探讨与圆的轨迹有关的问题
圆的方程(交点,轨迹)难题
搞定圆的方程(交点,轨迹类难题)常见的隐藏圆已知动点P和两定点A,B。
�����⃗⋅PPPP�����⃗=λλ1.PPPP2.PPPP2+PPPP2=λλ3.PPPP PPPP=λλ(阿波罗尼斯圆)4.直径所对圆周角为9005.圆周角的相关性质6.关于阿波罗尼斯圆(阿氏圆)的相关性质:内分点(圆内点),外分点(圆外点),(即两定点),阿氏圆圆心在一条直线上当一个圆以及其内分点或外分点中一点确定,另外一点必然唯一确定小结论−DD=xx1+xx2−EE=yy1+yy2FF=xx1⋅xx2=yy1⋅yy2以找临界为通法的一类问题【链接】双动点类问题,其中一个在圆上的动点利用三角换元简化问题:消参数法:变式:若上述问题,两圆及定点不变,MA⊥MB,求AB的最值。
(取AB中点,利用RT三角形中,斜边中线等于斜边一半的结论,转为上述问题)(原问题)临界法:临界法:在平面直角坐标系x Oy 中,已知圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,且满足PA=2AB ,则半径r 的取值范围是 . [5,55]临界法:已知圆A:xx2+yy2=1,圆B:xx2+yy2−6xx−8yy+aa=0,若对于圆A上任意一点,,在圆B上总存在不������⃗=3PPMM������⃗,则实数aa的取值范围是________.(9,16]同的两点M,N,使得PPPP中华中学14临界法:角度类临界问题南京一中14易得,M点在轨迹圆xx2+yy2=1上。
对于每一个在轨迹圆上的点M,均做以OM为弦,所对圆周角为30°的外接圆,点P可以在每一个同样的外接圆的优弧上,这些外接圆优弧铺满了一个圆环面,即图中两个圆中间的区域。
我们需要知道最外层的圆的半径,易知,最外层圆的半径即为外接圆的直径2(最远距离)。
与圆有关的轨迹问题 -高二数学(人教A版2019选择性必修第一册)(解析版)
与圆有关的轨迹问题知识点1 5种定义形式的圆1、“定义圆”:在平面内,到定点的距离等于定长的点的集合.数学语言描述为:在平面内,{|}M MA r =,其中M 为动点,A 为定点,0r >为定值.2、“斜率圆”:在平面内,与两定点斜率之积为-1的点的集合(除去定点所在垂直于x 轴的直线与曲线的交点).数学语言描述为∶在平面内,{|1}MA MB M k k ⋅=-,其中M 为动点,A ,B 为定点.且点M 的横坐标不等于A ,B 的横坐标.3、“平方圆”:在平面内,到两定点距离的平方和为定值的点的集合.数学语言描述为:在平面内,22{|}M MA MB λ+=,其中M 为动点,A ,B 为定点,λ为定值.注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]2224a cb d x y ac bd λ++-+-=--+-,此时221[()()]2a cb d λ>-+-.4、“向量圆”:在平面内,与两定点形成向量的数量积为定值的点的集合.数学语言描述为∶在平面内,{|}M MA MB λ⋅=,其中M 为动点,A ,B 为定点,λ为定值 注:若(,).(,)A a b B c d ,则点M 的轨迹方程为22221()()[()()]224a cb d x y ac bd λ++-+-=+-+-,此时221[()()]4a cb d λ>--+-.特别地,若A ,B 为定点,且0MA MB ⋅=,则点M 的轨迹是以AB 为直径的圆拓展:“角度圆”:在平面内,与两定点所成角为定值的点的集合.(角度可用向量的夹角公式表示) 5、“比值圆”(阿波罗尼斯圆):在平面内,到两定点距离之比为定值的点的集合. 数学语言描述为:{|}MAM MBλ=,其中M 为动点,A ,B 为定点,λ为定值,λ>0且λ≠1. 注:当1λ=时,M 的轨迹是线段AB 的垂直平分线. 6、这些圆彼此之间的联系:(1)斜率圆可以看成向量圆的特例,即两向量互相垂直时可以转化为两直线斜率之积等于-1,需要注意斜率不存在的情形.也就是说数量积为零比斜率之积为-1更一般. (2)比值圆与平方圆是一样的,都是用两点间距离公式求解.知识点2 注意“轨迹”与“轨迹方程”的区别1、“轨迹”是图形,“轨迹方程”是方程.2、求轨迹方程后要检验求轨迹方程后一定要注意检验轨迹的纯粹性和完备性,在所得的方程中删去或补上相应的特殊点,以保证方程的解与曲线上的点具有一一对应关系.考点一 直接法求轨迹解题方略:直接法是指将动点满足的几何条件或者等量关系,直接坐标化,列出等式,然后化简而求出动点轨迹方程的一种方法.此法的一般步骤∶建系、设点、列式、化简、限制说明.注:(1)根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等) (2)根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。
圆中轨迹问题
与圆有关的轨迹问题
例1:设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以 OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.
变式:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.
(1)求M 的轨迹方程;
(2)当OP =OM 时,求l 的方程及△POM 的面积.
例2:已知BC =2,且AB =2AC ,求点A 的轨迹.
变式1:若在ABC ∆中,BC =2,且AB =2AC ,求ABC ∆面积的最大值。
变式2:已知点 (5,0)A - ,直线OA 上(O 为坐标原点)是否存在定点
B (不同于A ),对圆229x y +=上的任意一点P ,使得PB PA
为一常数.
变式3:已知点(2,0),(4,0)A B -,圆22:(4)()16C x y b +++=,P 为圆 上的动点,若
PA PB 为定值,求实数b 的值.
变式4:已知圆)0,1(,1)4(:221Q y x C =++,过点P 作圆C 1的切线,切点为M , 若PQ PM 2=,求P 点的轨迹方程。
与圆有关的轨迹问题
学霸数学与圆有关的轨迹问题定角对定边旋转线段;在动态图中存在;分类确定一个动点的轨迹的圆周角相等来性质,等边或同弧所对图中没有圆,根据圆的.2.1.1学霸数学旋转线段.1旋转绕点条件:线段AAB数学_____C 'A C 'A MN 'A MN AMN AB N AD M 60A 20长度的最小值是,则,连接所在的直线翻折,得到沿着一个动点,将边上的是边上的中点,是,的菱形中,如图,在边长为∆∆=∠数学_____C 'A C 'A MN 'A MN AMN AB N AD M 60A 20长度的最小值是,则,连接所在的直线翻折,得到沿着一个动点,将边上的是边上的中点,是,的菱形中,如图,在边长为∆∆=∠17'A 7MC 23ME 21DE E CD ME 'A C 'A M AD 'A 'MA MA min -====⊥==C C MD ,,,于点作取最小值共线时、、当为直径的圆上,在以,数学______M PQ D P A D C B Q D C B A P 2__M PQ B P 1AB PQ C B Q B A P 2走的路程为运动过程中,中点在停止到运动,当从运动,点从:点问题走的路程为的中点停止后,运动到点:当点;问题且保持运动向点从运动,点向点从点的正方形中,点如图,在边长为→→→→→→=学霸数学例题______M PQ D P A D C B Q D C B A P 2__M PQ B P 1AB PQ C B Q B A P 2走的路程为运动过程中,中点在停止到运动,当从运动,点从:点问题走的路程为的中点停止后,运动到点:当点;问题且保持运动向点从运动,点向点从点的正方形中,点如图,在边长为→→→→→→=43D C B A P 4BC AB M B P M 21B M PQ ππ==d d AB 运动时的轨迹、、、由同理,的中点弧的中点到轨迹是从到时,点到轨迹为圆,故点的距离始终为到中点学霸数学定边对定角.245A5BC=∠=,条件:090BOCA=∠时圆心角的轨迹就是一个圆,此结论:点学霸推广数学αBC,条件:α2 5=A=∠的轨迹就是一个圆,此结论:点时圆心角A=BOC∠数学____BD DAC DCB D 3BC 4AC Rt 的最小值为,则且保证,是三角形内部任意一点,点,中,如图,∠=∠==∆ABC数学213BD BD E D B AC D 90DAC DCA 90DCA DCB DAC DCB min 00-==∠+∠=∠+∠∠=∠取小最小值,共线时,、、当为直径的圆上在以,故,,____BD DAC DCB D 3BC 4AC Rt 的最小值为,则且保证,是三角形内部任意一点,点,中,如图,∠=∠==∆ABC数学的最小值为多少?,则线段,若正方形的边长为于点交连接于点交,连接上两个动点,满足的边是正方形、如图,DH 2H AG BE G BD CF DF AE AD ABCD F E数学的最小值为多少?,则线段,若正方形的边长为于点交连接于点交,连接上两个动点,满足的边是正方形、如图,DH 2H AG BE G BD CF DF AE AD ABCD F E =15DHDH I H D AB H 90BAH ABH 90BAH EAH ABEEAH DCF DAG BD C A DCFABE DCF ABE DF AE min 00-==∠+∠=∠+∠∠=∠∠=∠∠=∠∆≅∆=取最小值共线时,、、为直径,当在以,,故,对称得关于、,得由数学所走过的路径长。
与圆有关的综合问题
与圆有关的综合问题题型一:与圆有关的轨迹问题[典例] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥P Q ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0. [方法技巧] 求与圆有关的轨迹问题的4种方法[针对训练]1.(2019·厦门双十中学月考)点P (4,-2)与圆x 2+y 2=4上任意一点连接的线段的中点的轨迹方程为( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设中点为A (x ,y ),圆上任意一点为B (x ′,y ′),由题意得,⎩⎪⎨⎪⎧ x ′+4=2x ,y ′-2=2y ,则⎩⎪⎨⎪⎧x ′=2x -4,y ′=2y +2,故(2x -4)2+(2y +2)2=4,化简得,(x -2)2+(y +1)2=1,故选A.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ). 由题设知CM ―→·MP ―→=0, 故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.题型二:与圆有关的最值或范围问题[例1] (2019·兰州高三诊断)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( ) A .[-2,6] B .[-3,5] C .[2,6]D .[3,5][解析] 法一:当MA ,MB 是圆C 的切线时,∠AMB 取得最大值.若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=(5-1)2+(t -4)2≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.法二:由于点M (5,t )是直线x =5上的点,圆心的纵坐标为4,所以实数t 的取值范围一定关于t =4对称,故排除选项A 、B.当t =2时,|CM |=25,若MA ,MB 为圆C 的切线,则sin ∠CMA =sin ∠CMB =1025=22,所以∠CMA =∠CMB =45°,即MA ⊥MB ,所以t =2时符合题意,故排除选项D.选C. [答案] C[例2] 已知实数x ,y 满足方程x 2+y 2-4x +1=0.求: (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3.所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值. 因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧]与圆有关最值问题的求解策略处理与圆有关的最值问题时,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.与圆有关的最值问题,常见类型及解题思路如下:[针对训练]1.(2019·新余一中月考)直线x +y +t =0与圆x 2+y 2=2相交于M ,N 两点,已知O 是坐标原点,若|OM ―→+ON ―→|≤|MN ―→|,则实数t 的取值范围是________. 解析:由|OM ―→+ON ―→|≤|MN ―→|=|ON ―→-OM ―→|, 两边平方,得OM ―→·ON ―→≤0, 所以圆心到直线的距离d =|t |2≤22×2=1, 解得-2≤t ≤2,故实数t 的取值范围是[-2, 2 ]. 答案:[-2, 2 ]2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点A (2,1)连线的斜率.当直线PA 与圆相切时,k 取得最大值与最小值.设过(2,1)的直线方程为y -1=k (x -2),即kx -y +1-2k =0. 由|2k |k 2+1=1,解得k =±33.答案:33,-333.(2019·大庆诊断考试)过动点P 作圆:(x -3)2+(y -4)2=1的切线P Q ,其中Q 为切点,若|P Q |=|PO |(O 为坐标原点),则|P Q |的最小值是________.解析:由题可知圆(x -3)2+(y -4)2=1的圆心N (3,4).设点P 的坐标为(m ,n ),则|PN |2=|P Q |2+|N Q |2=|P Q |2+1,又|P Q |=|PO |,所以|PN |2=|PO |2+1,即(m -3)2+(n -4)2=m 2+n 2+1,化简得3m +4n =12,即点P 在直线3x +4y =12上,则|P Q |的最小值为点O 到直线3x +4y =12的距离,点O 到直线3x +4y =12的距离d =125,故|P Q |的最小值是125.答案:125[课时跟踪检测]1.(2019·莆田模拟)已知圆O :x 2+y 2=1,若A ,B 是圆O 上的不同两点,以AB 为边作等边△ABC ,则|OC |的最大值是( ) A.2+62B. 3 C .2D.3+1解析:选C 如图所示,连接OA ,OB 和OC . ∵OA =OB ,AC =BC ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°, 在△OAC 中,由正弦定理得OA sin 30°=OCsin ∠OAC ,∴OC =2sin ∠OAC ≤2,故|OC |的最大值为2,故选C.2.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b 2的最小值为( ) A .2 B .4 C .8D .9解析:选D 圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.3.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( ) A .3 B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45.因为P 在圆C 上,所以P ⎝⎛⎭⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎨⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.4.(2019·拉萨联考)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1解析:选D 圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1.故选D. 5.(2019·赣州模拟)已知动点A (x A ,y A )在直线l :y =6-x 上,动点B 在圆C :x 2+y 2-2x -2y -2=0上,若∠CAB =30°,则x A 的最大值为( ) A .2 B .4 C .5D .6解析:选C 由题意可知,当AB 是圆的切线时,∠ACB 最大,此时|CA |=4.点A 的坐标满足(x -1)2+(y -1)2=16,与y =6-x 联立,解得x =5或x =1,∴点A 的横坐标的最大值为5.故选C.6.(2018·北京高考)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( ) A .1 B .2 C .3D .4解析:选C 由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离d =21+m 2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.7.(2019·安徽皖西联考)已知P 是椭圆x 216+y 27=1上的一点,Q ,R 分别是圆(x -3)2+y 2=14和(x +3)2+y 2=14上的点,则|P Q |+|PR |的最小值是________.解析:设两圆圆心分别为M ,N ,则M ,N 为椭圆的两个焦点, 因此|P Q |+|PR |≥|PM |-12+|PN |-12=2a -1=2×4-1=7,即|P Q |+|PR |的最小值是7. 答案:78.(2019·安阳一模)在平面直角坐标系xOy 中,点A (0,-3),若圆C :(x -a )2+(y -a +2)2=1上存在一点M 满足|MA |=2|MO |,则实数a 的取值范围是________.解析:设满足|MA |=2|MO |的点的坐标为M (x ,y ),由题意得x 2+(y +3)2=2x 2+y 2, 整理得x 2+(y -1)2=4,即所有满足题意的点M 组成的轨迹方程是一个圆,原问题转化为圆x 2+(y -1)2=4与圆C :(x -a )2+(y -a +2)2=1有交点,据此可得关于实数a 的不等式组⎩⎨⎧a 2+(a -3)2≥1,a 2+(a -3)2≤3,解得0≤a ≤3, 综上可得,实数a 的取值范围是[0,3]. 答案:[0,3]9.(2019·唐山调研)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|Q M |的最小值. 解:(1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2. 化简可得(x -5)2+y 2=16,故此曲线方程为(x -5)2+y 2=16. (2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题知直线l 2与圆C 相切,连接C Q ,CM , 则|Q M |=|C Q |2-|CM |2=|C Q |2-16,当C Q ⊥l 1时,|C Q |取得最小值,|Q M |取得最小值,此时|C Q |=|5+3|2=42,故|Q M |的最小值为32-16=4.10.(2019·广州一测)已知定点M (1,0)和N (2,0),动点P 满足|PN |=2|PM |. (1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为k 1,k 2,k . 当k 1k 2=3时,求k 的取值范围. 解:(1)设动点P 的坐标为(x ,y ), 因为M (1,0),N (2,0),|PN |=2|PM |, 所以(x -2)2+y 2=2(x -1)2+y 2. 整理得,x 2+y 2=2.所以动点P 的轨迹C 的方程为x 2+y 2=2.(2)设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +b .由⎩⎪⎨⎪⎧x 2+y 2=2,y =kx +b消去y ,整理得(1+k 2)x 2+2bkx +b 2-2=0.(*) 由Δ=(2bk )2-4(1+k 2)(b 2-2)>0,得b 2<2+2k 2.① 由根与系数的关系,得x 1+x 2=-2bk 1+k 2,x 1x 2=b 2-21+k 2.②由k 1·k 2=y 1x 1·y 2x 2=kx 1+b x 1·kx 2+bx 2=3,得(kx 1+b )(kx 2+b )=3x 1x 2, 即(k 2-3)x 1x 2+bk (x 1+x 2)+b 2=0.③ 将②代入③,整理得b 2=3-k 2.④由④得b 2=3-k 2≥0,解得-3≤k ≤ 3.⑤ 由①和④,解得k <-33或k >33.⑥ 要使k 1,k 2,k 有意义,则x 1≠0,x 2≠0,所以0不是方程(*)的根,所以b 2-2≠0,即k ≠1且k ≠-1.⑦ 由⑤⑥⑦,得k 的取值范围为[-3,-1)∪⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1∪(1, 3 ].。
与圆有关的轨迹问题
课下探索: 课下探索: 与两个定圆都相切的动圆的圆心的轨迹
(1)与两圆均外切 )
y A B x
(2)与两圆均内切 ) y
A B x
内切、 外切、 (3)与圆 内切、与圆 外切 4)与圆 外切、与圆 内切 )与圆A内切 与圆B外切 )与圆A外切 与圆B内切 (
y y A B x A B x
方法小结 :与定圆相切的动圆圆心的轨迹情 况复杂, 况复杂, 1.抓牢两个圆心,一个切点,三点一定共线。 1.抓牢两个圆心,一个切点,三点一定共线。 抓牢两个圆心 一定共线 2.抓牢定圆的半径,设出动圆半径作辅助。 2.抓牢 圆的半径 设出动圆半径作辅助。 抓牢定 半径, 动圆半径作辅助 3.抓牢动点到两定点的距离的和与差不放。 3.抓牢动点到两定点的距离的和 不放。 抓牢动点到两定点的距离的
C
A
探索与定圆相切的动圆圆心轨迹要抓牢动 探索与定圆相切的动圆圆心轨迹要抓牢动 圆圆心到两定点的距离的和与差不放 不放。 圆圆心到两定点的距离的和与差不放。
S A B
C A S S B A B
定点A,同时与定圆 定圆⊙ 结论 :过定点 ,同时与定圆⊙ B 相 的动圆圆心 的轨迹可能是椭圆 圆心S的轨迹可能是椭圆或 切 的动圆圆心 的轨迹可能是椭圆或双 曲线或直线的一部分。 曲线或直线的一部分。
x
x y 变题 2 :已知双曲线的方程为 2 − 2 = 1( a > 0, a b b > 0 ), F1 , F2 分别为左右焦点 , Q 是双曲线上任意 一点 , 从左焦点 F1 作 ∠ F1QF 2 平分线的垂线 , 垂足 为 P , 求点 P 的轨迹方程
F1
O
F2
x
P
M
经过点 A(5,0)且 与 且 例3: C ( x + 5) 2 + y 2 = 49 :圆 的轨迹方 外 切的圆的圆心 P 的轨迹方程
圆中的最值问题运动轨迹
圆中的最值问题运动轨迹圆中的最值问题运动轨迹引言:圆是一种几何学中常见的形状,它具有许多独特的性质和特点。
在数学中,研究圆的最值问题既有理论意义,又有实际应用。
本文将讨论圆中的最值问题,并探索与之相关的运动轨迹。
通过对这些问题的分析和求解,可以帮助我们更深入地理解圆的性质和运动规律。
一、圆的最值问题1. 最大面积问题圆的面积公式为S=πr²,其中r为圆的半径。
那么,在给定周长的情况下,如何确定圆的半径以使其面积最大化?解法:根据周长公式C=2πr,可得r=C/(2π),将该值代入面积公式得到S=π(C/(2π))²=(C²/(4π))π=(C²π/4π)=C²π/4。
所以,当给定周长时,圆的面积最大值为C²π/4。
2. 最小周长问题如果圆的面积是固定的,如何确定圆的半径以使其周长最小化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。
所以,当给定面积时,圆的周长最小值为2√(πS)。
3. 最大周长问题在给定面积的情况下,如何确定圆的半径以使其周长最大化?解法:根据面积公式S=πr²,可得r=√(S/π),将该值代入周长公式得到C=2π(√(S/π))=2√(πS)。
所以,当给定面积时,圆的周长最大值为2√(πS)。
二、圆的运动轨迹1. 圆的滚动轨迹当一个圆沿着另一个圆或者直线滚动时,滚动圆上一点的轨迹称为圆的滚动轨迹。
滚动轨迹通常是一条曲线,而滚动圆上的所有点都具有相似的运动特性。
2. 圆上的运动轨迹假设一个小球在一个固定大小的圆上运动,小球在圆上的位置随时间变化而改变。
小球在圆上的运动轨迹通常是一条曲线,其形状取决于小球在圆上的起始位置、运动速度和加速度等因素。
结论:圆中的最值问题涉及到圆的面积和周长,通过合理选择圆的半径,可以确定面积最大、周长最小或周长最大的圆。
高中数学与圆有关的轨迹问题与最值问题
b a 1 ,解得 a 1 , b 2 ,从而 r 2 2 (5 分)
圆 C 方程为: (x 1)2 ( y 2)2 8(6 分)
(Ⅱ)设 M (x, y) , B(x0
,
y0
)
,则有
1
x0 2
x,
y0 2
y , (8
分)
解得 x0 2x 1 , y0 2 y ,代入圆 C 方程得: (2x 2)2 (2y 2)2 8 , (10 分)
| MA | 2
(x 3)2 y2 2
化简整理得: x2 y2 2x 3 0 ,即 (x 1)2 y2 4 ,
点 M 的轨迹方程 (x 1)2 y2 4 ,轨迹是以 (1, 0) 为圆心,以 2 为半径的圆;
(2)由(1)可知, P(x, y) 为圆 (x 1)2 y2 4 上任意一点, 3x1 ,
(1)求动点 M 的阿波罗尼斯圆的方程; (2)过 P(2,3) 作该圆的切线 l ,求 l 的方程.
【解答】解:(1)设动点 M 坐标为 (x, y) ,则 AM (x 4)2 y2 , BM (x 1)2 y2 ,
又知 AM 2BM ,则 (x 4)2 y2 2 (x 1)2 y2 ,得 x2 y2 4 .
专题 05 与圆有关的轨迹问题与最值问题
题型一 轨迹问题
1.动圆 x2 y2 (4m 2)x 2my 4m2 4m 1 0 的圆心的轨迹方程是 x 2y 1 0(x 1) .
【解答】解:把圆的方程化为标准方程得 [x (2m 1)]2 ( y m)2 m2 (m 0)
3 / 13
【解答】解: ( 1) 由两点式可知,对角线 AC 所在直线的方程为 y 2 2 2 , x4 04
整理得 y x 2 0 ,
与圆有关轨迹问题
1.步骤:建系-设点-限制条件-代入-化 简
例1求与点O(0,0),A(3,0)距离之比是 1
的点M的轨迹方程。
2
分析: 建系
设点M(x,y)是轨迹上的任意一点,
限制条件: 代入 化简
| MO | 1 | MA | 2
x2 y2 1 (x 3)2 y2 2
(x 1)2 y2 4
提示:l恒过定点C(a,0),又 OM⊥AB,
故点M为以OC为直径 a2 (x2 y2 r2)
2
4
四.参数法求轨迹 已知方程 x2 y2 2ax 2 3ay 3a2 0
(a 0)
表示圆,求圆心的轨迹方程
设圆心C(x,y)则
x a
y 3a
故 x 3 y 3
C(-1,-6),另一个顶点A在
抛物线
上移动,求此三角
形重心G的轨迹方程.
重心公式(
x1
x2 3
x3
,
y1 +y2 3
y3
)
三.定义法:
动点运动符合已知曲线的定义,根据 定义求出曲线方程的方法称为定义法。
已知直线 l : y k(x a)及 圆O : x2 y2 r 2
与圆O相交于A、B两点,求当k变动时,弦 AB中点M的轨迹方程。 变式:y=kx+1与圆C:(x-1)2 ( y 1)2 2 3
二.代点法求轨迹方程
例2已知线段AB的端点B(4,3),点A在圆 (x+1)2+y2=4上运动,求线段AB中点M的 轨迹方程
设M(x,y)是轨迹上的任意一
点,A(x0,y0),则
x
4
x0 2
y
3
y0 2
x0 2x 4
圆中的轨迹方程问题
圆中的轨迹方程问题全文共四篇示例,供读者参考第一篇示例:圆中的轨迹方程问题一直是数学领域中的经典难题之一,其研究涉及到圆的性质、几何关系等多个方面。
在解决这类问题时,我们常常需要运用代数、几何、解析几何等知识,通过推理和分析来找出问题的解决方案。
让我们来了解一下什么是轨迹方程。
在数学领域中,轨迹方程是描述曲线或者点在运动中的路径的数学方程。
而在圆中的轨迹方程问题中,就是要求找出圆内部或者圆周上点的运动路径的方程。
在圆中的轨迹方程问题中,有一类比较经典的问题就是求解圆的内切方程。
内切方程是指一个点在圆内部的路径方程。
根据圆的性质和几何关系,我们可以通过分析得到内切方程的表达式。
以一个简单的例子来说明,给定一个半径为r的圆,圆心坐标为(a, b),点P(x, y)在圆内部运动。
我们可以通过利用圆的方程和点到圆心的距离等条件来推导出P点的轨迹方程。
我们知道圆的方程可以表示为:(x-a)² + (y-b)² = r²又因为点P在圆内部,所以P点到圆心的距离不能大于半径r。
即有:√[(x-a)² + (y-b)²] < r在解决圆中的轨迹方程问题时,我们还可以运用解析几何的方法来求解。
通过将问题转化为代数方程组,利用代数方法来解决。
举个例子,假设有一个半径为r的圆,圆心在原点O(0, 0),一个移动点M(x, y)在圆周上运动。
我们需要求出M点的轨迹方程。
根据圆的定义,M点在圆周上,所以有:x² + y² = r²M点的横纵坐标均为x,y,因此M点在第一象限、第二象限、第三象限和第四象限的坐标可以分别表示为(x, y),(-x, y),(-x, -y),(x, -y)。
M点的轨迹方程为:(x² + y² - r²)(x² + y² - r²)(x² + y² - r²)(x² + y² - r²) = 0两个圆的轨迹交点可以表示为一个方程组,通过求解方程组的解得到轨迹交点的坐标。
圆的轨迹问题,有迹可循,突破难点有绝招
圆的轨迹问题,有迹可循,突破难点有绝招动点轨迹问题、最值问题历来是中考的难点和热点。
学生需要在考场短时间思考出动点的运动轨迹确实不是一件容易的事情,如果平时不能有对图形本质的理解和把握,很难在考试中解决此类问题。
在初中阶段,我们会遇到两种轨迹问题,一个是圆弧,一个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
而需要我们结合题目中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理方法又是什么呢?首先我们先给轨迹下个定义,简单的说就是:动点在空间或者平面内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列几个方面考虑:(1)符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
初中阶段会接触到的曲轨迹一般是圆或者圆弧,比如旋转问题中;当然动点也可能在双曲线或者抛物线上运动,这都属于曲轨迹;类型1 圆的问题中隐含圆的轨迹问题1.如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3√3 D.r=3√2【解析】连OI,PI,DI,由△OPH的内心为I,可得到∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣1/2(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,P′O,可得∠DP′O=180°﹣135°=45°,得∠DO′O=90°,O′O =3√2.故选:D.2.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣√3 B.√3﹣1 C.2 D.√3+1【解析】利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,3.如图,在△ABC中,AC=4√3,BC=9,∠ACB=60°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于点E,则AE的最小值为.【解析】:如图,连接CE.∵AM∥BC,∴∠MAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,4.(2020•武汉模拟)如图,⊙O的半径为1,点D为优弧AB上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为.【解析】连接OA、OD,如图,根据圆周角定理得到∠AOD=2∠B=60°,则△OAD为等边三角形,所以AD=OA=1,而∠C=60°,利用圆周角定理可判断点C在AD为弦,圆周角为60°的弧上运动,根据三角形面积公式,当C在弧AD的中点时△ADC的面积最大,此时∠CAD=60°,从而得到∠BAD=30°.类型2 非圆问题中隐含圆的轨迹问题5.(2019秋•罗湖区期末)如图,矩形ABCD中,AB=20,AD=30,点E,F 分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.【解析】:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G。
与圆有关的轨迹问题归纳
与圆有关的轨迹问题归纳大家好,今天咱们聊聊一个看似简单却又充满趣味的数学话题——与圆有关的轨迹问题。
说到圆,谁能不想起那形状完美得让人忍不住想拍一张照的饼干呢?不过,今天可不是讨论美食,而是要深入探讨圆和它的轨迹。
我们一起轻松地理清楚这其中的奥秘,保证让你听了以后恍若看了一场精彩的电影!1. 圆的基本知识1.1 圆的定义首先,咱们得明白什么是圆。
圆就是一个平面上的所有点到中心的距离都相等的地方。
是不是听上去很简单?没错,就是这么简单,像咱们吃饼干那样,随便一咬就能享受到。
而这个中心点,我们通常叫做“圆心”,它就像圆的老大,指挥着整个圆的“舞蹈”。
1.2 圆的性质而且,圆还有一些好玩的性质哦!比如,任何一条经过圆心的直线,都会把圆分成两个完全相同的部分,咱们叫它“直径”。
想象一下,就像切披萨时那样,一刀下去,两边的馅料恰好均匀,不用担心谁吃得多谁吃得少。
2. 与圆有关的轨迹2.1 轨迹的定义说到轨迹,咱们先得知道它是什么。
轨迹就是一个点在运动时所经过的路径。
听起来有点高深,实际上就是那种“我走过的路”嘛。
比如,踢足球的时候,球的路径就是它的轨迹,乒乓球飞舞的样子也是。
2.2 圆的轨迹那么,和圆有关的轨迹又是什么呢?最简单的例子就是一个点围绕圆心转动时所形成的轨迹。
想象一下,假如你手上有一根线,另一端绑着个小球,你把小球绕着圆心转,结果就形成了一个完整的圆。
这就叫做“圆周轨迹”。
哇,真是简单又美丽,就像那首歌里唱的:“只要你心中有圆,世界就会很美好!”3. 应用实例3.1 日常生活中的圆那这跟咱们的生活有什么关系呢?其实,圆的轨迹无处不在!比如,转动的轮胎、旋转的风车,甚至是咱们每年的生日蛋糕,都是圆的!没准在吃蛋糕的时候,你还没意识到,自己正在欣赏一道数学美景呢。
想想,这种“无形的美”,是不是让你有点感动呢?3.2 科技中的应用不仅如此,科技领域也离不开圆的轨迹。
比如,卫星在绕地球飞行时,走的就是一个圆形轨迹。
与两圆都外切的动圆圆心的轨迹
一、引言两圆都外切的动圆圆心的轨迹,是一个经典的几何问题。
从古至今,数学家们对这一问题进行了深入的研究,提出了许多有趣的结论和定理。
本文将对这一问题进行探讨,并提出一些新的见解。
二、问题描述我们来描述一下问题的具体情景。
设有两个半径分别为R1和R2的定圆,它们的圆心分别为O1和O2,且两个圆外切于点A。
现在,我们考虑一个半径为r的动圆,它的圆心为M,并且与定圆O1和O2都外切,即与O1、O2分别有一点B、C相切。
问题的关键是:当动圆的圆心M在什么范围内运动时,它的轨迹是怎样的?三、初步分析为了更好地理解问题,我们可以通过几何分析和代数求解来研究动圆圆心的轨迹。
我们可以利用相似三角形的性质,求得点B、C到定圆O1、O2的距离,进而得到动圆圆心M到定圆O1、O2的距离。
通过一系列代数运算,我们可以得到动圆圆心M的坐标表达式。
四、求解过程接下来,我们将详细阐述求解动圆圆心轨迹的过程。
我们可以构建动圆圆心M在平面直角坐标系下的坐标系,假设动圆圆心M的坐标为(x,y),则有:- 点B到定圆O1的距离d1 = R1 + r- 点C到定圆O2的距离d2 = R2 + r- 动圆圆心M到定圆O1、O2的距离分别为:√((x - x1)^2 + (y - y1)^2) = R1 + r和√((x - x2)^2 + (y - y2)^2) = R2 + r经过一系列的变换和整理,我们可以得到动圆圆心M的坐标表达式,从而求得它的轨迹方程。
通过对轨迹方程的分析,我们可以得出一些定理和结论。
五、轨迹特性在研究过程中,我们发现动圆圆心的轨迹具有一些特殊的性质,这些性质对于几何学和数学理论具有重要的指导意义。
具体来说,动圆圆心的轨迹是一个什么样的曲线?它有怎样的对称性?它与定圆的半径和位置有什么关联?经过深入研究和推导,我们得出了一些有趣的结论。
动圆圆心的轨迹是一个特殊的椭圆曲线,它与定圆的半径和位置密切相关,满足一定的几何关系。
圆周运动的轨迹与角度关系
圆周运动的轨迹与角度关系圆周运动是指物体在以圆周路径运动的过程中所展示的运动形式。
在物理学中,圆周运动的轨迹与角度存在紧密的关系。
本文将详细讨论圆周运动的轨迹与角度之间的关系,并探讨其相关性质。
一、角度的基本概念在研究圆周运动之前,我们首先需要了解一些与角度相关的基本概念。
1. 弧度制弧度制是衡量角度大小的一种单位,常用符号为rad。
当一个圆的半径上对应的弧长等于半径长时,该角度被定义为1弧度。
可以得知,2π rad对应于360°。
2. 角速度角速度是指物体单位时间内绕某一轴线旋转的角度变化量,常用符号为ω。
角速度可以通过角度与时间的比值来计算,即ω = Δθ/Δt。
3. 角度与弧度的转换角度与弧度之间可以通过一定的换算进行转换。
当已知角度θ(以度为单位)时,我们可以通过将θ乘以π/180来将其转换为弧度制。
反之,当已知弧度制的角度时,我们可以通过将其乘以180/π来将其转换为度。
二、圆周运动的轨迹圆周运动是物体在通过一个圆周路径运动的过程中所展示的运动形式。
圆周运动的轨迹通常是一个闭合的曲线,即物体围绕一个中心点进行运动。
1. 等速圆周运动在等速圆周运动中,物体的角速度保持不变。
对于一个物体绕半径为r的圆做等速运动,其角速度可以表示为ω = v/r,其中v为物体的线速度。
在等速圆周运动中,物体所经过的轨迹是一个等速圆周。
2. 变速圆周运动在变速圆周运动中,物体的角速度随时间而变化。
对于一个物体在圆周路径上做变速运动,其角速度可以表示为ω = Δθ/Δt,其中Δθ表示在相邻两个时间间隔内物体所绕过的角度变化量。
在变速圆周运动中,物体所经过的轨迹通常是一个弯曲的曲线。
三、圆周运动的角度关系圆周运动的角度与其轨迹之间存在着紧密的关系。
1. 圆周运动中的弧长与角度对于一个半径为r的圆,其周长C可以表示为C = 2πr。
若一个物体以角度θ绕该圆运动,其所对应的弧长s可以表示为s = rθ。
由此可见,圆周运动中的弧长与角度之间的关系是线性的。
与圆相关的动点轨迹问题
与圆相关的动点轨迹问题1、 过动点P 向圆222:a y x C =+引两条切线,这两条切线的夹角为定值θ2,求动点P 的轨迹方程。
2、 已知定点()0,4A 和圆4:22=+y x C 上的动点B ,求动弦AB 的中点P 的轨迹方程。
3、 已知定点()0,3A 和圆1:22=+y x C 上的动点B ,AOB ∠的平分线交AB 于点P ,求点P 的轨迹方程。
4、 已知定点())0,1(,0,1B A -,BC 是圆1:22=+y x C 上的动弦,延长BC 到点D ,求AC 与OD 的交点P 的轨迹方程。
5、 已知定点())0,(,0,0a C B ,P 是PBC ∆的顶点,PB 的中线长为m 到点D ,求:点P 的轨迹方程。
6、 动圆被两条直线03,03=-=+y x y x 截得的弦长依次为8和4,求动圆圆心P 的轨迹方程。
7、 动圆与圆100:22=+y x C 内切,且过点)6,0(M ,求动圆圆心P 的轨迹方程。
8、 已知045,04B )0,4(=∠-APB A ),(,,动点P 的轨迹方程。
9、 已知)0,(),0,(a B a A -,以AB 为斜边作直角三角形,求两锐角的外角平分线的交点P 的轨迹方程。
10、对定点)0,1(A 和第一象限的动点B ,若090=∠OBA ,求OAB ∆的内切圆圆心的轨迹方程,并求内切圆面积的最大值。
11、点)0,(a A 是圆222:r y x O =+内一点)00(<<<r a ,C B ,是圆O 上两动点,且090=∠BAC ,求ABC ∆外心P 的轨迹方程。
12、已知)0,2(A 是圆4:22=+y x O 上一点,在圆上另取两点C B ,,使060=∠BAC ,求ABC ∆的重心G 的轨迹方程。
13、求两条动直线05=+-m y mx 与05=-+my x 的交点P 的轨迹方程。
14、已知)2,0(A ,圆4:22=+y x O ,S 为过点A 的切线上任意一点,SR 为圆的另一条切线,R 为切点,ASR ∆的垂心为H ,当S 在切线上变动时,求点H 的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨与圆的轨迹有关的问题
作者:吴莺
来源:《读与写·教育教学版》2016年第09期
摘要:圆是一个奇妙的几何图形,实际是个概念性的图性,近年来江苏高考中频频出现有关圆的试题,其中用圆的轨迹处理的题目往往意想不到,难度也比较大,所以我们要重视这类新型难题。
关键词:高中数学圆形轨迹
中图分类号:G633.6 文献标识码:C 文章编号:1672-1578(2016)09-0110-02
圆是最完美的曲线,是最基本的几何图形,近年江苏高考中2013年高考第17题(解析几何),2014年高考18题(应用题)相继考查了圆的轨迹圆的性质等知识,笔者在2014届高三二轮复习阶段中,发现各类模拟卷各类习题中出现了一系列的圆轨迹问题,下面,将其归纳整理总结成文。
1 利用圆的定义求出其轨迹
初中阶段我们对圆的定义为“它是平面内到定点的距离等于定长的点的集合,定点就是圆心,定长就是半径。
”由此高中必修二上推导出了圆的标准方程“方程(x-a)2+(y-b)2=r2(r>0)叫做以点(a,b)为圆心,r为半径的圆的标准方程”。
例1:已知点M(4,3)及圆C∶(x+1)2+(y-1)2=4,由动点P向圆引两条切线PA,PB,切点分别为A,B,并且∠APB=60°,求PM的最小值。
2 利用圆的性质求出其轨迹
例2:(1)已知定点A,B,若动点P满足PA⊥PB,则P的轨迹是以AB为直径的圆。
(2)若平面四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆。
例2:若定点P(-1,0)在动直线2ax+(a+c)y+2c=0上的射影为M,已知点N(3,3),则线段MN长度的最大值是______
5 总结与反思
将这些内容整理和归纳后,在二轮复习快结束时,笔者给学生讲解了这一堂与圆的轨迹有关的问题,课堂中很多值得反思和总结的地方,对笔者今后讲解圆这一章节的知识有很多的想法。
(1)在课堂初始时,笔者提问学生圆的平面性质和定理,希望学生们各抒己见,说说大家认识的圆的,结果学生都楞住了,圆对他们来说又熟悉又陌生,有些学生觉得性质太多不知道从何说起,有些学生对圆只有一个大概模糊的印象。
其实这些都是学生在初中时圆的性质定理掌握的不透彻,高中又强调得不明显。
如果一下子问到某个知识点就楞住了。
因此,在高中几何教学中也有必要穿插初中的几何知识,让学生对初中的知识温故而知新。
(2)同学对轨迹的概念比较陌生,大部分学生习惯直接,不转弯抹角地列出式子得出答案,而这节课的内容更抽象,需要从题目条件出发,构造或者猜想出圆的轨迹。
学生对动点求其轨迹的概念薄弱,很多同学做完惊呼“这种方法我想不到”。
因此,在教学中,我们应该加强求动点轨迹的数学思想。
(3)学生的计算能力应该加强,求圆的轨迹避免不了要计算,特别明显是例5,很多学生对题目中的4个式子都能罗列出来,但是要将4个式子整合起来就不会处理,或者处理不当导致计算繁琐。
在教学中要训练学生的计算能力我们不是要一步步写给学生看,而是要让学生一步步写给我们看,让学生多算多练,慢慢提高自己的计算能力。