西北角法:运筹学表上作业法初始基可行解的确定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》第三版(清华大学出版社)P79例1,表上作业法,运用西北角法确定初始基可行解。

西北角法是从西北角(左上角)格开始,在格内的右下角标上允许取得的最大数;然后按行(列)标下一格的数;若某行(列)的产量(销量)已满足,则把该行(列)的其他格划去;如此进行下去,直至得到一个基本可行解的方法。

西北角法的例子:P79例1

从表1中可知,总的产量=总的销量,故产销是平衡的。

第一步:列出运价表和调运物资平衡表。

运用表上作业法时,首先要列出被调运物资的运价表和供需平衡表(简称平衡表),如表1,2所示。

第二步:编制初始调运方案。

首先在表2的西北角方格(即左上角方格,对应变量x11),尽可能取最大值:

x

=min{3,7}=3

11

将数值3填入该方格(见表3)。由此可见x21,x31必须为0,即第一列其他各方格都不能取非零值,划去第一列。在剩下的方格中,找出其西北角方格x12,x

=min{6,7-3}=4

12

将4填入它所对应方格,第一行饱和,划去该行。再找西北角方格x22,

x

=min{6-4,4}=2

22

将2填入x22所对应方格,于是第二列饱和,划去该列。继续寻找西北方格为x23,

x

=min{5,4-2}=2

23

将2填入x23所对应方格,第二行饱和,划去该行。剩下方格的西北角方格为x33,

x

3=min{5-2,9}=3

3

将3填入x33所对应方格,第三列饱和,划去该列。最后剩下x34方格,取x34 = 6。

这样我们就找到了m+n-1=3+5-1=7个基变量,它们为:x11= 3,x12= 4,x22 = 2,x23 = 2,x33 = 3,x34 = 6。显然它们用折线连接后不形成闭回路。这就是西北角法所找初始基可行解,所对应的目标值为:

2×200+1×250+3×150+1×150+3×250+3×300+4×200=4000

我们找到的初始基可行解可通过各行方格中数值之和是否等于产量,各列方格中数值之和是否等于销量来简单验证。

利用西北角法找初始基可行解简单可行,但也存在问题。例如在表3中可见c

= 4,单价高于该行其他各方格,最简单想法是单价小的情况下多运些货物,35

这样总运费会更小些,最小元素法就改进了西北角法的缺点。

相关文档
最新文档