鲁甸县外国语学校2018-2019学年高二上学期第二次月考试卷数学

合集下载

鲁甸县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣12. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .3. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦4. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直5. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a6. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 28. 已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .1219. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点10.如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.411.lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件12.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n=,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)二、填空题13.已知线性回归方程=9,则b= .14.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .15.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .16.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .17.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x =处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 18.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则n a =_________.三、解答题19.已知f (x )=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行. (1)求函数的单调区间;(2)若x ∈[1,3]时,f (x )>1﹣4c 2恒成立,求实数c 的取值范围.20.(本小题满分10分) 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.21.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.22.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.23.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).(Ⅰ)求S n与数列{a n}的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.24.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

鲁甸县第一中学2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县第一中学2018-2019学年上学期高二数学12月月考试题含解析

A、{x|x≥0}={x|x≥0}=A,故本选项正确; B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误; C、若 B={﹣1,0,1},则 A∩B={0,1}≠B,故本选项错误; D、给出的集合是 R,不合题意,故本选项错误. 故选:A. 【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题. 8. 【答案】B 【解析】解:∵f(x)=f(x+2),∴函数 f(x)为周期为 2 的周期函数,
若在区域 Ω1 内任取一点 M(x,y),则点 M 落在区域 Ω2 内的概率为(

A. 1 2p
B. 1 p
C. 2 p
D. 1 3p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.
二、填空题
13.已知函数 f(x)=x3﹣ax2+3x 在 x∈[1,+∞)上是增函数,求实数 a 的取值范围 .
∴由余弦定理,得 cos120°=

解之得 AB= akm, 即灯塔 A 与灯塔 B 的距离为 故选:D.
akm,
【点评】本题给出实际应用问题,求海洋上灯塔 A 与灯塔 B 的距离.着重考查了三角形内角和定理和运用余 弦定理解三角形等知识,属于基础题. 3. 【答案】A
【解析】解:由:“a,b,c 是不全相等的正数”得: ①(a﹣b)2+(b﹣c)2+(c﹣a)2 中至少有一个不为 0,其它两个式子大于 0, 故①正确; 但是:若 a=1,b=2,c=3,则②中 a≠b,b≠c,c≠a 能同时成立, 故②错. 故选 A.
(2)设 bn=
,求数列{bn}的前 n 项和 Tn。
20.定义在 R 上的增函数 y=f(x)对任意 x,y∈R 都有 f(x+y)=f(x)+f(y),则 (1)求 f(0); (2)证明:f(x)为奇函数; (3)若 f(k•3x)+f(3x﹣9x﹣2)<0 对任意 x∈R 恒成立,求实数 k 的取值范围.

鲁甸县第一中学校2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第一中学校2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错2. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.3. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)4. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A5. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 6. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( )A .1B .12 C. 34 D .587. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0 B.C.D. 8. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内9. 设集合,,则( )ABCD10.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项的和是()A.13 B.26 C.52 D.5611.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点P(a,﹣)的所有直线中()A.有无穷多条直线,每条直线上至少存在两个有理点B.恰有n(n≥2)条直线,每条直线上至少存在两个有理点C.有且仅有一条直线至少过两个有理点D.每条直线至多过一个有理点12.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若,则该椭圆的离心率为()A.B.C.D.二、填空题13.当a>0,a≠1时,函数f(x)=log a(x﹣1)+1的图象恒过定点A,若点A在直线mx﹣y+n=0上,则4m+2n 的最小值是.×的值为_______.14.如图所示,圆C中,弦AB的长度为4,则AB AC【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .16.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .17.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 18.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.20.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.21.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.(Ⅰ)求证:BC⊥平面A1AC;(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.22.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(a∈R).(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;2(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。

鲁甸县外国语学校2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县外国语学校2018-2019学年上学期高二数学12月月考试题含解析
10.已知双曲线 A.( ,+∞) B.(1, 的渐近线与圆 x2+(y﹣2)2=1 相交,则该双曲线的离心率的取值范围是( )
4

C.(2.+∞) )
D.(1,2) B. f x =
11.下列哪组中的两个函数是相等函数( A. f x = x ,g x
4 4
x
4
x2 4 , g x x 2 x2
22.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
第 4 页,共 18 页
精选高中模拟试卷
(Ⅰ)求分数在[50,60)的频率及全班人数; (Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高; (Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分 数在[90,100)之间的概率.
20.如图,已知五面体 ABCDE,其中△ABC 内接于圆 O,AB 是圆 O 的直径,四边形 DCBE 为平行四边形, 且 DC⊥平面 ABC. (Ⅰ)证明:AD⊥BC (Ⅱ)若 AB=4,BC=2,且二面角 A﹣BD﹣C 所成角 θ 的正切值是 2,试求该几何体 ABCDE 的体积.
第 3 页,共 18 页
精选高中模拟试卷
鲁甸县外国语学校 2018-2019 学年上学期高二数学 12 月月考试题含解析 班级__________ 一、选择题
1. 双曲线 A.13 B.15 上一点 P 到左焦点的距离为 5,则点 P 到右焦点的距离为( C.12 D.11 ) )
姓名__________
分数__________

=
=1.

鲁甸县一中2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县一中2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县一中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.若函数1,0,()(2),0,x xf xf x x+≥⎧=⎨+<⎩则(3)f-的值为()A.5 B.1-C.7-D.2 2.若函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,则实数m的取值范围是()A.m≥0或m<﹣1 B.m>0或m<﹣1 C.m>1或m≤0 D.m>1或m<03.对于复数,若集合具有性质“对任意,必有”,则当时,等于( )A1B-1C0D4.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内5.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.6.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()A.3 B.4 C.5 D.67.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i8.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%9. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm10.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .11.数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .512.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}B .{﹣1,4}C .{﹣1,2}D .{2,4}二、填空题13.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .14.在△ABC 中,a=4,b=5,c=6,则= .15.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .16.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >) 的标准差是22a = .18.已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2015(x)的表达式为.三、解答题19.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.20.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.21.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.22.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)23.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.24.已知F 1,F 2分别是椭圆=1(9>m >0)的左右焦点,P 是该椭圆上一定点,若点P 在第一象限,且|PF 1|=4,PF 1⊥PF 2. (Ⅰ)求m 的值; (Ⅱ)求点P 的坐标.鲁甸县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值.2. 【答案】A【解析】解:∵函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点, ∴﹣m=3﹣|x ﹣1|无解,∵﹣|x ﹣1|≤0,∴0<3﹣|x ﹣1|≤1,∴﹣m ≤0或﹣m >1, 解得m ≥0或m >﹣1 故选:A .3. 【答案】B 【解析】由题意,可取,所以4. 【答案】B【解析】解:假设过点P 且平行于l 的直线有两条m 与n∴m ∥l 且n ∥l由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾 又因为点P 在平面内 所以点P 且平行于l 的直线有一条且在平面内所以假设错误. 故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.5. 【答案】 C【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|, ∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.6.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.7.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.8.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.9.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.10.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

鲁甸县实验中学2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县实验中学2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣202. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .33. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a4. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( ) A .20种 B .24种 C .26种 D .30种5. =( ) A .2B .4C .πD .2π6. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( )A .5B .18C .24D .367. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法8. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1209. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 10.某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .5711.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.12.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2二、填空题13.若log 2(2m ﹣3)=0,则e lnm ﹣1= . 14.设函数则______;若,,则的大小关系是______.15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有种(用数字作答). 17.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .18.在下列给出的命题中,所有正确命题的序号为 .①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.三、解答题19.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.21.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.22.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).鲁甸县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..2.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.3.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.4.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.5.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.6.【答案】D【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,∴a3a7=a52=36,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.7. 【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多, ∴是系统抽样法, 故选:C .【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.8. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .9. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系.10.【答案】C【解析】解:模拟执行程序框图,可得 S=1,k=1 k=2,S=4不满足条件k >3,k=3,S=11 不满足条件k >3,k=4,S=26满足条件k >3,退出循环,输出S 的值为26. 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k ,S 的值是解题的关键,属于基本知识的考查.11.【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.12.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B二、填空题13.【答案】.【解析】解:∵log2(2m﹣3)=0,∴2m﹣3=1,解得m=2,∴e lnm﹣1=e ln2÷e=.故答案为:.【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.14.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。

鲁甸县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

鲁甸县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

鲁甸县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 2. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y=2x 3B .y=|x|+1C .y=﹣x 2+4D .y=2﹣|x|3. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .4. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 5. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱6. 10y -+=的倾斜角为( )A .150B .120C .60D .307. 函数的定义域是( )A .(﹣∞,2)B .[2,+∞)C .(﹣∞,2]D .(2,+∞)8. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A.B.C.D.9. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A. B .1 C. D.10.已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到11.下列命题中正确的是( )A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”12.S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=84二、填空题13.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .14.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.15.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 16.函数f (x )=x ﹣的值域是 .17.定积分sintcostdt= .18.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .三、解答题19.(本小题满分10分)求经过点()1,2P 的直线,且使()()2,3,0,5A B -到它的距离相等的直线 方程.20.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.21.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列. (Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.22.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.23.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.24.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.鲁甸县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】A 【解析】试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为{}4,2.考点:复合函数求值. 2. 【答案】B【解析】解:对于A .y=2x 3,由f (﹣x )=﹣2x 3=﹣f (x ),为奇函数,故排除A ;对于B .y=|x|+1,由f (﹣x )=|﹣x|+1=f (x ),为偶函数,当x >0时,y=x+1,是增函数,故B 正确;对于C .y=﹣x 2+4,有f (﹣x )=f (x ),是偶函数,但x >0时为减函数,故排除C ;对于D .y=2﹣|x|,有f (﹣x )=f (x ),是偶函数,当x >0时,y=2﹣x,为减函数,故排除D .故选B .3. 【答案】A【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。

鲁甸县第二中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第二中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 2. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件3. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.4. 函数y=a x +1(a >0且a ≠1)图象恒过定点( )A .(0,1)B .(2,1)C .(2,0)D .(0,2)5. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥6. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015227.若某算法框图如图所示,则输出的结果为()A.7 B.15 C.31 D.638.命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x>1 B.不存在实数x,使x≤1C.对任意实数x,都有x≤1 D.存在实数x,使x≤19.已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是()A.1 B.C.D.10.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.11.命题“∀x∈R,2x2+1>0”的否定是()A.∀x∈R,2x2+1≤0 B.C.D.12.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()A.48 B.±48 C.96 D.±96二、填空题13.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 14.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .15.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 16.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 18.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .三、解答题19.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.21.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.22.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.23.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.鲁甸县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .2. 【答案】B 【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.3. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.4. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2.∴函数f (x )=a x+1的图象必过定点(0,2).故选:D .【点评】本题考查了指数函数的性质和a 0=1(a >0且a ≠1),属于基础题.5. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2baab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .6. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用. 7. 【答案】 D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.8. 【答案】C【解析】解:∵命题“存在实数x ,使x >1”的否定是 “对任意实数x ,都有x ≤1” 故选C9. 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A (a ,a ),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.【答案】C【解析】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.11.【答案】C【解析】解:∵命题∀x∈R,2x2+1>0是全称命题,∴根据全称命题的否定是特称命题得命题的否定是:“”,.故选:C.【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.12.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.二、填空题13.【答案】2【解析】14.【答案】20.【解析】解:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故答案为20.【点评】作出草图,结合图形求解事半功倍.15.【解析】16.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.17.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b bb a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算18.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.三、解答题19.【答案】【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1x时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…所以f(x)≥1解集为[0,].…(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,∴a﹣3≤x≤a+3,…∴,…∴﹣1≤a≤4.…20.【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.21.【答案】【解析】解:(Ⅰ)由,得,即﹣1<x<1,即定义域为(﹣1,1),则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),则f(x)为奇函数.(Ⅱ)当0<a<1时,由f(x)>0,即log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),则1+x<1﹣x,解得﹣1<x<0,则不等式解集为:(﹣1,0).【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.22.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.23.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.24.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,∴∠MFE为二面角M﹣BC﹣D的平面角,设∠CAM=θ,∴EM=2sinθ,EF=,∵tan∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.。

鲁甸县一中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县一中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .22. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)3. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.4. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β5. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③6. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20177. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前10项和为( )A .89B .76C .77D .358. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .129. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.12.已知两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,则=( )A .﹣2B .2C .﹣D .二、填空题13.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .14.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .15.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .18.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .三、解答题19.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.20.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.21.已知p :,q :x 2﹣(a 2+1)x+a 2<0,若p 是q 的必要不充分条件,求实数a 的取值范围.22.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.已知函数f (x )=sin2x •sin φ+cos 2x •cos φ+sin (π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f (x )在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.24.根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).鲁甸县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z 取得最大值10.2. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .3. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .4.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.6.【答案】B【解析】7.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.8.【答案】A【解析】解:复数z===.由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力.9. 【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3}, ∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.10.【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2=4,表示以C (2,1)为圆心、半径等于2的圆.由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.11.【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.12.【答案】C【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,∴,或,则=﹣. 故选:C .【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.二、填空题13.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.14.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.15.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.16.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.17.【答案】(﹣1,﹣1).【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).18.【答案】2.【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三、解答题19.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min =.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.20.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).【解析】试题分析:(Ⅰ)利用导函数研究函数的切线,得到关于实数a ,b 的方程组,求解方程组可得;(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析: (Ⅰ)∵,∴,由题设得,∴; (Ⅱ)由(Ⅰ)得,∴,∴,∴函数在是增函数,∵,,且函数图像在上不间断,∴,使得)∴函数存在极小值;(Ⅲ),使得不等式成立,即,使得不等式成立……(*),令,,则,∴结合(Ⅱ)得,其中,满足,即,∴,,∴,∴,,∴在内单调递增,∴,结合(*)有,即实数的取值范围为.21.【答案】【解析】解:由p :⇒﹣1≤x <2,方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2,若|a|>1,则q :1<x <a 2,此时应满足a 2≤2,解得1<|a|≤,当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2<x <1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.22.【答案】(1)24y x =;(2)20x y +-=.【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分 即抛物线C 的方程为24y x =;…………5分23.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.24.【答案】【解析】解:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=|AB|==×=,∴所求圆的方程为x2+(y﹣2)2=2;(2)由圆与y轴交于点A(0,﹣4),B(0,﹣2)可知,圆心在直线y=﹣3上,由,解得,∴圆心坐标为(2,﹣3),半径r=,∴所求圆的方程为(x﹣2)2+(y+3)2=5.。

鲁甸县高中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县高中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .3. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位4. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈M D .0⊆M5. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .6. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=07. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条8. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a9. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣110.在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)12.设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.15.已知i 是虚数单位,复数的模为 .16.当时,4x<log a x ,则a 的取值范围 .17.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 18.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .三、解答题19.已知f ()=﹣x ﹣1.(1)求f (x );(2)求f (x )在区间[2,6]上的最大值和最小值.20.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .21.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.22.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (Ⅰ)求底面积并用含x 的表达式表示池壁面积; (Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?23.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.24.(14分)已知函数1()ln ,()e x x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分鲁甸县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:1<log 23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.2. 【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.3. 【答案】B 【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 4. 【答案】C【解析】解:对于A 、B ,是两个集合的关系,不能用元素与集合的关系表示,所以不正确; 对于C ,0是集合中的一个元素,表述正确.对于D ,是元素与集合的关系,错用集合的关系,所以不正确. 故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用5.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.6.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.7.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,;;∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.∴两圆的圆心距=r2﹣r1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C.8.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.9.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.10.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.11.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a ≤0 故选A12.【答案】C【解析】解:函数f (x )的定义域为R ,关于原点对称.又f (﹣x )===f (x ),所以f (x )为偶函数.而f ()===﹣=﹣f (x ),故选C .【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.二、填空题13.【答案】【解析】 因为,所以,所以 ,所以答案:14.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.15.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.16.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)17.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.18.【答案】20.【解析】解:∵a=5,由椭圆第一定义可知△PQF2的周长=4a.∴△PQF2的周长=20.,故答案为20.【点评】作出草图,结合图形求解事半功倍.三、解答题19.【答案】 【解析】解:(1)令t=,则x=,∴f (t )=, ∴f (x )=(x ≠1)…(2)任取x 1,x 2∈[2,6],且x 1<x 2, f (x 1)﹣f (x 2)=﹣=,∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0, ∴f (x 1)﹣f (x 2)>0, ∴f (x )在[2,6]上单调递减,…∴当x=2时,f (x )max =2,当x=6时,f (x )min=…20.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++. 【解析】试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-+211()a a a +-+求得.试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222n n b b ++=+,又121224b a a +=-+=,∴2312(21)(2222)22222221nn n n a n n n +-=++++-+=-+=--.∴224(12)(22)2(4)122n n n n n S n n +-+=-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式. 21.【答案】【解析】解:(1)由a n+1=,可得a 2==,a 3===,a 4===.(2)猜测a n =(n ∈N *).下面用数学归纳法证明: ①当n=1时,左边=a 1=a ,右边==a ,猜测成立.②假设当n=k (k ∈N *)时猜测成立,即a k =.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.22.【答案】【解析】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.23.【答案】【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.所以该班在这次数学测试中成绩合格的有29人.(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,设成绩为x、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,若m,n∈[50,60)时,只有xy一种情况,若m,n∈[90,100]时,有ab,bc,ac三种情况,事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.24.【答案】解:(1)e(1)()e xx g x -'=,令()0g x '=,得x = 1.列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h xg x x ==,∵12e (1)()x x h x x --'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e xa x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1].∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调,所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分。

鲁甸实验中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸实验中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸县实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.命题“∃x∈R,使得x2<1”的否定是()A.∀x∈R,都有x2<1 B.∃x∈R,使得x2>1C.∃x∈R,使得x2≥1 D.∀x∈R,都有x≤﹣1或x≥12.已知i是虚数单位,则复数等于()A.﹣+i B.﹣+i C.﹣i D.﹣i3.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.4.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或25.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i6.下面是关于复数的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为﹣1+i,p4:z的虚部为1.其中真命题为()A.p2,p3B.p1,p2C.p2,p4D.p3,p47.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A .0°B .45°C .60°D .90°8. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)9. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i10.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)11.已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 12.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .二、填空题13.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .14.在△ABC 中,a=4,b=5,c=6,则= .15.的展开式中的系数为 (用数字作答).16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .18.满足tan (x+)≥﹣的x 的集合是 .三、解答题19.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.20.已知复数z 的共轭复数是,且复数z 满足:|z ﹣1|=1,z ≠0,且z 在复平面上对应的点在直线y=x 上.求z 及z 的值.21.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.22.已知函数f (x0=.(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.23.已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.鲁甸县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.【答案】A【解析】解:复数===,故选:A.【点评】本题考查了复数的运算法则,属于基础题.3.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.4.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.5.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.6.【答案】C【解析】解:p:|z|==,故命题为假;1p2:z2===2i,故命题为真;,∴z的共轭复数为1﹣i,故命题p3为假;∵,∴p4:z的虚部为1,故命题为真.故真命题为p2,p4故选:C.【点评】本题考查命题真假的判定,考查复数知识,考查学生的计算能力,属于基础题.7.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.8.【答案】A【解析】解:令F(x)=f(x)﹣2x﹣1,则F′(x)=f′(x)﹣2,又∵f(x)的导数f′(x)在R上恒有f′(x)<2,∴F′(x)=f′(x)﹣2<0恒成立,∴F(x)=f(x)﹣2x﹣1是R上的减函数,又∵F(1)=f(1)﹣2﹣1=0,∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,即不等式f(x)<2x+1的解集为(1,+∞);故选A.【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.9.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.10.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.11.【答案】【解析】解析:选C.设D点的坐标为D(x,y),∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.12.【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.二、填空题13.【答案】 D .【解析】解:根据题意,质点运动的轨迹为: A →B →C →A →D →B →A →C →D →A接着是→B →C →A →D →B →A →C →D →A … 周期为9.∵质点经过2015次运动, 2015=223×9+8, ∴质点到达点D . 故答案为:D .【点评】本题考查了函数的周期性,本题难度不大,属于基础题.14.【答案】 1 .【解析】解:∵△ABC 中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.15.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:16.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.17.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18 18.【答案】 [kπ,+k π),k ∈Z .【解析】解:由tan (x+)≥﹣得+k π≤x+<+k π,解得kπ≤x<+k π,故不等式的解集为[kπ, +k π),k ∈Z ,故答案为:[kπ,+k π),k ∈Z ,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.三、解答题19.【答案】(1)332⎡⎤⎢⎥⎣⎦,;(2).【解析】试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在236ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 223322632k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.考点:三角函数的图象与性质.20.【答案】【解析】解:∵z在复平面上对应的点在直线y=x上且z≠0,∴设z=a+ai,(a≠0),∵|z﹣1|=1,∴|a﹣1+ai|=1,即=1,则2a2﹣2a+1=1,即a2﹣a=0,解得a=0(舍)或a=1,即z=1+i,=1﹣i,则z=(1+i)(1﹣i)=2.【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.21.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.22.【答案】【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),丹迪减区间是(0,1)(2)由已知可得或,解得x≤﹣1或≤x≤,故不等式的解集为(﹣∞,﹣1]∪[,].【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.23.【答案】【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.(2)a30=a20+10d2=10(1+d+d2)(d≠0),a30=10,当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)(3)所给数列可推广为无穷数列{a n],其中a1,a2,…,a10是首项为1,公差为1的等差数列,当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),依此类推可得a10(n+1)=10(1+d+…+d n)=.当d>0时,a10(n+1)的取值范围为(10,+∞)等.【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.24.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.。

鲁甸县二中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县二中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣52. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )A .15 B .16 C .314 D .133. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( )A .(0,3]B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 4.已知=(2,﹣3,1),=(4,2,x),且⊥,则实数x 的值是( )A .﹣2B .2C.﹣D.5. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种6. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β7. 为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( ) A.向左平移个单位长度 B.向右平移个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度8. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 9. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤10.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .242511.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .212.等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A .6 B .5C .3D .4二、填空题13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .14.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .15.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 . 16.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 . 18.已知函数,则__________;的最小值为__________.三、解答题19.设函数f (x )=ae x (x+1)(其中e=2.71828…),g (x )=x 2+bx+2,已知它们在x=0处有相同的切线. (Ⅰ)求函数f (x ),g (x )的解析式;(Ⅱ)求函数f (x )在[t ,t+1](t >﹣3)上的最小值;(Ⅲ)若对∀x ≥﹣2,kf (x )≥g (x )恒成立,求实数k 的取值范围.20.已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g(x )为f 1(x ),f 2(x )的“活动函数”.已知函数+2ax .若在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围.21.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长22.(本小题满分12分)已知1()2ln ()f x x a x a R x=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.23.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.24.已知直线l:x﹣y+9=0,椭圆E:+=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.鲁甸县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.2.【答案】D【解析】考点:等差数列.3.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.4.【答案】A【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A.【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.5.【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.6.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.7.【答案】A【解析】解:∵,故将函数y=cos2x的图象上所有的点向左平移个单位长度,可得函数y=cos(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m的范围.9. 【答案】 D【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数, 并且是,递减的速度是先快后慢.所以f (x )的图象如图所示. f (x )<0恒成立,没有依据,故①不正确;②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边, 故④不正确,⑤正确,综上,正确的结论为②⑤. 故选D .10.【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin-==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 11.【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.12.【答案】D【解析】解:∵等比数列{a n }中a 4=2,a 5=5, ∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8 =lg (a 1•a 2…a 8)=lg (a 4•a 5)4 =4lg (a 4•a 5)=4lg10=4 故选:D .【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.二、填空题13.【答案】 .【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2=bc , ∴由余弦定理可得b 2=a 2+c 2﹣2accosB ,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S △ABC =bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.14.【答案】(﹣1,﹣).【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.15.【答案】(0,5).【解析】解:∵y=a x的图象恒过定点(0,1),而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,∴函数f(x)=a x+4的图象恒过定点P(0,5),故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.16.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.π17.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.18.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:三、解答题19.【答案】【解析】解:(Ⅰ)f'(x)=ae x(x+2),g'(x)=2x+b﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题意,两函数在x=0处有相同的切线.∴f'(0)=2a,g'(0)=b,∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,∴f(x)=2e x(x+1),g(x)=x2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f'(x)=2e x(x+2),由f'(x)>0得x>﹣2,由f'(x)<0得x<﹣2,∴f(x)在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵t>﹣3,∴t+1>﹣2①当﹣3<t<﹣2时,f(x)在[t,﹣2]单调递减,[﹣2,t+1]单调递增,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t≥﹣2时,f(x)在[t,t+1]单调递增,∴;∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令F(x)=kf(x)﹣g(x)=2ke x(x+1)﹣x2﹣4x﹣2,由题意当x≥﹣2,F(x)min≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵∀x≥﹣2,kf(x)≥g(x)恒成立,∴F(0)=2k﹣2≥0,∴k≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣F'(x)=2ke x(x+1)+2ke x﹣2x﹣4=2(x+2)(ke x﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵x≥﹣2,由F'(x)>0得,∴;由F'(x)<0得∴F(x)在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当,即k>e2时,F(x)在[﹣2,+∞)单调递增,,不满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当,即k=e2时,由①知,,满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣③当,即1≤k<e2时,F(x)在单调递减,在单调递增,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.20.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h ′(x )=﹣x+2a ﹣=<0,h (x )在(1,+∞)上为减函数,h (x )<h (1)=+2a ≤0,所以a ≤综合可知a 的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.21.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.22.【答案】【解析】(Ⅰ))(x f 的定义域),0(+∞,当3a =时,1()23ln f x x x x =--,2'2213231()2x x f x x x x -+=+-=令'()0f x >得,102x <<或1x >;令'()0f x <得,112x <<,故()f x 的递增区间是1(0,)2和(1,)+∞;()f x 的递减区间是1(,1)2.(Ⅱ)由已知得x a xx x g ln 1)(+-=,定义域为),0(+∞,222111)(xax x x a x x g ++=++=',令0)(='x g 得012=++ax x ,其两根为21,x x , 且2121240010a x x a x x ⎧->⎪+=->⎨⎪⋅=>⎩,23.【答案】【解析】解:(1)当0<x ≤20时,y=[20+4(20﹣x )](x ﹣8)=﹣4x 2+132x ﹣800,当20<x <40时,y=[20﹣(x ﹣20)](x ﹣8)=﹣x 2+48x ﹣320,∴(2)①当,∴当x=16.5时,y取得最大值为289,②当20<x<40时,y=﹣(x﹣24)2+256,∴当x=24时,y取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.24.【答案】【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),∴x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E:+=1,得,∴k AB==﹣=﹣,∴直线AB的方程为y﹣=﹣(x﹣),即2x+8y﹣5=0.(2)设|PF1|=r1,|PF2|=r1,则cos∠F1PF2==﹣1=﹣1=﹣1,又r1r2≤()2=a2(当且仅当r1=r2时取等号)∴当r1=r2=a,即P(0,)时,cos∠F1PF2最小,又∠F1PF2∈(0,π),∴当P为短轴端点时,∠F1PF2最大.(3)∵=12,=3,∴=9.则由题意,设所求的椭圆方程为+=1(a2>9),将y=x+9代入上述椭圆方程,消去y,得(2a2﹣9)x2+18a2x+90a2﹣a4=0,依题意△=(18a2)2﹣4(2a2﹣9)(90a2﹣a4)≥0,化简得(a2﹣45)(a2﹣9)≥0,∵a2﹣9>0,∴a2≥45,故所求的椭圆方程为=1.【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,∠F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用.。

鲁甸县三中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县三中2018-2019学年高二上学期第二次月考试卷数学

鲁甸县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .562. 若,则下列不等式一定成立的是( ) A . B .C .D .3. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)4. 执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .355. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .986. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若,则该椭圆的离心率为()A.B.C.D.8.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5 B.4 C.4D.29. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确 10.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)11.已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( )A .1B .2C .3D .12.已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27二、填空题 13.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .15.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .17.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .18.已知点G 是△ABC 的重心,若∠A=120°,•=﹣2,则||的最小值是 .三、解答题19.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)20.(本小题满分13分)设1()1f xx=+,数列{}na满足:112a=,1(),n na f a n N*+=∈.(Ⅰ)若12,λλ为方程()f x x=的两个不相等的实根,证明:数列12nnaaλλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m,使得对n N*∀∈,2121222n n n na a m a a-++<<<<.)21.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.22.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.23.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.24.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.鲁甸县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由等差数列的性质可得:a3+a5=2a4,a7+a13=2a10,代入已知可得3×2a4+2×3a10=24,即a4+a10=4,故数列的前13项之和S13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.2.【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D3.【答案】D【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.4.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C5.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.6.【答案】B7.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.8.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.9.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.10.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.11.【答案】D【解析】解:∵复数z 满足zi=1﹣i ,(i 为虚数单位),∴z==﹣i ﹣1,∴|z|==.故选:D .【点评】本题考查了复数的化简与运算问题,是基础题目.12.【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.二、填空题13.【答案】.【解析】解:因为y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,即y'=0有解,即y'=在x >0时有解,所以3(a ﹣3)x 3+1=0,即a ﹣3<0,所以此时a <3.函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则f'(x )≤0恒成立,即f'(x )=3x 2﹣2ax ﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.14.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.15.【答案】18.2【解析】解:∵某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,∵x=20,∴y=0.9×20+0.2=18.2(亿元).故答案为:18.2.【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题.16.【答案】(﹣1,1].【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]17.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.18.【答案】.【解析】解:∵∠A=120°,•=﹣2,∴||•||=4,又∵点G是△ABC的重心,∴||=|+|==≥=故答案为:【点评】本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|+|的取值范围是解答本题的关键,另外根据点G 是△ABC的重心,得到=(+),也是解答本题的关键.三、解答题19.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人. (Ⅱ)设 “至少有1人体育成绩在”为事件, 记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,. 而事件的结果有7种,它们是:,,,,,,,因此事件的概率. (Ⅲ)a ,b ,c 的值分别是为,,.20.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩. ∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)11120a a λλ-≠-,120λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设m =()f m m =.由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<. ∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<. ①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.21.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x ≤2或﹣≤x ≤或﹣1≤x <﹣, ∴不等式f (x )≤6的解集为{x|﹣1≤x ≤2}.(Ⅱ)不等式f (x )﹣>2恒成立⇔+2<f (x )=|2x+1|+|2x ﹣3|恒成立⇔+2<f (x )min 恒成立,∵|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4, ∴f (x )的最小值为4, ∴+2<4,即,解得:﹣1<a <0或3<a <4.∴实数a 的取值范围为(﹣1,0)∪(3,4).22.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2++a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.23.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.24.【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.。

鲁甸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

鲁甸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件2.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f()的值为()A.B.0 C.D.3.设集合M={x|x2﹣2x﹣3<0},N={x|log2x<0},则M∩N等于()A.(﹣1,0)B.(﹣1,1)C.(0,1) D.(1,3)4.已知两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,则=()A.﹣2 B.2 C.﹣D.5.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)>0的解集为()A.(0,1) B.(1,2) C.(1,+∞)D.(2,+∞)6.下列函数中,为奇函数的是()A.y=x+1 B.y=x2C.y=2x D.y=x|x|7.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,25 B.20,15,15 C.10,10,30 D.10,20,208.已知正△ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.B.C.D.9.下列式子中成立的是()A.log0.44<log0.46 B.1.013.4>1.013.5C.3.50.3<3.40.3D.log76<log6710.设函数f(x)在x0处可导,则等于()A.f′(x0)B.f′(﹣x0)C.﹣f′(x0)D.﹣f(﹣x0)11.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.12.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2﹣x)的图象为()A.B.C.D.二、填空题13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n}为“斐波那契数列”.若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2016项的值是.14.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.15.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是.16.已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为.17.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.18.抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为.三、解答题19.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.20.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I )求C 的值; (Ⅱ)若c=2a ,b=2,求△ABC 的面积.21.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.22.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.23.解不等式|3x﹣1|<x+2.24.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.鲁甸县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.2.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.3.【答案】C【解析】解:∵集合M={x|x2﹣2x﹣3<0}={x|﹣1<x<3},N={x|log2x<0}={x|0<x<1},∴M∩N={x|0<x<1}=(0,1).故选:C.【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.4.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】解:令F(x)=,(x>0),则F′(x)=,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)为定义域上的减函数,由不等式x2f()﹣f(x)>0,得:>,∴<x,∴x>1,故选:C.6.【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D.【点评】本题主要考查函数的奇偶性的判断,属于基础题.7.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.8.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.9.【答案】D【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D10.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.11.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.12.【答案】A【解析】解:由(0,2)上的函数y=f(x)的图象可知f(x)=当0<2﹣x<1即1<x<2时,f(2﹣x)=2﹣x当1≤2﹣x<2即0<x≤1时,f(2﹣x)=1∴y=f(2﹣x)=,根据一次函数的性质,结合选项可知,选项A正确故选A.二、填空题13.【答案】0.【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,∴b2016=b336×6=b6=0,故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.14.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.15.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.16.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.17.【答案】4【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成.故答案为:4.18.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC中,根据勾股定理得:AC1=2,1则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C中,根据勾股定理得:A′C2=2,2则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a ,b=2,C=,∴由余弦定理可得c 2=a 2+b 2﹣2abcosC , ∴4a 2=a 2+12﹣4a•,解得a=﹣1+,或a=﹣1﹣(舍去) ∴△ABC 的面积S=absinC==21.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.22.【答案】(1)332⎡⎤⎢⎥⎣⎦,;(2).【解析】试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在236ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 223322632k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.考点:三角函数的图象与性质.23.【答案】【解析】解:∵|3x﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x<}.24.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…。

鲁甸县高中2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县高中2018-2019学年上学期高二数学12月月考试题含解析

鲁甸县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°2. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对3. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|4. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥5. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .566. 若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.7. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或8. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非9. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}11.与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)12.两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65二、填空题13.方程(x+y ﹣1)=0所表示的曲线是 .14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .16.已知复数,则1+z 50+z 100= .17.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .18.△ABC中,,BC=3,,则∠C=.三、解答题19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.20.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.21.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.22.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.23.已知定义在区间(0,+∞)上的函数f (x )满足f()=f (x 1)﹣f (x 2).(1)求f (1)的值;(2)若当x >1时,有f (x )<0.求证:f (x )为单调递减函数;(3)在(2)的条件下,若f (5)=﹣1,求f (x )在[3,25]上的最小值.24.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .鲁甸县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.2.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D3.【答案】B【解析】解:∵a>b,令a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1,=﹣,显然A不正确.a3=﹣1,b3=﹣6,显然B正确.a2 =1,b2=4,显然C不正确.a=﹣1,|b|=2,显然D 不正确.故选B.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.4.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A 不正确;两个平面平行,两个平面内的直线不一定平行,所以B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D 不正确;根据面面垂直的判定定理知C 正确.故选C . 考点:空间直线、平面间的位置关系. 5. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.6. 【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .7. 【答案】B【解析】解:因为y=f (x )为奇函数,所以当x >0时,﹣x <0, 根据题意得:f (﹣x )=﹣f (x )=﹣x+2,即f (x )=x ﹣2, 当x <0时,f (x )=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x <﹣3, 解得x<﹣,则原不等式的解集为x<﹣;当x ≥0时,f (x )=x ﹣2,代入所求的不等式得:2(x ﹣2)﹣1<0,即2x <5,解得x <,则原不等式的解集为0≤x <,综上,所求不等式的解集为{x|x <﹣或0≤x <}. 故选B8. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C9. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2, 故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.10.【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ).A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1}, 则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}. 故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础.11.【答案】C【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C .【点评】本题考查了向量共线定理的应用,属于基础题.12.【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^=0.95x +2.6,当y ^=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样本点(3,4.8)的残差e ^=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D.二、填空题13.【答案】 两条射线和一个圆 .【解析】解:由题意可得x 2+y 2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y ﹣1)=0,可得x+y ﹣1=0,或 x 2+y 2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.14.【答案】 充分不必要【解析】解:∵复数z=(a ﹣2i )(1+i )=a+2+(a ﹣2)i , ∴在复平面内对应的点M 的坐标是(a+2,a ﹣2), 若点在第四象限则a+2>0,a ﹣2<0, ∴﹣2<a <2,∴“a=1”是“点M 在第四象限”的充分不必要条件, 故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.15.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦. 考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 16.【答案】 i .【解析】解:复数,所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1.17.【答案】21≥a 【解析】试题分析:'21()a f x x x =-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221,(0,3]x ∈恒成立,由2111,222x x a -+≤∴≥.1考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件. 18.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C 为三角形的内角,且c <a ,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.三、解答题19.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.20.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f (x )=cosx (sinx+cosx )﹣.=sinxcosx+cos 2x ﹣=sin2x+cos2x=sin (2x+),∴T==π,由2k π﹣≤2x+≤2k π+,k ∈Z ,得k π﹣≤x ≤k π+,k ∈Z ,∴f (x )的单调递增区间为[k π﹣,k π+],k ∈Z .21.【答案】【解析】解:(1)∵EP 与⊙O 相切于点A ,∴∠ACB=∠PAB=25°, 又BC 是⊙O 的直径,∴∠ABC=65°,∵四边形ABCD 内接于⊙O ,∴∠ABC+∠D=180°, ∴∠D=115°.证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB ,∠D=∠PBA ,∴△ADC ∽△PBA ,∴,又DA=BA ,∴DA 2=DC •BP .22.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2). 【解析】试题分析:(1)由公式cos sin xyρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.23.【答案】【解析】解:(1)令x1=x2>0,代入得f(1)=f(x1)﹣f(x1)=0,故f(1)=0.…(4分)(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f()<0,即f(x1)﹣f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[3,25]上的最小值为f(25).由f()=f(x1)﹣f(x2)得,f(5)=f()=f(25)﹣f(5),而f(5)=﹣1,所以f(25)=﹣2.即f(x)在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.24.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:平面与平面平行的判定;空间中直线与直线的位置关系.。

鲁甸县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

鲁甸县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

①若对任意 x [1, 2],关于 x 的不等式 f (x) g(x) 恒成立,则 m e ;
②若存在 x0 [1, 2] ,使得不等式 f (x0 ) g(x0 ) 成立,则 m e2 ln 2 ;
③若对任意
x1
[1, 2]及任意
x2
[1, 2] ,不等式
f
( x1 )
f
(x0 ) 处的切线斜率为 k
,则随机
事件“ k 0 ”的概率为_________.
17.当 a>0,a≠1 时,函数 f(x)=loga(x﹣1)+1 的图象恒过定点 A,若点 A 在直线 mx﹣y+n=0 上,则 4m+2n 的最小值是 .
18.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表 面积是_________(单位: ).
二、填空题
13.【答案】 .
【解析】解:∵log2(2m﹣3)=0, ∴2m﹣3=1,解得 m=2, ∴elnm﹣1=eln2÷e= .
故答案为: .
【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用. 14.【答案】①②④




第 10 页,共 16 页
15.【答案】②③④
故选 A.
第 9 页,共 16 页
【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视. 11.【答案】C
12.【答案】D 【解析】解:设等差数列{an}的公差为 d,
则 S4=4a1+
d=﹣2,S5=5a1+
d=0,
联立解得

∴S6=6a1+

鲁甸县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

鲁甸县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

鲁甸县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >42. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( ) A .1 B .0 C .﹣1 D .0或﹣13. 下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )4. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.5. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 6. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .24 7. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣38. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .29. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D . 10.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12111.已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等. 12.设命题p :,则p 为( )A .B .C .D .二、填空题13.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 14.若函数y=ln(﹣2x )为奇函数,则a= . 15.函数f (x )=(x >3)的最小值为 .16.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .17.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .三、解答题19.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.20.已知函数f (x )=2|x ﹣2|+ax (x ∈R ). (1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.21.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。

鲁甸县高中2018-2019学年高二下学期第二次月考试卷数学

鲁甸县高中2018-2019学年高二下学期第二次月考试卷数学

鲁甸县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.42. 已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个3. 设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( )A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)4. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .55. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 6. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .7. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( ) A . ()0,1 B.⎝ C.()1,3⎫⎪⎪⎝⎭D .(8. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( )A .第一象限 B.第二象限 C .第三象限 D.第四象限 9. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象()A.向右平移个单位 B .向右平移个单位 C .向左平移个单位 D .向左平移个单位10.sin570°的值是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B.﹣ C. D.﹣11.若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 12.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)-二、填空题13.计算:×5﹣1= .14.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .15.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1 ③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)16.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a 的取值范围是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.18.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.三、解答题19.关于x 的不等式a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2(1)当a=1,b=0时解不等式; (2)a ,b ∈R ,a ≠b 解不等式.20.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与椭圆C交于不同的两点M,N,(Ⅰ)求椭圆C的方程;(Ⅱ)当△AMN的面积为时,求k的值.21.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.22.已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.24.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.25.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).26.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .鲁甸县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.2. 【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁甸县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e k tP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.3. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一4. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .25. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .06. 记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M 中的元素按从大到小排列,则第2013个数是( )A .B .C .D .7. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .168. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(lo g 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<9. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .10.特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥011.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .3612.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .3二、填空题13.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是(写出所有真命题的代号).14.函数y=sin2x﹣2sinx的值域是y∈.15.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.16.已知||2=a,||1=b,2-a与13b的夹角为3π,则|2|+=a b.17.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.18.已知α为钝角,sin(+α)=,则sin(﹣α)=.三、解答题19.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.21.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.22.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)23.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.24.(本小题满分10分)已知曲线C 的极坐标方程为2sin c o s 10ρθρθ+=,将曲线1c o s :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x x y y'=⎧⎨'=⎩后得到曲线2C .(1)求曲线C的参数方程;2(2)若点M的在曲线C上运动,试求出M到曲线C的距离的最小值.2鲁甸县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.2.【答案】15【解析】3.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.4.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A (6,2),化目标函数z=x ﹣y 为y=x ﹣z ,由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4. 故选:A .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.5. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 6. 【答案】 A【解析】进行简单的合情推理. 【专题】规律型;探究型.【分析】将M 中的元素按从大到小排列,求第2013个数所对应的a i ,首先要搞清楚,M 集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a 1×103+a 2×102+a 3×10+a 4),括号内表示的10进制数,其最大值为 9999; 从大到小排列,第2013个数为 9999﹣2013+1=7987所以a 1=7,a 2=9,a 3=8,a 4=7则第2013个数是故选A .【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n 个数对应的十进制的数即可.7. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D .8. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 9. 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点, 直线斜率存在,设为k ,则过P 的直线方程为y=kx ﹣2, 即kx ﹣y ﹣2=0,若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.10.【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.11.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.二、填空题13.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R ﹣r=(k+1)2﹣k 2=2k+,任取k=1或2时,(R ﹣r >d ),C k 含于C k+1之中,选项①错误; 若k 取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k 2=2k 4,即10k 2﹣2k+1=2k 4(k ∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.14.【答案】 [﹣1,3] .【解析】解:∵函数y=sin 2x ﹣2sinx=(sinx ﹣1)2﹣1,﹣1≤sinx ≤1,∴0≤(sinx ﹣1)2≤4,∴﹣1≤(sinx ﹣1)2﹣1≤3.∴函数y=sin 2x ﹣2sinx 的值域是y ∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.15.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x ,y )则{x ,y )|﹣1≤x ≤0,﹣≤y ≤0或0≤x ≤2,0≤y ≤1}={(x ,y )|xy >0且﹣1≤x ≤2,﹣≤y ≤1}故答案为:{(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1}.16.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2==.17.【答案】 5 .【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.18.【答案】﹣.【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.三、解答题19.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.20.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…21.【答案】【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴DF∥BC1,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;…(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.DF=BC1==1,A1D==,A1F=A1C=1.在△A1DF中,由余弦定理可得:cos∠A1DF==,∵∠A1DF∈(0,π),∴∠A1DF=,∴异面直线BC1和A1D所成角的大小;…(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.∴=﹣S△BDE﹣﹣=∴三棱锥C﹣A1DE的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.22.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.23.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.24.【答案】(1)3c o s 2s in x y θθ=⎧⎨=⎩(为参数);(2【解析】试题解析: (1)将曲线1c o s :sin x C y αα=⎧⎨=⎩(α为参数),化为221x y+=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩,代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭,得到()()222:194x y C ''+=,可得参数方程为3c o s 2sin x y αα=⎧⎨=⎩;考点:坐标系与参数方程.。

相关文档
最新文档