配合物晶体场理论35页PPT
合集下载
第一节晶体场理论ppt课件
释了配合物的空间构型等问题。
为了较好地解释配合物的磁性和高自旋和低自旋等问
题,1935年培特和冯弗莱克提出了晶体场理论(CFT)。
晶体场理论认为:配合物中央离子(原子)和配体之
间的相互作用,主要来源于类似于离子晶体中正负离子间
的静电作用;在此作用下,中心离子的原子轨道可能发生
分裂。
z
Hans Albrecht Bethe
——2006年高中化学竞赛试题
6-2 某钒的配合物具有 VO(N2O2)配位结构形式,所有的氮、氧原子都为配 位原子。且配合物只检测到一种 V-N键,两种 O-V键。
美国著名化学家,因阐明化学 键的本质,并以此解释了复杂分子 结构,1954年获诺贝尔化学。
看法。 他认为:所有配合物都是以共价配键结合的。并结合杂化轨道理论对
配合物的构型加以解释。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
相对较多;
npx npy
☆pz 轨道受配体静电的排斥相对
较小,其能级升高相对较少。
E’
npz
np
四方配位场
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
⑶ d轨道
中央离子的 d 轨道有五种取向(dxy、dyz、dxz、dx2-y2、dz2),当四 个配体沿±x、±y 方向靠近中央离子时,中央离子 d 轨道受配体静电的 排斥,其能级升高,并发生能级分裂。
点平面方向。
z
z
x
y
y
x
dxz
dyz
第四章_晶体场理论 ppt课件
以球形场的简并的 d 轨道的能量为零点,讨论分 裂后的 d 轨道的能量。电场对称性的改变不影响 d 轨 道的总能量。
因此分裂后,总的能量仍与球形场的总能量一致,仍
为零。
八面体场:
列方程组:
Eeg - Et2g = O 3Eeg + 2Et2g = 0
解得:
eg
O
t2g
Eeg = 3/5 o Et2g = - 2/5 o
性高。中心的 d 轨道在这些电场中不再简并。
⑴ 八面体场
六个配体沿 x、y、z 三轴的正负 6 个方向分布,以形成电
场。 在电场中各轨道的能量均有所升高。但受电场作用不同,
能量升高程度不同。
Z
5 个 d 轨道升高的能量之 和与在球形场升高之和相同。 但是这些轨道中有的比球形 场高,有的比球形场低。
Y
称为分裂能,八面体场中称为 △O 。
能级计算:
自由离子 E0
Es = 0Dq 球形场
d x 2- y 2 d z 2
二重简并 dγ 或 eg
6Dq Δ 0=10Dq
-4Dq
三重简并
d xy d xz d yz 八面体场
dε 或 t2g
分裂能Δo = Eeg-Et2g = 10Dq (1)
根据量子力学原理,在外界电场作用下产生的d轨道分 裂前后,其总能量应保持不变,得:
2Eeg+3Et2g = 0
(2)
联合(1)与(2)方程,解得
Eeg=6Dq Et2g=-4Dq
⑵ 正四面体场
坐标原点为正四面体的中心,三轴沿三边方向伸展 ,4 个配
体的如图所示,形成电场。
Z
在正四面体场中,dx2 – y2 、d z2 ,
因此分裂后,总的能量仍与球形场的总能量一致,仍
为零。
八面体场:
列方程组:
Eeg - Et2g = O 3Eeg + 2Et2g = 0
解得:
eg
O
t2g
Eeg = 3/5 o Et2g = - 2/5 o
性高。中心的 d 轨道在这些电场中不再简并。
⑴ 八面体场
六个配体沿 x、y、z 三轴的正负 6 个方向分布,以形成电
场。 在电场中各轨道的能量均有所升高。但受电场作用不同,
能量升高程度不同。
Z
5 个 d 轨道升高的能量之 和与在球形场升高之和相同。 但是这些轨道中有的比球形 场高,有的比球形场低。
Y
称为分裂能,八面体场中称为 △O 。
能级计算:
自由离子 E0
Es = 0Dq 球形场
d x 2- y 2 d z 2
二重简并 dγ 或 eg
6Dq Δ 0=10Dq
-4Dq
三重简并
d xy d xz d yz 八面体场
dε 或 t2g
分裂能Δo = Eeg-Et2g = 10Dq (1)
根据量子力学原理,在外界电场作用下产生的d轨道分 裂前后,其总能量应保持不变,得:
2Eeg+3Et2g = 0
(2)
联合(1)与(2)方程,解得
Eeg=6Dq Et2g=-4Dq
⑵ 正四面体场
坐标原点为正四面体的中心,三轴沿三边方向伸展 ,4 个配
体的如图所示,形成电场。
Z
在正四面体场中,dx2 – y2 、d z2 ,
第5讲 配合物的化学键理论-晶体场理论
洛阳师范学院
(5) 配体的本性 将一些常见配体按光谱实验测得的分裂能从小到大 次序排列起来, 便得光谱化学序:
这个化学序代表了配位场的强度顺序; 对同一金属离子, 造成△值最大的是CN-离子, 最小的 是I-离子; CN-、NO2-等离子称作强场配位体; I-、Br-、F-等离子称为弱场配位体。
配位数 2 3 场对称性 直线形(D∞h) 正三角形(D3h) dx2-y2 -0.628 0.545 dz2 1.028 -0.321 dxy -0.628 0.546 dyz 0.114 -0.386 dxz 0.114 -0.386 注 键沿轴 键在xy平面
4
4 6
正四面体形(Td)
平面正方形(D4h) 正八面体形(Oh)
洛阳师范学院
CFSE的几点经验规律:
①在弱场中, d0、d5、d10构型的离子CFSE=0;
d0: d5: d10:
② 无论是弱场还是强场, CFSE的次序都是正方形> 八面体>四面体(除d0、d5、d10外);
洛阳师范学院
③在弱场中, 正方形与八面体稳定化能的差值以d4、 d9为最大, 而在强场中则以d8为最大; ④在弱场中, 相差5个 d 电子的各对组态的稳定化能 相等, 如d1与d6、d3与d8, 这是因为, 在弱场中无论何种 几何构型的场, 多出的5个电子, 根据重心守恒原理, 对 稳定化能都没有贡献。
2E(eg)+3E(t2g)=0 E(eg)-E(t2g)=△o 由此解得 E(eg)=0.6△o = 6Dq E(t2g)=-0.4△o =-4Dq
洛阳师范学院
2. 正四面体场
d轨道能级在Td场中的取向
dxy、dxz、dyz:指向立方体棱边的中点,用t2表示;
《晶体场理论》课件
晶体结构与物理性质的实验测量
03
通过实验测量可以获得晶体的各种物理性质数据,如通过硬度测试了解晶体的机械性能,通过电导率测试了解晶体的导电性能等。
03
CHAPTER
晶体场理论的基本概念
晶体场中电子由于受到周期性势场作用而产生的能级分裂,产生的能量差值即为晶体场稳定化能。
晶体场稳定化能
晶体场分裂能
随着晶体场强度的增加,分裂能级的间距逐渐增大。
强晶体场中分裂能级较为稳定,弱晶体场中分裂能级不稳定。
在晶体场作用下,电子云会发生变形,以适应周围势场的分布。
电子云变形
光谱线分裂
磁有序现象
化学键合作用
由于晶体场作用,光谱线会分裂成多个子线,子线的数目和位置取决于晶体场的对称性和强度。
在强晶体场中,由于电子自旋和轨道磁矩的相互作用,可导致磁有序现象的出现。
常用的数值计算方法包括有限差分法、有限元法、蒙特卡洛方法等。这些方法可以根据具体问题选择合适的数值计算方法,以获得更准确的结果。
05
CHAPTER
晶体场理论的应用
磁性材料设计
利用晶体场理论预测和解释不同材料的磁学性质,为磁性材料的设计和优化提供理论支持。
催化剂设计
通过晶体场理论模拟催化剂的电子结构和活性位点,优化催化剂的性能,提高化学反应效率。
晶体场效应
由于晶体场作用导致能级分裂的能量差值,反映了晶体场对电子的束缚强弱。
晶体场对电子的相互作用和影响,包括电子云变形和能级分裂等。
03
02
01
能级分裂类型
分裂能级数量
分裂能级间距
分裂能级的稳定性
01
02
03
04
根据晶体场强度和对称性,能级分裂可分为弱场分裂、中等强度场分裂和强场分裂。
03
通过实验测量可以获得晶体的各种物理性质数据,如通过硬度测试了解晶体的机械性能,通过电导率测试了解晶体的导电性能等。
03
CHAPTER
晶体场理论的基本概念
晶体场中电子由于受到周期性势场作用而产生的能级分裂,产生的能量差值即为晶体场稳定化能。
晶体场稳定化能
晶体场分裂能
随着晶体场强度的增加,分裂能级的间距逐渐增大。
强晶体场中分裂能级较为稳定,弱晶体场中分裂能级不稳定。
在晶体场作用下,电子云会发生变形,以适应周围势场的分布。
电子云变形
光谱线分裂
磁有序现象
化学键合作用
由于晶体场作用,光谱线会分裂成多个子线,子线的数目和位置取决于晶体场的对称性和强度。
在强晶体场中,由于电子自旋和轨道磁矩的相互作用,可导致磁有序现象的出现。
常用的数值计算方法包括有限差分法、有限元法、蒙特卡洛方法等。这些方法可以根据具体问题选择合适的数值计算方法,以获得更准确的结果。
05
CHAPTER
晶体场理论的应用
磁性材料设计
利用晶体场理论预测和解释不同材料的磁学性质,为磁性材料的设计和优化提供理论支持。
催化剂设计
通过晶体场理论模拟催化剂的电子结构和活性位点,优化催化剂的性能,提高化学反应效率。
晶体场效应
由于晶体场作用导致能级分裂的能量差值,反映了晶体场对电子的束缚强弱。
晶体场对电子的相互作用和影响,包括电子云变形和能级分裂等。
03
02
01
能级分裂类型
分裂能级数量
分裂能级间距
分裂能级的稳定性
01
02
03
04
根据晶体场强度和对称性,能级分裂可分为弱场分裂、中等强度场分裂和强场分裂。
第16讲 配合物的晶体场理论
第五章 配位化合物的化学键理论
分裂后d轨道中电子的排布—高自旋态和低自旋态 二、 分裂后d轨道中电子的排布 高自旋态和低自旋态 d轨道分裂前:在自由金属离子中,5个d轨道是简并的,电子的排 布按洪特规则分占不同轨道,且自旋平行,有唯一的一种排布方 式。 d轨道分裂后:在络合物中,金属离子的d电子排布将有两种情况: 高自旋态排布和低自旋态排布,这与分裂能 成对能 分裂能和成对能 分裂能 成对能的大小有关。
第五章 配位化合物的化学键理论
dz2, d(x2-y2)
eg
6Dq
10Dq Es
自由离子d轨道 球形场
dxz,dxy,dyz
4Dq
t2g
d轨道在Oh场中轨道能级的分裂图 可见 在八面体场中,d轨道分裂的结果是:与Es相比,eg 轨道能量上升了6Dq,而t2g轨道能量下降了4Dq.
第五章 配位化合物的化学键理论
第五章 配位化合物的化学键理论
(5)分裂能与紫外光谱 )
(a)电磁波的名称及波长范围
第五章 配位化合物的化学键理论
(b)d-d跃迁
dz2, d(x
2
-y )
2
eg
6Dq
d-d跃迁
10Dq
4Dq
Es
自由离子d轨道 球形场
dxz,dxy,dyz
t2g
d轨道在Oh场中轨道能级的分裂图
∆Ed − d = ∆分裂能 ≃ 近紫外区和可见光区的光能
3.分裂后d 3.分裂后d轨道中电子的排布 分裂后
电子在分裂后d轨道中的排布与△和P的相对大小有关。 如:对于d2组态,有两种排布方式:
△ (a) (b)
△
第五章 配位化合物的化学键理论
△ (a)
无机化学 配位化合物的晶体场理论 PPT课件
一般来讲中心离子电荷数高,中 心与配体距离近,则作用强,△ 大。
中心原子所在的周期数对此也 有影响,例如第四周期过渡元素为 中心的配位化合物,其 △ 小,第 五、六周期的 △ 相对大些。
最有实际意义和理论意义的影 响因素是配体的影响。
在其他条件相同的情况下,配体 对于分裂能的影响由小到大的次序是
四面体电场的分裂能表示为 △t
dxy dxz dyz
d x2- y2
(d )
Δt
(d )
dz2
显然两组轨道的能量差别较小。
Δo
Δt
正八面体场
正四面体场
△t 远小于 △o
3. 正方形场 坐标原点位于正方形中心,坐标轴 沿正方形对角线方向伸展。
x
y
4 个配位原子位于正方形的 顶点,形成正方形电场。
+-
-+ x
+-
-+ y
+-
y
-
+
+x
-
d x2-y2
当原子处于电场中时,受到电 场的作用,轨道的能量要升高。
若电场是球形对称的,各轨道 受到电场的作用一致。
故在球形电场中,各 d 轨道 能量升高的幅度一致。
球形场中
自由原子
所以在球形电场中,5 种 d 轨道能量仍旧简并。
球形场中
自由原子
若原子处于非球形电场中,则根 据电场的对称性不同,各轨道能量升 高的幅度可能不同。
球形场中
d x2- y2 dz2
自由原子
dxy dxz dyz
正八面体场中
dxy, dxz, dyz 轨道在 光谱学中统称 d 轨道。
球形场中
d x2- y2
dz2
中心原子所在的周期数对此也 有影响,例如第四周期过渡元素为 中心的配位化合物,其 △ 小,第 五、六周期的 △ 相对大些。
最有实际意义和理论意义的影 响因素是配体的影响。
在其他条件相同的情况下,配体 对于分裂能的影响由小到大的次序是
四面体电场的分裂能表示为 △t
dxy dxz dyz
d x2- y2
(d )
Δt
(d )
dz2
显然两组轨道的能量差别较小。
Δo
Δt
正八面体场
正四面体场
△t 远小于 △o
3. 正方形场 坐标原点位于正方形中心,坐标轴 沿正方形对角线方向伸展。
x
y
4 个配位原子位于正方形的 顶点,形成正方形电场。
+-
-+ x
+-
-+ y
+-
y
-
+
+x
-
d x2-y2
当原子处于电场中时,受到电 场的作用,轨道的能量要升高。
若电场是球形对称的,各轨道 受到电场的作用一致。
故在球形电场中,各 d 轨道 能量升高的幅度一致。
球形场中
自由原子
所以在球形电场中,5 种 d 轨道能量仍旧简并。
球形场中
自由原子
若原子处于非球形电场中,则根 据电场的对称性不同,各轨道能量升 高的幅度可能不同。
球形场中
d x2- y2 dz2
自由原子
dxy dxz dyz
正八面体场中
dxy, dxz, dyz 轨道在 光谱学中统称 d 轨道。
球形场中
d x2- y2
dz2
-配合物理论简介(上课用)PPT课件
Fe(SCN)3 2021 [Ni(CO)4]
16
(4)多配体配合物,配位数等于配体数数量之和。
K[PtCl5(NH3)] [Co(NH3)4Cl2]Cl (5)常见的中心离子:
过渡金属原子或离子:Fe Co Ni Cu Zn等
常见的配体: NH3 X- CN SCN- H2O
(6)配位数与中心离子电荷数的关系
叶绿素结构示意图
2021
1
第二节 分子的立体结构
四、配合物理论简介
宁夏育才中学勤行学区
高二化学组
李丽
为什么CuSO4 •5H2O晶体是蓝 色而无水CuSO4 是白色?
CuSO4•5H2O
实验探究[2—1]
向盛有固体样品的试管中,分别加1/3试管
水溶解固体,观察实验现象并填写下表
固体
溶液 颜色
CuSO4
完全电离出外界离子和内界配离子,但内界配
离子电离程度很小。
[Ag(NH3)2]OH K3[Fe(CN)6] [Co(NH3)4Cl2]Cl
注意:电离方程式的书2写021。
18
(3)形成配合物前后性质的改变
①颜色的改变 [实验2-3]在盛有氯化铁溶液(或任何含有的Fe3+溶 液)的试管中滴加硫氰化钾(KSCN)溶液。
(2) 配合物的组成
内界 外界 配离子
[Cu(NH3)4] SO4
中心离子 配体 配位数
配合物
中心原子或离子 内界(配离子) 配体
配位数
外界
2021
配位原子
13
内界 外界 配离子
[Cu(NH3)4] SO4
中心原子 配位体 配位数
①中心原子:也称配位体形成体,是电子对 接受体,一般是金属离子,特别是过渡金 属离子。特点:有空轨道。
配合物的基本概念PPT课件
2. 螯合H物2C
O
O
多齿配体与单个中心离子(或原子)所形成的配合
物
C H2
C O 乙氨酸铜
第14页/共60页
3.多核配合物
一个配位原子同时与二个中心离子结合所形成的配合物,即含有多个中心原子或离 子的配合物。
多核配合物
OH [ ( H2O )4Fe
OH
Fe ( H2O )4]4 +
第15页/共60页
离子,但也有电中性的原子,其中以过渡金属离子居多,如Fe3+、Cu2+、Co2+、 Ag+等;少数高氧化态的非金属元素也可作中心离子,如BF4-、SiF62-中的B(Ⅲ)、 Si(Ⅳ)等。中心原子如[Ni(CO)4)、[Fe(CO)5]中的Ni、Fe原子。
第5页/共60页
(2) 配位体与配位原子
在配合物中与形成体结合的离子或中性分子
第16页/共60页
配合物的新定义
配合物是由一定数量的可以给出孤对电子对或电子的离子或分子(统称配体) 与接受孤对电子或电子的离子或原子(统称中心原子)以配合键结合形成的化合 物。
第17页/共60页
四、复盐与配合物
复盐:由两种或两种以上的盐组成的盐。
如光卤石KMgCl3·3H2O、明矾KAl(SO4)2·12H2O、 冰晶石Na3AlF6、磷灰石Ca5(PO4)3F、黄玉 Al2(SiO4)F2等。
几何异构——顺式和反式。
第23页/共60页
例如:
四 氯 铂 酸 钾 K2[PtCl4] 用 氨 水 处 理 得 到 一 种 棕 黄 色 的 配 合 物 , 经 测 定 , 组 成 为 [ PtCl2(NH3)2], 有极性,有抗癌活性,在水中的溶解度是 0.26g/100gH2O;
配合物晶体场理论PPT课件
[Cr(H2O)6]3+ 17600
[Fe(H2O)6]3+ 13700 [CrCl6]313600
[Cr(H2O)6]2+ 14000
[Fe(H2O) 6]2+ 10400
[MoCl6]319200
第13页/共36页
3 配体的本性
将一些常见配体按光谱实验测得的分裂能从小到大次
序排列起来,便得光谱化学序:
轴和y轴的方向上配体向中心原
子靠拢, 从而dx2-y2的能量升高,
这 样 eg 轨 道 发 生 分 裂 。 在 t2g 三
条轨道中, 由于xy平面上的dxy
dxz
dyz
轨道离配体要近, 能量升高, xz 和yz平面上的轨道dxz和dyz离配
拉长 体远因而能量下降。结果, 轨道 八面体场 也发生分裂。
●当P>△时, 因电子成对需要的能量高, 电子将尽量
以单电子排布分占不同的轨道, 取高自旋状态; ●当P<△时, 电子成对耗能较少, 此时将取低自旋状
态。
第16页/共36页
根据P和△的相对大小可以对配合物的高、低自旋 进行预言:
① 在弱场时, 由于△值较小, 配合物将取高自旋构型, 相 反, 在强场时, 由于△值较大, 配合物将取低自旋构型。
例如,以过渡金属离子的水合焓为例: ●水化热: 由气态阳离子变为水合阳离子放出的热量
Mm+(g)+∞H2O=[M(H2O)6]m+(aq) △hydHm[Mm+, (t2gNegn-N)] 显然水合焓跟中心离子的d轨道处于配体H2O静电场
有关。假定这种静电场由球形对称的静电场和正八面体对 称的静电场两部分所组成。基于此,可以写出水合焓的玻 恩-哈伯循环(下页):
但仍保持五重简并。
配位化学a晶体场PPT课件
f
a2u+t1u+t2u
a2+t1+t2
a2u+b1u+b2u+2eu
g
a1g+eg+t1g+t2g
a1+e+t1+t2
h
eu+2t1u+t2u
e+t1+2t2
i a1g+a2g+eg+t1g+2t2g a第14+页a/2共+7e2页+t1+2t2
晶体场中d轨道能级的分裂
八面体场下d电子能级的分裂
Eeg=6Dq Et2g=-4Dq
第9页/共72页
2 正四面体场
1) d轨道与电场的作用
dx2-y2 (dz2)
x y
极大值指向面心 距配体较远,受静电 斥力较弱
dxy (dyz,dxz)
x
y
极大值指向棱的 中点距配体较近,受 静电斥力较强
第10页/共72页
能级计算:
E
1.78Dq 2.67Dq
联立(1)和(2),解出:Et2 = 1.78Dq,
Ee = -2.67Dq
第11页/共72页
3 平面正方形场
设四个配体只在x、y平面上沿±x和±y 轴方向趋近于中心 原子,因dx2-y2轨道的极大值正好处于与配体迎头相撞的位置, 受排斥作用最强,能级升高最多。
其次是在xy平面上的dxy轨道。而dz2仅轨道的环形部分在 xy平面上,受配体排斥作用稍小,能量稍低,简并的dxz、dyz 的极大值与xy平面成45°角,受配体排斥作用最弱,能量最低。
650~750
第23页/共72页