九年级数学上册期中考试试卷及答案
浙教版九年级上册数学期中考试试卷带答案
浙教版九年级上册数学期中考试试题一、单选题1.下列事件为必然事件的是()A .购买二张彩票,一定中奖B .打开电视,正在播放极限挑战C .抛掷一枚硬币,正面向上D .一个盒子中只装有7个红球,从中摸出一个球是红球2.△ABC 的外心在三角形的内部,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .无法判断3.若将函数22y x =的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是A .22(1)5y x =--B .22(1)5y x =-+C .22(1)5y x =+-D .22(1)5y x =++4.抛物线y =a (x +1)(x -3)(a≠0)的对称轴是直线()A .x =1B .x =-1C .x =-3D .x =35.如图:点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若∠AOB =72°,则∠ACB 的度数是()A .18°B .30°C .36°D .72°6.A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线22(1)y x k =-++上三点,y 1,y 2,y 3的大小关系为()A .y 1>y 3>y 2B .y 3>y 1>y 2C .y 1>y 2>y 3D .y 3>y 2>y 17.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,连接OB 、CB ,已知⊙O 的半径为2,AB=,则∠BCD 的大小为()A .30°B .45°C .60°D .15°8.下列命题正确的是()A.三点确定一个圆B.直径所对的圆周角为直角C.平分弦的直径必垂直于这条弦D.相等的弦所对的圆心角相等9.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图象大致为()A.B.C.D.10.如图,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C 作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分 BD D.随点C的移动而移动11.如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O 的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为()A.B.C.D.12.如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为()A.214B.334C.D.D3二、填空题13.从﹣1、0、0.3、π、13这六个数中任意抽取一个,抽取到无理数的概率为_____.14.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.15.如图,正五边形ABCDE内接于⊙O,则∠CAD=______度.16.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为_____.17.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB与CD的距离为______.18.如图,平面直角坐标系中,以点C (22为半径的圆与x 轴交于A ,B 两点.若二次函数y =x 2+bx+c 的图象经过点A ,B ,试确定此二次函数的解析式为____________.19.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD ,则①∠DAC =∠DBA ;②AD 2﹣BC 2=AC 2﹣BD 2;③AP =FP ;④DF =BF ,这些结论中正确的是______.(请写序号)20.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ .则线段OQ 的最大值是______.三、解答题21.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为23.(1)求该班级男女生数各多少?(2)若该班转入女生6人,那么选得女生为班长的概率?22.如图,在7×7的正方形网格(每个小正方形的边长为1)中,一条圆弧经过A ,B ,C 三点.(1)在正方形网格中直接标出这条圆弧所在圆的圆心O ;(2)求弧AC 的长.23.某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B 的坐标是(10,0),已知抛物线的函数解析式为y =﹣212123x x ++c .(1)求c 的值;(2)计算铅球距离地面的最大高度.24.如图,AB 是O 的直径,弦CD AB ⊥于点,E G 是弧AC 上一点,连接AD AG GD 、、.(1)求证ADC AGD ∠=∠;(2)若2,6BE CD ==,求O 的半径.25.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.销售单价x(元) 3.5 5.5y(袋)280120销售量(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?26.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y =﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.(3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.参考答案1.D【解析】【分析】由题意根据必然事件、随机事件,不可能事件的意义结合具体的问题情境进行判断即可.【详解】解:A.购买二张彩票,不一定中奖,是随机事件,因此选项A不符合题意;B.打开电视,可能播放极限挑战,也可能播放其它节目,是随机事件,因此选项B不符合题意;C.抛掷一枚硬币,可能正面向上,也可能反面向上,是随机事件,因此选项C不符合题意;D.一个盒子中只装有7个红球,没有其它颜色的球,从中摸出一个球一定是红球,是必然事件,因此选项D符合题意;故选:D.【点睛】本题考查随机事件,理解随机事件,必然事件,不可能事件的意义是正确判断的前提.2.A【解析】【详解】试题解析:△ABC的外接圆的圆心在△ABC的内部,则△ABC是锐角三角形.故选A.【点睛】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.3.B【解析】【分析】根据图象右移减、左移加,上移加、下移减,可得答案.【详解】原抛物线的顶点为(0,0),向右平行移动1个单位,再向上平移5个单位,那么新抛物线的顶点为(1,5).可设新抛物线的解析式为y=2(x-h)2+k,代入可得:y=2(x-1)2+5.故选B.【点睛】本题考查了二次函数图象与几何变换,图象右移减、左移加,上移加、下移减是解题关键.4.A【解析】【分析】已知抛物线解析式为交点式,通过解析式可求抛物线与x轴的两交点坐标;两交点的横坐标的平均数就是对称轴.【详解】∵-1,3是方程a(x+1)(x-3)=0的两根,∴抛物线y=a(x+1)(x-3)与x轴交点横坐标是-1,3.∵这两个点关于对称轴对称,∴对称轴是13x12-+==.故选A.5.C【解析】【分析】根据同圆中同弧所对的圆周角等于圆心角的一半,即可求得结果.【详解】∵圆心角∠AOB与圆周角∠ACB均对着 AB∴11723622ACB AOB∠=∠=⨯︒=︒故选:C【点睛】本题考查了圆周角定理,掌握此定理是解题的关键.6.C【解析】【详解】试题解析:∵抛物线y=-2(x+1)2+k(k为常数)的开口向下,对称轴为直线x=-1,而A(-2,y1)离直线x=-1的距离最近,C(2,y3)点离直线x=-1最远,∴y1>y2>y3.故选C.7.A【详解】解:∵直径CD 垂直弦AB 于点E ,AB=EB=12O 的半径为2,∴sin ∠EOB=EB OBEOB=60°,∴∠BCD=30°.故选A .【点睛】本题考查了垂径定理及特殊角的三角函数值,解题的关键是利用垂径定理得到直角三角形.8.B 【解析】【分析】利用确定圆的条件、圆周角定理、垂径定理等知识分别判断后即可确定正确的选项.【详解】解:A.不在同一直线上的三点确定一个圆,故原命题错误,不符合题意;B.直径所对的圆周角是直角,正确,符合题意;C.平分弦(不是直径)的直径必垂直于这条弦,故原命题错误,不符合题意;D.同圆或等圆中,相等的弦所对的圆心角相等,故原命题错误,不符合题意,故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解确定圆的条件、圆周角定理、垂径定理等知识,难度不大.9.B 【解析】【详解】由抛物线可知,a >0,b <0,c <0,∴一次函数y=ax+b 的图象经过第一、三、四象限,反比例函数y=cx的图象在第二、四象限,故选B .10.B【详解】连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点,即点P的位置不变,故选B.【点睛】本题主要考查了垂径定理,解答本题的关键是熟练掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.11.C【解析】【详解】当P与O重合时,∠APB的度数为90度;P向C运动过程中,∠APB的度数逐渐减小;当P运动到C时,利用圆周角定理得到∠APB的度数为45度;当P在弧CD上运动时,∠APB的度数不变,都为45度;当P从D运动到O时,∠APB的度数逐渐增大,作出函数y与t的大致图象,如图所示:故选C.12.B【解析】【分析】先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.【详解】∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),∴y=a(x+2)2+2,∵与y轴交于点A(0,3),∴3=a(0+2)2+2,解得a=1 4∴原抛物线的解析式为:y=14(x+2)2+2,∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),∴平移后的抛物线为y=14(x﹣1)2﹣1,∴当x=0时,y=3 4-,∴A′的坐标为(0,34-),∴AA′的长度为:3﹣(34-)=334.故选:B.【点睛】本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.13.1 3【解析】【详解】试题分析:由从﹣1、00.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解:∵从﹣1、00.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:21 63=.故答案为1 3.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.2(1)2y x=-+【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.【点睛】本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.15.36【解析】【详解】∵五边形ABCDE是正五边形,∴AB BC CD DE EA=====72°,∴∠ADB=12×72°=36°.故答案为36.考点:1.圆周角定理;2.正多边形和圆.16.10【分析】连接OC,根据垂径定理求出CP,根据勾股定理得出关于R的方程,求出方程的解即可.【详解】解:连接OC,∵AB⊥CD,AB过圆心O,CD=8,∴CP=DP=4,设⊙O的半径为R,∵AP=8,∴OP=8﹣R,在Rt△COP中,由勾股定理得:CP2+OP2=OC2,即(8﹣R)2+42=R2,解得:R=5,∴⊙O的直径为2×5=10,故答案为:10.17.1或7【解析】根据题意画出符合的两种图形,先根据垂径定理求出CE和AF长,再根据勾股定理求出OE 和OF长,再求出EF即可.【详解】解:有两种情况:①如图1,圆心O在弦AB和弦CD之间,过O作OE⊥CD于E,直线OE交AB于F,连接OC、OA,∥,∵AB CD∴OF⊥AB,∵OE ⊥CD ,OE 过圆心O ,CD =6,∴CE =DE =3,同理AF =BF =4,由勾股定理得:OE 4=,OF 3==,∴EF =OE+OF =4+3=7;②如图2所示,此时EF =OE ﹣OF =4﹣3=1,即弦AB 与CD 的距离是1或7,故答案为:1或7.18.y=x 2-4x+3【解析】过点C 作CH ⊥AB 于点H ,然后利用垂径定理求出CH 、AH 和BH 的长度,进而得到点A 和点B 的坐标,再将A 、B 的坐标代入函数解析式求得b 与c ,最后求得二次函数的解析式.【详解】解:过点C 作CH ⊥AB 于点H ,则AH=BH ,∵C (2),∴,∵半径为2,∴1,∵A(1,0),B(3,0),∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2-4x+3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.19.①②③【解析】【分析】①正确.根据圆周角定理得出∠DAC=∠CBD,以及∠CBD=∠DBA得出答案即可;②正确.利用勾股定理证明即可;③正确.首先得出∠ADB=90°,再根据∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB =90°,得出∠PDF=∠PFD,从而得出PA=PF;④错误.用反例说明问题即可.【详解】解:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,故①正确,∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=PA,∵∠DFA+∠DAC =∠ADE+∠PDF =90°,且∠ADB =90°,∴∠PDF =∠PFD ,∴PD =PF ,∴PA =PF ,故③正确,∵AB 是直径,∴∠ADB =∠ACB =90°,∴AD 2+BD 2=AC 2+BC 2=AB 2,∴AD 2﹣BC 2=AC 2﹣BD 2,故②正确,如图1中,当△ABC 是等腰直角三角形时,显然DF≠BF ,故④错误.故答案为:①②③.【点睛】本题考查了圆的综合,涉及了圆周角定理、勾股定理、等腰三角形的判定与性质,解答本题的关键是掌握同弧所对的圆周角相等,注意数形结合思想运用.20.3.5【解析】【分析】连接PB ,当B 、C 、P 三点共线,且点C 在PB 之间时,PB 最大,而OQ 是△ABP 的中位线,即可求解.【详解】令21404y x =-=,则x =±4,故点B (4,0),∴OB=4设圆的半径为r ,则r =2,连接PB ,如图,∵点Q、O分别为AP、AB的中点,∴OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,∵C(0,3)∴OC=3在Rt△OBC中,由勾股定理得:5BC===则111()(52) 3.5 222OQ BP BC r+⨯+====,故答案为3.5.【点睛】本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.21.(1)该班级男女生数各有24人,12人;(2)选得女生为班长的概率为3 7【解析】【分析】(1)根据男生概率公式可求得男生人数,让学生总数减去男生人数即为女生人数;(2)根据概率公式即可得到答案.(1)设有男生x人,∵男生的概率为23,即2363x=,解得x=24(人);∴女生36﹣24=12(人),答:该班级男女生数各有24人,12人;(2)女生12+6=18(人),全班36+6=42(人),选得女生为班长的概率为183 427=.【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.22.(1)见解析;(2) AC【解析】【分析】(1)线段AB、线段BC的垂直平分线的交点即为圆心O;(2)根据勾股定理的逆定理得到∠AOC=90°,然后根据弧长公式即可得到结论.(1)如图,连接AB,BC作线段AB、线段BC的垂直平分线,两线的交于点O,则点O即为所示;(2)连接AC,AO,OC,∵AC2=62+22=40,OA2=22+42=4+16=20,OC2=42+22=16+4=20,∴OA2+OC2=42+22+42+22=40,∴AC 2=OA 2+OC 2,∴∠AOC =90°,在Rt △AOC 中,∵OA =OC =∴ AC =,【点睛】本题考查尺规作图作圆弧的圆心,线段的垂直平分线,勾股定理与勾股定理逆定理,扇形弧长,掌握尺规作图作圆弧的圆心,线段的垂直平分线,勾股定理与勾股定理逆定理,扇形弧长是解题关键.23.(1)53c =;(2)铅球距离地面的最大高度为3m【解析】【分析】(1)把(10,0)代入函数解析式212123y x x c =-++中,即可求得c 的值;(2)直接利用对称轴的值,代入函数关系式进而得出答案.(1)把(10,0)代入函数解析式212123y x x c =-++中得:12100100123c -⨯+⨯+=解得:53c =(2)当x =﹣42b a =时,y 最大=12516431233-⨯+⨯+=所以铅球距离地面的最大高度为3m .【点睛】本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题.24.(1)见解析;(2)O 的半径为134.【解析】【分析】(1)由题意易得 AC AD=,进而问题可证;(2)连接OC ,设OC r =,则有3,2CE OE r ==-,然后根据勾股定理可求解.【详解】(1)证明:AB CD ⊥ ,AC AD∴=,ADC AGD ∴∠=∠;(2)解:连接OC ,设OC r =,如图所示:2,6BE CD == ,3,2CE OE r ∴==-,在Rt OEC ∆中,()22232r r +-=,解得134r =,O ∴ 的半径为134.【点睛】本题主要考查垂径定理及弧、弦、圆心角、圆周角的关系,熟练掌握垂径定理及弧、弦、圆心角、圆周角的关系是解题的关键.25.(1)y 与x 之间的函数关系式为y=﹣80x+560;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是240元.【解析】【分析】(1)设y 与x 的函数关系式为y=kx+b ,将x=3.5,y=280;x=5.5,y=120分别代入求出k 、b 的值即可得;(2)根据利润=(售价-成本)×销售量-其他费用列出方程进行求解即可得;(3)根据利润=(售价-成本)×销售量-其他费用列出函数关系式,然后利用二次函数的性质进行解答即可得.【详解】解:(1)设y=kx+b ,将x=3.5,y=280;x=5.5,y=120代入,得3.52805.5120k b k b +=⎧⎨+=⎩,解得80560k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为y=﹣80x+560;(2)由题意,得(x ﹣3)(﹣80x+560)﹣80=160,整理,得x 2﹣10x+24=0,解得x 1=4,x 2=6,∵3.5≤x≤5.5,∴x=4,答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x ﹣3)(﹣80x+560)﹣80=﹣80x 2+800x ﹣1760=﹣80(x ﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w 有最大值为240,故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点睛】本题考查了一次函数的应用、二次函数的应用、一元二次方程的应用等,读懂题意,找准数量关系列出函数关系式、找准等量关系列出方程是解题的关键.26.(1)234y x x =--+,C (1,0);(2)△ABP的形状为直角三角形,见解析;(3)Q的坐标为(﹣2﹣,﹣2﹣)【解析】【分析】(1)先通过直线求得与坐标轴的交点,然后应用待定系数法即可求得抛物线的解析式,进而求得抛物线与x轴的交点.(2)设出D的坐标(t,0),根据已知表示点E、P的坐标,根据PD⊥x轴即可求得线段PE关于t的解析式,配方即可得最大值,再算出此时的△ABP的三边即可得知其形状.(3)过P作AB的平行线l,通过平移得到直线l关于线段AB对称的直线l',再求得l'与抛物线交点即可得Q的坐标.(1)解:如图1,∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4),∵抛物线y=﹣x2+bx+c经过A、B两点,∴16404b cc--+=⎧⎨=⎩,解得34bc=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2﹣3x+4,令y=0,则﹣x2﹣3x+4=0,解得x=﹣4或x=1,∴C(1,0);(2)解:如图2,设D(t,0),∴E(t,t+4),P(t,﹣t2﹣3t+4),∴PE=﹣t2﹣3t+4﹣t﹣4=﹣(t+2)2+4,∴当t=﹣2时,线段PE有最大值是4,此时P(﹣2,6);△ABP的形状为直角三角形,证明:∵AP2=(﹣2+4)2+(6﹣0)2=40,BA2=(﹣4﹣0)2+(0﹣4)2=32,BP2=(﹣2﹣0)2+(6﹣4)2=8,∴BA2+BP2=AP2,∴△ABP的形状为直角三角形;(3)解:如图,过P作AB的平行线l,设直线l的解析式为:y=x+m,代入(﹣2,6),得:6=﹣2+m,解得:m=8,即直线l:y=x+8,∵直线AB:y=x+4,直线l:y=x+8,∴将直线l向下平移8个单位即可得到直线l关于线段AB对称的直线l',∴直线l':y=x,令y=x=﹣x2﹣3x+4,解得:x=﹣或﹣2﹣,∴Q的坐标为(﹣)或(﹣2﹣2﹣.【点睛】此题是一次函数与二次函数的综合题,考查了求一次函数与坐标轴的交点,待定系数法求函数解析式,二次函数与坐标轴的交点,勾股定理的逆定理,二次函数的最值,一次函数的平移规律,一次函数与二次函数交点坐标,此题综合性比较强,较基础,综合掌握各知识点并应用是解题的关键.。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。
A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。
人教版九年级上册《数学》期中考试卷及答案【可打印】
人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。
设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。
人教版九年级上册数学期中考试试题及答案
人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.下列关系式中,属于二次函数的是()A .y =21x8B .yC .y =21x D .y =x 3﹣2x2.下列说法正确的是()A .掷一枚质地均匀的骰子,掷得的点数为3的概率是13B .一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,小军断定袋子里只有黄球C .连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D .在同一年出生的400个同学中至少会有2个同学的生日相同3.如图所示,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若∠AOB =15°,那么∠AOB'的度数是()A .15°B .30°C .45°D .60°4.已知二次函数223y x x =-+-,用配方法化为()2y a x h k =-+的形式,结果是()A .()212y x =---B .()212y x =--+C .()214y x =--+D .()214y x =-+-5.如图,已知AB 是O 的直径,CD 是弦,若36,BCD ∠=o 则ABD ∠等于()A .54oB .56C .64D .666.如图,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P ,O 的半径为A .B .C .8D .127.如图,正方形三个顶点的坐标依次为()3,1,()1,1,()1,3.若抛物线2y ax =的图象与正方形的边有公共点,则实数a 的取值范围是()A .139a ≤≤B .119a ≤≤C .133a ≤≤D .113a ≤≤8.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:4,则S △BDE :S △ADC 的值为()A .1:16B .1:18C .1:20D .1:249.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,AC =6,BD =8,动点P 从点B 出发,沿着B→A→D 在菱形ABCD 的边AB ,AD 上运动,运动到点D 停止.点P′是点P 关于BD 的对称点,连接PP'交BD 于点M ,若BM =x (0<x <8),△DPP′的面积为y ,下列图象能正确反映y 与x 的函数关系的是()A .B .C .D .10.如图,已知在O 中,CD 为直径,A 为圆上一点,连结OA ,作OB 平分AOC ∠交圆于点B ,连结BD ,分别与AC ,AO 交于点N ,M .若AM AN =,则DMDN的值为()A 32B .23C .12D 22二、填空题11.把抛物线y =﹣3x 2向左平移2个单位,再将它向下平移3个单位,得到抛物线为_________.12.已知A (-3,y 1),B (-1,y 2)是抛物线上y =-(x -3)2+k 的两点,则y 1,y 2的大小关系为________.13.一个直角三角形的两条边长是方程27120x x -+=的两个根,则此直角三角形的外接圆的直径为________.14.如图,在3×3正方形网格中,A 、B 在格点上,在网格的其它格点上任取一点C ,能使△ABC 为等腰三角形的概率是_____.15.如图,在 ABC 中,点D 是边AC 上的任意一点,点M ,N 分别是 ABD 和 BCD 的重心,如果AC =6,那么线段MN 的长为___.16.如图,已知二次函数3(1)(4)4y x x =-+-的图象与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点,C P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PKAK的最大值为__________.三、解答题17.计算题:(1)计算:(212213-⎛⎫--- ⎪⎝⎭(2)解方程:()21250x +-=18.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,0),B (﹣4,1),C (﹣2,2).(1)直接写出点B 关于原点对称的点B′的坐标:;(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.19.有4张看上去无差别的卡片,上面分别写着1、2、3、4.(1)随机摸取1张后,放回并混在一起,再随机抽取1张,请直接写出“第二次取出的数字小于第一次取出的数字”的概率:;(2)一次性随机抽取2张卡片,用列表法或画树状图的方法求出“两张卡片上的数都是偶数”的概率.20.如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D 是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.DE AC,过点C作CE⊥CD,21.如图,已知CD是Rt△ABC斜边AB上的中线,过点D作//两线相交于点E.(1)求证:ABC DEC△△;∽(2)若AC=8,BC=6,求DE的长.22.如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于点E、D,连接ED、BE.(1)试判断DE与DC是否相等,并说明理由;(2)如果BD =,AE =2,求⊙O 的直径.23.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x (元/件)(x≥24),每天销售利润为y (元).(1)直接写出y 与x 的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.24.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数;(2)如图2,当5AB =,且10AF FD ⋅=时,求BC 的长;(3)如图3,延长EF ,与ABF ∠的角平分线交于点M ,BM 交AD 于点N ,当NF AN FD =+时,求ABBC出的值.参考答案1.A 【解析】【分析】二次函数为形如2y ax bx c =++(0)a ≠的形式;对比四个选项,进而得到结果.【详解】解:A 符合二次函数的形式,故符合题意;B 中等式的右边不是整式,故不是二次函数,故不符合题意;C 中等式的右边分母中含有x ,但是分式,不是整式,故不是二次函数,故不符合题意;D 中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A .【点睛】本题考察了二次函数的概念.解题的关键与难点在于理清二次函数的概念.2.D 【解析】【分析】A 中掷一枚质地均匀的骰子,出现点数为123456、、、、、的结果相等,故可得出掷得的点数为3的概率,进而判断选项的正误;B中摸球为随机事件,无法通过小量的重复试验反映必然事件的发生与否,进而判断选项的正误;C中可用列举法求概率,进而判断选项的正误;D中假设400人中前365个人生日均不相同,而剩余的35个人的生日会有与365个人的生日有相同的情况,进而判断选项的正误.【详解】解:A掷一枚质地均匀的骰子,掷得的点数为3的概率是16,此选项错误,不符合题意;B一个袋子里有100个球从中随机摸出一个球再放回,小军摸了6次,每次摸到的球的颜色都是黄色,这种情况是偶然的,故小军断定袋子里只有黄球是错误的,此选项不符合题意;C连续掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率是14,“一枚硬币正面朝上,一枚硬币反面朝上”的概率是12,此选项错误,不符合题意;D在同一年出生的400个同学中至少会有2个同学的生日相同是正确的,此选项符合题意;故选D.【点睛】本题考察了概率.解题的关键与难点在于了解概率概念与求解.3.B【解析】【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【详解】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA−∠A′OB′=45°−15°=30°,故选:B.【点睛】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.4.A【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=-x 2+2x-3=-(x 2-2x+1)+1-3=-(x-1)2-2,故选:A .【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax 2+bx+c (a≠0,a 、b 、c 为常数);(2)顶点式:y=a (x-h )2+k ;(3)交点式(与x 轴):y=a (x-x 1)(x-x 2).5.A 【解析】【分析】先由圆周角定理得到∠DAB=∠BCD=36°,然后根据AB 是O 的直径确定∠ADB=90°,最后根据直角三角形两锐角互余即可解答.【详解】解:∵CD 是弦,若36,BCD ∠=o ∴∠DAB=∠BCD=36°∵AB 是O 的直径∴∠ADB=90°∴∠ABD=90°-∠DAB=54°.故选:A .【点睛】本题考查了圆周角定理和直角三角形的性质,灵活利用圆周角定理是解答本题的关键.6.A 【解析】【详解】∵圆心角∠AOC 与圆周角∠B 所对的弧都为 AC,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC ,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP ⊥AC ,∴∠AOP=90°(垂直定义).在Rt △AOP 中,,∠OAC=30°,∴30度角所对的边是斜边的一半).∴⊙O的半径故选A.7.A【解析】【分析】求出抛物线经过两个特殊点时的a的值,再根据∣a∣越大,抛物线的开口越小即可解决问题.【详解】解:当抛物线经过(1,3)时,由3=a×12得:a=3,当抛物线经过(3,1)时,由1=a×32得:a=1 9,观察图象可知:13 9a≤≤,故选:A.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】由S△BDE:S△CDE=1:4,得到BE:CE=1:4,于是得到BE:BC=1:5,根据DE∥AC,推出△BDE∽△BAC,根据相似三角形的性质即可得到结论.【详解】解:∵S△BDE:S△CDE=1:4,∴BE:CE=1:4,∴BE:BC=1:5,∵DE∥AC,∴△BDE∽△BAC,∴S△BDE :S△BAC=(15)2=125.∴S△BDE:S△ADC=1:(25-1-4)=1:20.故选:C .9.D 【解析】由菱形的性质得出AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,分两种情况:①当BM≤4时,先证明△P′BP ∽△CBA ,得出比例式,求出PP′,得出△DPP′的面积y 是关于x 的二次函数,即可得出图象的情形;②当BM≥4时,y 与x 之间的函数图象的形状与①中的相同;即可得出结论.【详解】解:∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,OA=12AC=3,OB=12BD=4,AC ⊥BD ,①当BM≤4时,∵点P′与点P 关于BD 对称,∴P′P ⊥BD ,∴P′P ∥AC ,∴△P′BP ∽△CBA ,∴PP BM AC OB'=,即64PP x '=,∴PP′=32x ,∵DM=8-x ,∴△DPP′的面积y=12PP′•DM=12×32x (8-x )=-34x 2+6x ;∴y 与x 之间的函数图象是抛物线,开口向下,过(0,0)和(4,12);②当BM≥4时,如图:同理△P′DP ∽△CDA ,∴PP DM AC OD '=,即864PP x'-=,∴PP′=3(8)2x -,∴△DPP′的面积y=12PP′•DM=12×32(8-x )2=34(8-x )2;∴y 与x 之间的函数图象是抛物线,开口向上,过(4,12)和(8,0);综上所述:y 与x 之间的函数图象大致为:故选:D .【点睛】本题考查了动点问题的函数图象、菱形的性质、相似三角形的判定与性质、三角形面积的计算以及二次函数的运用;熟练掌握菱形的性质,根据题意得出二次函数解析式是解决问题的关键.10.D 【解析】【分析】由垂径定理可得OB ⊥AC , AB BC =,则∠ADM=∠BDC ,易证△OMD ∽△AND ,则∠AOD=90°,且DM :DN=OD :AD=1【详解】解:∵OB 平分∠AOC ,∴∠AOB=∠COB ,∴ AB BC =,∴∠ADB=∠BDC ,∵AM=AN ,∴∠ANM=∠AMN ,又∵∠AMN=∠OMD ,∴∠ANM=∠OMD ,∴△OMD ∽△AND ,∴DM ODDN AD=,∠MOD=∠NAD ,∵CD 是直径,∴∠NAD=90°,∴∠MOD=90°,∵OA=OD ,∴∠OAD=45°,∴OD ,∴2DM OD DN AD =.故选:D .【点睛】本题主要考查圆周角定理,相似三角形的性质与判定,熟记圆内相关定理是解题基础.11.y =﹣3(x+2)2﹣3【解析】【分析】根据抛物线平移的规律“左加右减,上加下减”即可求得答案.【详解】解:把抛物线y =﹣3x 2向左平移2个单位,得到的抛物线为y =﹣3(x+2)2,再将抛物线为y =﹣3(x+2)2向下平移3个单位,得到抛物线为y =﹣3(x+2)2﹣3,故答案为:y =﹣3(x+2)2﹣3.【点睛】本题考查二次函数图象与几何变换、解题的关键是熟练掌握抛物线平移的规律“左加右减,上加下减”.12.12y y <【解析】【分析】根据抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,由A (-3,y 1),B (-1,y 2)在对称轴左侧,y 随x 的增大而增大,可得最终结果.【详解】抛物线y =-(x -3)2+k 开口向下,对称轴为直线3x =,313-<-< ,12y y ∴<,故答案为:12y y <.【点睛】本题主要考查二次函数的性质,属于基础题,熟练掌握二次函数的增减性是解题关键.13.4或5##5或4【解析】【分析】解方程27120x x -+=得到x =3或4,本题应分两种情况进行讨论,当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,当4是斜边时,直角三角形外接圆直径是4.【详解】解:27120x x -+=,解得x =3或4;①当4是直角边时,斜边长,所以直角三角形外接圆直径是5;②当4是斜边时,这个直角三角形外接圆的直径是4.故答案为:4或5.【点睛】此题主要考查直角三角形外切圆半径,涉及到一元二次方程的解法以及勾股定理的综合应用,难度不大.14.514【解析】【分析】分三种情况:①点A 为顶点;②点B 为顶点;③点C 为顶点;得到能使△ABC 为等腰三角形的点C 的个数,再根据概率公式计算即可求解.【详解】如图,∵AB =∴①若AB =AC ,符合要求的有3个点;②若AB =BC ,符合要求的有2个点;③若AC=BC,不存在这样格点.∴这样的C点有5个.∴能使△ABC为等腰三角形的概率是5 14.故答案为:5 14.【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.15.2【解析】【分析】连接BM并延长交AC于E,连接BN并延长交AC于F,根据三角形的重心是中线的交点可得ED=12AD,DF=12CD,然后求出EF的长,再根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得BM=2ME,BN=2NF,再根据相似三角形对应边成比例列出求解即可.【详解】解:连接BM并延长交AC于E,连接BN并延长交AC于F,∵点M、N分别是△ABD和△ACD的重心,∴ED=12AD,DF=12CD,BM=2ME,BN=2NF,∵BC=6,∴EF=DE+DF=12(AD+CD)=12BC=12×6=3,∵BMBE=BNBF=23,∠EBF=∠MBN,∴△BEF∽△BMN,∴MNEF=23,即3MN =23,∴MN =2.故答案为:2.【点睛】本题考查了三角形重心,解题关键是明确三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.16.45【解析】【分析】由抛物线的解析式易求出点A 、B 、C 的坐标,然后利用待定系数法求出直线BC 的解析式,过点P 作PQ ∥x 轴交直线BC 于点Q ,则△PQK ∽△ABK ,可得PK PQAK AB=,而AB 易求,这样将求PKAK的最大值转化为求PQ 的最大值,可设点P 的横坐标为m ,注意到P 、Q 的纵坐标相等,则可用含m 的代数式表示出点Q 的横坐标,于是PQ 可用含m 的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数2339(1)(4)3444y x x x x =-+-=-++,令x=0,则y=3,令y=0,则3(1)(4)04x x -+-=,解得:121,4x x =-=,∴C(0,3),A(-1,0),B(4,0),设直线BC 的解析式为:y kx b =+,把B 、C 两点代入得:340b k b =⎧⎨+=⎩,解得:343k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为:334y x =-+,过点P 作PQ ∥x 轴交直线BC 于点Q ,如图,则△PQK ∽△ABK ,∴PK PQ AK AB=,设P (m ,239344m m -++),∵P 、Q 的纵坐标相等,∴当239344y m m =-++时,233933444x m m -+=-++,解得:23x m m =-,∴()2234PQ m m m m m =--=-+,又∵AB=5,∴()224142555PK m m m AK -+==--+.∴当m=2时,PK AK的最大值为45.故答案为:45.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求PKAK的最大值转化为求PQ 的最大值、熟练掌握二次函数的性质.17.(1)12-;(2)14x =或26x =-.【解析】【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂的意义计算,第三项利用负整数指数幂法则计算,最后进行加减运算即可得到答案;(2)方程变形后,利用平方根定义开方即可求解.【详解】解:()(2112213-⎛⎫--- ⎪⎝⎭219=---12=-;()()221250x +-=()2125x +=15x +=或15x +=-14x =或26x =-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解答此题的关键.18.(1)(4,﹣1);(2)见解析;(3)见解析.【解析】【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O 逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B 关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A 1B 1C 1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.19.(1)38(2)16【解析】【分析】(1)列表展示所有16种等可能的结果数,再找出第二次取出的数字小于第一次取出的数字的结果数,然后根据概率公式求解;(2)列表展示所有12种等可能的结果数,再找出两张卡片上的数都是偶数的结果数,然后根据概率公式求解.【详解】解:(1)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)由表知,共有16种等可能的结果数,其中第二次取出的数字小于第一次取出的数字的有6种结果,所以第二次取出的数字小于第一次取出的数字的概率为63=168;(2)列表如下:12341(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)由表知,共有12种等可能的结果数,其中两张卡片上的数都是偶数的有2种结果,所以两张卡片上的数都是偶数的概率为21=126.【点睛】此题考查的是用列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验,用到的知识点为:概率=所求情况数与总情况数之比.20.(1)a=-1,b=-2,D (-2,3);(2)−2<x<0【解析】【分析】(1)由于已知抛物线与x 轴的交点坐标,则设交点式y=a (x+3)(x-1)=223ax ax a +-,则-3a=3,解得a=-1,所以b=-2,抛物线的对称轴为直线x=-1,再求出C 点坐标为(0,3),然后根据对称的性质确定D 点坐标为(-2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y2>y1.【详解】(1)设抛物线解析式为y=a(x+3)(x−1)=223ax ax a +-,则−3a=3,解得a=−1,所以抛物线解析式为y=223x x ---;所以b=−2,抛物线的对称轴为直线x=−1,当x=0时,223y ax bx =++,则C 点坐标为(0,3),由于C.D 是二次函数图象上的一对对称点,∴D 点坐标为(−2,3);(2)观察函数图象得到当-2<x<0时,抛物线都在直线y=mx+n 的上方,即y 2>y 1.当−2<x<0时,21y y >.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象,解题关键在于结合二次函数图象解决问题.21.(1)见解析;(2)254【解析】【分析】(1)先证出∠DCE =∠ACB ,∠CDE =∠ACD ,再利用CD 是Rt ABC 斜边AB 中线,可得CD=AD ,证得∠A=∠ACD ,从而∠CDE =∠CAD ,进而可以证明ABC DEC ∽△△;(2)先利用勾股定理求得AB =10,再利用直角三角形斜边上的中线等于斜边的一半,求得CD =5,再利用相似三角形的对应边成比例得AB ∶DE =AC ∶CD ,即可求得答案.【详解】解(1)由题意:∵CE ⊥CD ,∴90DCE ACB ∠∠︒==,又∵//DE AC ,∴∠CDE =∠ACD ,∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =AD ,∴∠ACD =∠CAD ,∴∠CDE =∠CAD ,∴ABC DEC ∽△△.(2)∵AC =8,BC =6,∴利用勾股定理得:AB ∵在Rt ABC 中,CD 是AB 边上的中线,∴CD =5,∵ABC DEC∽△△∴AB ∶DE =AC ∶CD ,即10∶DE =8∶5,∴DE =254.【点睛】本题主要考查了相似三角形的判定和性质,以及直角三角形斜边上的中线特征,找准对应边和对应角是解题的关键.22.(1)DE DC =,证明见详解;(2)⊙O 的直径为8.【解析】【分析】(1)连接AD ,根据直径所对圆周角可得AD BC ⊥,根据等腰三角形三线合一的性质可得到 EDBD =,即可得解;(2)根据已知条件求出BC ,再根据勾股定理建构方程求解即可得解;【详解】解:(1)DE BD =,证明:连接AD ,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD BC ⊥,在△ABC 中,AB=AC ,AD BC ⊥,CAD BAD ∴∠=∠,BD=DC ,(等腰三角形三线合一),∴ EDBD =,DE BD ∴=;∴DE=DC ;(2)∵12BD BC ==2AE =∴BC =设AB AC x ==,2EC AC AE x =-=-,∵AB 为⊙O 的直径,∴∠AEB=90°,在Rt △AEB 中,=,在Rt △CEB 中,BE =即(()22242x x -=--整理得22480x x --=因式分解得()()860x x -+=解得86x x ==-,(舍去),∴⊙O 的直径为8.【点睛】本题主要考查了圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,掌握圆周角定理及其推论,等腰三角形的性质,勾股定理,一元二次方程的解法,是解题的关键.23.(1)2106408800y x x =-+-;(2)此时的销售单价为30元或34元;(3)该商场每天销售此商品的最大利润为1440元.【解析】【分析】(1)根据题意可直接进行求解;(2)由(1)及题意可得21064088001400x x -+-=,进而求解方程即可;(3)由2106408800y x x =-+-可得该二次函数的图象开口向下,对称轴为直线32x =,进而根据二次函数的性质可求解.【详解】解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由2106408800y x x =-+-可得100-<,∴该二次函数的图象开口向下,对称轴为直线32x =,∵每件小商品的售价不超过36元,∴当32x =时,该商场每天销售此商品的利润为最大,最大值为1440;答:该商场每天销售此商品的最大利润为1440元.24.(1)15°;(2);(3)35【解析】(1)根据矩形的性质和直角三角形的性质,先得到30AFB ∠=︒,再由折叠的性质可得到15CBE ∠=︒;(2)由三等角证得FAB EDF ∆∆∽,从而得2DE =,3EF CE ==,再由勾股定理求出DE ,则BC AD ==(3)过点N 作NG BF ⊥于点G ,可证得NFG BFA ∆∆∽.再根据相似三角形的性质得出对应边成比例及角平分线的性质即可得解.【详解】(1)∵矩形ABCD ,∴90A ∠=︒,//AD BC由折叠的性质可知BF=BC=2AB ,12CBE CBF ∠=∠,∴30AFB ∠=︒,∴30FBC AFB ∠=∠=°,∴15CBE ∠=︒(2)由题意可得90A D ∠=∠=︒,90AFB DFE ∠+∠=︒,90FED DFE ∠+∠=︒∴AFB DEF∠=∠∴FAB EDF∆∆∽∴AF AB DE DF=,∴1025AF DF DE AB === ∴3EF CE ==,由勾股定理得DF=∴AF==,∴BC AD AF FD==+=;(3)过点N作NG BF⊥于点G.∴90NGF A∠=∠=°又∵BFA NFG∠=∠∴NFG BFA∆∆∽.∴NG FG NFAB FA BF==.∵NF AN FD=+,即111222NF AD BC BF===∴12NG FG NFAB FA BF===,又∵BM平分ABF∠,90NG BF A⊥∠=︒,,∴NG=AN,∴12NG AN AB==,∴111222FG BF BG BC ABFA AN NF AB BC--===++整理得:35ABBC=.。
人教版九年级上册数学期中考试试卷带答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
人教版九年级上册数学期中考试试卷及答案
人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程2x x =的解是()A .1x =B .0x =C .11x =,20x =D .11x =-,20x =3.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A .开口向下B .对称轴是x=-1C .顶点坐标是(1,2)D .与x 轴有两个交点4.已知点A (2,﹣2),如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是()A .(2,2)B .(﹣2,2)C .(﹣1,﹣1)D .(﹣2,﹣2)5.已知x =2是一元二次方程x 2+mx+2=0的一个解,则m 的值是()A .﹣3B .3C .0D .0或36.若关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是()A .1m <B .1m >-C .1m >D .1m <-7.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为()A .B .C .D .8.对于任意实数x ,多项式x 2-5x+8的值是一个()A .非负数B .正数C .负数D .无法确定9.已知关于x 的一元二次方程x2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为()A .6B .5C .4D .310.若t 是一元二次方程()200ax bx c a ++=≠的根,则判别式24b ac =- 和完全平方式2(2)M at b =+的关系是()A .M =B . M >C .M< D .大小关系不能确定二、填空题11.如果关于x 的方程(m ﹣3)27mx -﹣x+3=0是一元二次方程,那么m 的值为_____12.把抛物线y =2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为_____.13.如图,在ABC 中,20BAC =︒∠,将ABC 绕点A 按顺时针方向旋转50°得到AB C ''△,则C AB ∠'的度数为______.14.若x=1是方程2ax 2+bx=3的根,当x=2时,函数y=ax 2+bx 的函数值为_____.15.已知二次函数y =ax 2+4ax+c 的图象与x 轴的一个交点为(﹣1,0),则它与x 轴的另一个交点的坐标是_____.16.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①abc <0;②3a+c <0;③b 2﹣4ac >0;④16a+4b+c >0.其中正确结论的个数是:___.17.二次函数y=x 2-2x -3与x 轴交点交于A 、B 两点,交y 轴于点C ,则△OAC 的面积为____三、解答题18.解方程:2(23)5(23)x x -=-19.抛物线2y ax =与直线23y x =-交于点()1,A b .(1)求a ,b 的值;(2)求抛物线2y ax =与直线2y =-的两个交点B ,C 的坐标(点B 在点C 右侧).20.如图所示,在宽为16m ,长为20m 的矩形耕地上,修筑同样宽的两条道路(互相垂直),把耕地分成大小不等的四块试验田,要使试验田的面积为285m 2,道路应为多宽?21.如图,已知二次函数y =ax 2+bx+c 的图象过A (2,0),D (﹣1,0)和C (4,5)三点.(1)求二次函数的解析式;(2)在同一坐标系中画出直线y =x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.22.已知:关于x 的方程x 2﹣(k +2)x +2k =0(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a =1,另两边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.23.如图,A ,B ,C ,D 为矩形的四个顶点,16cm AB =,6cm AD =,动点P ,Q 分别从点A,C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P,Q两点从出发经过几秒时,点P,Q间的距离是10cm?24.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.25.已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图,若抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).(1)求抛物线的解析式.(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?(3)点P在线段OC上,作PE⊥x轴与抛物线交于点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.参考答案1.C 2.C 3.C 4.D 5.A 6.C 7.D 8.B 9.B 10.A 11.-3【分析】根据一元二次方程的定义解答即可.【详解】∵关于x 的方程(m ﹣3)27m x -﹣x+3=0是一元二次方程,∴27=2m -,m-3≠0,故答案为-3.12.y =2(x+3)2﹣2【分析】根据二次函数图象与几何变换的方法即可求解.【详解】解:y=2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=2(x+3)2-2;故答案是:y=2(x+3)2-2.13.70°【解析】根据旋转可得=50CAC '∠︒,再根据角之间的和差关系可得答案.【详解】解:∵将ABC 绕点A 按顺时针方向旋转50°得到A B C '''V ,∴=50CAC '∠︒,∵=20BCA ∠︒,∴+=50+20=70C AB CAC BCA ''∠=∠∠︒︒︒,故答案为;70°.14.6【分析】由x=1是方程2ax 2+bx=3的根,得到2a+b=3,由x=2时,得到函数y=ax 2+bx=4a+2b=2(2a+b ),代入即可.【详解】∵x=1是方程2ax 2+bx=3的根,∴2a+b=3,∴当x=2时,函数y=ax 2+bx=4a+2b=2(2a+b )=6,故答案为6.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握图象上的点的坐标适合解析式.15.(﹣3,0)【解析】先求出抛物线的对称轴,再根据轴对称性求出与x 轴的另一个交点坐标,x 轴的两个交点到对称轴距离相等.【详解】解:二次函数y=ax 2+4ax+c 的对称轴为:x=42aa-=2-∵二次函数y=ax 2+4ax+c 的图象与x 轴的一个交点为(-1,0),∴它与x 轴的另一个交点坐标是(-3,0).【点睛】本题主要考查抛物线与x 轴的交点,解题的关键是熟练掌握抛物线的对称性,根据对称性找到交点坐标.16.3【解析】【分析】根据二次函数图像的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图像开口方向向上,所以0a >,对称轴为12ba-=,20b a =-<图像与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图像可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图像与x 轴有两个交点,∴240b ac ->,③正确;由图像可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y ∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图像与系数的关系,解题的关键是根据函数图像确定出对应代数值的符号.17.32或92【解析】【详解】∵在223y x x =--中,当0x =时,3y =-,∴点C 的坐标为(0,-3).∵在223y x x =--中,当0y =时,可得2230x x --=,解得1231x x ==-,,∴点A 、B 中,一个点的坐标为(3,0),另一个点的坐标为(-1,0).当点A 的坐标为(3,0)时,S △OAC =193322⨯⨯=;当点A 的坐标为(-1,0)时,S △OAC =133122⨯⨯=;∴△OAC 的面积为92或32.18.132x =或24x =【解析】【分析】把原方程式移项可得2(23)5(23)0x x ---=,利用提公因式法求解即可.【详解】把原方程式变形为:2(23)5(23)0x x ---=,∴(23)(235)0x x ---=,∴(23)(28)0x x --=解得:132x =或24x =.【点睛】本题考查了提公因式法求解一元二次方程,掌握提公因式法解一元二次方程是解题的关键.19.(1)1a b ==-;(2)点C 坐标(2)-,点B 坐标2)-.【解析】【分析】(1)将点A 代入23y x =-求出b ,再把点A 代入抛物线2y ax =求出a 即可.(2)解方程组即可求出交点坐标.【详解】解:(1) 点()1,A b 在直线23y x =-上,1b ∴=-,∴点A 坐标(1,1)-,把点(1,1)A -代入2y ax =得到1a =-,1a b ∴==-.(2)由22y x y ⎧=-⎨=-⎩解得2x y ⎧⎪⎨=-⎪⎩2x y ⎧=⎪⎨=-⎪⎩∴点C 坐标(,2)-,点B 坐标,2)-.【点睛】本题考查二次函数性质,解题的关键是灵活掌握待定系数法,学会利用方程组求函数图象交点坐标.20.1m 【解析】【分析】设道路宽为xm ,根据试验田的面积=试验田的长×试验田的宽列出方程进行求解即可.【详解】设道路宽为xm ,则根据题意,得(20-x )(16-x)=285,解得:x 1=35,x 2=1,∵16-x>0,即x<16,∴x=35舍去,∴x=1,答:道路宽为1m .【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21.(1)y =12x 2﹣12x ﹣1;(2)图详见解析,﹣1<x <4.【解析】【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴42011645a b cca b c++⎧⎪-⎨⎪++⎩==,=∴a=,12b=﹣12,c=﹣1,∴二次函数的解析式为y=12x2﹣12x﹣1;(2)当y=0时,得12x2﹣12x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);∴图象如图,∴当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.22.(1)见解析;(2)5【解析】【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0,可得方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b、c的长,并根据三角形三边关系检验,综合后求出△ABC的周长.【详解】(1)证明:由题意知:Δ=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,Δ=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点睛】本题考查了根的判别式△=b2-4ac:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.也考查了等腰三角形的性质以及三角形三边的关系.23.1.6或4.8秒【解析】【分析】作PE⊥CD,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】解:过点P做PE⊥CD交CD于E.QE=DQ-AP=16-5t ,在Rt △PQE 中,PE 2+QE 2=PQ 2,可得:(16-5t )2+62=102,解得t 1=4.8,t 2=1.6.答:P 、Q 两点从出发开始1.6s 或4.8s 时,点P 和点Q 的距离是10cm .24.(1)①证明见解析②∠DEC+∠EDC=90°;(2)150°或30°【解析】(1)①证明△BAD ≌△BEC ,即可证明.②分别求出BCD ∠和BCE ∠的度数,即可求出∠DEC 和∠EDC 的数量关系.(2)分三种情况进行讨论.【详解】解:(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴BA BE ABE =∠=,60°,在等边△BCD 中,DB BC ∴=,60DBC ∠=︒60DBA DBC FBA FBA ∴∠=∠+∠=︒+∠,60CBE FBA ∠=︒+∠ ,DBA CBE ∴∠=∠,∴△BAD ≌△BEC ,∴DA=CE ;②判断:∠DEC+∠EDC=90°.DB DC =Q ,DA BC ⊥,1302BDA BDC ∴∠=∠=︒,∵△BAD ≌△BEC ,∴∠BCE=∠BDA=30°,在等边△BCD 中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD =90°,∴∠DEC+∠EDC=90°.(2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得,DCE ∆是直角三角形,90DCE ︒∴∠=,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,由(1)得DA=CE ,∴CD=DA ,在等边BDC 中,BD CD =,BD DA CD ∴==,60BDC ∴∠=︒,DA BC ⊥ ,1302BDA CDA BDC ∴∠=∠=∠=︒,在BDA V 中,DB DA =,180-752BDABAD ∠∴∠=︒=︒,在DCA △中,DA DC =,180-752ADCDAC ∠∴∠=︒=︒,7575150BAC BAD DAC ︒︒∴∠=∠+∠=+=︒.②当点A 在线段DF 上时(如图2),以B 为旋转中心,把BA 顺时针旋转60︒至BE.60BA BE ABE ∴=∠=︒,,在等边BDC 中,60BD BC DBC =∠=︒,,DBC ABE ∴∠=∠,--DBC ABC ABE ABC ∠∠=∠∠,DBA EBC ∠=∠,DBA ∴∆≌CBE ∆,DA CE ∴=,在Rt DFC ∆90DFC =︒∠,,DF ∴<DC ,∵DA <DF ,DA=CE ,∴CE <DC ,由②可知DCE ∆为直角三角形,∴∠DEC≠45°.③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆,DA CE ADB ECB ∴=∠=∠,,在等边BDC 中,60BDC BCD ∠=∠=︒,DA BC ⊥ ,1302BDF CDF BDC ∴∠=∠=∠=︒,180150ADB BDF ∴∠=︒-∠=︒,150ECB ADB ∴∠=∠=︒,90DCE ECB BCD ∴∠=∠-∠=︒,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,∴AD=CD=BD ,∵150ADB ADC ∠=∠=︒,180-152ADB BAD ∠∴∠=︒=︒,180-152CDA CAD ∠=︒∠=︒,30BAC BAD CAD ∴∠=∠+∠=︒,综上所述,BAC ∠的度数是150︒或30.︒25.(1)抛物线的解析式为y=-x 2-2x+3;(2)当-3<x<0时,抛物线的图像在直线BC 的上方;(3)P 点的坐标是(-1,0)【解析】【分析】(1)用待定系数法求解;(2)作直线BC ,求交点C 坐标,可得;(3)设直线BC 交PE 于F ,P 点坐标为(a ,0),则E 点坐标为(a ,-a 2-2a+3),再求得直线BC 的解析式为y=x+3,点F 在直线BC 上,所以点F 的坐标满足直线BC 的解析式,即2232a a --+=a+3.【详解】(1)∵x 2-4x+3=0的两个根为x 1=1,x 2=3∴A 点的坐标为(1,0),B 点的坐标为(0,3)又∵抛物线y=-x 2+bx+c 的图像经过点A(1,0)、B(0,3)两点10233b c b c c -++==-⎧⎧∴⎨⎨==⎩⎩得∴抛物线的解析式为y=-x 2-2x+3;(2)作直线BC由(1)得,y=-x2-2x+3∵抛物线y=-x2-2x+3与x轴的另一个交点为C令-x2-2x+3=0解得:x1=1,x2=-3∴C点的坐标为(-3,0)由图可知:当-3<x<0时,抛物线的图像在直线BC的上方.(3)设直线BC交PE于F,P点坐标为(a,0),则E点坐标为(a,-a2-2a+3),∵直线BC将△CPE的面积分成相等的两部分.∴F是线段PE的中点.即F点的坐标是(a,2232a a--+),∵直线BC过点B(0,3)和C(-3,0),易得直线BC的解析式为y=x+3,∵点F在直线BC上,所以点F的坐标满足直线BC的解析式,即2232a a--+=a+3,解得a1=-1,a2=-3(此时P点与点C重合,舍去),∴P点的坐标是(-1,0).【点睛】二次函数与一次函数应用.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .2230x x --=B .2210x y --=C .()270x x x -+=D .20ax bx c ++=2.如图,在平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,AE 与BD 相交于点F ,若S △BEF =2,则S △ABD =()A .24B .25C .26D .233.若方程(a-2)x²+ax-3=0是关于x 的一元二次方程,则a 的取值范围是()A .a≥2且a≠2B .a≥0且a≠2C .a≥2D .a≠24.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()A .12OM AC =B .MB MO =C .BD AC ⊥D .AMB CND∠=∠5.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则AB 的长为()A .9cmB .12cmC .13cmD .15cm6ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将△ABE沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于()A 1B .1C .12D .27.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A .12个B .16个C .20个D .25个8.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是()A .B .C .5D .69.如图,在ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有()A .1个B .2个C .3个D .4个10.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,若AC =8,CE =12,BD =6,则BF 的值是()A .14B .15C .16D .1711.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF=45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF ,有以下结论:①△ABM ∽△NEM ;②△AEN 是等腰直角三角形;③当AE=AF 时,2BEEC=④BE+DF=EF ;⑤若点F 是DC 的中点,则CE 23=CB .其中正确的个数是()A .2B .3C .4D .512.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A .4:9B .2:5C .2:3D二、填空题13.已知菱形的周长为24,较大的内角为120°,则菱形的较长的对角线长为_____.14.方程x 2=2x 的解是_______.15.在平面直角坐标系中,矩形OABC 的顶点坐标分别是(0O ,0),(8A ,0),(8B ,6),(0C ,6),已知矩形111OA B C 与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,则点1B 的坐标是______.16.如图,矩形纸片ABCD ,BC=10,AB=8,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为____.三、解答题17.解方程:①2x 2﹣4x ﹣3=0;②5(x+1)2=7(x+1).18.(1)解方程(3)30x x x -+-=;(2)解方程2220x x --=;(3)已知a≠0,b≠0,a≠b 且x=1是方程ax²+bx-10=0的一个解,求2222a b a b--的值.19.已知:如图,在△ABC 中,AB=AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD ,EC .(1)求证:△ADC ≌△ECD ;(2)当点D 在什么位置时,四边形ADCE 是矩形,请说明理由.20.某超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为每个50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x 元,(1)当定价增加5元时,获利是多少元?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?21.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE(1)求证:AB ⊥AE ;(2)若BC 2=AD•AB ,求证:四边形ADCE 为正方形.22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.已知如图,矩形ABCD的周长为64,AB=12,对角线AC的垂直平分线分别交AD、BC于E、F,连接AF、CE、EF,且EF与AC相交于点O.(1)求证:四边形AECF是菱形;(2)求S△ABF 与S△AEF的比值.25.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B 出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t 为何值时,△EPQ 为等腰三角形?参考答案1.A 【解析】【详解】试题解析:A 、符合一元二次方程的定义,正确;B 、方程含有两个未知数,错误;C 、原方程可化为-7x=0,是一元一次方程,错误;D 、方程二次项系数可能为0,错误.故选A .考点:一元二次方程的定义.2.A 【解析】【分析】已知平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,可知△BEF ∽△ADF 得出相似比1==3BE BF EF AD DF AF =,所以211(39S BEF S ADF ==V V 得出18S ADF =V 根据2S BEF =V ,在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ,得出6S ABF =V ,S ABD S ABF S ADF =+V V V 求得答案.【详解】在平行四边形ABCD 中AD=BC ,AD ∥BC ∴△BEF ∽△ADF ,∴1==3BE BF EF AD DF AF =∴211(39S BEF S ADF ==V V ∵2S BEF =V ∴18S ADF =V 在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ∴6S ABF =V 且18S ADF =V ∴61824S ABD S ABF S ADF =+=+=V V V 故选:A .【点睛】本题考查了相似三角形的判定定理和性质,如果两个三角形相似,面积比就等于相似比的平方,可以作为求解三角形面积的方法.3.D 【解析】【分析】根据一元二次方程的定义得到a-2≠0,由此求得a 的取值范围.【详解】解:依题意得:a-2≠0,解得a≠2.故选D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.A 【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =,∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.5.C 【解析】【分析】根据正方形的面积求出AC 的长,根据菱形的面积求出BD 的长,再利用菱形的对角线互相垂直平分计算菱形的边长.【详解】解:因为正方形AECF 的面积为50cm 2,所以AC=10cm=因为菱形ABCD 的面积为120cm 2,所以BD=21202410cm ⨯=所以菱形的边长=13cm 故选C .【点睛】此题考查正方形和菱形的性质,关键是根据正方形和菱形的面积进行解答.6.A 【解析】【分析】在Rt △ABE 中,∠B=30°,BE=32,根据△ABE 沿直线AE 翻折至△AFE 的位置可知BF=3,结合菱形ABCD 32,则利用菱形对边平行即CG ∥AB ,再根据平行线段成比例可得CG CFAB BF ==求得1【详解】∵∠B=30°,AE ⊥BC∴AE=2,BE=32∴BF=3,32,则又∵CG ∥AB ∴CG CFAB BF=33=解得1.【点睛】本题考查了菱形的性质,平行线段成比例,图形的翻折,解本题的关键是通过利用菱形对边平行发现与要求线段CG 与其他线段成比例的关系.7.B 【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x 个,由题意可得:44x +=0.2,解得:x=16,故选B ..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系8.C 【解析】【详解】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用“AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=,tan ∠BAC=12EM AM =可得Rt △AME 中,由勾股定理求得AE=5.故答案选C .【点睛】本题考查了菱形的性质;矩形的性质;勾股定理;锐角三角函数.9.D 【解析】【分析】如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.10.B【解析】【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,∴AC BD AE BF=,即86=812BF +,解得:=15BF,故选:B.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.11.C【解析】【分析】①如图,证明△AMN ∽△BME 和△AMB ∽△NME ,②利用相似三角形的性质可得∠NAE=∠AEN=45°,则△AEN 是等腰直角三角形可作判断;③先证明CE=CF ,假设正方形边长为1,设CE=x ,则BE=1-x ,表示AC 的长为AO+OC 可作判断;④如图3,将△ADF 绕点A 顺时针旋转90°得到△ABH ,证明△AEF ≌△AEH (SAS ),则EF=EH=BE+BH=BE+DF ,可作判断;⑤如图4中,设正方形的边长为2a ,则DF=CF=a ,,想办法求出BE ,EC 即可判断.【详解】如图,∵四边形ABCD 是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°.∵∠MAN=∠EBM=45°,∠AMN=∠BME ,∴△AMN ∽△BME ,∴AM MN BM EN =,∴AM BM MN EN=,∵∠AMB=∠EMN ,∴△AMB ∽△NME ,故①正确,∴∠AEN=∠ABD=45°,∴∠NAE=∠AEN=45°,∴△AEN 是等腰直角三角形,故②正确,在△ABE 和△ADF 中,∵90AB AD ABE ADF AE AF =⎧⎪∠=∠=︒⎨⎪=⎩,∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF .∵BC=CD ,∴CE=CF ,假设正方形边长为1,设CE=x ,则BE=1﹣x ,如图2,连接AC ,交EF 于H ,∵AE=AF ,CE=CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE=OF ,Rt △CEF 中,OC 12=EF 22=,在△EAF 中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE .∵AE=AE ,∴Rt △ABE ≌Rt △AOE(HL),∴AO=AB=1,∴AC 2==AO+OC ,∴122+x 2=∴x=22-,∴1222222BE EC -==-③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF=AH ,∠DAF=∠BAH .∵∠EAF=45°=∠DAF+∠BAE=∠HAE .∵∠ABE=∠ABH=90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF ,故④正确,如图4中,设正方形的边长为2a ,则DF=CF=a ,AF =a,∵DF ∥AB ,∴12FN DF AN AB ==,∴AN=NE 23=AF =a ,∴AE =3=a ,∴BE 23=a ,∴EC 43=a 23=BC ,故⑤正确.故选:C .【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.12.A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.13.【解析】【分析】由菱形的性质可得AB=6,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【详解】解:如图所示:∵菱形ABCD的周长为24,∴AB=6,AC⊥BD,BD=2OB,∵∠BAD=120°,∴∠ABC=60°,∴∠ABO=12∠ABC=30°,∴AO=3,∴∴BD=故答案为:.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.14.x 1=0,x 2=2【解析】【分析】先移项得到x 2﹣2x =0,再把方程左边进行因式分解得到x (x ﹣2)=0,方程转化为两个一元一次方程:x =0或x ﹣2=0,即可得到原方程的解为x 1=0,x 2=2.【详解】解:∵x 2﹣2x =0,∴x (x ﹣2)=0,∴x =0或x ﹣2=0,∴x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.15.()4,3或()4,3--【解析】【分析】由矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,又由点B 的坐标为(8,6),即可求得答案.【详解】解:如图,∵矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,∴点B 1的坐标是:(4,3)或(-4,-3).故答案为:(4,3)或(-4,-3).【点睛】本题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用.16.955.【解析】【分析】由勾股定理求出AE 的长,证明△ABH ∽△EAD ,得出AH AB DE AE =求出AH 的长,得出AG 的长,即可得出答案.【详解】∵四边形ABCD 为矩形,∴AB=CD=8,AD=BC=10,∠BAD=∠D=90°,∴AE 2222105AD DE =+=+=5由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG ,∴BF ⊥AE ,AH=GH ,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH ,∴△ABH ∽△EAD ,∴AH AB DE AE =,即555AH =解得:AH 855=∴AG=2AH 1655=,∴GE=AE ﹣55555=.【点睛】本题考查了正方形的性质,翻折变换的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.17.①x 1=22,x 2=22;②x 1=﹣1,x 2=25.【解析】【分析】①直接利用一元二次方程的求根公式,求方程的解;②先移项得到5(x+1)2﹣7(x+1)=0,然后利用因式分解法解方程,即可求解.【详解】①2x 2﹣4x ﹣3=0,a =2,b =﹣4,c =﹣3,∴△=b 2﹣4ac =16﹣4×2×(﹣3)=40,∴2b x a -±==,∴x 1x 2;②5(x+1)2﹣7(x+1)=0,(x+1)(5x+5﹣7)=0,x+1=0或5x+5﹣7=0,∴x 1=﹣1,x 2=25.【点睛】本题主要考查解一元二次方程,掌握公式法和因式分解法解一元二次方程,是解题的关键.18.(1)123,1x x ==-;(2)1211x x ==(3)5.【解析】【分析】(1)提公因式因式分解后可解;(2)把方程左边化为完全平方式的形式,再利用直接开方法求出x 的值即可;(3)把x=1代入方程求得a+b=10,然后将其整体代入化简后的分式并求值.【详解】解:(1)因式分解得(3)(1)0x x -+=,∴123,1x x ==-;(2)∵原方程可化为(x-1)2=3,1x ∴-=1x ∴=±1211x x ∴==(3)解:∵x=1是方程ax²+bx-10=0的根,∴a+b=10,∴225222a b a b a b -+==-,故答案是:5.【点睛】本题考查的是一元二次方程的解法,熟练掌握直接开平方法、因式分解法、配方法、公式法是解题关键.19.(1)证明见解析;(2)点D 在BC 的中点上时,四边形ADCE 是矩形.【解析】【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB ,则易证△ADC ≌△ECD ,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD ,AE ∥CD ,得出平行四边形,根据AC=DE 推出即可.【详解】解:(1)证明:∵AB=AC ,∴∠B=∠ACB ,又∵▱ABDE 中,AB=DE ,AB ∥DE ,∴∠B=∠EDC=∠ACB ,AC=DE ,在△ADC 和△ECD 中,{EDC=ACB DC=CDAC DE=∠∠,∴△ADC ≌△ECD (SAS ).(2)点D 在BC 的中点上时,四边形ADCE 是矩形,∵四边形ABDE 是平行四边形,∴AE=BD ,AE ∥BC ,∵D 为边长中点,∴BD=CD ,∴AE=CD ,AE ∥CD ,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形,即点D在BC的中点上时,四边形ADCE是矩形.考点:平行四边形的性质;等腰三角形的性质;全等三角形的判定与性质;矩形的判定的应用.20.(1)5250元;(2)当定价为70元时利润达到6000元,此时的进货量为200个【解析】【分析】(1)根据利润=每件商品利润×销售量,列式即可求解;(2)总利润=每件商品利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;【详解】(1)定价增加5元即为:50+5=55元时,销售量为:400-10×5=350获利为:(50+5﹣40)(400﹣5×10)=5250元(2)设每个定价增加x元,根据题意(x+10)(400﹣10x)=6000,整理得:x2﹣30x+200=0解得,x1=10,x2=20,∵要使进货量较少,∴x=20,∴定价为50+20=70元,进货量为:400﹣10x=400﹣200=200.当定价为70元时利润达到6000元,此时的进货量为200个.【点睛】本题是一元二次方程的实际应用问题,现列出关于x的关系式,求解一元二次方程,根据条件对x值取舍,确定最终符合题意的答案.21.(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【详解】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE∵在△BCD和△ACE中,BC AC {BCD ACE CD CE=∠=∠=,∴△BCD≌△ACE(SAS)∴∠B=∠CAE=45°∴∠BAE=45°+45°=90°∴AB⊥AE(2)∵BC2=AD•AB,BC=AC,∴AC2=AD•AB∴AC AD AB AC=∵∠DAC=∠CAB,∴△DAC∽△CAB∴∠CDA=∠BCA=90°∵∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形∴四边形ADCE 为正方形.22.(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克,b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.23.(1)证明见解析;(2)485.【解析】【分析】(1)先证得△ADB ≌△CDB 求得∠BCD=∠BAD ,从而得到∠ADF=∠BAD ,所以AB ∥FD ,因为BD ⊥AC ,AF ⊥AC ,所以AF ∥BD ,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD 垂直平分AC ,∴AB=BC ,AD=DC ,在△ADB 与△CDB 中,AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩,∴△ADB ≌△CDB (SSS )∴∠BCD=∠BAD ,∵∠BCD=∠ADF ,∴∠BAD=∠ADF ,∴AB ∥FD ,∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形,(2)解:∵四边形ABDF 是平行四边形,AF=DF=5,∴▱ABDF 是菱形,∴AB=BD=5,∵AD=6,设BE=x ,则DE=5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2解得:x=75,∴245AE =,∴AC=2AE=485.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.24.(1)证明见解析;(2)8:17.【解析】【分析】(1)根据SSS 证明△AOE ≌△COF ,根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(2)由(1)知S △AEF =S △ACF ,再分别求得S △ABF 与S △AEF 的面积即可得到其比值.【详解】∴AD∥BC,∴∠OAE=∠OCF.∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AFEC是平行四边形,又∵EF⊥AC,∴四边形AFEC是菱形;(2)∵△AOE≌△COF,∴S△AEF=S△ACF∵S△ABF=3BF,S△AEF=3FC,∴S△ABF:S△AEF=BF:FC.∵矩形ABCD的周长为64,AB=12,∴BC=20,设FC=x,则AF=x,BF=20﹣x在Rt△ABF中,由勾股定理122+(20﹣x)2=x2解得:x68 5 =,BF32 5 =,∴S△ABF:S△AEF=BF:FC=8:17.【点睛】此题主要考查了矩形的性质、线段的垂直平分线性质、菱形的判定以及勾股定理等知识的综合应用.熟练掌握菱形的判定方法是解题的关键.25.(1)4114s或4013s;(2)t=1或3或207或196秒【解析】【分析】(1)①当PQ⊥AB时,△PQE是直角三角形.证明△PQE∽△ACB,将PE、QE用时间t 表示,由三角形对应线段成比例的性质即可求出t值;②当PQ⊥DE时,证明△PQE∽△DAE,(2)分三种情形讨论,①当点Q在线段BE上时,EP=EQ;②当点Q在线段AE上时,EQ=EP;③当点Q在线段AE上时,EQ=QP;④当点Q在线段AE上时,PQ=EP,分别列出方程即可解决问题.【详解】解:(1)在Rt△ABC中,AC=12cm,BC=16cm,∴AB20cm.∵D、E分别是AC、AB的中点.∴AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=12BC=8cm,①如图1中,PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴PE QE AE DE=,由题意得:PE=8﹣2t,QE=4t﹣10,即82410 108t t--=,解得t=41 14;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PE QE ED AE=,∴82410 810t t--=,∴t=40 13,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)①如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.②如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.③如图5中,当点Q在线段AE上时,由EQ=QP,可得12(8﹣2t):(4t﹣10)=4:5,解得t=20 7.④如图6中,当点Q在线段AE上时,由PQ=EP,可得12(4t﹣10):(8﹣2t)=4:5,解得t=19 6.综上所述,t=1或3或207或196秒时,△PQE是等腰三角形.【点睛】本题主要考查了相似三角形的判定和性质及等腰三角形的判定,注意分类讨论,灵活的用含t的代数式表示线段的长度是解题的关键.。
人教版九年级上册数学期中考试试卷附答案
人教版九年级上册数学期中考试试题2022年7月一、单选题1.下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程22x x =的解是()A .2x =B .122,0x x ==C .0x =D .122,1x x ==3.二次函数y =(x+1)2+2的图象的顶点坐标是()A .(﹣2,3)B .(﹣1,2)C .(1,2)D .(0,3)4.在平面直角坐标系中,点A 的坐标是(1,3),将点A 绕原点O 顺时针旋转180°得到点A′的坐标是()A .(﹣1,3)B .(1,﹣3)C .(3,1)D .(-1,﹣3)5.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为()A .2(1)3y x =-++B .2(1)3y x =-+-C .2(1)3y x =---D .2(1)3y x =--+6.如图,DE BC ,在下列比例式中,不能成立的是()A .AD AEDB EC=B .DE AEBC EC=C .AB ACAD AE=D .DB ABEC AC=7.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为()A .10mB .12mC .15mD .40m8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=9.已知二次函数y =x 2﹣6x+1,关于该函数在﹣1≤x≤4的取值范围内,下列说法正确的是()A .有最大值8,最小值﹣8B .有最大值8,最小值﹣7C .有最大值﹣7,最小值﹣8D .有最大值1,最小值﹣710.如图,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转α角0180()α︒<<︒至A B C ''△,使得点A '恰好落在AB 边上,则α等于()A .150︒B .90︒C .30°D .60︒二、填空题11.若两个相似三角形的相似比是1:2,则它们的面积比是______.12.已知方程x 2﹣3x ﹣k =0有一根是2,则k 的值是_____.13.如图,已知30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,则BAE ∠=_____°.14.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x 尺,根据题意,可列方程为_____.15.若二次函数21y ax =+,当x 取1x ,2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为_____.16.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.三、解答题17.解方程:2420x x ++=.18.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式.19.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结BE .求证:AD BE =.20.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △;(3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标.21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?22.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽;(2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:售价x (元/千克)506070销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.24.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.定义:若两条抛物线的对称轴相同,则称这两条抛物线为同轴抛物线.若抛物线211:12C y x mx m =--+与抛物线2C :2222y x nx n =-++-为同轴抛物线,将抛物线1C 上1≥x 的部分与抛物线2C 上1x <的部分合起来记作图象G .(1)①n =_____(用含m 的式子表示);②若点(),1m -在图象G 上,求m 的值;(2)若1m =,当12x -≤≤时,求图象G 所对应的函数值y 的取值范围;(3)正方形ABCD 的中心为原点O ,点A 的坐标为()1,1,当图象G 与正方形ABCD 有3个交点时,求m 的取值范围(直接写出结果).26.在△ABC 中,点D 在BC 边上,AD CD =,点E 、F 分别在线段AC 、AD 上,连结EF ,且EFD ABC ∠=∠.(1)当点E 与点C 重合时,如图1,找出图中与EF 相等的线段,并证明;(2)当点E 不与点C 重合时,如图2,若AC kEC =,求EFAB的值(用含k 的式表示);(3)若90BAC ∠=︒,35AB BC =,23EF AB =,如图3,求EC AC 的值.参考答案1.C 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、不是轴对称图形,是中心对称图形,故此选项不合题意;C 、既是轴对称图形又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C .2.B 【解析】利用因式分解法解一元二次方程,提取公因式x .【详解】解:22x x=()20x x -=,10x =,22x=.故选:B .3.B 【解析】根据顶点式的意义直接解答即可.【详解】解:二次函数y =(x+1)2+2的图象的顶点坐标是(﹣1,2).故选:B .4.D 【解析】根据中心对称的定义得到点A 与点A′关于原点对称,然后根据关于原点对称的点的坐标特征求解.【详解】∵线段OA 绕原点O 顺时针旋转180°,得到OA′,∴点A 与点A′关于原点对称,而点A 的坐标为(1,3),∴点A′的坐标为(﹣1,﹣3).故选D .5.A 【解析】根据二次函数图象的平移规律解答即可.【详解】解:由题意知,平移后抛物线的解析式是()213y x =-++,故A 正确.故选:A .【点睛】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减.6.B 【解析】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.【详解】DE BC ∥,AD AE DB ABDB EC EC AC∴==.ADE ABC ∴ ∽DE AE AEBC AC EC∴=≠B.错误故选B .【点睛】平行线分线段成比例定理:两条直线被一组平行直线所截,所得的对应线段的长度成比例.7.C 【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x 米,由题意得,1.8325x,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.8.D【解析】等量关系为:原价×(1-降价的百分率)2=现价,把相关数值代入即可.【详解】第一次降价后的价格为:25×(1-x);第二次降价后的价格为:25×(1-x)2;∵两次降价后的价格为16元,∴25(1-x)2=16.故选:D.9.A【解析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【详解】∵y=x2﹣6x+1=(x﹣3)2﹣8,∴在﹣1≤x≤4的取值范围内,当x=3时,有最小值﹣8,当x=﹣1时,有最大值为y=16﹣8=8.故选A.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.D【解析】【分析】由旋转的性质可得CA=CA',∠ACA'=α,由等腰三角形的性质可得∠A=∠CA'A=60°,由三角形内角和定理可求α的值.【详解】解:90ACB ∠=︒ ,30ABC ∠=︒,60A ∴∠=︒,将ABC ∆绕点C 顺时针旋转α角0180()α︒<<︒至△A B C '',CA CA '∴=,ACA α'∠=,60A CA A '∴∠=∠=︒,60ACA ∴'∠=︒,60α∴=︒,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.11.1:4【解析】【分析】根据相似三角形的面积比等于相似比即可求得.【详解】∵两相似三角形的相似比为1:2,∴它们的面积比是1:4,故答案为:1:4.【点睛】本题考查了相似三角形的面积的比等于相似比的平方的性质,熟记性质是解题的关键.12.-2【解析】【分析】直接把x =2代入方程x 2﹣3x ﹣k =0,得到关于k 的方程,然后解一次方程即可.【详解】解:把x =2代入方程x 2﹣3x ﹣k =0得4﹣6﹣k =0,解得k =﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.20【解析】【分析】利用旋转的性质得出50DAB ∠=o ,进而得出BAE ∠的度数.【详解】∵30EAD =∠°,ADE 绕着点A 逆时针旋转50°后能与ABC 重合,∴50DAB ∠=o ,则BAE ∠=503020DAB DAE ∠-∠=-=o o o 故答案为:20°【点睛】此题主要考查了旋转的性质,得出旋转角DAB ∠的度数是解题关键.14.()22238x x -+=【解析】【分析】根据题意可直接进行列式求解.【详解】由题意易得:()22238x x -+=;故答案为()22238x x -+=.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.15.1【解析】【分析】y=ax 2+1的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,所以x 1,x 2互为相反数,即x 1+x 2=0,由此可以确定此时函数值.【详解】解:∵在y=ax 2+c 的对称轴是y 轴,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,∴x 1,x 2互为相反数,∴x 1+x 2=0,∴y=0+1=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.16.(164y x x=<<【解析】【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD+∠BAP =90°,∠BAP+∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB .∴=AD DEAP AB,即4=4y x∴(164y x x=<<.故答案为:(164y x x=<<【点睛】本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.17.12x =-+22x =--【解析】【分析】方程利用配方法求出解即可.∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=,∴2x =-∴12x =-22x =--18.223y x x =--+.【解析】将点()3,0-,()2,5-代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩,则二次函数的解析式为223y x x =--+.19.见解析.【解析】由旋转的性质可得CD =CE ,∠DCE =90°,由“SAS”可证△ACD ≌△BCE ,从而得出结论.【详解】∵将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,∴CD CE =,90DCE ∠=︒,∴90DCE ACB ∠=∠=︒,∴ACD DCB DCB BCE ∠+∠=∠+∠,∴ACD BCE ∠=∠,且AC BC =,CD CE =,∴()ACD BCE SAS ≌,∴AD BE =.20.(1)图见解析,()12,2A ,()10,1B -;(2)图见解析;(3)(0,2)-.(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222ab -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩,1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A --- ,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B -- ,0013(,)22P +--∴,即(0,2)P -,故旋转中心的坐标为(0,2)-.21.这个苗圃园垂直于墙的一边长为12米.【解析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.22.(1)见解析;(2)BD =【解析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AEAB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△.∴AC AEAB AD=.∵EAC BAD ∠=∠,∴BAD CAE ∽.(2)∵90ACB ∠=︒,4BC =,3AC =,∴5AB ==.∵A ABC DE ∽△△,∴AC ABAE AD=.∴52AB AE AD AC ⋅==.将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD =23.(1)y =﹣2x+200(40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析【解析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx+b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩,解得:k 2b 200=-⎧⎨=⎩,∴y =﹣2x+200(40≤x≤80);(2)W =(x ﹣40)(﹣2x+200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.24.(1(2)22220326416553515t t S t t t t t ⎧⎛<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎪-+≤⎪⎝⎩.【解析】(1)根据勾股定理求得AB =,易证BED BAC ∽△△,根据相似三角形的性质求得BE =,根据平行四边形的性质可得DF BE ∥即DF =,继而易得 ∽ADF ABC ,继而根据相似三角形的性质求解;(2)分①当03t <≤时,②当03t <≤时,③当5t <≤【详解】(1)当点F 落在AC 边上时,如图1∵在Rt ABC 中,8AC =,4BC =,90ACB ∠=︒,∴AB =∵ED AB ⊥于D ,∴90EDB ACB ∠=∠=︒,B B ∠=∠,∴BED BAC ∽△△,∴BD BEBC AB=,∴4t =BE =,∵四边形BDFE 为平行四边形,∴DF ∥,∴DF , ∽ADF ABC ,∴DF AD BC AB =,即4=3t =∴当点F 落在AC 边上时,t(2)当0t <≤2,∵BDE BCA ∽,∴BD DE BC CA=,∴48t DE=,∴2DE t =.∴222BDFE S S BD DE t t t ==⋅=⋅= ;当点E 与点C 4=,5t =,t <≤3,∵DM BC ,∴ADM ABC △∽△,∴DM ADBC AB =,∴4DM =∴4DM =-.∵DF BE ==,∴44MF ⎛⎫=-=- ⎪ ⎪⎝⎭又∵MNF CAB △∽△,∴MN MF CA CB =,∴84MN MF=,∴2MN MF =.∴2221364162555MNFS MN MF MF t t t ⎛⎫=⋅==-=-+ ⎪ ⎪⎝⎭△∴22362165BDFE MNF S S S t t ⎛⎫=-=-+ ⎪ ⎪⎝⎭△∴2264851655S t t =-+-;当45455t <≤时,如图4.∵ADM ABC △∽△,∴AD DM AMAB BC AC==,∴454845t DM AM -==,∴545DM t =-,2585AM t =-.∴25258855MC t t ⎛⎫=--= ⎪ ⎪⎝⎭.∵BDMC S S =梯形.∴215251854425555S t t t t ⎛⎫=⋅-+⨯=-+ ⎪ ⎪⎝⎭.综上所述,222252032648525451655351854545555t t S t t t t t t ⎧⎛⎫<≤⎪ ⎪ ⎪⎪⎝⎭⎪⎛⎫⎪=-+-≤≤ ⎪⎨ ⎪⎝⎭⎪⎪⎛⎫⎪-+<≤ ⎪ ⎪⎪⎝⎭⎩.25.(1)①m ;②m 的取值为15-+或12-+12-;(2)当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)1122m -<<或514m <≤.【解析】(1)①根据同轴抛物线的定义可得n=m ;②分两种情况:①当m 1≥时,将(),1m -代入2112y x mx m =-=+中,当1m <时,把(),1m -代入2222y x mx m =-++-中,计算可解答;(2)先将m=1代入函数y 中,画出函数图象,分别代入x=-1,x=2,x=1计算对应的函数y 的值,根据图象可得结论;(3)画出相关函数的图象,根据图象即可求得.【详解】(1)①抛物线1C 的对称轴为:1x m =,抛物线2C 的对称轴为:2x n =,∵1C 与2C 为同轴抛物线,∴12x x =∴n m =故答案为:m②当m 1≥时,将(),1m -代入2112y x mx m =-=+中得221112m m m --+=-,2240m m +-=,解得11m =-21m =-,∵m 1≥,∴1m =-当1m <时,把(),1m -代入2222y x mx m =-++-中得:222221m m m -++-=-,2210m m +-=解得11m =-+21m =-∵1m <,∴1m =-1m =-.综上所述,m的取值为1-或1-+1--(2)当1m =时,图象G 的函数解析式为()()2211221x x x y x x x ⎧-≥⎪=⎨⎪-+<⎩,图象G 如图1所示,在抛物1C 上,当12x ≤≤时,y 随x 的增大而增大,102y -≤≤,在抛物线2C 上,当11x -≤<时,y 随x 的增大而增大,31y -≤<∴当12x -≤≤时,图象G 所对应的函数值y 的取值范围为31y -≤<;(3)当112m -<<或514m <≤时,图象G 与正方形ABCD 有3个交点,抛物线()2222:22222C y x mx m x m m m =-++-=--++-.抛物线211:12C y x mx m =--+,当1x =时,322y m =-当31212m -≤-≤时,1544m ≤≤.当抛物线2C 的顶点在BC 上时,如图2,2221m m +-=-,11m =-,21m =-当抛物线2C 过点()1,1B -时,如图3,12221m m -++-=-,12m =,∴112m -<<;当抛物线2C 过点()1,1A 时,如图4,12221m m -++-=,44m =,1m =.当抛物线1C 过点()1,1B -时,如图5,1112m m --+=-,54m =,∴514m <≤.综上所述,当112m -+<或514m <≤时,图象G 与正方形ABCD 有3个交点.26.(1)EF AB =.证明见解析;(2)1EF k AB k-=;(3)13EC AC =.【解析】(1)在BD 上取点M ,使AM AD =,根据等边对等角的性质、等量代换及全等三角形的判定和性质可得AB EF =;(2)在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N ,根据等边对等角、平行线的性质、等量代换可证得:ENF AMB △∽△,继而可得EF EN AB AM =,继而易证ANE ADC △∽△,CN DC E AE A =,继而即可求解;(3)过E 作EG AD ⊥于G ,易证EGF CAB △∽△,可得EG EF AC BC =,可设3AB a =,5BC a =,则4AC a =,求得2EF a =,85EG a =,易证AGE CAB △∽△,进而可得AE GE CB AB=,继而可知83AE a =,84433EC a a a =-=,继而即可求解.【详解】(1)EF AB =.证明:在BD 上取点M ,使AM AD =,如图1,∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠,又∵AD CD =,∴AM CD =,又∵ABC EFD ∠=∠.∴()ABM CFD AAS △≌△,∴AB EF =;(2)解:在BD 上取点M ,使AM AD =,过E 作EN CD 交AD 于N.∵AM AD =,∴AMD ADM ∠=∠,∴AMB ADC ∠=∠.∵NE DC ∥,∴FNE ADC AMB ∠=∠=∠.又∵EFD ABC ∠=∠,∴ENF AMB △∽△,∴EFENAB AM =,∵EN DC ,∴ANE ADC △∽△,∴CN DC E AEA =∵AC kEC =,∴()1AE AC EC k EC =-=-.∴()11k EC EN kDC kEC k --==,∵AM AD DC ==,∴1EN EN k DC AM k -==,∴1EF k AB k -=;(3)解:过E 作EG AD ⊥于G ,如图3∵90BAC ∠=︒,∴EGF BAC ∠=∠.又∵EFD ABC ∠=∠,∴EGF CAB △∽△,∴EG EFAC BC=∵35ABBC =,∴设3AB a =,5BC a =,则4AC a =,又∵23EFAB =,∴2EF a =,∴245EG a a a =,∴85EG a =.又∵AD DC =,∴DAC C ∠=∠,∴AGE CAB △∽△,∴AEGECB AB =,∴8553a AE a a =,∴83AE a =∵4AC a =,∴84433EC a a a =-=,∴41343a EC AC a ==.【点睛】本题主要考查相似三角形的的判定及其性质,涉及到等边对等角的性质、等量代换及全等三角形的判定及其性质,解题的关键是熟练掌握所学知识.。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.下列说法错误的是()A .对角线互相垂直的平行四边形是矩形B .矩形的对角线相等C .对角线相等的菱形是正方形D .两组对边分别相等的四边形是平行四边形2.一个菱形的两条对角线分别为4和5,则这个菱形的面积是()A .8B .10C .15D .203.在矩形ABCD 中,对角线AC 与BD 相交于点O ,34ADB ∠=︒,则BAO ∠的度数是A .46°B .54°C .56°D .60°4.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为3.2km ,则M ,C 之间的距离是()A .0.8kmB .1.6kmC .2.0kmD .3.2km 5.用配方法解方程2640x x ++=时,原方程变形为()A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=6.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A .14B .13C .12D .347.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或48.某地一家餐厅新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60509.如图矩形ABCD 的两条对角线相交于点O ,CE 垂直平分DO ,AB 1=,则BE 等于()A .32B .43C .23D .210.如图,在边长为2的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则PBQ 周长的最小值为()AB .3C 1D .二、填空题11.一元二次方程()211x x +=+的根是_____.12.若关于x 的方程21(1)7a a x +--=0是一元二次方程,则a =____.13.x 2﹣4x+1=(x ﹣2)2﹣______.14.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:___,使得平行四边形ABCD 为菱形.15.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则k 的最大整数值是_________.16.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.17.如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交CD 于点P ,则∠FPC 的度数是______.18.如图,在Rt ABC 中,90A ∠= ,AB=6,BC=10,P 是BC 边上的一点,作PE 垂直AB ,PF 垂直AC ,垂足分别为E 、F ,求EF 的最小值是_____.三、解答题19.用适当的方法解方程:(1)x 2+2x ﹣1=0;(用配方法)(2)3x 2﹣5x+1=0;(用公式法)(3)3(2x+1)2=4x+2;(用因式分解法)(4)3x 2+5x =3x+3.(选择适当的方法)20.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A 的概率.21.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,∠ABC ∶∠BAD =1∶2,AC ∥BE ,CE ∥BD .(1)求∠DBC 的度数;(2)求证:四边形OBEC 是矩形.22.如图,在正方形ABCD 中,点P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.23.某公园内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)24.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.试问:每件衬衫降价多少元时,平均每天赢利750元?25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△AFE≌△DBE;(2)若AB⊥AC,试判断四边形ADCF是不是菱形?若是,证明你的结论;若不是,请说明理由.参考答案1.A【解析】根据特殊平行四边形的性质判断即可;【详解】经过判断,对角线互相垂直的平行四边形是菱形,故A错误;B、C、D均正确;故答案选A.【点睛】本题主要考查了特殊平行四边形的判定,准确判断是解题的关键.2.B【解析】【分析】根据菱形的面积计算公式计算即可;【详解】∵菱形的两条对角线分别为4和5,∴菱形的面积14510 2=⨯⨯=;故答案选B.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.3.C【解析】【分析】由矩形的性质得∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,则OA=OD,由等腰三角形的性质得∠OAD=∠ADB=34°,进而得出答案.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OD,∴∠OAD=∠ADB=34°,∴∠BAO=90°−∠OAD=90°−34°=56°;故选:C.【点睛】本题考查了矩形的性质、等腰三角形的判定与性质等知识;熟练掌握矩形的性质和等腰三角形的性质是解题的关键.4.B【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.【详解】∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=3.2km,∴CM=1.6km,故选:B.【点睛】此题考查直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解题的关键.5.C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x2+6x+5+4-5=0,即(x+3)2=5.故选:C.【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.B【解析】【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为412=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7.A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x2-6x+8=0(x-4)(x-2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A.本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.8.D【解析】【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.A【解析】【分析】根据矩形的性质可证明ODC ,OAB 都是等边三角形,根据等边三角形的性质即可求出OE 的长,即可的答案;【详解】四边形ABCD 是矩形,OA OB OD OC ∴===,CE 垂直平分相等OD ,CO CD ∴=,OC OD CD ∴==,OCD ,AOB 都是等边三角形,OB AB OD 1∴===,OE DE ==12OD=12,13BE 122∴=+=,【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.C【解析】【分析】由于点B 与点D 关于AC 对称,所以如果连接DQ ,交AC 于点P ,那么PBQ 的周长最小,此时PBQ 的周长BP PQ BQ DQ BQ.=++=+在Rt CDQ 中,由勾股定理先计算出DQ 的长度,再得出结果即可.【详解】连接DQ ,交AC 于点P ,连接PB 、BD ,BD 交AC 于O .四边形ABCD 是正方形,AC BD ∴⊥,BO OD =,CD 2cm =,∴点B 与点D 关于AC 对称,BP DP ∴=,BP PQ DP PQ DQ ∴+=+=.在Rt CDQ 中,DQ ===,PBQ ∴的周长的最小值为:BP PQ BQ DQ BQ 1++=+=+.故选C .【点睛】此题考查轴对称问题,根据两点之间线段最短,确定点P 的位置是解题关键.11.10x =,21x =-【分析】利用因式分解法求解可得.【详解】解:2(1)1x x +=+ ,2(1)(1)0x x ∴+-+=,则(1)0x x +=,0x ∴=或10x +=,解得10x =,21x =-,故答案为:10x =,21x =-.12.﹣1.【解析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】解:∵关于x 的方程(a ﹣1)xa2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.13.3【解析】利用配方法的步骤整理即可.【详解】解:x 2﹣4x+1=x 2﹣4x+4﹣3=(x ﹣2)2﹣3,故答案为3,14.AD=DC (答案不唯一)【详解】由四边形ABCD 是平行四边形,添加AD=DC ,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形;添加AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形.故答案为:AD=DC (答案不唯一).15.0【解析】关于x 的一元二次方程2(1)10k x x -++=有实数根,则△=240b a -≥,且k-1≠0,求出k 的取值范围即可解决本题.【详解】解:关于x 的一元二次方程2(1)10k x x -++=有实数根,则()=1410k 10△--≥⎧⎪⎨-≠⎪⎩k ,解得:54k ≤且k≠1,则k 的最大整数值为;0,故答案为:0.16.4【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x 个,由题意得,6x x+=0.4,解得:x =4,经检验x=4是原方程的解故袋子中白球有4个,故答案为:4.17.112.5°【解析】利用正方形的性质得到90BCD ∠︒=,45CBD ∠︒=,再根据菱形的性质得BF 平分,EBD ∠,所以22.5CBP ∠︒=,然后根据三角形外角性质计算∠FPC 的度数.【详解】解:∵四边形ABCD 为正方形,90BCD ∴∠︒=,45CBD ∠︒=,∵四边形BEFD 为菱形,∴BF 平分∠EBD ,22.5CBP ∴∠︒=,22.590112.5FPC PBC BCP ∴∠∠∠︒︒︒=+=+=.故答案为:112.5︒.18.4.8【解析】根据已知得出四边形AEPF 是矩形,得出EF=AP ,要使EF 最小,只要AP 最小即可,根据垂线段最短得出即可.【详解】解:连接AP ,∵∠BAC=90°,PE ⊥AB ,PF ⊥AC ,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE 是矩形,∴EF=AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠BAC=90°,BC=10,AB=6,由勾股定理得:AC=8,由三角形面积公式得:116810AP 22⨯⨯=⨯⋅,∴AP=4.8,即EF=4.8,故答案为:4.8.【点睛】本题利用了矩形的性质和判定、勾股定理以及垂线段最短的应用.19.(1)x1=﹣x 2=﹣1(2)x 1x 2(3)x 1=﹣12,x 2=﹣16(4)1211,33x x --==【解析】【分析】(1)根据配方法求解即可;(2)根据公式法求解即可;(3)根据因式分解法求解即可;(4)根据公式法求解即可;(1)解:x 2+2x ﹣1=0,x 2+2x =1,x 2+2x+1=1+1,即(x+1)2=2,∴x+1=,∴x 1=﹣x 2=﹣1(2)解:3x 2﹣5x+1=0,∵a =3,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x即x 1=56,x 2=56-;(3)解:3(2x+1)2=4x+2,3(2x+1)2﹣2(2x+1)=0,(2x+1)[3(2x+1)﹣2]=0,2x+1=0或6x+1=0,x 1=﹣12,x 2=﹣16.(4)解:3x 2+5x =3x+3,3x 2+2x-3=0∵a =3,b =2,c =-3,∴Δ=22﹣4×3×(﹣3)=40>0,∴x =223-±⨯=13-,∴x 1=13-+,x 2【点睛】本题考查解一元二次方程的解法,熟练掌握解法解一元二次方程的方法:配方法、公式法、因式分三种方法是解题的关键.20.(1)详见解析;(2)16【解析】(1)利用用树状图(或列表法)列举出所有情况;(2)让恰好选中医生甲和护士A 的情况数除以总情况数即为所求的概率.【详解】解:(1)用列表法或树状图表示所有可能结果如下:护士医生A B 甲(甲,)A (甲,)B 乙(乙,)A (乙,)B丙(丙,)A(丙,)B(2)因为共有6种等可能的结果,其中恰好选中医生甲和护士A的有1种,所以P(恰好选中医生甲和护士1)6A=.(3分)【点睛】本题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题的关键是还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)30°(2)证明见解析【解析】【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【详解】(1)∵四边形ABCD是菱形,∴AD∥BC,∠DBC=12∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=12∠ABC=30°;(2)证明:∵四边形ABCD是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形.【点睛】此题考查了矩形的判定,菱形的性质,熟练掌握判定与性质是解本题的关键.22.(1)见解析;(2)90°【解析】【分析】(1)由四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,得AB =BC ,∠ABP =∠CBP =45°,利用SAS 可证得△ABP ≌△CBP 即可证明PC =PE .(2)由△ABP ≌△CBP ,得∠BAP =∠BCP ,从而得∠DAP =∠DCP ,再由PA =PE 即可证出∠DCP =∠E ,进而可证出∠CPE =∠EDF =90°.【详解】(1)证明:∵四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,∴AB =BC ,∠ABP =∠CBP =45°,在△ABP 和△CBP 中,=AB BC ABP CBP PB PB =⎧⎪∠∠⎨⎪=⎩,∴△ABP ≌△CBP (SAS ),∴PA =PC ,∵PA =PE ,∴PC =PE ,(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP =∠BCP ,∴∠DAP =∠DCP ,∵PA =PE ,∴∠DAP =∠E ,∴∠DCP=∠E,∵∠CFP=∠EFD,∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.23.小道进出口的宽度应为1米.【解析】【分析】观察图形可知,种植花草的地方拼凑起来可以得到一个新矩形,设小道进出口的宽度为x 米,则新矩形的长是(30﹣2x)m,宽是(20﹣x)m,根据面积公式列方程,求解即可.【详解】设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0,解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据实际意义对求得的根进行取舍.24.每件衬衫降价15元时,平均每天赢利750元【解析】【分析】设每件衬衫降价x元,则平均每天可售出(20+2x)件,再写出单件利润的表达式(100﹣70﹣x),两者乘积为总利润,解方程,根据题意对根进行取舍,即可求出答案.【详解】设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15.∵尽快减少库存,∴x =15.答:每件衬衫降价15元时,平均每天赢利750元.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据题意对求得的根进行取舍.25.(1)证明见解析;(2)四边形ADCF 是菱形,证明见解析【解析】【分析】(1)根据平行线的性质可得∠AFE=∠DBE ,然后利用AAS 判定△AFE ≌△DBE 即可;(2)首先证明四边形ADCF 是平行四边形,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD ,进而可得四边形ADCF 是菱形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );(2)解:四边形ADCF 是菱形,理由如下:∵△AFE ≌△DBE ,∴AF=BD ,∵AD 是斜边BC 的中线,∴BD=DC∴AF=DC .∵AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC,∴平行四边形ADCF是菱形.。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题(共36分)1.(本题3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④2.(本题3分)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.3.(本题3分)在如图所示的图形中,形状相同的是()A.图①与图②B.图②与图③C.图②与图④D.图①与图④4.(本题3分)如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为()A .3B .3或43C .3或34D .435.(本题3分)如图,DE 是△ABC 的中位线,延长DE 至F 使EF=DE ,连接CF ,则CEF BCED S S 四边形:的值为()A .1:3B .2:3C .1:4D .2:56.(本题3分)如图,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB .若NF =NM=2,ME =3,则AN =A .3B .4C .5D .67.(本题3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图()A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图不变,俯视图改变D .主视图改变,俯视图不变8.(本题3分)如图所示,在长为8cm ,宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A .2cm 2B .4cm 2C .8cm 2D .16cm 29.(本题3分)如图,等腰ABC 中,腰AB a =,A 36∠= ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E .设51k 2=,则DE =()A .k 2aB .k 3aC .2ak D .3ak 10.(本题3分)某几何组合体的主视图和左视图为同一个视图,如图所示,则该几何组合体的俯视图不可能是()A .B .C .D .11.(本题3分)已知a 、b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值为()A .11B .0C .7D .-712.(本题3分)四边形ABCD 是面积为1的正方形;点P 为正方形内一点,且△PBC 为正三角形,那么△PBD 的面积是()A .3+1B .3−1C .3−2D .3+2二、填空题(共15分)13.(本题3分)如图,在梯形ABCD 中,AD//BC ,对角线AC 、BD 相交于点O ,若AD =1,BC =3,△AOD 的面积为3,则△BOC 的面积为__________.14.(本题3分)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为_______cm2.(结果可保留根号)15.(本题3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED.若DE=4,AE=5,BC =8,则AB的长为________16.(本题3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是____.17.(本题3分)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE的周长与△ABC 的周长之比为1:4;其中正确的有_____.(只填序号)三、解答题(共69分)18.(本题7分)如图,PN BC ∥;AD BC ⊥,交PN 于点E ,交BC 于点D .(1)若12AP PB =,218cm ABC S =△,求APN S △的值.(2)若1=2APN PBCN S S 四边形△,求AE AD的值.(3)若15BC =cm ,10AD =cm ,且PN ED x ==cm ,求x 的值.19.(本题7分)四张形状相同的卡片如图,将卡片洗匀后背面朝上放置在桌面上,小明先随机抽取一张卡片,记下数字为x ;小亮再随机抽一张卡片,记下数字为y.两人在此基础上共同协商一个游戏规则:当x y >时小明获胜,否则小亮获胜.(1)若小明抽出的卡片不放回,求小明获胜的概率.(2)若小明抽出的卡片放回后小亮再随机抽取,问他们制定的游戏规则公平吗?请说明理由.20.(本题7分)用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)求,,a b c 的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当2,1,2d e f ===时画出这个几何体的左视图.21.(本题8分)如图,现有一物体CD 在路灯AB 的灯泡(图上点A 处)的照射下,影子顶端正好落在墙脚的点Q 处.已知路灯AB 距物体CD 7.5m ,物体CD 的高为3m ,其影子长为5m.假如另有一高6m 的物体EF 在路灯AB 与物体CD 之间,EF 距路灯AB 2.9m ,问物体EF 的影子是否会落在墙PQ 上.22.(本题8分)(2013衡阳)如图,P 为正方形ABCD 的边AD 上的一个动点,AE ⊥BP ,CF ⊥BP ,垂足分别为点E 、F ,已知AD =4.证明:AE 2+CF 2的值是一个常数.23.(本题8分)如图,在ABC 中,90B ∠=︒,6AB =cm ,3BC =cm ,点P 从点A 开始沿着AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P 、点Q 分别从点A 、点B 同时出发,只要点P 、点Q 有一点到达△ABC 的顶点便同时停止运动,经过多长时间,点P 、点Q 之间的距离等于?24.(本题8分)如图,四边形ABCD 中,AC ⊥BD 交BD 于点E ,点F ,M 分别是AB ,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB =AC =BD .连接MF ,NF .(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.25.(本题8分)如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看,水塔不见了.他心里很是纳闷.经过了解,教学楼、水塔的高分别是20m和30m,它们之间的距离为30m,小张身高为1.6.m.小张要想看到水塔;他与教学楼之间的距离至少应有多少米?26.(本题8分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.参考答案1.B2.D3.D4.B5.A6.B7.C8.C9.B10.C11.A12.B13.27.14.(+360).15.1016.1617.①②③18.(1)22cm APN S =△(2)3AE AD =;(3)6.19.(1)12;(2)不公平.20.(1)a=3,b=1,c=1.(2)9个,11个.(3)详见解析21.物体EF 的影子会落在墙PQ 上.22.见解析23.0.4s24.(1)见解析;(2)见解析.25.小张与教学楼的距离至少应有55.2米.26.(1)根据旋转的性质得到∠DCE=90°,CD=CE ,利用等角的余角相等得∠BCD=∠ACE ,然后根据“SAS”可判断△BCD ≌△ACE ,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.把一枚均匀的骰子抛掷一次,朝上面的点数为3的概率是()A .0B .13C .16D .12.将抛物线y =3x 2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A .y =3(x ﹣2)2﹣5B .y =3(x ﹣2)2+5C .y =3(x+2)2﹣5D .3(x+2)2+53.已知⊙O 半径为6,圆心O 在坐标原点上,点P 的坐标为(3,4),则点P 与⊙O 的位置关系是()A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定4.若58a b=,则b a a-等于()A .35B .53C .85D .585.下列关于正多边形的叙述,正确的是()A .正九边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720°C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形6.若点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,则()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 27.CD 是圆O 的直径,弦AB ⊥CD 于点E ,若OE=3,AE=4,则下列说法正确的是()A .AC 的长为B .CE 的长为3C .CD 的长为12D .AD 的长为108.小凯在画一个开口向上的二次函数图象时,列出如下表格:x …-1012…y…1211…发现有一对对应值计算有误,则错误的那一对对应值所对的坐标是()A .(-1,1)B .(0,2)C .(1,1)D .(2,1)9.如图所示,以AD 为直径的半圆O 经过Rt ABC △的斜边AB 的两个端点,交直角边AC于点E ,点B 、E 是半圆弧的三等分点, BE的长为2π3,则图中阴影部分的面积为()A .π9B .9C .2π23-D .3π22-10.已知二次函数y =2mx 2+(4﹣m )x ,它的图象可能是()A .B .C .D .二、填空题11.从标有1到20号的卡片中任意抽取一张,记事件“抽到2的倍数”发生的可能性为P (A),事件“抽到5的倍数”发生的可能性为P(B),事件“抽到13的倍数"发生的可能性为P(C),请用“>”连接P(A),P(B),P(C)为_______.12.线段2cm AB =,点P 为线段AB 的黄金分割点(AP BP >),则AP 的长为______cm .13.如图,在⊙O 中,弦BC 垂直于半径OA ,点D 是优弧BC 上儿一点,连结BD ,AD ,OC ,∠ADB =30°,若弦BC =,则图中弦BC 所对的弧长是___cm .14.如图抛物线y =ax 2+bx+c 的对称轴是x =﹣1,与x 轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为_____.15.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.16.已知二次函数y=x2﹣2(m﹣1)x+2m2﹣m﹣2(m为常数),若对一切实数m,k均有y≥k,则k的取值范围为___.三、解答题17.如图,直线l1∥l2∥l3,若AB=6,BC=10,EF=9,求DE的长.18.在平面直角坐标系中,函数y=a(x+1)(x﹣3)(a≠0)的图象经过点(2,3).(1)求a的值;(2)求该函数图象的顶点坐标和对称轴;(3)自变量x在什么范围内时,y随x的增大而增大?19.有一个圆形转盘,分黑色、白色两个区域.(1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:实验次数n(次)10100200050001000050000100000白色区域次数m(次)334680160034051650033000落在白色区域频率mn0.30.340.340.320.340.330.33请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________.(精确到0.01);(2)若该圆形转盘白色扇形的圆心角为120度,黑色扇形的圆心角为240︒,转动转盘两次,求指针一次落在白色区域,另一次落在黑色区域的概率.20.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.21.如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E ,D ,连结ED ,BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =12,AB =10,求BE 的长.22.在平面直角坐标系中,函数2y x bx c =-++图象过点(,0)A m ,(3,0)B m +(1)当1m =时,求该函数的表达式(2)证明该函数的图像必过点(m+1,2)(3)求该函数的最大值23.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+1125 x.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.已知,如图,⊙O中两条弦AB、CD相交于点E,且AB=CD.(1)求证: AC= BD;(2)若∠AEC=100°,求∠A的度数;(3)过点B作BH⊥AD于点H,交CD于点G,若AE=2BE,求证:EG=GD.参考答案1.C【解析】【分析】根据概率公式直接求解即可.【详解】解:∵任意抛掷一次骰子共有6种等可能的结果,其中朝上面的点数为3的只有1种,∴朝上面的点数恰为3的概率是1 6,故选:C.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.2.B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式为:()2325y x=-+,故选B【点睛】本题考查了二次函数图象的平移,解题的关键是掌握平移的规律:左加右减,上加下减.3.A【解析】【分析】本题应先由勾股定理求得点P到圆心O的距离,再根据点P与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.当d>r时,点在圆外;当d=r时,点在圆上;当d <r时,点在圆内.【详解】点P的坐标为(3,4),5OP∴=56<∴点P在⊙O内故选A【点睛】本题考查了点与圆的位置关系:①点P 在⊙O 上;②点P 在⊙O 内;③点P 在⊙O 外,求得点到圆心的距离是解题的关键.4.A 【解析】【分析】由题意易得58ba =,进而代入求解即可.【详解】解:58a b = ,∴58b a =,∴原式=538558bb b -=;故选A .【点睛】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.5.C 【解析】【分析】根据正多边形、轴对称、中心对称的性质分析,即可判断选项A ;根据多边形外角和的性质,即可判断选项B ;根据正多边形与圆的性质分析,即可判断选项C ;根据正多边形和外角的性质分析,即可判断选项D ,从而得到答案.【详解】正九边形是轴对称图形,不是中心对称图形,故选项A 不正确;任何多边形的外角和都为360°,故选项B 不正确;任何正多边形都有一个外接圆,故选项C 正确;等边三角形的每个外角都是对应每个内角两倍,故选项D 不正确;故选:C .【点睛】本题考查了正多边形、轴对称、中心对称、正多边形与圆、外角的知识;解题的关键是熟练掌握正多边形、轴对称、中心对称、正多边形与圆、外角的性质,从而完成求解.6.B 【解析】【分析】把横坐标代入解析式,求出纵坐标,比较大小即可.【详解】解:∵点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,把横坐标代入解析式得,21(4)4(4)y k k =-+⨯-+=,22(1)4(1)3y k k =-+⨯-+=-,231415y k k =+⨯+=+,所以y 2<y 1<y 3,故选:B .【点睛】本题考查了二次函数比较函数值大小,解题关键是把横坐标代入解析式求出函数值,直接比较大小.7.A 【解析】【分析】连接AO ,分别在Rt △AOE 中,Rt △ACE 中,Rt △ADE 中,根据勾股定理即可求得相应线段的长度,依此判断即可.【详解】解:连接AO ,∵AB ⊥CD 于点E ,OE=3,AE=4,∴在Rt △AOE 中,根据勾股定理5AO ===,∵CD 为圆O 的直径,∴OC=OD=OA=5,∴CD=10,CE=OC-OE=2,故B 选项和C 选项错误;在Rt △ACE 中,根据勾股定理AC==A选项正确;在Rt△ADE中,根据勾股定理AD===,故D选项错误;故选:A.【点睛】本题考查勾股定理,同圆半径相等.正确作出辅助线,构造直角三角形是解题关键.注意圆中半径相等这一隐含条件.8.A【解析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y值发现y=1时x有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线03 2x=,根据二次函数的增减性,当开口向上时,在对称轴的左边,y随x的增大而减小,所以1x=-时,y一定是大于1的,故选A.9.C【解析】连接BD、BE、BO、EO,由三等分点定义求出∠EOA=∠EOB=∠BOD=60°,根据 BE的长为2π3,求出R=2,分别求出AB、BC,勾股定理求出AC,得到△ABC的面积,由△BOE和△ABE 同底等高,得到图中阴影部分的面积为ABC BOE S S - 扇形,代入数值计算可得.【详解】解:连接BD 、BE 、BO 、EO ,∵点B 、E 是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠EAB=∠BAD=∠EBA=30°,∴BE AD ∥,∵ BE的长为2π3,∴6021803R ππ⨯=,解得R=2,∴cos30AB AD =⋅︒=,∴12BC AB ==∴AC ==3,∴113222ABC S BC AC =⨯⨯==,∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为233602332236023ABC BOE S S ππ⨯-=-=- 扇形,故选:C .【点睛】此题考查了圆的三等分点的定义,弧长公式,扇形面积公式,直角三角形30度角的性质,勾股定理,根据余弦定理求边长,熟记各知识点并熟练应用是解题的关键.10.B 【解析】【分析】利用排除法,抛物线过原点,判定A 不正确,再分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可.【详解】解:∵()224y mx m x =+-,∴抛物线一定经过原点,∴选项A 排除;∵()224y mx m x =+-,∴对称轴为直线x=44224m m m m ---=⨯,∵44m m --14=44m m m--=1m -,当m >0时,抛物线开口向上,1m -<0,∴对称轴在直线x=14的左边,B 选项的图像符合;C 选项的图像不符合;当m <0时,抛物线开口向下,1m ->0,∴对称轴在直线x=14的右边,D 选项的图像不符合;故选B .【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.11.P(A)>P(B)>P(C)【解析】【分析】事件共发生20次,分别找到“2的倍数,5的倍数,13的倍数”发生的次数,即可得到P(A),P(B),P(C)的值,再进行比较即可.【详解】事件共发生20次,其中“抽到2的倍数”的有10次,∴P(A)=101202=,∵“抽到5的倍数”的有5、10、15、20共4次,∴P(B)=41205=,∵“抽到13的倍数"的有13、26共2次,∴P(C)=212010=,∴P(A)>P(B)>P(C),故填:P(A)>P(B)>P(C).【点睛】此题考查求事件发生的概率,需确定事件发生的总次数及所求事件的次数,再求该事件发生的概率.12.1)【解析】【分析】根据黄金分割的定义得到AP AB =,把2AB cm =代入计算即可.【详解】解: 线段2AB cm =,点P 是线段AB 的黄金分割点()AP BP >,21)AP cm cm ∴===,故答案为:1).【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.13.163π【解析】【分析】连接OB ,根据垂径定理得到»»AB AC =,得到∠AOC=∠AOB ,根据圆周角定理解答;根据垂径定理求出BE ,根据正弦的定义求出OB ,根据弧长公式计算,得到答案.【详解】解:连接OB ,∵OA ⊥BC ,∴»»AB AC =,∴∠AOC=∠AOB ,由圆周角定理得,∠AOB=2∠ADB=60°,∴∠AOC=∠AOB=60°;∵OA ⊥BC ,∴BE=12BC=43cm ,在Rt △BOE 中,∠AOB=60°,∴8()sin 60BE OB cm ︒==,∴劣弧BC 的长=1208()180163cm ππ⨯=,故答案为:163π【点睛】本题考查的是弧长的计算、垂径定理,掌握垂径定理和弧长公式是解题的关键.14.﹣5<x <3【解析】【分析】先根据抛物线的对称性得到A 点坐标(3,0),由y =ax 2+bx+c >0得函数值为正数,即抛物线在x 轴上方,然后找出对应的自变量的取值范围即可得到不等式ax 2+bx+c >0的解集.【详解】解:根据图示知,抛物线y =ax 2+bx+c 图象的对称轴是x =﹣1,与x 轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y =ax 2+bx+c 图象与x 轴的两个交点关于直线x =﹣1对称,即抛物线y =ax 2+bx+c 图象与x 轴的另一个交点与(﹣5,0)关于直线x =﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为﹣5<x<3.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.15.15【解析】【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=1801807055 22D-Ð-==,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.16.k≤-13 4【解析】【分析】求出函数的最小值的取值范围即m2+m-3=(m+12)2-134≥-134,由已知可知对于一切实数m和k均有y≥k,即k≤w.【详解】解:y=x2-2(m-1)x+2m2-m-2=(x-m+1)2+m2+m-3,当x=m-1时,y有最小值m2+m-3,令w=m2+m-3=(m+12)2-134≥-134,∵对于一切实数m和k均有y≥k,即k≤w,(只要不大于原函数的最小值即可)∵w≥-13 4,∴k≤-13 4,故答案为k≤-13 4.【点睛】本题考查了二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.17.275 DE=【解析】【分析】由平行线分线段成比例定理得出比例式,即可得出DE的长.【详解】解:∵直线l1∥l2∥l3,∴AB DE BC EF=,而AB=6,BC=10,EF=9,∴6109DE=,解得:275 DE=.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.18.(1)1a =-;(2)对称轴为直线1x =,顶点坐标为(1,4);(3)当1x <时,y 随x 的增大而增大【解析】【分析】(1)将点代入函数表达式,即可求得答案;(2)将二次函数的解析式化成顶点式,即可知道答案;(3)根据抛物线开口方向和对称轴即可分析得到答案.【详解】解:(1)∵函数(1)(3y a x x =+-)的图象经过点()2,3∴将点()2,3代入(1)(3y a x x =+-)中,得(21)(23)3a +-=解得:1a =-(2)∵22(1)(3)23(1)4y x x x x x =-+-=-++=--+∴对称轴为直线1x =,顶点坐标为(1,4)(3)∵10a =-<∴抛物线开口向下又∵对称轴为直线1x =∴当1x <时,y 随x 的增大而增大【点睛】本题考查抛物线的性质,根据表达式求抛物线的顶点坐标和对称轴等知识点,灵活转化抛物线的三种表达式是解题关键.19.(1)0.33;(2)49.【解析】【分析】(1)根据实验得到的数据,可以求这几次实验概率的平均值,即可估算出来;(2)根据红白所对应的圆心角度数,可以知道红白分别所占圆心角的比例,并按照比例划分,列举出所有情况,根据概率=所求情况数与总情况数之比,即可求解.【详解】(1)根据7次实验的结果,落在白色区域的概率分别是0.3、0.34、0.34、0.32、0.34、0.33、0.33,所以这几次实验的平均数是(0.3+0.34+0.34+0.32+0.34+0.33+0.33)÷7≈0.33,故转动该转盘指针落在白色区域的概率为0.33.(2) 白色扇形的圆心角为120°,占一个圆的三分之一,黑色扇形的圆心角为240︒,占一个圆的三分之二,因此,把一个圆平均分成三份;从列表可知:共有9种等可能的结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种,分别为:(白,黑1),(白,黑2),(黑1,白),(黑2,白).P ∴(一白一黑)49=.答:指针一次落在白色区域,另一次落在黑色区域的概率为49.【点睛】本题主要考查列表法求解概率的方法,列表法可不重复不遗漏的列出所有可能的结果,列表法适合两步完成的事件,而树状图法适合两步或者两步以上完成的事件,掌握:概率=所求情况数与总情况数之比是解第二问的关键.20.(1)11m 6;(2)22米;(3)不会【解析】【分析】(1)求雕塑高OA ,直接令0x =,代入()21566y x =--+求解可得;(2)可先求出OD 的距离,再根据对称性求CD 的长;(3)利用()21566y x =--+,计算出10x =的函数值y ,再与EF 的长进行比较可得结论.【详解】解:(1)由题意得,A 点在图象上.当0x =时,21(05 )66y =--+2511666=-+=11(m)6OA ∴=.(2)由题意得,D 点在图象上.令0y =,得21(5)606x --+=.解得:1211,1x x ==-(不合题意,舍去).11OD ∴=222(m)CD OD ∴==(3)当10x =时,21(105)66y =--+,25116 1.866=-+=>,∴不会碰到水柱.【点睛】本题考查了二次函数的图像与性质及图像关于y 轴对称问题,解题的关键是:掌握二次函数的图像与性质.21.(1)DE BD =,理由见解析;(2)9.6【解析】【分析】(1)根据直径所对的圆周角是直角,可得AD BC ⊥,由AB AC =根据三线合一可得CAD BAD ∠=∠,圆周角和弧之间的关系可得 EDBD =,进而可得DE BD =;(2)根据直径所对的圆周角是直角,可得90AEB ADB ∠=∠=︒,勾股定理求得AD ,进而分别以,AC BC 为底,,AD BE 为高,根据三角形的面积公式计算即可求得BE 的长【详解】(1)DE BD =,理由如下,AB 为⊙O 的直径,AD BC∴⊥ AB =AC ,CAD BAD∴∠=∠ EDBD =DE BD∴=(2) AB 为⊙O 的直径,∴90AEB ADB ∠=∠=︒BC =12,AB =10,,AD BC AC AB⊥= 162BD BC ∴==在Rt ABD △中,8AD ===10AB AC == 1122AC BE BC AD ∴⋅⋅=⋅⋅1289.610BC AD BE AC ⋅⨯∴===【点睛】本题考查了直径所对的圆周角是直角,等腰三角形的性质,用三线合一的性质得出圆周角相等是解题的关键.22.(1)254y x x =-+-;(2)见解析;(3)94【解析】【分析】(1)由已知可得AB 两点坐标,根据待定系数法将点坐标代入解析式中求出bc 即可;(2)由AB 两点坐标可得函数的交点式,再将1x m =+代入可得2y =,即可证明;(3)根据二次函数的顶点坐标公式求出该函数的最大值.【详解】解:(1)把1m =代入得:A (1,0)、B (4,0)∴2210440b c b c ⎧-++=⎨-++=⎩,解得54b c =⎧⎨=-⎩,故函数表达式为254y x x =-+-,(2)由题意得()(3)y x m x m =----,把1x m =+代入得:(1)(13)2y m m m m =-+-+--=,∴该函数的图像必过点(m+1,2);(3)由(2)知2()(3)(23)(3)y x m x m x m x m m =----=-++-+,当2322b m x a +=-=时,函数最大值为:23239()(3)224m m y m m ++=----=.【点睛】本题考查待了定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.23.(1)销售量p件与销售的天数x的函数表达式为p=﹣2x+120;(2)当1≤x<25时,y=﹣2x2+80x+2400,当25≤x≤50时,y=135000x﹣2250;(3)这50天中第20天时该超市获得利润最大,最大利润为3200元.【解析】【详解】(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解:(1)p=120-2x(2)y=p·(q-40)=22802400(125) 1350002250(2550)x x xxx⎧-++<⎪⎨-⎪⎩(3)当1≤x<25时,y=-2(x-20)2+3200,∴x=20时,y的最大值为3200元;当25≤x≤50时,y=135000x-2250,∴x=25时,y的最大值为3150元,∵3150<3200,∴该超市第20天获得最大利润为3200元.【点睛】本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(1)见解析;(2)50°;(3)见解析【解析】【分析】(1)圆心角、弧、弦的关系即可证明结论;(2)结合(1)根据三角形的外角定义即可求得结果;(3)根据题意画出图形,结合(1)根据直角三角形两个锐角互余,即可证明结论.【详解】解:(1)∵AB=CD ,∴ AB CD =,∴ AB BC CD BC -=-,即 AC BD =;(2)∵ AC BD =,∴∠D=∠A ,∵∠AEC =100°,∴1502A AEC ∠=∠=︒;(3)如图,∵∠D=∠A ,∴AE=DE ,∵AE =2BE ,∴DE=2BE ,∵BH ⊥AD ,∴∠AHB=90°,∴∠A+∠ABH=90°,∠D+∠DGH=90°,∵∠D=∠A ,∴∠ABH=∠DGH ,∵∠DGH=∠BGE ,∴∠ABH=∠BGE ,∴BE=EG ,∴DE=2EG ,∵DE=EG+GD ,∴EG=GD.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,解决本题的关键是综合掌握圆心角、弧、弦的关系.。
九年级数学上册期中考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 4,那么a² + b² 等于多少?A. 25B. 30C. 35D. 403. 下列哪个数是质数?A. 12B. 17C. 20D. 214. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 4C. 6D. 75. 下列哪个数是无理数?A. √4B. √9C. √16D. √18二、判断题(每题1分,共5分)1. 任何偶数乘以偶数都是偶数。
()2. 任何奇数乘以奇数都是奇数。
()3. 0是一个自然数。
()4. 任何一个整数都可以分解为几个质数的乘积。
()5. 任何一个正整数都有因数1和它本身。
()三、填空题(每题1分,共5分)1. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度不可能是______。
3. 下列哪个数是合数?______4. 下列哪个数是立方数?______5. 下列哪个数是平方数?______四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 解释什么是等比数列。
3. 解释什么是质数。
4. 解释什么是合数。
5. 解释什么是无理数。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是3,7,11,求这个数列的公差。
2. 如果一个三角形的两边分别是6和8,那么第三边的长度可能是多少?3. 如果 a = 2,b = 3,那么a² + b² 等于多少?4. 如果一个数是12的倍数,那么这个数也一定是3的倍数吗?为什么?5. 如果一个数是9的倍数,那么这个数也一定是3的倍数吗?为什么?六、分析题(每题5分,共10分)1. 分析为什么0既不是正数也不是负数。
2. 分析为什么1既不是质数也不是合数。
北师大版九年级上册数学期中考试试卷带答案
北师大版九年级上册数学期中考试试题一、单选题1.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.AD=CD2.一元二次方程x2﹣6x+5=0配方后可化为()A.(x﹣3)2=﹣14B.(x+3)2=﹣14C.(x﹣3)2=4D.(x+3)2=43.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.54.若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1B.﹣3C.3D.4相似5.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中ABC的是()A.B.C.D.6.如图,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,则∠BDE的度数为()A.36°B.30°C.27°D.18°7.如图,DE 是 ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为()A .2.5B .1.5C .4D .58.如图,在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE=BE ,则有()A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABDD .△BAD ∽△BCD9.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .x (x+1)=28B .12x (x ﹣1)=28C .x (x ﹣1)=28D .x (x+1)=2810.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB=2,∠ABC=60°,则BD 的长为()A .2B .3C D .二、填空题11.一元二次方程x 2=x 的解为_____.12.为保护环境,法库县掀起“爱绿护绿”热潮,经过两年时间,绿地面积增加了21%,则这两年的绿地面积的平均增长率是___.13.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.14.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为_____15.如图,菱形ABCD 的两条对角线长分别为AC =6,BD =8,点P 是BC 边上的一动点,则AP 的最小值为__.16.如图,正方形ABCD 中,AB 6=,点E 在边CD 上,且CD 3DE =,将ADE 沿AE 对折至AFE. 延长EF 交边BC 于点G ,连接AG 、CF.下列结论:ABG ①≌AFG ;BG GC ②=;AG //CF ③;GCF ④是等边三角形,其中正确结论有______.三、解答题17.解方程:(1)3(x ﹣3)=5x (x ﹣3);(2)(x+1)(x ﹣1)+2(x+3)=13.18.先化简,再求值:2226m m m+-÷(m+3+53m -),其中m 是方程x 2﹣2x ﹣1=0的根.19.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边EF=,测得边DF离地面的高度 1.5m40cmDE=,20cmCD m,求树AB的高度.AC=,8=20.如图,在矩形ABCD中,AD=10,AB=6.E为BC上一点,ED平分∠AEC,求:点A到DE的距离.21.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?22.如图,在四边形ABCD中,AB//DC,AB AD=,对角线AC,BD交于点O,AC平分⊥交AB的延长线于点E,连接OE.∠,过点C作CE ABBAD(1)求证:四边形ABCD是菱形;(2)若AB=2BD=,求OE的长.23.如图,已知菱形ABCD,延长AB到E,使BE=2AB,连接EC并延长交AD的延长线于点F.(1)图中共有哪几对相似三角形?请直接写出结论;(2)若菱形ABCD的边长为3,求AF的长.24.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?25.如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PF⊥AE交BC于点F.(1)求证:PA=PF;(2)如图2,过点F作FQ⊥BD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律.(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由.参考答案1.C 【解析】菱形的定义:有一组邻边相等的平行四边形叫做菱形,判定定理有:定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.根据菱形的定义和判定定理即可作出判断,【详解】A 选项:根据菱形的定义可得,当AB=AD 时▱ABCD 是菱形,本选项正确;B 选项:根据对角线互相垂直的平行四边形是菱形即可判断,▱ABCD 是菱形,本选项正确;C 选项:对角线相等的平行四边形是矩形,不一定是菱形,除非是正方形,本选项错误;D 选项:根据菱形的定义可得,当AD=CD 时▱ABCD 是菱形,本选项正确;故选C 【点睛】本题考查了菱形的判定定理,正确记忆定义和判定定理是关键.2.C 【解析】先把常数项移到方程右侧,再把方程两边加上9,然后把方程左边写成完全平方的形式即可.【详解】移项得:265x x -=-,配方得:26959x x -+=-+,即2(3)4x -=.故选:C .【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成2()x m n +=的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.D 【解析】【分析】利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”.【详解】解:连续抛掷2n 次不一定正好正面向上和反面向上的次数各一半,故A 、B 、C 错误,抛掷n 次,当n 越来越大时,正面朝上的频率会越来越稳定于0.5,故D 正确.故选:D .【点睛】本题考查了利用频率估计概率,解题的关键是掌握利用“大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,这个常数可以估计事件发生的概率”.4.C 【解析】【分析】设方程的另一个解为x 1,根据两根之和等于﹣ba,即可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3,故选C .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣b a、两根之积等于ca是解题的关键.5.B 【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】解:由题意得:AB =AC 2BC =、A1ABC 的三边对应边不成比例关系,不符合题意;B,11,∴对应边成比例,符合题意;C,3,与△ABC 的三边对应边不成比例关系,不符合题意;D2,与△ABC 的三边对应边不成比例关系,不符合题意;故选B .【点晴】此题主要考查相似三角形的判定和勾股定理,解题的关键是熟知相似三角形的判定定理.6.B 【解析】【分析】根据已知条件可得ADE ∠以及EDC ∠的度数,然后求出ODC 各角的度数便可求出BDE ∠.【详解】解:在矩形ABCD 中,90ADC ∠=︒,∵2ADE EDC ∠=∠,∴60ADE ∠=︒,30EDC ∠=︒,∵DE AC ⊥,∴903060DCE ∠=︒-︒=︒,∵OD OC =,∴60ODC OCD ∠=∠=︒,∴60DOC ∠=︒,∴9030BDE DOC ∠=︒-∠=︒.故选:B .【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键.7.B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得1 2.52DF AB==,再利用三角形中位线定理可得DE=4,进而可得答案.【详解】解:∵D为AB中点,∠AFB=90°,AB=5,∴1 2.52DF AB==,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故选:B.【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.8.B【解析】【分析】本题可以采用排除法,即根据已知中正三角形ABC中,D、E分别在AC、AB上,13 ADAC=,AE=BE,我们可以分别得到:△AED、△BCD为锐角三角形,△BED、△ABD为钝角三角形,然后根据锐角三角形不可能与钝角三角形相似排除错误答案,得到正确答案.【详解】解:由已知中正三角形ABC中,D、E分别在AC、AB上,13ADAC=,AE=BE,易判断出:△AED为一个锐角三角形,△BED为一个钝角三角形,故A错误;△ABD也是一个钝角三角形,故C也错误;但△BCD为一个锐角三角形,故D也错误;故选:B.【点睛】此题考查相似三角形的判定,解题关键在于可以直接根据相似三角形的定义,大小不同,形状相同,排除错误答案,得到正确结论.9.B【解析】【分析】球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【详解】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:12x(x﹣1)=4×7.故选:B.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到数量关系列方程.10.D【解析】【详解】分析:首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.详解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴∴故选D.点睛:本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.11.x1=0,x2=1.【解析】【分析】首先把x移项,再把方程的左面分解因式,即可得到答案.【详解】解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.12.10%【解析】【分析】设这两年的绿地面积的平均增长率是x,利用经过两年时间后绿地的面积=绿地的原面积×(1+这两年的绿地面积的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年的绿地面积的平均增长率是x,依题意得:(1+x)2=1+21%,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).故答案为:10%.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够正确理解题意列出方程求解.13.13【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.14.1 9【详解】解:观察这个图可知,阴影部分能够拼成4个小正方形,图中共有36个小正方形,∵阴影部分的面积:整个图形的面积=4:36=1 9,∴镖落在阴影部分的概率为19 P=,故答案为:1 9 .15.4.8【解析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=12AC=3,BO=DO=12BD=4,∴5 BC===,∵12ABCD S AC BD BC AP =⨯⨯=⨯菱形,∴24 4.85AP ==,故答案为:4.8.【点睛】本题考查了菱形的性质,勾股定理,确定当AP ⊥BC 时,AP 有最小值是本题关键.16.①②③【解析】【分析】根据翻折变换的性质和正方形的性质可证ABG ≌AFG ;在直角ECG 中,根据勾股定理可证BG GC =;通过证明AGB AGF GFC GCF ∠∠∠∠===,由平行线的判定可得AG //CF ;由于BG CG =,得到tan AGB 2∠=,求得AGB 60∠≠ ,根据平行线的性质得到FCG AGB 60∠∠=≠ ,求得GCF 不是等边三角形;【详解】四边形ABCD 是正方形,将ADE 沿AE 对折至AFE ,AB AD AF ∴==,在ABG 与AFG 中,90AB AF B AFG AG AG =⎧⎪∠=∠=⎨⎪=⎩,ABG ≌AFG ;故①正确,1EF DE CD 23=== ,设BG FG x ==,则CG 6x =-,在直角ECG 中,根据勾股定理,得222(6x)4(x 2)-+=+,解得x 3=,BG 363GC ∴==-=;故②正确,CG BG GF == ,FGC ∴是等腰三角形,GFC GCF ∠∠=,又AGB AGF ∠∠=,AGB AGF 180FGC GFC GCF ∠∠∠∠∠+=-=+ ,AGB AGF GFC GCF ∠∠∠∠∴===,AG //CF ∴;故③正确,BG CG = ,1BG AB 2∴=,tan AGB 2∠∴=,AGB 60 ∠∴≠,AG //CF ,FCG AGB 60∠∠∴=≠ ,GCF ∴ 不是等边三角形;故④错误.综上所述:正确结论有①②③,故答案为①②③.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.17.(1)x 1=3,x 2=35;(2)x 1=﹣4,x 2=2【解析】【分析】(1)先移项,再利用提公因式法将方程的左边因式分解后求解可得;(2)先整理成一般式,再利用十字相乘法将方程的左边因式分解后求解可得.【详解】解:(1)∵3(x ﹣3)=5x (x ﹣3),∴3(x ﹣3)﹣5x (x ﹣3)=0,则(x ﹣3)(3﹣5x )=0,∴x ﹣3=0或3﹣5x =0,解得x 1=3,x 2=35;(2)整理成一般式,得:x 2+2x ﹣8=0,∴(x+4)(x ﹣2)=0,则x+4=0或x ﹣2=0,解得x 1=﹣4,x 2=2.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的几种方法,选择适当的方法可使计算变的简便.18.12(2)m m -,12【解析】【分析】根据分式的混合运算法则把原式化简,利用因式分解法解出方程,根据分式有意义的条件得到m 的值,把m 的值代入计算,即可得解.【详解】解:2253263m m m m m +⎛⎫÷++ --⎝⎭,()2295233m m m m m +-+=÷--,()()()232322m m m m m m +-=⨯-+-,()122m m =-,解方程2210x x --=得:11x =,21x =,∴当1m =时,原式12==;当1m =时,原式12==;∴求值为12.【点睛】题目主要考查分式的混合运算,解一元二次方程,熟练掌握分式的混合运算法则是解题关键.19.树高5.5m .【解析】【分析】先判定△DEF 和△DBC 相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【详解】解:在△DEF 和△DCB 中,D D DEF DCB ∠∠⎧⎨∠∠⎩==,∴△DEF ∽△DCB ,∴DE EF DC CB =,即40208CB=解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.20.【解析】【分析】根据平行线的性质以及角平分线的定义证明∠ADE =∠AED ,根据等角对等边,即可求得AE 的长,在直角△ABE 中,利用勾股定理求得BE 的长.【详解】解:在矩形ABCD 中,AD ∥BC ,AD =BC =10,AB =CD =6.∠B =∠C =90°,∴∠ADE =∠CED ,∵ED 平分∠AEC ,∴∠AED =∠CED ,∴∠AED =∠ADE ,∴AD =AE =10,在Rt △ABE 中,根据勾股定理,得BE8,∴EC=BC﹣BE=10﹣8=2,在Rt△DCE中,根据勾股定理,得DE=设点A到DE的距离为h,则12AD•CD=12DE•h,∴h=.答:点A到DE的距离为.【点睛】本题考查勾股定理的综合应用,熟练掌握平行线的性质、角平分线的定义三角形面积公式及勾股定理是解题关键.21.(1)见解析;(2)小明获胜的概率大,见解析【解析】【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有4个(包括m =n =2,和m =n =3两种情况),m ,n 都不是方程x 2﹣5x+6=0的解的结果有2个,小明获胜的概率为41=123,小利获胜的概率为21=126,∴小明获胜的概率大.22.(1)证明见解析;(2)OE=2.【解析】(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==,根据直角三角形斜边的中线等于斜边的一半即可求解.【详解】(1)证明:∵AB//CD ,∴CAB ACD ∠=∠,∵AC 平分BAD ∠,∴CAB CAD ∠=∠,∴CAD ACD ∠=∠,∴AD CD =,又∵AD AB =,∴AB CD =,又∵AB ∥CD ,∴四边形ABCD 是平行四边形,又∵AB AD =,∴ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O ,∴AC BD ⊥,12OA OC AC ==,12OB OD BD ==,∴112OB BD ==,在Rt △AOB 中,90AOB ∠=︒,∴2OA ==,∵CE AB ⊥,∴90AEC ∠=︒,在Rt △AEC 中,90AEC ∠=︒,O 为AC 中点,∴122OE AC OA ===.23.(1)有3对相似三角形,分别为:DFC AFE ∽,BCE AFE ∽,DFC BCE ∽;(2)92AF =.【解析】(1)由菱形的性质:∥DC AE ,BC AD ∥,进而证明:~DFC AFE ,~BCE AFE ,DFC BCE ∽;(2)由(1)可知:DFC AFE ∽,利用相似三角形的性质和已知条件即可求出DF 的长,进而求出AF 的长.【详解】解:(1)∵四边形ABCD 是菱形,∴∥DC AE ,BC AD ∥,∴~DFC AFE ,~BCE AFE ,∴DFC BCE ∽,故:有3对相似三角形,分别为:DFC AFE ∽,BCE AFE ∽,DFC BCE ∽;(2)∵DFC AFE ∽,∴DF DC AF AE=,∵2BE AB =,3AB =,∴6BE =,9AE =,∴339DF DF =+,∴32DF =,∴39322AF AD DF =+=+=.24.(1)100+200x ;(2)1【解析】(1)销售量=原来销售量+增加销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.【详解】解:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x ×20=100+200x 斤;故答案为:100+200x ;(2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.25.(1)见解析;(2)PQ 的长不变,见解析;(3)AB+BF PB【解析】(1)连接PC ,由正方形的性质得到AB BC =,ABP CBP ∠=∠,然后依据全等三角形的判定定理证明APB CPB ≌,由全等三角形的性质可知PA PC =,PCB PAB ∠=∠,接下来利用四边形的内角和为360°可证明PFC PCF ∠=∠,于是得到PF PC =,故此可证明PF PA =;(2)连接AC 交BD 于点O ,依据正方形的性质可知AOB 为等腰直角三角形,于是可求得AO 的长,接下来,证明APO PFQ ≌,依据全等三角形的性质可得到PQ AO =;(3)过点P 作PM AB ⊥,PN BC ⊥,垂足分别为M ,N ,首先证明PBN 为等腰直角三角形于是得到BN PN +=,由角平分线的性质可得到PM PN =,然后再依据直角三角形全等的证明方法证明PAM PFN ≌可得到FN AM =,PM PN =,于是将AB BF +可转化为BN PN +的长.【详解】解:(1)证明:连接PC ,如图所示:∵ABCD 为正方形,∴AB BC =,ABP CBP ∠=∠,在APB 和CPB 中,AB BCABP CBP BP BP=⎧⎪∠=∠⎨⎪=⎩,∴APB CPB ≌,∴PA PC =,PCB PAB ∠=∠,∵90ABF APF ∠=∠=︒,∴180PAB PFB ∠+∠=︒.∵180PFC PFB ∠+∠=︒,∴PFC PAB ∠=∠.∴PFC PCF ∠=∠.∴PF PC =,∴PF PA =;(2)PQ 的长不变.理由:连接AC 交BD 于点O,如图所示:∵PF AE ⊥,∴90APO FPQ ∠+∠=︒.∵FQ BD ⊥,∴90PFQ FPQ ∠+∠=︒.∴APO PFQ ∠=∠.又∵四边形ABCD 为正方形,∴90AOP PQF ∠=∠=︒,2AO =.在APO 和PFQ 中,AOP PQFAPO PFQ AP PF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴APO PFQ ≌.∴2PQ AO a ==;(3)如图所示:过点P 作PM AB ⊥,PN BC ⊥,垂足分别为M ,N .∵四边形ABCD 为正方形,∴45PBN ∠=︒.∵PN BN ⊥,∴2BN PN BP ==,∴BN PN +=.∵BD 平分ABC ∠,PM AB ⊥,PN BC ⊥,∴PM PN =.在RT PAM 和RT PFN 中,PA PF PM PN =⎧⎨=⎩,∴PAM PFN ≌.∴AM FN =.∵90MBN BNP BMP ∠=∠=∠=︒,∴MB PN =.∴AB BF AM MB BF FN BF PN BN PN +=++=++=+=.【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,勾股定理解三角形,等腰三角形的性质等,理解题意,作出相应辅助线,综合运用这些性质定理是解题关键.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.若x 2﹣3x 的值等于零,则x 的值为()A .﹣3B .0C .0或3D .0或﹣32.若234a b c==,a ﹣b+c =18,则a 的值为()A .11B .12C .13D .143.若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A .1:4B .1:6C .1:9D .1:104.三角形两边的长是2和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为()A .11B .13C .11或13D .以上都不对5.如图,P 是直角△ABC 斜边AB 上任意一点(A ,B 两点除外),过点P 作一条直线,使截得的三角形与△ABC 相似,这样的直线可以作()A .4条B .3条C .2条D .1条6.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为()AB C .4.5D .4.37.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,在DC 的延长线上取一点E ,连接OE 交BC 于点F ,若AB =4,BC =6,CE =1,则CF 的长为()AB .1.5C D .18.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 交于点H .下列结论:①CF =2AE ;②△DFP ∽△BPH ;③DP 2=PH•PC ;④PE :BC =(3):3.正确的有()A .1个B .2个C .3个D .4个二、填空题9.一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为_____个.10.已知线段AB =4cm ,C 是AB 的黄金分割点,且AC >BC ,则AC =_____.11.若关于y 的一元二次方程24334ky y y --=+有实根,则k 的取值范围是______12.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为_____.13.如图,菱形ABCD 的周长为16cm ,BC 的垂直平分线EF 经过点A ,则对角线BD 长为_____________cm .14.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为_____.15.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.三、解答题17.计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2.18.如图在平面直角坐标系中,△ABC的位置如图所示,顶点坐标分别为:A(﹣2,0),B(﹣3,2),C(﹣1,1).(1)做出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,在y轴右侧画出△ABC的位似图形△A2B2C2,使它与△ABC的相似比是2:1;(3)若M(x,y)是线段AB上一点,则点M关于y轴对称的对应点M1的坐标为.19.为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;(2)求所选代表恰好为1名女生和1名男生的概率.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.如图,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s 的速度向点A匀速运动,运动的时间为ts.(1)求t为何值时,△AMN的面积是△ABD面积的2 9;(2)当以点A,M,N为顶点的三角形与△ABD相似时,求t值.24.如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.25.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为α(0°<α<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1;②请直接写出AC1与BD1的位置关系;(2)如图2,若四边形ABCD是菱形,AC=3,BD=5,设AC1=kBD1.判断AC1与BD1的位置关系,请说明理由,并求出k的值.(3)如图3,若四边形ABCD 是平行四边形,AC =6,BD =12,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和AC 12+(kDD 1)2的值.参考答案1.C 【解析】根据题意得出x 2﹣3x =0,再利用因式分解法求解即可.【详解】解:根据题意,得:x 2﹣3x =0,∴x (x ﹣3)=0,则x =0或x ﹣3=0,解得x 1=0,x 2=3,则x 的值为:0或3.故选:C .2.B 【解析】设234a b c===k ,则可利用k 分别表示a 、b 、c ,再利用a ﹣b+c =18,所以2k ﹣3k+4k =18,然后解k 的方程,从而得到a 的值.【详解】解:设234a b c===k ,∴a =2k ,b =3k ,c =4k ,∵a ﹣b+c =18,∴2k ﹣3k+4k =18,解得k =6,∴a =2×6=12故选:B .3.C 【解析】根据相似三角形的判定与性质即可得出答案.【详解】解:如图,△ABC 与△DEF 都为等腰直角三角形,且EF :AB =1:3,则△ABC ∽△EFD ,∴21(9EFD ABC S EF S AB ∆∆==,故选:C .【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键.4.A 【解析】先求出方程的解,再根据三角形的三边关系定理看看能否组成三角形,最后求出三角形的周长即可.【详解】解:解方程x2﹣12x+35=0得:x=7或5,当三角形的三边为2,4,7时,2+4<7,不符合三角形的三边关系定理,不能组成三角形;当三角形的三边为2,4,5时,符合三角形的三边关系定理,能组成三角形,此时三角形的周长是2+4+5=11;综合上述:三角形的周长是11,故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理,能求出符合的所有情况是解此题的关键.5.B【解析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案.【详解】解:如图,过点P可作PE∥BC或PE″∥AC,∴△APE∽△ABC、△PBE″∽△ABC;过点P还可作PE′⊥AB,可得:∠EPA=∠C=90°,∠A=∠A∴△APE∽△ACB;∴满足这样条件的直线的作法共有3种.故选:B6.A【解析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE+∠DCH =90°,∴∠CDF+∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ===∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.D 【解析】【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CE OM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8.D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴BE=2AE,∵AD∥BC,∴∠FEP=∠PBC,∠EFP=∠PCB,∵∠EPF=∠BPC,∴∠FEP=∠EFP=∠EPF=60°,∴△EFP是等边三角形,∴BE=CF,∴CF=2AE,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°,∴AE,∵∠DCF=30°,∴DF,∴EF=AE+DF﹣BC﹣BC,∴FE:BC=(3):3,∵EF=PE,∴PE:BC=(3):3,故④正确,综上,四个选项都正确,故选:D.【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理.9.20【解析】【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13,设口袋中大约有x个白球,则1010x+=13,解得x=20,经检验x=20是原方程的解,估计口袋中白球的个数约为20个.故答案为:20.【点睛】本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.10.2##2-+【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以AC AB,代入数据即可得出AC 的长度.【详解】解:由于C为线段AB=4的黄金分割点,且AC >BC ,则AC =12AB =12-×4=2.故答案为:.【点睛】本题考查了黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.11.74k ≥-且0k ≠【解析】【分析】先将方程化为一般形式2770--=ky y ,根据方程有实数根得到.【详解】∵24334ky y y --=+,∴2770--=ky y ∵一元二次方程有实根,∴∆0≥,且0k ≠,∴49+28k 0≥,解得74k ≥-,故答案为:74k ≥-且0k ≠.12.6+6+【解析】根据矩形性质得出AD =BC ,AB =CD ,∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,推出OA =OB =OC =OD ,得出等边三角形AOB ,求出BD ,根据勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,∴OA =OB =OC =OD ,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD的周长是AB+BC+CD+AD=故答案为:13.【详解】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=12AC=2cm,∴,∴.故答案为考点:菱形的性质;线段垂直平分线的性质.14.20%【解析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x )2=288,解得:x =﹣2.2(不合题意舍去),x =0.2,则每季度的平均增长率是20%.故答案为:20%15.【解析】由正方形的对称性可知,PB =PD ,当B 、P 、E 共线时PD+PE 最小,求出BE 即可.【详解】解:∵正方形中B 与D 关于AC 对称,∴PB =PD ,∴PD+PE =PB+PE =BE ,此时PD+PE 最小,∵正方形ABCD 的面积为18,△ABE 是等边三角形,∴BE =,∴PD+PE 最小值是故答案为:.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.16.(14)n-1【解析】【详解】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的(14)2-1=14;第三个矩形的面积是(14)3-1=116;…故第n 个矩形的面积为:11()4n -.考点:1.矩形的性质;2.菱形的性质.17.(1)1x =2x =;(2)13y =,235y =【解析】【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x 2+3=7x ,移项,得3x 2﹣7x =﹣3,除以3,得x 2﹣73x =﹣1,配方,得x 2﹣73x+(76)2=﹣1+(76)2,即(x ﹣76)2=1336,开方,得x ﹣76=,解得:x 1,x 2=76;(2)4y (3﹣y )=(y ﹣3)2,移项,得﹣4y (y ﹣3)﹣(y ﹣3)2=0,(y ﹣3)(﹣4y ﹣y+3)=0,y ﹣3=0或﹣4y ﹣y+3=0,解得:y 1=3,235y =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.18.(1)见解析;(2)见解析;(3)(,)x y 【解析】【分析】(1)利用轴对称的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用位似变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)利用轴对称的性质求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)若M (x ,y )是线段AB 上一点,则点M 关于y 轴对称的对应点M 1的坐标为(﹣x ,y )..【点睛】本题考查作图-位似变换,作图-轴对称变换,作图-相似变换等知识,解题的关键是掌握轴对称变换,位似变换的性质,属于中考常考题型.19.(1)13;(2)23【解析】【分析】(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,∴恰好选中乙的概率为13;故答案为:13;(2)分别用字母A ,B 表示女生,C ,D 表示男生画树状如下:4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,∴P (1女1男)82123==.答:所选代表恰好为1名女生和1名男生的概率是23.【点睛】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【解析】【分析】设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由销售问题的数量关系建立方程求出其解即可.【详解】解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360280)(560)7200x x --+=,解得:18x =,260x =.有利于减少库存,x∴=.60答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【点睛】本题考查了销售问题的数量关系利润=售价-进价的运用,列一元二次方程解实际问题的运用,解题的关键是根据销售问题的数量关系建立方程.21.(1)见解析;(2)∠BAC=90°,理由见解析【解析】【分析】(1)利用平行四边形的判定首先得出四边形AECD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【详解】(1)证明:∵D、F分别为BC、AC的中点,使DF=FE,∴CF=FA,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)解:当∠BAC=90°时,四边形AECD是正方形,理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的中线,∴AD=BD=CD,∵四边形AECD是矩形,∴矩形AECD是正方形.【点睛】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.22.(1)见解析;(2)正方形ABCD的面积为2a【解析】【分析】(1)由等边三角形的性质得EO ⊥AC ,即BD ⊥AC ,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD 是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°,∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.23.(1)14t =,22t =;(2)t =3或245【解析】【分析】(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12﹣2t)×t=6t﹣t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的2 9,∴6t﹣t2=236 9⨯,∴t2﹣6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,若△AMN∽△ABD,则有AM ANAB AD=,即122612t t-=,解得t=3,若△AMN∽△ADB,则有AM ANAD AB=,即122126t t-=,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.24.(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD (AD >AB )的对角线AC 的中点O 作AC 的垂直平分线EF ,易证得△AOE ≌△COF ,即可得EO =FO ,则可证得四边形AFCE 是平行四边形,又由EF ⊥AC ,可得四边形AFCE 是菱形;(2)由∠AEP =∠AOE =90°,∠EAP =∠OAE ,可证得△AOE ∽△AEP ,又由相似三角形的对应边成比例,即可证得2AE 2=AC•AP .【详解】证明:(1)四边形AFCE 是菱形.理由:由已知可知:AO =CO ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,在△AOE 和△COF 中,EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴EO =FO ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形;(2)∵∠AEP =∠AOE =90°,∠EAP =∠OAE ,∴△AOE ∽△AEP ,∴AO AE =AE AP,∴AE 2=AO•AP ,又AC =2AO ,∴2AE 2=AC•AP .【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形的判定与性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.25.(1)①见解析;②AC 1⊥BD 1;(2)AC 1⊥BD 1,见解析,35k =;(3)12k =,2211()36AC kDD +=【解析】【分析】(1)①由“SAS”可证△AOC 1≌△BOD 1;②由全等三角形的性质可得∠OBD 1=∠OAC 1,可证点A ,点B ,点O ,点P 四点共圆,可得结论;(2)由菱形的性质可得OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,由旋转的性质可得OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,通过证明△AOC 1∽△BOD 1,可得∠OAC 1=∠OBD 1,由余角的性质可证AC 1⊥BD 1,由比例式可求k 的值;(3)与(2)一样可证明△AOC 1∽△BOD 1,可得11112122AC AC OA AC BD OB BD BD ====,可求k 的值,由旋转的性质可得OD 1=OD =OB ,可证△BDD 1为直角三角形,由勾股定理可求解.【详解】证明:(1)①如图1,∵四边形ABCD 是正方形,∴OC =OA =OD =OB ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OD 1,∠AOC 1=∠BOD 1=90°+∠AOD 1,在△AOC 1和△BOD 1中,1111OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC 1≌△BOD 1(SAS );②AC 1⊥BD 1;理由如下:∵△AOC 1≌△BOD 1,∴∠OBD 1=∠OAC 1,∴点A ,点B ,点O ,点P 四点共圆,∴∠APB =∠AOB =90°,∴AC 1⊥BD 1;(2)AC 1⊥BD 1,理由如下:如图2,∵四边形ABCD 是菱形,∴OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OA ,OD 1=OB ,∠AOC 1=∠BOD 1,∴11OCOA OD OB=,∴△AOC 1∽△BOD 1,∴∠OAC 1=∠OBD 1,又∵∠AOB =90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB =90°∴AC 1⊥BD 1;∵△AOC 1∽△BOD 1,∴11132152AC AC OA AC BD OB BD BD ====,∴k =35;(3)如图3,与(2)一样可证明△AOC 1∽△BOD 1,∴11112122AC AC OA AC BD OB BD BD ====,∴k =12;∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OD 1=OD ,而OD =OB ,∴OD 1=OB =OD ,1111,BD O OBD DD O ODD ∠=∠∠=∠,∴1111BD O DD O OBD ODD ∠+∠=∠+∠,∴190BD D ∠=︒,∴△BDD 1为直角三角形,在Rt △BDD 1中,BD 12+DD 12=BD 2=144,∴(2AC 1)2+DD 12=144,∴AC 12+(kDD 1)2=36.【点睛】本题主要考查了菱形的性质,相似三角形的判定和性质,图形的旋转,圆周角定理等知识,熟练掌握相关知识点是解题的关键.。
2024-2025学年广东省深圳市九年级上学期期中数学试题及答案
2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第一学期期中考试试卷
一.选择题:(每小题3分,共24分)
1.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )
A .小明的影子比小强的影子长
B .小明的影子比小强的影子短
C .小明的影子和小强的影子一样长
D .无法判断谁的影子长
2.如图,平行四边形 ABCD 的周长为cm 16,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 ( )
A .4cm
B .6cm
C .8cm
D .10cm
3.到△ABC 的三边距离相等的点是△ABC 的( )
A .三条中线的交点
B .三条角平分线的交点
C .三条高的交点
D .三条边的垂直平分线的交点 4.如图所示的几何体的俯视图是 ( )
5
判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)的一个解x 的范围是 ( )
A .3<x <3.23
B .3.23<x <3.24
C .3.24<x <3.25
D .3.25 <x <3.26
6.等腰三角形的腰长等于2m ,面积等于12
m ,则它的顶角等于( )
A .150o
B .30o
C .150o 或30o
D .60o
7.利用13米的铁丝和一面墙,围成一个面积为20平方米的长方形,墙作为长方形的长边,求这个长方形的长和宽。
设长为x 米,可得方程 ( )
A .20)13(=-x x
B .20)2
13(
=-x
x C .20)2
1
13(=-
x x
D
.20)
2
213(
=-x
x 8.如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3)。
按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是( )
(4)
(3)
沿虚线剪开对角顶点重合折叠
(2)
A .都是等腰梯形
B .两个直角三角形,一个等腰三角形
C .两个直角三角形,一个等腰梯形
D .都是等边三角形 二.填空题:(每小题3分,共30分)
9.写出一个一元二次方程,使方程有一个根为0,并且二次项系数为1: 10.用反证方法证明“在△ABC 中,AB=AC ,则∠B 必为锐角”的第一步是假设 11.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC = 4,则PD 的长为 ;
12.如图,在△ABC 中,BC cm 5=,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是 cm
13.三角形两边长分别为3和6,如果第三边是方程2
680x x -+=的解,那么这个三角形的周长
14.直角三角形的两条边长分别为6和8,那么这个直角三角形斜边上的中线长等于
15
.矩形纸片
ABCD
中
, AD = 4cm , AB = 10cm , 按如图方式折叠, 使点B 与点D 重合, 折痕为EF,则DE = cm ;
16.如图,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=
A
D
C B
E
G
F
17.小军同学家开了一个商店,今年1月份的利润是1000元,3月份的利润是1210元,请你帮助小军同学算一算,他家的这个商店这两个月的利润平均月增长率是___________ 18.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与 点A 、C 重合), 且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是______; 三.解答题
19. 用适当的方法解下列方程
(1)12)1)(8(-=++x x (2))4(5)4(2
+=+x x
20、已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m.在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你做出DE 的影子并计算DE 的长.
21. 已知:如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB
延长线上一点,且DE=BF 。
请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可) .
(1)连结__AF__________ ;
(2)猜想:___AF___ =_AE_____ ; (3)证明:
22、已知:如图,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC, EG ⊥CD ,
垂足分别是F 、G . 求证:AE = FG .
23.某超市经销一种成本为40元/kg 的水产品,市场调查发现,按50元/kg 销售,一个月能售出500kg ,若每kg 每涨1元,月销售量就减少10kg ,针对这种水产品的销情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?
24.如图4,(1)F 是正方形ABCD 的边BC 的中点,CG 平分∠DCM ,交过F 点AF 的垂线FG 于G ,求证:AF =FG .(2)若点F 是正方形ABCD 的边BC 上任意一点,其他条件不变,(1)中结论是否仍然成立?
图4
25.如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F 。
(1)求证:AN=MB
(2)求证:△CEF 为等边三角形
(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立。
并说明理由。