5第三章多维随机变量及其分布
第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件
前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)
多维随机变量及其分布
(1) F ( x, y)
y
x
f ( x , y) d x d y
y x ( 2 x y ) d x d y , x 0, y 0, 0 0 2e 其它. 0,
(1 e 2 x )(1 e y ), x 0, y 0. 得 F ( x , y) 其它. 0,
8 3 2 14 , 13/102
§3.1 二维随机变量
3 2 P{ X 1,Y 1} 1 1 8 3 2 14 ,
2 8 1 P{ X 0,Y 2} 2 2 28 , 3 3 8 9 P{ X 1,Y 0} 1 1 2 28 ,
y
先在图像上画出非0区
O x
20/102
§3.1 二维随机变量
(2) 将 ( X,Y )看作是平面上随机点的坐标
即有 {Y X } {( X ,Y ) G },
P{Y X } P{( X ,Y ) G }
y
f ( x , y ) d x d y
G
YX
2e 0 y
具有同二维类似的性质。
§3.1 二维随机变量
二维离散型的随机变量:
定义:若二维随机变量(X,Y)全部可能取到的不相同的值 是有限对或可列无限多对,则称(X,Y)是离散型随机变量
二维离散型随机变量的分布律:
设二维离散型随机变量(X,Y)所有可能取的值为(xi,yj),i, j=1,2,…, 记P{X=xi,Y=yj}=pij,i,j=1,2,…,则由概率的定义有: pij≥0,
第三章相互独立的随机变量(多维随机变量及其分布)
f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1
第三章 多维随机变量及其分布
本讲主要内容:1.二维离散随机变量2.二维连续随机变量(重点)3.二维随机变量函数的分布(重点)设X与Y为两个随机变量,那么我们称二元组(X,Y)为二维随机变量.一、二维离散随机变量定义7:设X与Y均为离散随机变量,取值分别x1, x2,…, x i,…,y1, y2,…,y j,…那么我们称(X,Y)为二维离散随机变量,并称P(X=x i, Y=y j)=p ij, i, j =1,2,…为(X,Y)的联合分布列.联合分布列的性质:① p ij≥0②边际分布列:X与Y独立的任何两行或者两列都成比例离散随机变量的独立性:设(X,Y)为二维离散随机变量,如果即联合分布列等于边际分布列的乘积,则称X与Y相互独立.条件分布列与乘法公式:二、二维随机变量的联合分布函数定义8:设(X,Y)为二维随机变量,我们称二元函数为(X,Y)的联合分布函数.联合分布函数的性质:(1)F(x,y)为x与y的右连续函数.(2)F(x,y)为x与y的不减函数.(3)(4)三、二维连续随机变量定义9:设(X,Y)为二维随机变量,如果(X,Y)的联合分布函数可以写成则称(X,Y)为二维连续随机变量,并称f(x,y)为(X,Y)的联合密度函数. 易知:联合密度函数的性质:(1),(2)边际密度函数:随机变量X的边际密度:随机变量Y的边际密度:连续随机变量的独立性:设(X,Y)为二维连续随机变量,如果则称X与Y相互独立.条件密度:我们称为在给定Y=y时X的条件密度.为在给定X=x时Y的条件密度.如果二维连续随机变量(X,Y)的联合密度为则称(X,Y)服从区域G上的二维均匀分布.其中为区域G的面积.【例39·解答题】假设随机变量Y服从参数的指数分布,随机变量求X1和X2的联合概率分布.[答疑编号986303101:针对该题提问]解:P(X1=0, X2=0)=P(Y≤1,Y≤2)=P(X1=1, X2=0)=P(Y>1,Y≤2)=【例40·解答题】某射手向一目标进行连续射击,每次命中的概率都是p,各次命中与否相互独立.以X表示第二次命中时的射击次数,以Y表示第三次命中时的射击次数.求(X,Y)的联合分布列以及Y的边际分布列.[答疑编号986303102:针对该题提问]解:P(X=m,Y=n)=令m-1=k=n=3, 4, 5……【例41·解答题】设(X,Y)具有联合分布列:且已知EX=-0.2,记Z=X+Y.求(1)a,b,c的值;[答疑编号986303103:针对该题提问](2)Z的概率分布;[答疑编号986303104:针对该题提问](3)P(X=Z).[答疑编号986303105:针对该题提问]解:(1)a+b+c=0.4-(a+0.2)+c+0.1= -0.2解得a=0.2 , b=c=0.1(2)Z的概率分布(3)【例42·解答题】设某汽车的车站人数X~P(),每个人在中途下车的概率都是P,且下车与否相互独立,以Y表示中途下车的人数。
概率论第三章 多维随机变量及其分布
1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
概率论与数理统计总结之第三章
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
第三章 多维随机变量及其分布
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )
P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:
第3章多维随机变量及其分布
f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)
(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn
有
PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0
0)
... ... ... ... ... ...
第三章相互独立的随机变量(多维随机变量及其分布)
10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)
f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立
第三章多维随机变量及其分布
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
【学习】第三章多维随机变量
fX(x)f(x,y)dy,
fY(y)f(x,y)dx
结 束
19
例1: 设 (X, Y) 的分布函数为:
F (x ,y ) a ( b arx ) c c (a ta ry n ) c,( t a x ,y n ) ,
2
2
试求 (1) a 、 b、c , (2) (X, Y ) 的概率密度.
x2 … xi … p21 … pi 1 … ┇…┇…
yj p1 j p2 j … pi j … ┇ ┇ ┇ …┇ …
( X, Y ) 的分布律的性质: (1) 非负性 pi j 0,
(2) 归一性 pi j 1
ij
结 束
10
( X, Y ) 的分布律
P {X x i,Y yj} p ij,i,j 1 ,2 ,
第三章 多维随机变量及其分布
结 束
1
到现在为止,我们只讨论了一维随机变量及其分布. 但有些随机现象用一个随机变量来描述还不够,而 需要用几个随机变量来描述.
如: 在打靶时, 命中点的位置是由 一对随机变量(两个坐标)来确定的.
飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定 的等等.
因而需进一步讨论由多个随机变量构成的随机向量. 其处理思路及方法与一维情形相同, 但形式较一维 复杂; 学习时应注意与一维情形的对照.
D的可能取值 为1, 2, 3, 4; F 的可能取值 为0, 1, 2 ;
再确定取值的概率,如: P{D1,F0}P{N1} 1/ 6,
P{D2,F1} P ( { N 2 }{ N 3 }{ N 5 } 3 / 6
等等.
可得D 和 F 的 联合分布律及 边缘分布律为:
FD 1 2 0 1/6 0 1 0 3/6
概率论与数理统计教程(茆诗松)第三章多维随机变量及其分布
P(X1=1, X2=0) = P(|Y|<1, |Y|≥2) = 0
P(X1=1, X2=1) = P(|Y|<1, |Y|<2) = P(|Y|<1) = 0.6826
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
第13页
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
课堂练习
第14页
设随机变量 X 在 1,2,3 , 4 四个整数中等可 能地取值,另一个随机变量 Y 在 1到X 中等可能 地取一整数值。试求(X, Y)的联合分布列.
第三章 多维随机变量及其分布
第1页
第三章 多维随机变量及其分布
§3.1 多维随机变量及其联合分布 §3.2 边际分布与随机变量的独立性 §3.3 多维随机变量函数的分布 §3.4 多维随机变量的特征数 §3.5 条件分布与条件期望
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
23 August 2021
华东师范大学
第三章 多维随机变量及其分布
3.2.1 边际分布函数
第29页
巳知 (X, Y) 的联合分布函数为 F(x, y),
则 X FX (x) = F(x, +),
Y FY (y) = F(+ , y).
23 August 2021
多维随机变量及其分布
多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布
概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布
比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多维随机变量及其分布
(第五次)
一、选择题(每题4分,共40分)
1.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( ). A.52,53-==
b a B.32,32==b a C.23,21=-=b a D.23
,21-==b a 2.设随机变量i X 的分布为1210
1~(1,2){0}1,11
1424i X i X X -⎛⎫ ⎪
===
⎪⎝⎭
且P 则12{}P X X ==( ).
A.0
B.
4
1 C.
2
1 D.1
3.下列叙述中错误的是( ).
A.联合分布决定边缘分布
B.边缘分布不能决定决定联合分布
C.两个随机变量各自的联合分布不同,但边缘分布可能相同
D.边缘分布之积即为联合分布
4.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ).
A.1
{,},,1,2,636
P X i Y j i j ==== B.361}{=
=Y X P C.2
1
}{=
≠Y X P
D.2
1
}{=≤Y X P
5.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+
~Z 则( ).
A.)5,0(N
B.)12,0(N
C.)54,0(N
D.)2,1(-N
6.已知sin(),0,,(,)~(,)40,
C x y x y X Y f x y π⎧
+≤≤⎪
=⎨⎪⎩其他则C 的值为( ).
A.
2
1
B.22
C.12-
D.12+
7.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,
02
0,10,3
1
),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.
7265 B.727 C.721 D.72
71
8.为使⎩⎨⎧≥=+-其他,
00
,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为
( ).
A.0
B.6
C.10
D.16
9.设⎪⎩⎪⎨⎧≤≤≤≤=其他,
01
0,20,23),(~),(2
y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)
为顶点的三角形内取值的概率为( ).
A. 0.4
B.0.5
C.0.6
D.0.8 10.设12,,
,n X X X 相独立且都服从),(2σμN ,则( ).
A.12n X X X ===
B.2
121
()~(,
)n X X X N n
n
σμ++
+
C.)34,32(~322
1+++σμN X D.),0(~2
22
121σσ--N X X 二、填空题(每题4分,共20分)
1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率: (1);____________________
),(=<≤≤c Y b X a p (2);____________________
),(=<<b Y a X p (3);____________________
)0(=≤<a Y p
(4).____________________
),(=<≥b Y a X p 2.随机变量),(Y X 的分布律如下表,则βα,应满足的条件是 .
3.设平面区域D 由曲线x
y 1
=
及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .
4.设),,,,(~),(2
22121ρσσμμN Y X ,则
Y X ,相互独立当且仅当
=ρ .
5.设两个随机变量X 与Y 独立同分布,且P (X=-1)=P (Y=-1)=1/2,P (X=1)=P (Y=1)
=1/2,则P (X=Y )= ;P (X+Y=0)= ;P (XY=1)= .
三(16分)、设随机变量(X ,Y )概率密度为⎪⎩
⎪⎨⎧<<<<--=其它,04
2,20),6(),(y x y x k y x f
(1)确定常数k ;(2)求P {X <1, Y <3};(3)求P (X <1.5};(4)求P (X+Y ≤4}。
四、(8分)设二维随机变量(X ,Y )的概率密度为
⎪⎩⎪⎨
⎧≤≤≤≤-=其它
求边缘概率密度0
.
0,10)
2(8.4),(x y x x y y x f
五、(10分)设X ,Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布。
Y 的
概率密度为⎪⎩
⎪⎨⎧≤>=.0,00
,21)(2y y e y f y
Y
(1)求X 和Y 的联合密度。
(2)设含有a 的二次方程为a 2+2Xa+Y=0,试求有实根的概率。
六、(6分)设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布。
随机地选取4只求其中没有一只寿命小于180小时的概率。