12时,因为x≥1,所以0<1x≤1,所以m′(x)≤0,从而m(x)在[1,+∞)上单调递减,又m(1)=1−2a≤0,所以x≥1时,m(x)≤0,即ℎ′(x)≤0,所以ℎ(x)在[1,+∞)上单调递减,又ℎ(1)=0,所以当x≥1时,ℎ(x)≤0,即a≥12符合题意;②若0<2a<1,即0<a<12时,所以1≤x<12a时,m(x)≥m(1)=1−2a>0,即ℎ′(x)>0,所以ℎ(x)在[1,12a)单调递增.所以当1≤x<12a时,ℎ(x)≥ℎ(1)=0,故0<2a<1不符合题意.③若a≤0时,则m′(x)≥0恒成立,所以m(x)在[1,+∞)上单调递增,故当x≥1时,m(x)≥m(1)=1−2a>0,即ℎ′(x)>0,所以ℎ(x)在[1,+∞)上单调递增,所以当x≥1时,ℎ(x)≥ℎ(1)=0,故x(lnx−ax)+a≥0恒成立.综上所述,实数a的取值范围是[12,+∞).解法3:构造函数+分类讨论对任意x≥1,不等式x[f(x)x+1−ax]+a≤0恒成立等价于对任意x≥1,lnx−a(x−1x)≤0恒成立.令t(x)=lnx−a(x−1x)(x≥1),则t′(x)=1x −a(1+1x2)=−ax2−x+ax2,记Δ=1−4a2.①当a≥12时,Δ≤0,此时t′(x)≤0,t(x)在[1,+∞)单调递减,又t(1)=0,所以x≥1时,t(x)≤0,即对任意x≥1,lnx−a(x−1x)≤0恒成立;②当a≤−12时,Δ≤0,此时t′(x)≥0,t(x)在[1,+∞)单调递增,又t(1)=0,所以x≥1时,t(x)≥0,即对任意x≥1,lnx−a(x−1x)≥0恒成立,不符合题意;③当a=0时,不等式转化为lnx≤0(x≥1),显然不成立;④当−12<a<12,且a≠0时,方程ax2−x+a=0的二根为x1=1+√1−4a22a,x2=1−√1−4a22a.若0<a<12,x1>1,0<x2<1,则t(x)在(1,x1)单调递增,又t(1)=0,所以x∈(1,x1),t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立;⑤若−12<a<0,x1<x2<0,则t(x)在(1,+∞)上单调递增,又t(1)=0,所以x∈[1,+∞)时,t(x)≥0,即不等式lnx−a(x−1x)≤0不恒成立,不符合题意.综上所述,实数a的取值范围是[12,+∞).【点睛】通过此例,我们可以发现使用“洛必达法则”的好处,可以较为简单地解决问题,在恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法.【例2】设函数f(x)=ln(x+1)+a(x2−x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2−x),定义域为(−1,+∞)f′(x)=1x+1+a(2x−1)=a(2x−1)(x+1)+1x+1=2ax2+ax+1−ax+1,当a=0时,f′(x)=1x+1>0,函数f(x)在(−1,+∞)上为增函数,无极值点.设g(x)=2ax2+ax+1−a,g(−1)=1,g(−1)=1,Δ=a(9a−8)>0,当a≠0时,g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a−8)≤0,即0<a≤89时,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)为增函数,无极值点.若Δ=a(9a−8)>0,即a>89或a<0,而当a<0时,g(−1)≥0,此时方程g(x)= 0在(−1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时,方程g(x)=0在(−1,+∞)有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知:当0≤a≤89时,f(x)的极值点个数为0;当a<0时,f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)解法1:由(1)可知当0≤a≤89时f(x)在(0,+∞)单调递增,而f(0)=0,则当x∈(0,+∞)时,f(x)>0,符合题意;当a>89时,Δ=a(9a−8)>0,方程g(x)=0的两根为:x1=−a−√a(9a−8)4a ,x2=−a+√a(9a−8)4a,当89<a≤1时,g(0)≥0,x2≤0,f(x)在(0,+∞)单调递增,而f(0)=0,则当x∈(0,+∞)时,f(x)>0,符合题意;当a>1时,g(0)<0,x2>0,所以函数f(x)在(0,x2)单调递减,而f(0)=0, 则当x∈(0,x2)时,f(x)<0,不符合题意;当a <0时,设ℎ(x )=x −ln (x +1),当x ∈(0,+∞)时ℎ′(x )=1−1x+1=x1+x >0, ℎ(x )在(0,+∞)单调递增,因此当x ∈(0,+∞)时ℎ(x )>ℎ(0)=0,ln (x +1)<x , 于是f (x )<x +a (x 2−x )=ax 2+(1−a )x ,当x >1−1a 时ax 2+(1−a )x <0, 此时f (x )<0,不符合题意.综上所述,a 的取值范围是0≤a ≤1. 解法2:函数f (x )=ln (x +1)+a (x 2−x ),∀x >0,都有f (x )≥0成立, 即ln (x +1)+a (x 2−x )≥0恒成立, 设ℎ(x )=−ln (x+1)x 2−x ,则ℎ′(x )=−1x+1(x 2−x)+(2x−1)ln (x+1)(x 2−x )2=(2x−1)[−x 2−x(2x−1)(x+1)+ln (x+1)](x 2−x )2,设φ(x )=−x 2−x(2x−1)(x+1)+ln (x +1),则φ′(x )=(x 2−x)(4x+1)(2x−1)2(x+1)2,所以x ∈(0,12)和x ∈(12,1)时,φ′(x )<0,所以φ(x )在(0,12),(12,1)上单调递减, x ∈(1,+∞)时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增, 因为φ(0)=0,lim x→12−x 2−x (2x−1)(x+1)>0,φ(1)=ln2>0,所以x ∈(0,1)和x ∈(1,+∞)时,ℎ′(x )>0,所以ℎ(x )在(0,1)与(1,+∞)上递增. 当x ∈(0,1)时,x 2−x <0,所以a ≤−ln (x+1)x 2−x,由ℎ(x )的单调性可得,a ≤lim x→0−ln (x+1)x 2−x=lim x→0−1x+12x−1=lim x→0−1(2x−1)(x+1)=1;当x =1时,f (x )=0,恒成立; 当x ∈(1,+∞)时,x 2−x >0,所以a ≥−ln (x+1)x 2−x ,由ℎ(x )的单调性可得,a ≥−ln (x +1)x 2−x =lim x→+∞−ln (x +1)x 2−x=lim x→+∞−1x +12x −1=lim x→+∞−1(2x −1)(x +1)=0, 综上,a ∈[0,1].【例3】已知f (x )=(ax +1)lnx −ax .(1)当a=1时,讨论f(x)的单调性;(2)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(3)令g(x)=f′(x),存在0<x1<x2,且x1+x2=1,g(x1)=g(x2),求实数a的取值范围.【解析】(1)当a=1时,f(x)=(x+1)lnx−x,则f′(x)=lnx+x+1x −1=lnx+1x,所以f′′(x)=1x −1x2=x−1x2,当x∈(0,1)时,f′′(x)<0;当x∈(1,+∞)时,f′′(x)>0,则f′(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又因为f′(1)=1>0,所以x∈(0,+∞)时,f′(x)>0,所以f(x)在(0,+∞)上单调递增;(2)当a=0时,f(x)=lnx,f(x)在(0,+∞)上单调递增,则a=0时满足要求;当a≠0时,f(x)在(0,+∞)上单调递增,则当x∈(0,+∞)时,f′(x)≥0恒成立,因为f′(x)=alnx+1x ,f′′(x)=ax−1x2,当a<0时,f′′(x)=ax−1x2<0,所以f′(x)在(0,+∞)上单调递减,而f′(e−1a)=−1+1e−1a,因为a<0,e−1a≥1,所以f′(e−1a)=−1+1e−1a<0,所以x∈(e−1a,+∞)时,f′(x)<0,故a<0时不成立,当a>0时,f′′(x)=ax−1x2,当x∈(0,1a )时,f′′(x)<0,x∈(1a,+∞)时,f′′(x)>0,则f′(x)在(0,1a)上单调递减,在(1 a ,+∞)上单调递增,因为x∈(0,+∞)时,f′(x)≥0,只需f′(1a)≥0,即f′(1a)=aln1a+a=a(1−lna)≥0,因为a>0,所以1−lna≥0,则0<a≤e, 综上所述,实数a的取值范围是[0,e].(3)因为g(x)=f′(x)=alnx+1x ,所以g(x1)=alnx1+1x1,g(x2)=alnx2+1x2,因为g(x1)=g(x2),所以alnx1+1x1=alnx2+1x2,即aln x2x1+1x2−1x1=0,又x1+x2=1,所以aln x2x1+(x1+x2)x2−(x1+x2)x1=0,即aln x2x1+x1x2−x2x1=0,令t=x2x1,则t∈(1,+∞),即alnt+1t−t=0方程有解.解法1:分离参数+洛必达法则即a=t−1tlnt,令ℎ(t)=t−1tlnt,则ℎ′(t)=(1+1t2)lnt−(t−1t)×1t(lnt)2=(1+t2t2)lnt+1−t2t2(lnt)2,令F(t)=lnt+1−t 2t2+1,F′(t)=1t+−4t(t2+1)2=(t2+1)2−4t2t(t2+1)2≥0,所以当t∈(1,+∞)时,ℎ′(t)≥0,故ℎ(t)在(1,+∞)上单调递增,故ℎ(t)=t−1tlnt>ℎ(1),由洛必达法则知:当t→1时,ℎ(t)=1+1t21t,则ℎ(1)→2,则a>2,所以实数a的取值范围是(2,+∞).解法2:令G(t)=alnt+1t−t,则t∈(1,+∞)时,G(t)=0有解,G′(t)=at −1t2−1=−t2+at−1t2,因为t∈(1,+∞)时,则t+1t>2,当a≤2时,−t 2+at−1t2=a−(t+1t)t≤0,即t∈(1,+∞)时,G′(t)≤0,则G(t)在(1,+∞)上单调递减,又G(1)=0,故t∈(1,+∞)时,G(t)=0无解,则a≤2时不成立;当a>2时,当t∈(1,a+√a2−42)时,G′(t)>0,t∈(a+√a2−42,+∞)时,G′(t)<0,又G(1)=0,则t∈(1,a+√a2−42),G(t)>0,而G(e a)=a2+1e a−e a<a2+1−e a(a>2),令H(x)=x2+1−e x(x>2),H′(x)=2x−e x,H′′(x)=2−e x,因为x>2,则H′′(x)=2−e x<0,则H′(x)在(2,+∞)单调递减,H′(x)≤H′(2)= 4−e2<0,则H(x)在(2,+∞)单调递减,则H(x)<H(2)=5−e2<0,即G(e a)<0,故存在x0∈(a+√a2−42,e a),使得G(x0)=0,故a>2时满足要求,综上所述,实数a 的取值范围是(2,+∞).【点睛】(1)利用导数研究函数的单调性,求导得f ′(x )=lnx +1x ,则f ′′(x )=x−1x 2,由此得f ′(x )≥f ′(1)=1>0,从而得到函数的单调性;(2)分类讨论,当a =0时,f (x )=lnx ,满足要求;当a ≠0时,x ∈(0,+∞)时,f ′(x )≥0恒成立,而f ′(x )=alnx +1x ,f ′′(x )=a x −1x 2,再分a <0和a >0两种情况讨论即可求出答案;(3)由题意得alnx 1+1x 1=alnx 2+1x 2,即aln x 2x 1+1x 2−1x 1=0,进而有aln x 2x 1+x1x 2−x 2x 1=0,令t =x 2x 1,则转化为t ∈(1,+∞)时,alnt +1t −t =0方程有解.一般地,含有参数的函数恒成立问题往往从三个角度求解:一是直接求导,通过对参数的讨论来研究函数的单调性,进一步确定参数的取值范围;二是借助函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即确定所求;三是分离参数,求相应函数的最值或取值范围,当函数的最值不容易求解时,利用“洛必达法则”往往能化难为易,使问题得到解决.强化训练1.已知函数f (x )=e x −x −1,若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,求实数m 的取值范围.【解析】因为f (x )=e x −x −1,所以f ′(x )=e x −1, 所以当x ∈(−∞,0)时,f ′(x )<0,即f (x )递减, 当x ∈(0,+∞)时,f ′(x )>0,即f (x )递增.若当x ≥0时,恒有|f (x )|≤mx 2e |x |成立,即恒有0≤f (x )≤mx 2e x 成立, 当x =0时,不等式恒成立.当x >0时,恒有0≤f (x )≤mx 2e x 成立,即m ≥e x −x−1x 2e x,令H (x )=e x −x−1x 2e x,则H ′(x )=x 2−2e x +2x+2x 3e x.今ℎ(x )=x 2−2e x +2x +2,则ℎ′(x )=2x −2e x +2,进一步ℎ′′(x )=2−2e x <0,所以ℎ′(x )=2x −2e x +2在(0,+∞)上单调递减,所以ℎ′(x )<ℎ′(0)=0,所以ℎ(x )=x 2−2e x +2x +2在(0,+∞)上单调递减,所以ℎ(x )<ℎ(0)=0, 即H ′(x )<0在(0,+∞)上恒成立,所以H (x )在(0,+∞)上单调递减. 所以lim x→0+e x −x−1x 2e x=lim x→0+e x −1e x (x 2+2x )=lim x→0+e xe x (x 2+4x+2)=12,所以m ≥12.综上,m 的取值范围为[12,+∞).2.已知函数f (x )=x 2−mx −e x +1.(1)若函数f (x )在点(1,f (1))处的切线l 经过点(2,4),求实数m 的值; (2)若关于x 的方程|f (x )|=mx 有唯一的实数解,求实数m 的取值范围. 【解析】(1)f ′(x )=2x −m −e x ,所以在点(1,f (1))处的切线l 的斜率k =f ′(1)=2−e −m ,又f (1)=2−e −m ,所以切线l 的方程为:y −(2−e −m )=(2−e −m )(x −1), 即l:y =(2−e −m )x ,由l 经过点(2,4)可得:4=2(2−e −m )⇒m =−e . (2)易知|f (0)|=0=m ×0,即x =0为方程的根,因此只需说明: 当x >0和x <0时,原方程均没有实数根即可. ① 当x >0时,若m <0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解; 若m =0,f (x )=x 2−e x +1⇒f ′(x )=2x −e x ,f ′′(x )=2−e x , 令f ′′(x )>0⇒x <ln2,故f ′(x )在(0,ln2)单调递增,在(ln2,+∞)单调递减, 故f ′(x )<f ′(ln2)=2ln2−2<0,所以f (x )在(0,+∞)单调递减,于是f (x )<f (0)=0,从而|f (x )|>0,mx =0×x =0,此时方程|f (x )|=mx 也无解; 若m >0,由|f (x )|=mx ⇒m =|x +1x −e x x −m|,记g (x )=x +1x −e x x−m ,则g ′(x )=(x−1)(x+1−e x )x 2,设ℎ(x )=x +1−e x ,则ℎ′(x )=1−e x <0对任意x ∈(0,+∞)恒成立, 所以ℎ(x )在(0,+∞)上单调递减,所以ℎ(x )<ℎ(0)=0恒成立, 令g ′(x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减所以g (x )≤g (1)=2−e −m <0⇒|g (x )|≥e −2+m >m ,可知原方程也无解.由上面的分析可知,当x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.② 当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解;若m =0,和(1)中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒−m =|x +1x −e x x −m|, 记g (x )=x +1x −e x x −m , 则g ′(x )=(x−1)(x+1−e x )x 2,由(1)中的分析可知:ℎ(x )=x +1−e x <0, 故g ′(x )>0对任意x ∈(−∞,0)恒成立,从而g (x )在(−∞,0)上单调递增,点睛意到lim x→0−g (x )=lim x→0−x 2+1−e x x −m =lim x→0−2x−e x 1−m =−1−m ,如果−1−m ≤0,即m ≥−1,则|g (x )|>m +1,要使方程无解,只需−m ≤m +1,即m ≥−12,所以−12≤m <0;如果−1−m >0,即m <−1,此时|g (x )|∈[0,+∞),方程−m =|g (x )|一定有解,不满足题意.由上面的分析可知:当x <0时,∀m ∈[−12,+∞),方程|f (x )|=mx 均无解, 综合①②可知,当且仅当m ∈[−12,+∞)时,方程|f (x )|=mx 有唯一解.。

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。

2011届高考数学二轮复习考点突破课件:第17讲 函数与方程思想

2011届高考数学二轮复习考点突破课件:第17讲 函数与方程思想

题型一 函数与方程思想在不等式中的应用
1 1 【例1】 已知函数 =a-x(a>0,x>0), 】 已知函数f(x)= , , (1)若f(x)≤2x在(0,+∞)上恒成立,求实数 的取值范围; 若 ≤ 在 ,+ 上恒成立 求实数a的取值范围 ,+∞ 上恒成立, 的取值范围; (2)若f(x)在[m,n]上的值域也是 ,n](m≠n),求实数 的取值范围. 若 在 , 上的值域也是 上的值域也是[m, 的取值范围. ≠ ,求实数a的取值范围 1 1 1 1 解:(1)由a-x≤2x得a≤2x+x. 由 得 + ∵x>0, , 1 2 + ∴当x= 时,2x+xmin=2 2, = , 2 1 2 ∴a≤2 2,∴a≥ 4 , , ≥ ∴实数a的取值范围是 实数 的取值范围是
专题七 数学思想方法
第一讲
函数与方程思想
函数思想,是指用函数的概念和性质去分析问题、 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问 题.方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件 方程思想,是从问题中的数量关系入手, 转化为数学模型(方程、不等式、或方程与不等式的混合组 , 转化为数学模型 方程、不等式、或方程与不等式的混合组),然后通过解方 方程 或不等式(组 来使问题获解 有时,还通过函数与方程的互相转化、 来使问题获解. 程(组)或不等式 组)来使问题获解.有时,还通过函数与方程的互相转化、 组 或不等式 接轨,达到解决问题的目的.函数与方程是两个不同的概念, 接轨,达到解决问题的目的.函数与方程是两个不同的概念,但它们之间有 着密切的联系,方程 = 的解就是函数 的解就是函数y= 的图象与 的图象与x轴的交点的横坐 着密切的联系,方程f(x)=0的解就是函数 =f(x)的图象与 轴的交点的横坐 标.

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

高三数学第二轮复习知识点归纳

高三数学第二轮复习知识点归纳

高三数学第二轮复习知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学第二轮复习知识点归纳高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,下面是本店铺为大家整理的高三数学第二轮复习知识点归纳,仅供参考,喜欢可以收藏与分享哟!高三数学第二轮复习知识点归纳1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

高考数学二轮复习方法之应遵循的“二八四三”原则

高考数学二轮复习方法之应遵循的“二八四三”原则

2019高考数学二轮复习方法之应遵循的“二八四三”原则高考数学二轮复习方法之应遵循的二八四三原则一、大处着眼,细心领悟两个胜利公式1.科学巨匠爱因斯坦的著名公式是V=X+Y+Z(V-胜利;X-刻苦的精神;Y-科学的方法;Z-少说废话)。

2.四轮学习方略中,胜利=目标+安排+方法+行动。

学习好数学要有刻苦拼搏的精神加科学的方法;要有明确的奋斗目标加上切实可行的安排和措施方法,要每天见行动,苦干实干抓落实。

要站在整体的高度,重新熟识自己所学,总体把握所学的数学学问和方法及应用。

学校的老师和课外班的冲刺有周密的复习安排,你要与老师紧密协作。

须知:围着老师转转得好,抛开老师转有自己的一套方案的学生,才能成为佼佼者。

二、做到对学问和实力要求心中有数,自身优势和不足心中有数1.主干学问八大块①函数;②数列;③平面对量;④不等式(解与证);⑤解析几何;⑥立体几何;⑦概率﹑统计;⑧导数及应用。

要做到块块清晰,不足之处如何弥补有招法,并能自觉建立起学问之间的有机联系,函数是其中最核心的主干学问。

2.把握四大数学思想方法明确驾驭数学学问的理性思维方法,其集中体现在四大数学思想方法上。

四大数学思想方法是:①函数与方程的思想②数型结合思想③分类探讨思想④化归或转化的思想3.学习好数学要抓住四个三①内容上要充分领悟三个方面:理论、方法、思维;②解题上要抓好三个字:数,式,形;③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);④学习中要驾驭好三条线:学问(结构)是明线(要清晰);方法(实力)是暗线(要领悟、要提炼);思维(练习)是主线(思维实力是数学诸实力的核心,创建性的思维实力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。

)著名数学家华罗庚先生说:数学是一个原则,多数内容,一种方法,到处可用。

华罗庚先生还一再提倡读书要把书读得由薄到厚,再由厚到薄。

假如说我们从小学到中学学习12年数学的过程是由薄到厚的过程,那么复习的过程应当是深刻领悟数学的内容、意义和方法,仔细梳理、归纳、探究、总结、提炼,把握规律、敏捷运用,把数学学习变得由厚变薄的过程,变成数学成为我们培育科学精神,把握科学方法的最有效的工具,成为自己做高素养现代人的重要武器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于满足0≤p≤4的所有实数p,使不等式 x2+px>4x+p-3成立的x的取值范围是______。 【分析】按照一般思路,易把不等式当作关于x的二 次不等式来解.若变换主元,把不等式看成关于p的一 次不等式来解则简单得多.
x 0或x 1
规律方法 总结
;微信刷票 / 微信刷票 ;
函数与方程的思想方法
函数思想,是指用函数的概念和性质去分析 问题、转化问题和解决问题。 方程思想,是从问题的数量关系入手,运用 数学语言将问题中的条件转化为数学模型 (方程、不等式、或方程与不等式的混合 组),然后通过解方程(组)或不等式(组) 来使问题获解。有时,还实现函数与方程的 互相转化、接轨,达到解决问题的目的。
考题分析
【例1】建造一个容积为8m,深为2m的长方体无
盖水池,如果池底和池壁的造价每平方米分别为
120元和80元,则水池的最低造价为1760元 __________。
【略解】
4 设长x,则宽 , x 16 造价y=4×120+4x×80+ ×80 x ≥1760,
答:1760元。
考题分析
【例2】 设等差数列{an}的前n项的和为S,已知 a3=12,S12>0,S13<0 。 ① 求公差d的取值范围; ②指出S1、S2、…、S12中哪一个值最大,并说明理由。 【分析】 ①问利用公式an与Sn建立不等式,容易求 解d的范围;②问利用Sn是n的二次函数,将S中哪 一个值最大,变成求二次函数中n为何值时Sn取最大 值的函数最值问题。
一般地,函数思想是构造函数从而利用函数的性质 解题,经常利用的性质是:f(x)、f ( x) 的单调性、 奇偶性、周期性、最大值和最小值、图像变换等, 要求我们熟练掌握的是一次函数、二次函数、幂函 数、指数函数、对数函数、三角函数的具体特性。
1
应用函数思想的几种常见题型: 1. 遇到变量,构造函数关系解题;
【分析】当x∈(-∞,1]时f(x)有意义的函数问题,转
化为 1 2x 4x a 0 在x∈(-∞,1]上恒成立的不等式问题。
令 t 2 (t (0, 2]), 则问题又转化为:不等式
xБайду номын сангаас
at 2 t 1 0
对于 t (0, 2] 恒成立,求a的范围.
考题分析
【例5】
2. 有关的不等式、方程、最小值和最大值之类的 问题,利用函数观点加以分析;
3. 含有多个变量的数学问题中,选定合适的主变 量,从而揭示其中的函数关系; 4. 实际应用问题,翻译成数学语言,建立数学模 型和函数关系式,应用函数性质或不等式等知识 解答; 5. 等差、等比数列中,通项公式、前n项和的公式, 都可以看成n的函数,数列问题也可以用函数方法 解决。
考题分析
【例2】 设等差数列{an}的前n项的和为S,已知 a3=12,S12>0,S13<0 。 ① 求公差d的取值范围; ②指出S1、S2、…、S12中哪一个值最大,并说明理由。 ①
24 d 3 7

s6
考题分析
【例3】 已知△ABC三内角A、B、C的大小成等 差数列,且tgA· tgC=2+ 3 ,又知顶点C的对边 c上的高等于4 3 ,求△ABC的三边a、b、c及三内 角。
台上 , 却突然传来了壹声震天动地の晃动声丶"补。"几位黑袍长老几乎是同壹时间都吐血了,脸色煞白,而这蛮古城の法阵也险些破裂了丶"怎么回事。""快逃。""天道台要塌了。"围观の无数蛮古城の修行者,也赶紧向四周逃窜,不敢再呆在这天道台の下面了丶因为头顶の天道台,已经开始崩溃了,上面有巨大の石块正在往下砸落丶"怎么回事呀。""混蛋,肯定是钟华那小子弄の!""做人不能太钟华呀。"蛮古城の天道台,就在这时崩 塌了 , 这座古城忠引以为傲の,耗费了无数神材打造の天道台就这样崩塌了丶后来虚炉总管,又赶紧返了回来,看到头顶这壹幕の时候,脸色瞬间就煞白了丶天道台の石块往蛮古城忠砸,碎石如同落雨似の,仿佛星辰陨落,十分恐怖丶"快加固法阵丶"虚炉总管没办法了,只能是号召这剩下の受伤の几人,赶紧加固这蛮古城の法阵丶法阵再壹次加强,石块砸在法阵上面,并没能继续掉落下来,没有伤到下面の城忠の上亿修行者丶天道台使用 の是壹种神奇の玉石块,硬度超过了玄铁,而且本身就夹带着天道之威,要是直接砸落下来,普通の修行者被砸忠の话,会当场被砸の神形俱灭丶而这天道台の大,本就能比上得上这蛮古城の壹半の面积丶"所有人退出城忠心地带,闭关の人全部唤醒,修为低下者,可以前来城主府,进入城主府护卫の乾坤世界忠,速速过来!"通过水晶球,虚炉总管向全城,发出了警告丶因为这头顶の天道台碎块太多了,他们几人又都受了重伤了,这法阵也 顶不了多久丶壹旦全部砸下来,忠心地带是最惨の,所以必须要分散开来,同时将大部分人先转移到乾坤世界忠,这样子减少人员伤亡丶"涮。"就在这时,原本の天道台上空,出现了壹颗巨大の星辰,直径达到了壹百多里丶将整个天道台所在の位置给遮盖了,壹颗火红の星辰,如同壹颗燃烧の太阳,把蛮古城照得透亮丶"那是。"下面の民众是吓得不轻,不知道这又是什么鬼东西,但是虚炉总管他们却是惊喜出声丶"城主!""城主出关了?" 虚炉总管也有些楞,看见这颗星辰,他心忠也有些沸腾起来丶猫补忠文叁5叁7城主入至尊(猫补忠文)叁5叁7城主入至尊叁5叁7下面の民众是吓得不轻,不知道这又是什么鬼东西,但是虚炉总管他们却是惊喜出声"城主!""城主出关了?"虚炉总管也有些楞,看见这颗星辰,他心忠也有些沸腾起来丶"看来城主是成功了!"虚炉总管心忠振奋,马上对一些黑袍长老说:"城主出关了,此事不用担心了,由城主大人处理吧丶""那这法阵?"壹位黑袍 长老虚弱の问道丶虚炉总管摆手道:"不用管了,城主大人会搞定の,咱们去休息吧丶""哦,那,那好吧丶"几位黑袍长老刚刚受伤不轻,虚炉总管壹走,这上面の天道台就崩塌了丶将法阵给松开之后,这城上空の天道台碎块,也没有掉落下来丶而是突然就全部被头顶の这颗星辰给吸走了,然后星辰也骤然消失了,仿佛从来没出现过丶"怎么回事。""刚刚发生什么了。""到底是什么东西?那像是壹颗火星辰!""为何天道台会崩塌。"星辰消 失 , 危机解除,但是对于蛮古城の上亿修行者来说,还留下了大量の谜题,不知道真相到底是什么丶而在蛮古城北面,不远处丶壹个身着火红袍子の老者,此时正站在壹个黑袍老者の身旁,黑袍老者身高达到了近三米,壹身袍子也没能撑住他の恐怖の肌肉线条,显然是壹个恐怖巨汉丶"恭喜了,看来蛮古城の级别要提升壹下了丶"黑袍老者看了看壹旁の红袍老者,向他表示了壹下祝贺丶"在前辈面前,晚辈可不敢托大丶"红袍老者不是别人, 正是这蛮古城の城主,原来这家伙出关之后,已然进入了至尊之境了丶只不过没有引起太大の动静,所以下面の蛮古城の修行者们,并没有看到太过恐怖の景象,只是看到壹颗火红星辰而已丶"那个小子是什么来头?"黑袍老者问红袍老者,也没问别の东西丶原来他是为了根汉而来の,这老者正是千叶の爷爷,千山丶蛮古城城主沉声道:"如果咱没有猜错の话,他可能就是之前在九天十域名声大振の根汉丶""根汉?"千山皱了皱眉头道:" 你是说 ,是那个不当上仙の小子?""恩,应该就是他,只不过他化名为钟华而已丶"蛮古城城主无奈苦笑道:"这小子还真是壹个坑货,真不知道他壹个至尊,在这里有什么好玩の,还和下阶修士们决斗擂台真是胡闹丶""原来是这个小子丶"千山冷哼道:"不过这小子倒是有些骨气,算是壹个男人,只不过在这里扮猪吃老虎,就不对了丶""那是丶"蛮古城城主对千山,是比较尊敬の,他问千山道:"前辈您和他还有什么渊源吗?""渊源?"千山楞 了楞后冷笑道:"咱和他没什么渊源丶""哦丶"蛮古城城主也不再问了,不过看这样子,似乎这千山是来找根汉麻烦の,而根汉那小子跑の比较快,提前感应到了就先闪了,没有给千山这样の机会丶不过他有些不解の是,根汉为何要跑,而这千山向来与世无争,千山の实力虽然说也是至尊之境,但是来头深不可测,要不然当年封仙大典の时候也不会没有他の名字,就是有可能鸟仙也不想惹这个千山丶根汉の实力显然比壹般の至尊要强得多, 天之神才,却也提前跑了,更加应证了这千山の恐怖实力丶"前辈您难得来壹次蛮古城,这回可壹定要多住些时日,让晚辈尽尽地主之谊丶"蛮古城城主客气道丶千山摆手道:"谢谢你の好意了,老夫咱还有事情要处理,改日壹定再登门拜访丶"说完他就打算走,不过他又想起了壹件事情后问道:"对了,咱の宝贝孙女尔,之前来了这里没有?""您是说小千叶?"蛮古城城主想了想后说:"有件事情,您可能不知道丶""你和咱好好说说丶"千山 面色凝重丶他似乎已经猜到了什么事情,之前也觉得有些怀疑,现在看来有可能就是千叶在胡来丶蛮古城城主之前虽说好像在闭关,但其实这头顶の事情,他都清楚,也都知道了丶他把之前根汉在这里摆擂,千叶上去挑战の事情,和千山说了说丶"这个臭丫头,咱就知道她没安什么好心丶"千山气呼呼の说:"那就多谢了,老夫咱还有事,改日再叙丶"说完这老家伙就离开了丶这时候蛮古城城主,倒是长出了壹口气,自己虽说是步入了至尊 之境 , 但是毕竟是刚刚才进入の,还得给这千山老头子面子丶过不久后,虚炉总管上来了丶兴奋の对城主道:"恭喜城主,您步入至尊之境了吗?""是吧丶"蛮古城城主微笑着问他:"这件事情你做の很对丶""啊,什么事情?"虚炉总管有些糊涂,不知道城主讲の是什么事情丶不过知道这
相关文档
最新文档