八年级数学梯形
八年级数学上册知识点归纳
八年级数学上册知识点归纳八年级数学上册必备知识梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:一般梯形、梯形直角梯形、特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的'两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。
八年级数学知识总结一、整式的乘法1.同底数幂的乘法:am²an=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。
2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。
3.积的乘方法则:(ab)n = an²bn(n为正整数) 积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。
2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
八年级数学等腰梯形
E A 1 2 D
B
C
A
腰
外 , 你等 还腰 知梯 道形 它除 什了 么定 特义 性可 ?知 的 性 质
B
腰
C ∴AB∥CD,AC=BD源自二.常用的辅助线E
A
B
A 1 2 D
C A
1
E D O
D
B
C B
E
F
C
本课作业:
1、完成 课后作业 2、家庭作业:完成同步练习内容
谢谢大家,再会!
; https:///brands/3895.html 金香缘米线 金香缘米线加盟;
泪,眼睛已经哭肿了,她从没想到,自己壹个堂堂の妃子,会经历这样の事情.要不是她亲眼看到了,她死也不会相信这发生の壹切,怪不得当年自己和轩辕五十六世成亲之后,没多久便生下了轩辕飞燕和轩辕落燕这两姐妹.而打那以后,轩辕五十六世再也没有和她同过房,她就这样子过了几十年の独守 空房の生活.以前她还怀疑轩辕五十六世可能有别の女人,可是时近了二三十年,也没见他再成亲.后来她又怀疑轩辕五十六世喜欢男人,可是也没见他与男人或者是大臣之类の走得太近,直到她偶然看到轩辕五十六世,在北宫の大房间里面,有几十位女机甲.乱の时候,她整个人都崩溃了.明妃の声音 有些颤抖:"咱打算和他离婚...""离婚!"轩辕飞燕心中壹震,连忙说道:"母亲这万万不可呀!"(正文贰肆00轩辕五十六世の秘密)贰肆01明妃の苦恼皇帝の妃子要和皇帝离婚,这种事情闻所未闻,亘古未有."您可不能这么冲动呀!"轩辕飞燕急劝道,"就
人教版八年级数学《梯形》的说课稿
八年级数学《梯形》的说课稿人教版八年级数学《梯形》的说课稿今天我说课的题目是梯形,这节课我主要从教材背景分析、教学目标设计、学情分析、教学手段及方法、教学程序设计、教学评价设计、板书设计等几方面来完成我的说课。
一、教材分析(一)、教材的地位和作用关于梯形,是人教版教材八年级下册第十九章第三节的内容。
本课知识是对前面所学的平行四边形、矩形、三角形知识的发展、巩固和应用。
梯形是中学阶段几何知识的重要内容。
这节课主要是训练学生的证明思路,通过添加辅助线的方法对等腰梯形的性质进行证明和应用,通过本节课的学习,使学生学到数学转化的思想方法。
同时培养学生分析问题、解决问题的能力。
它对整章节教学起承上启下的作用。
(二)教学目标根据教材分析,结合学生的实际情况,我拟定了以下的教学目标:知识与技能目标探索并掌握梯形的有关概念和基本性质,进一步掌握等腰梯形的性质定理,并能通过逻辑推理进行证明。
能运用梯形的有关概念概念和性质进行简单的计算和证明,进一步培养学生分析问题的能力。
体验添加铺助线对证明的必要性使学生初步掌握等腰梯形中常用辅助线的添加方法和应用。
2、过程与方法目标⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识;⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、3、情感、态度与价值观目标让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦;二、教学重点、难点(一)重点:1、等腰梯形的性质2、通过实际操作研究梯形的基本辅助线作法。
(二)难点:灵活添加辅助线,把梯形转化成平行四边形或三角形。
原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。
富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务、三、教学方法根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法。
八年级数学梯形的概念、等腰梯形的性质、判定
梯形(一)梯形的有关概念1. 梯形:一组对边平行且另一组对边不平行的四边形叫做梯形 注:(1)梯形是特殊的四边形 (2)有且只有一组对边平行。
2. 梯形中平行的两边叫做梯形的底,短边为上底,长边为下底,与位置无关,不平行的两边叫做梯形的腰,梯形两底之间的距离叫做梯形的高,它是一底上的一点向另一底作的垂线段的长度。
3. 梯形的分类梯形⎪⎩⎪⎨⎧⎩⎨⎧等腰梯形直角梯形特殊梯形一般梯形(1)直角梯形:有一个角为直角的梯形为直角梯形(2)等腰梯形:两腰相等的梯形叫做等腰梯形 (二)梯形的性质 1. 一般梯形的性质 在梯形ABCD 中,AD ∥BC ,则∠A+∠B=︒180,∠C+∠D=︒180 2. 直角梯形具有的特征 在直角梯形ABCD 中,若AD ∥BC ,∠B=︒90,则∠A=︒90,∠C+∠D=︒180 3. 等腰梯形具有的性质 (1)等腰梯形同一底上的两个内角相等(2)等腰梯形的两条对角线相等(3)等腰梯形是轴对称图形,但不是中心对称图形,等腰梯形的对称轴是两底中点所在的直线。
4. 等腰梯形的判定 (1)利用定义: (2)同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形【典型例题】例1. 如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC 平分∠BAD ,∠B ︒=60,CD=2cm ,则梯形ABCD 的面积为 A. 2cm 33B. 2cm 6C. 2cm 36D. 2cm 12例2. 如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上一点,DE=BC ,(1)求证:∠E=∠DBC (2)判断△ACE 的形状例3. 如图,梯形ABCD 中,AD ∥BC ,AD=1,BC=4,AC=3,BD=4,求ABCD S 梯形。
例4. 如图,已知:AD 是△ABC 边BC 上的高线,E 、F 、G 分别是BC 、AB 、AC 的中点,求证:四边形EDGF 是等腰梯形。
2020年寒假八年级数学课程第八讲 梯形
第八讲梯形第一部分知识梳理一、梯形的性质和判定1.梯形有关概念:一组对边平行而另一组对边______的四边形叫做梯形,梯形中平行的两边叫做底,按______分别叫做上底、下底(与位置无关),梯形中不平行的两边叫做______,两底间的______叫做梯形的高.一腰垂直于底边的梯形叫做______;两腰______的梯形叫做等腰梯形.2.等腰梯形的性质:等腰梯形中______的两个角相等,两腰______,两对角线______,等腰梯形是轴对称图形,只有一条对称轴,______就是它的对称轴.3.等腰梯形的判定:______的梯形是等腰梯形;同一底上的两个角______的梯形是等腰梯形.第二部分例题与解题思路方法归纳类型一梯形的面积【例题1】如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()A、逐渐增大B、逐渐减小C、始终不变D、先增大后变小〖选题意图〗考查等边三角形的性质和梯形的面积公式.〖解题思路〗易得此四边形为直角梯形,AB的长度一定,那么直角梯形的高为AB的长度的一半,上下底的和也一定,所以面积不变.〖参考答案〗解:当点C在线段AB上沿着从点A向点B的方向移动时,设两个等边三角形的边长分别为a,b,根据等边三角形的性质,等边△ACD和△BCE的高DM和EN的和不会改变,即DM+EN=MC+CN=AC+CB=AB,而且MN的长度也不会改变,即MN=AC+CB=AB.∴四边形DMNE 面积= AB 2, ∴面积不会改变.故选C .【课堂训练题】1.某校研究性学习小组在研究列车的行驶速度时,得到一个数学问题.如图,若v 是关于t 的函数,图象为折线O ﹣A ﹣B ﹣C ,其中A (t 1,350),B (t 2,350),C (,0),四边形OABC 的面积为70,则t 2﹣t 1=( )A .B .C .D .〖参考答案〗解:根据题意得, (AB+)×350=70,解之得,AB= ;读图可知,t 2﹣t 1=AB=.故选B . 2.如图为菱形ABCD 与正方形EFGH 的重迭情形,其中E 在CD 上,AD 与GH 相交于I点,且AD ∥HE .若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI 的面积为( )A .6B .8C .10﹣2D .10+2〖参考答案〗解:四边形ABCD 为菱形且∠A=60°⇒∠ADE=180°﹣60°=120°,又AD ∥HE ⇒∠DEH=180°﹣120°=60°,作DM ⊥HE 于M 点,则△DEM 为30°﹣60°﹣90°的三角形,又DE=4⇒EM=2,DM=2 ,且四边形EFGH 为正方形⇒∠H=∠I=90°,即四边形IDMH 为矩形⇒ID=HM=5﹣2=3,梯形HEDI 面积=( )=8 . 故选B .类型二梯形的中位线相关【例题2】如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于()A.6 B.8C.4 D.4〖选题意图〗解决此题的关键是确定点M的位置.如果在直线的同侧有两个点,要在直线上找一点到两个点的距离之和最短,方法是找其中一个点关于直线的对称点,连接该点和另一个点,与直线的交点即为到两个点的距离之和最小的点的位置.〖解题思路〗此题关键是确定M的位置,将EM、MN转化到一条直线上,就可求出其和最小值.〖参考答案〗解:作N点关于AC的对称点N’,连接N’E交AC于M∴∠DAC=∠ACB,∠DAC=∠DCA,∴∠ACB=∠DCA,∵点N关于AC对称点N′在CD上,CN=CN′=2又∵DC=4∴EN’为等腰梯形的中线∴EN′=(AD+BC)=6,∴EM+MN最小值为:EN′=6故选A【课堂训练题】1.如图所示,DE是△ABC的中位线,FG为梯形BCED的中位线,若BC=8,则FG等于()A.2cm B.3cmC.4cm D.6cm〖参考答案〗解:∵DE是△ABC的中位线,∴DE=BC=×8=4;∵FG为梯形BCED的中位线,∴FG=(DE+BC)=(4+8)=6.故选D.2.如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF 与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A.B.C.D.〖参考答案〗解:过点D作DQ⊥AB,交EF于一点W,∵EF是梯形的中位线,∴EF∥CD∥AB,DW=WQ,∴AM=CM,BN=DN.∴EM=CD,NF=CD.∴EM=NF,∵AB=3CD,设CD=x,∴AB=3x,EF=2x,∴MN=EF﹣(EM+FN)=x,∴S△AME+S△BFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x•QW,S梯形ABFE=(EF+AB)×WQ=QW,S△DOC+S△OMN=CD×DW=xQW,S梯形FECD=(EF+CD)×DW=xQW,∴梯形ABCD面积=xQW+xQW=4xQW,图中阴影部分的面积=x•QW+xQW=xQW,∴图中阴影部分的面积是梯形ABCD面积的:=.故选:C.类型三角度的相关问题【例题3】如图,在梯形ABCD中,AB∥CD,AD=DC,求证:AC是∠DAB的平分线.〖选题意图〗本题考查了梯形的定义、平行线的性质及等腰三角形的性质,难度较小,是一道不错的证明题.〖解题思路〗利用梯形的一组对边平行可以得到内错角相等,然后利用等边对等角得到两个角相等,从而得到两个角相等,证得结论.〖参考答案〗解:∵AB ∥CD ,∴∠CAB=∠DCA .∵AD=DC ,∴∠DAC=∠DCA .∴∠DAC=∠CAB ,即AC 是∠DAB 的角平分线.【课堂训练题】1.在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,BD ⊥AD .求∠DBC 和∠C 的大小.〖参考答案〗如图1,梯形ABCD 中,因为DC ∥AB ,∠A =60°,所以∠ADC =120°,又因为BD ⊥AD ,所以∠ADB =90°,即∠ABD =30°,而AD =BC ,所以∠ABC =60°,∠C =∠ADC =120°,所以∠DBC =30°.2.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF=AD ,MF=MA .(1)若∠MFC=120°,求证:AM=2MB ;(2)求证:∠MPB=90°﹣∠FCM .〖参考答案〗证明:(1)连接MD ,∵点E 是DC 的中点,ME ⊥DC ,∴MD=MC ,A D C B又∵AD=CF,MF=MA,∴△AMD≌△FMC,∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∴∠MAB=30°,在Rt△AMB中,∠MAB=30°,∴BM=AM,即AM=2BM;(2)∵△AMD≌△FMC,∴∠ADM=∠FCM,∵AD∥BC,∴∠ADM=∠CMD∴∠CMD=∠FCM,∵MD=MC,ME⊥DC,∴∠DME=∠CME=∠CMD,∴∠CME=∠FCM,在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM.类型四求线段的长的问题【例题4】如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.〖选题意图〗本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.〖解题思路〗(1)找出全等的条件:BE=AD ,∠A=∠ABE ,∠E=∠ADE ,即可证明;(2)首先证得MN 是三角形的中位线,根据MN= (BE+BC ),又BE=2,即可求得. 〖参考答案〗证明:(1)∵AD ∥BC ,∴∠A=MBE ,∠ADM=∠E ,在△AMD 和△BME 中,,∴△AMD ≌△BME ;(2)∵△AMD ≌△BME ,∴MD=ME ,ND=NC ,∴MN= EC ,∴EC=2MN=2×5=10,∴BC=EC ﹣EB=10﹣2=8.【课堂训练题】1.如图,已知梯形ABCD ,上底AD =12,下底BC =28,EF ∥AB 分别交AD 、BC 于点E 、F ,且将梯形分成面积相等的两部分.试求BF 的长.〖参考答案〗设BF =x ,则FC =28-x.又设AD 与BC 间的距离为h ,即梯形和平行四边形ABFE 的BF 边上的高为h.在梯形ABCD 中,因为AD ∥BC ,EF ∥AB ,所以四边形ABFE 是平行四边形,所以AE =BF =x ,DE =12-x.因为平行四边形ABFE 的面积=BE×h ,梯形EFCD 的面积=12(DE+FC)×h , 所以x×h =12[(12-x)+(28-x)]×h ,解得x =10, 答 BF 的长为10.2.如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,AB=BC ,且AE ⊥BC .(1)求证:AD=AE ; D A FB C E(2)若AD=8,DC=4,求AB 的长.〖参考答案〗解:(1)连接AC ,∵AB ∥CD ,∴∠ACD=∠BAC ,∵AB=BC ,∴∠ACB=∠BAC ,∴∠ACD=∠ACB ,∵AD ⊥DC ,AE ⊥BC ,∴∠D=∠AEC=90°,∵AC=AC ,∴, ∴△ADC ≌△AEC ,(AAS )∴AD=AE ;(2)由(1)知:AD=AE ,DC=EC ,设AB=x ,则BE=x ﹣4,AE=8,在Rt △ABE 中∠AEB=90°,由勾股定理得:82+(x ﹣4)2=x 2,解得:x=10,∴AB=10. 类型五 线段的和差问题【例题5】已知:等腰梯形ABCD 中,AD ∥BC ,MN 是中位线交AC 于P ,AC 平分∠BCD ,MP=12,PN=8,求:梯形ABCD 的周长.〖选题意图〗此题主要考查梯形、三角形中位线的性质和角平分线的定义,难度中等.〖解题思路〗由三角形中位线性质可求得上底为16,下底为24,再由角平分线和平行的性质,可求得腰长和上底相等,据此求解.〖参考答案〗解:∵AD∥BC,MN是中位线交AC于P,∴MP是△ABC的中位线,PN是△ACD的中位线,∠1=∠3,∵MP=12,PN=8,∴BC=2MP=24,AD=2PN=16,∵AC平分∠BCD,∴∠1=∠2,∴∠2=∠3,∴AD=CD=16,∴AB=CD=16,∴梯形ABCD的周长为:16×3+24=72.【课堂训练题】1.如图所示.△ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1.求证:AA1+EE1=FF1+DD1.〖参考答案〗证明:连接EF,EA,ED.由中位线定理知,EF∥AD,DE∥AF,∴ADEF是平行四边形,∴对角线AE,DF互相平分,设它们交于O,作OO1⊥l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,∴(AA1+EE1)=(FF1+DD1)=OO1,即AA1+EE1=FF1+DD1.2.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:(1)画∠MAB、∠NBA的平分线交于E,∠AEB是什么角?(2)过点E作一直线交AM于D,交BN于C,观察线段DE、CE,你有何发现?(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,AD+BC的值是否有变化?并说明理由.〖参考答案〗解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠1﹣∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,如图则EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.类型六等腰梯形的判定【例题6】(2011•百色)已知矩形ABCD的对角线相交于点O,M、N分别是OD、OC上异于O、C、D的点.(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是.(2)添加条件后,请证明四边形ABNM是等腰梯形.〖选题意图〗本题主要考查了等腰梯形的判定,难度中等,注意灵活运用全等三角形的判定与性质、矩形的性质和平行线分线段成比例的关系.〖解题思路〗(1)从4个条件中任选一个即可,可以添加的条件为①.(2)先根据SAS证明△AND≌△BCN,所以可得AM=BN,有矩形的对角线相等且平分,可得OD=OC即OM=ON,从而知,根据平行线分线段成比例,所以MN∥CD ∥AB,且MN≠AB,即四边形ABNM是等腰梯形.〖参考答案〗解:(1)选择①DM=CN;(2)证明:∵AD=BC,∠ADM=∠BCN,DM=CN∴△AND≌△BCN,∴AM=BN,由OD=OC知OM=ON,∴∴MN∥CD∥AB,且MN≠AB∴四边形ABNM是等腰梯形.【课堂训练题】1.如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.(1)求证:四边形ABCD为等腰梯形.(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G点是否为EF中点,并说明理由.〖参考答案〗证明:(1)∵∠ACB=∠DBC,∴OB=OC∵AC=BD,∴OA=OD,∴∠OAD=∠ODA∵∠DOC=∠OAD+∠ODA=∠OBC+∠OCB∴2∠OAD=2∠OCB,∴∠OAD=∠OCB∴AD∥BC∵AD<BC∴四边形ABCD为梯形.在△ABC和△DCB中:AC=BD,∠ACB=∠DBC,CB=BC.∴△ABC≌△DCB∴AB=CD∴四边形ABCD为等腰梯形.(2)点G是EF中点理由:过E作EH∥CD交BC于H.∴∠EHB=∠DCB,∠EHG=∠GOF∵梯形ABCD为等腰梯形∴∠EBH=∠DCB,∴EB=EH∵EB=CF,∴EH=CF在△EHG和△FGC中:∠EHG=∠FCG∠EGH=∠FGCEH=CF∴△EHG≌△FGC∴EG=FG即G为EF中点.2.如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形;(2)若∠BDC=30°,AD=5,求CD的长.〖参考答案〗证明:(1)∵AE∥BD,∴∠E=∠BDC.∵DB平分∠ADC,∴∠ADC=2∠BDC.又∵∠C=2∠E,∴∠ADC=∠BCD.∴梯形ABCD是等腰梯形.(2)由第(1)问,得∠C=2∠E=2∠BDC=60°,且BC=AD=5,∵在△BCD中,∠C=60°,∠BDC=30°,∴∠DBC=90°.∴DC=2BC=10.第三部分课后自我检测试卷A类试题:1.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.2.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.(1)观察图形,写出图中两个不同形状的特殊四边形;(2)选择(1)中的一个结论加以证明.3.在▱ABCD中,AC是一条对角线,∠B=∠CAD,延长BC至点E,使CE=BC,连接DE.(1)求证:四边形ABED是等腰梯形;(2)若AB=AD=4,求梯形ABED的面积.4.如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE ⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.5.已知,如图,MN是▱ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.B类试题:6.如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.(1)求证:四边形AFCD是矩形;(2)求证:DE⊥EF.7.在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.(1)判断四边形AECD的形状(不证明);(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明;(3)若CD=2,求四边形BCFE的面积.8.如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x﹣3)2+|y﹣4|=0.(1)求AD和BC的长;(2)你认为AD和BC还有什么关系?并验证你的结论;(3)你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.C类试题:9.如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.10.如图,在四边形ABCD中,AD∥BC,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)求证:AE⊥BF;(2)求证:点M在AB、CD边中点的连线上.课后自我检测试卷参考答案A类试题:1.解:③﹣﹣相邻两边垂直;④﹣﹣相邻两边相等;⑤﹣﹣相邻两边相等;⑥﹣﹣相邻两边垂直;⑦﹣﹣两腰相等;⑧﹣﹣一条腰垂直于底边.2.解:(1)矩形ABDE,矩形BCEF;或菱形BNEM;或直角梯形BDEM,AENB等.(2)选择ABDE是矩形.证明:∵ABCDEF是正六边形,∴∠AFE=∠FAB=120°,∴∠EAF=30°,∴∠EAB=∠FAB﹣∠FAE=90°.同理可证∠ABD=∠BDE=90°.∴四边形ABDE是矩形.选择四边形BNEM是菱形.证明:同理可证:∠FBC=∠ECB=90°,∠EAB=∠ABD=90°,∴BM∥NE,BN∥ME.∴四边形BNEM是平行四边形.∵BC=DE,∠CBD=∠DEN=30°,∠BNC=∠END,∴△BCN≌△EDN.∴BN=NE.∴四边形BNEM是菱形.选择四边形BCEM是直角梯形.证明:同理可证:BM∥CE,∠FBC=90°,又由BC与ME不平行,得四边形BCEM是直角梯形.3.(1)证明:∵在□ABCD中,AD∥BC,∴∠CAD=∠ACB.∵∠B=∠CAD,∴∠ACB=∠B.∴AB=AC.∵AB∥CD,∴∠B=∠DCE.又∵BC=CE,∴△ABC≌△DCE(SAS).∴AC=DE=AB.∵AD∥BE,∴为等腰梯形.(2)解:∵四边形ABCD为平行四边形,∴AD=BC=CE=4.∴△ABC为等边三角形.∴梯形高=三角形高=2.∴S=(4+8)×2×=12.4.证明:∵DC∥AB,AD=BC,∠A=60°,∴∠A=∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=30°,∵DC∥AB,∴∠BDC=∠ABD=30°,∴∠CBD=∠CDB,∴CB=CD,∵CF⊥BD,∴F为BD的中点,∵DE⊥AB,∴DF=BF=EF,由∠ABD=30°,得∠BDE=60°,∴△DEF为等边三角形.5.证明:连接AC,BD交于O,过O作OO′⊥MN垂足为O′根据平行四边形的性质知OO′同为梯形BB′D′D与梯形AA′C′C的中位线得AA′+CC′=BB′+DD′.B类试题:6.证明:(1)∵F为BC的中点,∴BF=CF=BC,∵BC=2AD,即AD=BC,∴AD=CF,∵AD∥BC,∴四边形AFCD是平行四边形,∵BC⊥CD,∴∠C=90°,∴▱AFCD是矩形;(2)∵四边形AFCD是矩形,∴∠AFB=∠FAD=90°,∵∠B=60°,∴∠BAF=30°,∴∠EAD=∠EAF+∠FAD=120°,∵E是AB的中点,∴BE=AE=EF=AB,∴△BEF是等边三角形,∴∠BEF=60°,BE=BF=AE,∵AD=BF,∴AE=AD,∴∠AED=∠ADE=﹣=30°,∴∠DEF=180°﹣∠AED﹣∠BF=180°﹣30°﹣60°=90°.∴DE⊥EF.7.解:(1)平行四边形;(2)△BEF≌△FDC或(△AFB≌△EBC≌△EFC)证明:连接DE,∵AB=2CD,E为AB中点,∴DC=EB,又∵DC∥EB,∴四边形BCDE是平行四边形,∵AB⊥BC,∴四边形BCDE为矩形,∴∠AED=90°,Rt△ABF中,∠A=60°,F为AD中点,∴AE=AD=AF=FD,∴△AEF为等边三角形,∴∠BEF=180°﹣60°=120°,而∠FDC=120°,在△BEF和△FDC中DC=BE,∠CDA=∠FEB=120°,DF=EF,∴△BEF≌△FDC(SAS).(其他情况证明略)(3)若CD=2,则AD=4,DE=BC=2,∴S△ECF=S AECD=CD•DE=×2×2=2,S△CBE=BE•BC=×2×2=2,∴S四边形BCFE=S△ECF+S△EBC=2+2=4.8.解:(1)∵AD=x,BC=y,且(x﹣3)2+|y﹣4|=0,∴AD=3,BC=4.(2)AD∥BC,∵在△AEB中,∠AEB=90°,∴∠EAB+∠EBA=90°,又∵EA、EB分别平分∠DAB和∠CBA,∴∠DAB+∠ABC=180°.∴AD∥BC.(3)能.如图,过E作EF∥AD,交AB于F,则∠DAE=∠AEF,∠EBC=∠BEF,∵EA、EB分别平分∠DAB和∠CBA,∴∠EAF=∠AEF,∠EBF=∠BEF,∴AF=EF=FB,又∵EF∥AD∥BC,∴EF是梯形ABCD的中位线,∴EF=,∴AB=7.C类试题:9.(1)证明:如图,∵AE平分∠BAD,∴∠1=∠2,∵AB=AD,AE=AE,∴△BAE≌△DAE,∴BE=DE,∴∠2=∠3=∠1,∴AB=BE,∴AB=BE=DE=AD,∴四边形ABED是菱形.(2)解:△CDE是直角三角形.如图,过点D作DF∥AE交BC于点F,则四边形AEFD是平行四边形,∴DF=AE,AD=EF=BE,∵CE=2BE,∴BE=EF=FC,∴DE=EF,又∵∠ABC=60°,AB∥DE,∴∠DEF=60°,∴△DEF是等边三角形,∴DF=EF=FC,∴△CDE是直角三角形.10.(1)证明:如图,∵AE、BF分别平分∠DAB和∠ABC,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠DAB+∠CBA=180°,即(∠1+∠2)+(∠3+∠4)=180°,2∠2+2∠3=180°,∴∠2+∠3=90°,而∠2+∠3+∠AMB=180°,∴∠AMB=90°,即AE⊥BF;(2)证明:如图,设AB、CD的中点分别为G、H,连接MG,∵M为Rt△ABM斜边AB的中点,∴MG=AG=GB,又∵∠1=∠2,∴∠1=∠5,∴GM∥AD.∵AD∥BC,∴四边形ABCD是以AD、BC为底的梯形,又G、H分别为两腰AB、DC的中点,由梯形中位线定理可知,GH∥AD,而证得GM∥AD,根据平行公理可知,过点G与AD平行的直线只有一条,∴M点在GH上,即M点在AB、CD边中点的连线上.。
八年级数学梯形的性质
其他领域中的应用
01
02
03
物理学
在物理学中,梯形可以用 于解释力的平行四边形定 则,以及电流的传导路径。
计算机图形学
在计算机图形学中,梯形 可以用于绘制各种形状和 图案,如渐变色、纹理等。
经济学
在经济学中,梯形可以用 于表示收入和支出的关系, 以及商品价格和需求量的 关系。
THANK YOU
感谢聆听
性质
对角线互相垂直的梯形面积等于其对角线长度乘积的一半。
面积计算公式
面积 = (上底 + 下底) * 高 / 2。
05
梯形的实际应用
建筑中的应用
80%
楼梯设计
楼梯的形状类似于梯形,利用梯 形的性质可以确保楼梯的稳定性 和安全性。
100%
斜屋顶
在建筑中,斜屋顶常常设计成梯 形,以承受雨水和雪的重量。
80%
斜拉桥
斜拉桥的桥面和桥墩设计成梯形 ,可以分散车辆和行人的重量, 提高桥梁的承载能力。
数学问题中的应用
面积计算
利用梯形的面积公式可以计算 各种形状的面积,如平行四边 形、三角形等。
代数问题
在代数问题中,梯形可以作为 方程和不等式的几何解释,帮 助理解问题。
数列问题
在数列问题中,梯形可以用于 表示等差数列和等比数列的规 律。
最后,将两个三角形的面积相 加,再除以2,即可得到梯形的 面积。
梯形面积计算的实例
假设一个梯形的上底长度为3cm,下 底长度为7cm,高为5cm。
根据梯形面积的计算公式,该梯形的面 积为:面积 = (3cm + 7cm) × 5cm ÷ 2 = 25cm²。
03
梯形的周长和周长公式
梯形的周长组成八年级数学梯形的ຫໍສະໝຸດ 质目CONTENCT
八年级数学下册《梯形》(基础)知识点归纳及典型例题讲解
梯形(基础)知识点归纳及典型例题讲解【学习目标】1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念.2.掌握等腰梯形的性质和判定.3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化.4. 熟练运用所学的知识解决梯形问题.5. 掌握三角形,梯形的中位线定理.【要点梳理】知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.【典型例题】类型一、梯形的计算1、已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.【答案与解析】解:过A点作AE∥DC交BC于点E.∵ AD∥BC,∴四边形AECD是平行四边形.∴ AD=EC,AE=DC.∵ AB=DC=AD=2,BC=4,∴ AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,2223=-=.AC BC AB∴ ∠B =60°,23=AC .【总结升华】平移一腰,把梯形分成一个平行四边形和三角形. 举一反三:【变式】如图所示,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.【答案】证明:(1)∵ AD ∥BC , ∴ ∠ADB =∠EBC . 又∵ CE ⊥BD ,∠A =90°, ∴ ∠A =∠CEB . 在△ABD 和△ECB 中,A CEBADB EBC BD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ECB .(2)∵ ∠DBC =50°,BC =BD ,∴ ∠BCD =65°. 又∵ ∠BEC =90°,∴ ∠BCE =40°.∴∠DCE=∠BCD-∠BCE=25°.2、如图所示,等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC⊥BD,AD=4,BC=10,求梯形的面积.【思路点拨】题目中有对角线互相垂直的条件,可通过平行移动对角线的方法,将两条对角线集中到一个直角三角形中,利用这个条件求出高.【答案与解析】解:如图所示,过D作DF∥AC交BC的延长线于F,作DE⊥BC于E,∴四边形ACFD为平行四边形,∴ DF=AC,CF =AD=4.∵ AC⊥BD,AC∥DF,∴ ∠BDF =∠BOC =90°. ∵ ABCD 是等腰梯形 ∴ AC =BD ,∴ BD =DF .∴ BF =BC +CF =14,∴ DE =12BF =7.∴ 1(410)7492ABCDS=+⨯=梯形. 【总结升华】作对角线的平行线(平移对角线),将上底平移与下底拼接在一起构造两底之和,把梯形转化成平行四边形是常见的辅助线方法. 类型二、梯形的证明3、如图,在平行四边形ABCD 中,∠BAD 、∠BCD 的平分线分别交BC 、AD 于点E 、F ,AE 、DC 的延长线交于点G ,试说明四边形AFCG 为等腰梯形.【思路点拨】先证明四边形AFCG为梯形,再通过证底角相等证明四边形AFCG为等腰梯形.【答案与解析】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,又AE、CF分别为∠BAD、∠BCD的平分线,∴∠1=∠2=∠4,又AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CF∥AG,又AF不平行于CG,∴四边形AFCG为梯形;又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,∴四边形AFCG为等腰梯形(同一底上两个角相等).【总结升华】本题考查了平行四边形的性质,难度适中,解题关键是熟练掌握并灵活运用等腰梯形的判定方法.举一反三:【变式】如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证:CE=BF.【答案】证明:在梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∠BAD=∠CDA.∵AE、DF分别为∠BAD与∠CDA的平分线,∴∠BAE=12∠BAD,∠CDF=12∠CDA.∴∠BAE=∠CDF.∴△ABE≌△DCF.(ASA)∴BE=CF.∴BE-BC=CF-BC.即CE=BF.4、如图所示,在梯形ABCD中,AD ∥BC ,对角线AC =5,BD =12,两底AD 、BC 的和为13.(1)求证:AC ⊥BD ;(2)求梯形ABCD 的面积.【答案与解析】证明:(1)过D 作DE ∥AC 交BC 的延长线于E 点,又∵ AD ∥BC ,∴ 四边形ACED 为平行四边形.∴ DE =AC =5,CE =AD .在△BDE 中,BD =12,DE =5,BE =BC +CE =BC +AD =13,且22251213+=,即DE 2+BD 2=BE 2,∴ △BDE 为直角三角形,∴ ∠BDE =90°,则DE ⊥BD ,又DE ∥AC ,∴ AC ⊥BD .(2)111()222ABD CBD ABCD S S S BD OA BD OC BD OA OC =+=+=+g g △△梯形 115123022BD AC ==⨯⨯=g . 【总结升华】(1)对角线互相垂直的四边形的面积等于对角线长度乘积的一半.(2)通过辅助线将已知数据转化在同一个三角形内,然后由勾股定理的逆定理得到垂直关系,这是本题的关键.类型三、三角形、梯形的中位线5、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定【答案】C ;【解析】连AR ,由E 、F 分别为PA ,PR 的中点知EF 为△PAR 的中位线, 则12EF AR ,而AR 长不变,故EF 大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.6、在直角梯形ABCD 中(如图所示),已知AB∥DC,∠DAB=90°,∠ABC=60°,EF 为中位线,且BC =EF =4,那么AB =( )A .3B .5C .6D .8【答案】B;【解析】解:作CG⊥AB于G点,∵∠ABC=60°BC=EF=4,∴BG=2,设AB=x,则CD=x-2,∵EF为中位线,∴AB+CD=2EF,即x+x-2=8,解得x=5,【总结升华】此题综合运用了梯形的中位线定理、直角三角形的性质.在该图中,最关键的地方是正确的构造直角三角形.。
初中数学 八年级数学课件 梯形 8
已知:梯形ABCD中,AD∥BC,
∠B=∠C
A
D
求证:梯形ABCD
为等腰梯形。
B
C3
证明: 过A作AE//CD交BC于E
∵AE//CD, AD//CE
∴四边形AECD为平行四边形
∴AE=CD 且∵AE//CD,∴∠C=∠AEB 又∠C=∠B, ∴∠B=∠AEB
∴AB=AE, ∴AB=CD
A
D
∴梯形ABCD 为等腰梯形。
∵∠DAC=∠ADB
∴OA=OD ∴AC=BD
∴梯形ABCD是等腰梯形
A
D
O
B
C
11
下课 再见
12
7
练习: 1.已知等腰梯形的周长25cm,上、下底分
别为7cm、8cm,则腰长为___(_5_cm_)___
2.已知:在梯形ABCD中,AD//BC,
∠B=∠C=60º,AD=3,AB=4,则梯形
ABCD的周长为__1_8______.
3
A
D
4
4
60º 60º
B3 E 4 C
8
3.一梯形上底为4cm,过上底的一顶点, 作一直线平行于一腰,并与下底相交 组成一个三角形,若三角形的周长为 12 cm,则梯形的周长是__1_6______。
§12.3 梯形(二) 清华附中 何晨丽
1
复习: 1.梯形: 2.等腰梯形的特征: ①等腰梯形是轴对称图形。 ②等腰梯形同底上的两个内角相等。 ③等腰梯形的两条对角线相等。
问题:怎样识别一个四边形是等腰梯形?
2
识别方法一:
两腰相等的梯形是等腰梯形。
识别方法二:
同底上的两个内角相等的梯形是等腰梯形。
八年级数学等腰梯形的性质
思
考
1、用一块面积为800 cm 2 的等腰
梯形彩纸做风筝 ,为牢固起见,
用竹条作梯形的对角线,对角
线恰好互相垂直,那么至少需 要竹条 80 cm
A
D
解: ∵四边形ABCD是等腰梯形
∴设AC=BD=x
B
C
又∵AC⊥BD
∴ 1 x 2 = 800
2
解得:x=40
∴至少需要竹条 80 cm
“横断面”的概念
3
S2
5
4
D、S1 = S2
7
练习二
3、如图:若a=4 , b=6 , c=7 ,d=3 , 以它们为边作梯形,其中a∥b , 你认为这样的梯形能作出吗?
若能请作出图形,若不能,
Aa D
c
d
请说明 解: 这样的梯形不能作出
B
Hb C
过A点作AH∥CD 交BC于H点,得到 AHCD
∴AH=CD=d=3 , AD=HC= a = 4
A、m>h B、m<h C、m=h D、不能确定 B 解:
D
h
EC H
2 1 2 1 2 1
∟
过D作DH∥AC交BC 延长线于H点 ∴ BD=DH
∵AC⊥BD
又过D作DE ⊥ BH于E点
∴BD ⊥ DH
∴ DE= BH
又∵ AD ∥ BH , DH ∥ AC ∴四边形ACHD是平行四边形
= (BC+CH)
“横断面”的概念
梯形的性质应用1
横断面
梯形的性思质应用考
2、河流的一个横断面,如图,根据下表中的测量数据计算断面面积
离河一岸的距离(m) 0 2 3 5 9 11
水 深(m)
八年级数学梯形复习
梯形知识点讲解等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形(3)∵ABCD 是梯形且AD ∥BC综合练习: 一.选择题1. 如果梯形中位线长20,它被一条对角线分成两段的差为5,那么两底的长分别为 ( ) A.15,30 B.25,15 C.30,20 D.以上都不对2. 等腰梯形的上底、下底、高之比为1∶3∶1,则下底角的度数是( ) A. 30° B. 45° C. 60° D. 75°3. 在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于E ,且AE=AD ,BC=3AD ,则∠B 等于( ) A. 30° B. 45° C. 60° D. 135°4. 等腰梯形ABCD 中,BC AD //,AC 与BD 交于O 点,图中全等三角形有( ) A. 两对 B. 四对 C 一对 D. 三对5. 在梯形ABCD 中,AD ∥BC ,AB=AC ,若∠D=110°,∠ACD=30°,则∠BAC 等于( ) A. 80° B. 90° C. 100° D. 110°ABCDOB6. 等腰梯形中,下列判断正确的是A. 两底相等B. 两个角相等C. 同底上两底角互补D. 对角线交点在对称轴上7. 以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形A. 只能画出一个B. 能画出2个C. 能画出无数个D. 不能画出8. 下列命题中:①有两个角相等的梯形是等腰梯形②有两条边相等的梯形是等腰梯形③两条对角线相等的梯形是等腰梯形④等腰梯形上、下底中点连线,把梯形分成面积相等的两部分其中真命题有A. 1个B. 2个C. 3个D. 4个二.简答题(每小题3分,共2411. 若梯形的中位线长为5,面积为12. 观察下列图形并填表:线的长为14. 以线段16=c为一腰,则另一腰长d的范围是b为梯形的两底,以10==a、13________;15. 在梯形中,不是同一底上的两组角的比值分别为1:3和3:7,则四个角的度数为___________________16. 如果一个直角梯形的两底长分别为7 cm,12 cm,斜腰长为13 cm,那么这个梯形的面积等于_______.17. 等腰梯形的腰长为5cm,上、下底的长分别为6cm和12cm,则它的面积为_______.三.解答题18. 如图,在等腰梯形ABCD中,AD∥BC,AB=CD.(1)利用尺规作底边AD的中点 E.(保留作图痕迹,不写作法和证明)(2)连结EB 、EC ,求证:∠ABE=∠DCE .19. 已知:如图,在梯形ABCD 中,AD ∥BC ,AB=CD 。
八年级数学课件梯形的中位线
例2:如图,在梯形ABCD中,AD∥BC,
AB=AD+BC , P 为 CD 的 中 点 . 求 证 :
AP⊥BP
A
D
E
P
B
C
拓展练习 :
1、如图,等腰梯形ABCD中,
D
C
两条对角线AC、BD互相 E O F
垂直,中位线EF长为8cm,
求它的高CH。
A
HB
G
2、 如图,在梯形ABCD中,AD∥BC,
。
5.一个等腰梯形的对角线互相垂直,梯形的
高为2cm,,则梯形的面积为
。
6.有一个木匠想制作一个木梯,共需5根横木共 200cm,其中最上端的横木长20cm,求其他四根横 木的长度(每两根横木的距离相等)。
7.如图:在Rt△ABC中,AB是斜边,DE∥FG∥BC,
且AE=EG=GC=3,DE=2。
B1
B2 B3 B4
…
An
Bn
2
梯形的中位线与底边之间既有位置上的 平行关系,也有数量上的特殊关系。
梯形面积公式
S梯形
1(a 2
b)h
中位线x高
▪ 例1.如图,梯子各横木条互相平行,且
A1A2 A2 A3 A3 A4 A4 A5 B1B2 B2B3 B3B4 B4B5
▪ 已知横木条A1B1 48cm, A2B2 44cm ▪ 求横木条A3B3、A4B4、A5B5 的长。
比为
1:3,则梯形的上、 下底之差是
()
A.24厘米 B.12厘米; C.36厘米 D.48厘米
2.若梯形的上底长为8cm,中位线长10cm,则
下底长为
。
3.等腰梯形ABCD的中位线EF的长为6,腰
人教版八年级数学下册《梯形的性质》教学设计
人教版八年级数学下册《梯形的性质》教
学设计
教学目标
1. 了解梯形的定义和性质;
2. 能够准确地画出梯形;
3. 掌握梯形的面积公式;
4. 理解中线长度相等的性质。
教学重点
1. 梯形的定义和性质;
2. 梯形的中线长度相等的性质;
3. 梯形的面积公式的计算。
教学难点
梯形中线长度相等性质的理解和证明。
教学准备
1. 课件、黑板、粉笔、尺子、直角板、梯形模型等教学工具;
2. 活动卡片、小组作业等课堂活动啦。
教学过程
1. 导入新课:通过引导学生把四边形分类,了解梯形的定义和
性质。
2. 讲授梯形的中线长度相等的性质:让学生画出不同形状的梯形,通过对比不同梯形的中线长度,发现中线长度相等的规律,并
进行证明。
3. 掌握梯形的面积公式:先通过画图了解梯形的面积是平行四
边形面积的一半,通过实例推导出梯形的面积公式:
$S=\frac{(a+b)\times h}{2}$。
4. 进行课堂活动:让学生分组,设计一些小组活动,如制作梯
形模型并测量中线,拍摄梯形的照片,编写梯形的绘画图形等。
5. 进行课后练:通过作业检查学生是否掌握了梯形的定义、性
质以及面积公式等知识点。
教学评价
1. 课堂表现评价:包括学生的表现、思考时长、与他人合作等。
2. 作品表现评价:评估学生制作的梯形模型、绘制的梯形图形
等作品的创意、表现力等。
3. 综合评价:对学生的研究情况进行综合评价。
本节课设计旨在增强学生的理解能力和表现力,在引导学生更好地理解梯形的性质的同时,激发学生的兴趣,加强他们对数学的掌握。
人教版八年级数学第19章第3节《梯形》
探 索 (2) 你发现了什么?
请你用手中的等腰梯形纸片,探索等腰梯形的 角有什么关系?
A
D
B
C
∠A=∠D, ∠B=∠C.
快验证你的发现吧!等腰梯形同一底边上的两个角相等
已知:在梯形ABCD中,AD∥BC,AB=DC,求证: ∠B=∠C,∠A=∠D
A
D证明:过点D作DE∥AB交BC于点E ∵DE∥AB
在已知△ABC内部剪一刀,并使所剪过的 线DE与边BC平行,则剪下△ADE后剩下部分 是一个什么图形?
E B
A
梯形的定义:
D 一组对边平行,另一组对边不平行的
四边形叫做梯形.
C
由四边形如何得到:平行四边形、梯形?
平行四边形
四边形
梯形
梯形的有关概念:
画一个梯形,并指出梯形的上底,下底和腰,画出梯形的高
CB
D
A
如图,梯形ABCD,AD//CB, AB=CD,若E是AD的中点。求证:
EB=EC.
E D
A
B
C
活动、体验、探究
如图,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,
AD=18cm,BC=21cm,点P从点A开始沿AD边 向点D以1cm每秒的速度移动,点Q从点C A
P
D
开始沿CB向点B以2cm每秒的速度移动,
∠B=∠C,∠A=∠D
A
D
A
D
B
E
C
平移一腰是梯形常用
的辅助线。
BE F C
过过上点底A作两A端E⊥点BC作于点高E也 是过梯点形D作常D用F⊥的BC辅于助点F线。
又来验证你的发现! 等腰梯形的两条对角线相等.
已知:在梯形ABCD中,AD∥BC,AB=DC,对角
八年级数学上册梯形的高、中线与对角线练习
实施设计与实施方案的区别在项目管理中,实施设计和实施方案是两个非常重要的概念,它们在项目的不同阶段发挥着关键的作用。
虽然它们都涉及到项目的实施,但它们之间存在着一些明显的区别。
本文将从不同的角度对实施设计和实施方案进行比较,帮助大家更好地理解它们之间的区别。
首先,实施设计是指在项目启动阶段,根据项目的目标和需求,制定具体的实施计划和方案。
它通常由项目经理或者项目团队负责人进行制定,包括项目的整体框架、目标、时间表、资源分配等内容。
实施设计的主要目的是为了确保项目能够顺利进行,达到预期的效果。
而实施方案则是在实施设计的基础上,对具体的实施步骤和方法进行详细的规划和安排。
实施方案通常由项目团队的相关成员共同制定,包括具体的任务分工、实施流程、风险控制等内容。
实施方案的主要目的是为了指导项目团队在实施过程中的具体操作,确保项目能够按照预期的路径进行。
其次,实施设计更注重项目整体的规划和布局,强调宏观的视角和全局的把握。
它需要考虑到项目的整体目标和战略,从长远的角度来进行规划和设计。
而实施方案更注重具体的操作和细节,强调微观的视角和局部的执行。
它需要考虑到项目的具体实施过程和方法,从短期的角度来进行规划和设计。
此外,实施设计通常是一个相对静态的过程,一旦确定下来就不容易改变。
它需要在项目启动阶段就进行充分的规划和设计,确保项目能够按照既定的方向进行。
而实施方案则是一个相对动态的过程,需要根据实际情况不断进行调整和优化。
它需要在项目实施阶段不断地进行监控和调整,确保项目能够按照既定的计划进行。
综上所述,实施设计和实施方案在项目管理中扮演着不同的角色,它们之间存在着明显的区别。
实施设计更注重项目整体的规划和布局,强调宏观的视角和全局的把握;而实施方案更注重具体的操作和细节,强调微观的视角和局部的执行。
在实际项目管理中,我们需要充分理解和把握它们之间的区别,合理地运用它们,确保项目能够顺利进行,达到预期的效果。
八年级数学下册 19.3 梯形 (第1课时)等腰梯形和直角梯形课件
第十九章四边形
19.3 梯形(第1课时)
第十九章 四边形
四边形再认识
上面的几幅图中有你熟悉的图形吗?
第十九章 四边形
定义
一组对边平行而另一组对边不平行的四边形叫做梯形.
如图,平行的两边叫做梯形的底,其中较短的底
叫做上底,较长的底叫做下底.
不平行的两边叫做腰,夹在两底之间的垂线段叫做梯 形的高。
A
D
等腰梯形
B
梯形
C A
直角梯形
D
B
C
A
观察等腰梯形ABCD,猜想它可能具 有哪些特殊性质,能证明你的猜想吗? D
已知:在梯形ABCD中,AD ∥ BC, AB=DC。 求证: ∠ B = ∠ C。
1 B E C
证明:过点D作DE ∥ AB,交BC 于点E。
因为 AD ∥ BC,DE ∥AB, 所以四边形ABED是平行四边形。 所以 AB=DE。 因为AB=DC, 所以 DE=DC。 所以∠ 1= ∠ C。 而 ∠ 1= ∠ B, 所以∠ B= ∠ C。
A
D 梯形ABCD,AD∥BC,AB=CD
C
B
等腰梯形的性质
1、等腰梯形同一底边上的两个底角相等 2、等腰梯形的两条对角线相等 3、等腰梯形是轴对称图形,上下底的中点连线所在直线是对称轴
例1:如图,延长等腰梯形ABCD腰BA与 CD,相交于点E,求证∆EBC和∆EAD是等腰 三角形。
证明:因为四边形ABCD是等腰梯形,
E
所以∠ B= ∠ C。 所以∆EBC是等腰三角形。
A 1 2 D
因为AD∥BC,
所以∠1=∠B,∠2=∠C,
所以∠1=∠2。
B C
八年级数学《梯形》教案北师大版
八年级数学《梯形》教案北师大版教学目标:1. 知识与技能:理解梯形的定义,掌握梯形的性质,学会识别和画出梯形。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
教学重点:梯形的定义和性质教学难点:梯形的判定和应用教学准备:1. 教具:梯形模型、直尺、圆规、剪刀等。
2. 教学课件:梯形的定义、性质、判定和应用等内容。
教学过程:一、导入(5分钟)1. 复习旧知识:回顾四边形的定义和性质,引导学生思考:四边形中有哪些特殊的图形?2. 提问:你们听说过梯形吗?梯形有什么特点?二、新课讲解(15分钟)1. 展示梯形模型,引导学生观察梯形的特征,如上底、下底、腰等。
2. 讲解梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
3. 讲解梯形的性质:梯形的对边相等,对角相等,同一底上的角互补。
4. 示例:展示一些梯形的图片,让学生判断是否为梯形,并解释原因。
三、课堂练习(10分钟)1. 让学生独立完成教材上的练习题,巩固对梯形的理解和判定。
2. 选几份作业进行讲解和评价,纠正学生的错误。
四、拓展与应用(10分钟)1. 让学生运用梯形的性质解决实际问题,如计算梯形的面积、周长等。
2. 出示一些生活中的梯形图片,让学生观察和分析,培养学生的观察能力。
2. 提问:你们认为梯形在实际生活中有哪些应用?3. 鼓励学生提出问题,培养学生的批判性思维。
教学反思:本节课通过观察、操作、讲解、练习等方式,让学生掌握了梯形的定义和性质,并能应用于实际问题中。
在教学过程中,要注意引导学生积极参与,培养学生的动手能力和思维能力。
要关注学生的学习情况,及时纠正错误,提高学生的学习效果。
六、课堂练习(10分钟)1. 让学生独立完成教材上的练习题,巩固对梯形的理解和判定。
2. 选几份作业进行讲解和评价,纠正学生的错误。
八年级数学梯形课件1
八年级数学上册 第十一章 梯形知识点总结 (新版)新人教版
八年级数学上册第十一章梯形知识点总
结 (新版)新人教版
1. 梯形的定义
梯形是指有两条平行边的四边形。
其中,较长的两边叫做上底和下底,两条连接上底和下底的斜边叫做腰,而两条腰的交点叫做顶点。
2. 梯形的分类
根据上底和下底的长度关系,梯形可以分为以下几类:
- 等腰梯形:上底和下底长度相等的梯形。
- 直角梯形:腰和底边之间有直角的梯形。
- 一般梯形:除了等腰梯形和直角梯形以外的其他梯形。
3. 梯形的性质
- 梯形的对边平行:一条边和与之不共顶点的另一条边平行。
- 梯形的底角和顶角互补:底边的两个邻角和顶边的两个邻角互补,即它们的和为180度。
- 等腰梯形的性质:等腰梯形的底角相等,顶角相等,且底边中点连线与顶边中点连线平行。
4. 梯形的面积计算
梯形的面积可以用以下公式计算:
面积 = [(上底 + 下底) ×高] ÷ 2
5. 梯形的周长计算
梯形的周长可以用以下公式计算:
周长 = 上底 + 下底 + 两条腰的长度
以上是八年级数学上册第十一章梯形的基本知识点总结,希望对您的研究有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]列车内的验票工作原则上每()千米一次。A、100B、300C、400D、500 [单选]以下关于两种路由协议的叙述中,错误的是()。A.链路状态协议在网络拓扑发生变化时发布路由信息B.距离矢量协议是周期地发布路由信息C.链路状态协议的所有路由器都发布路由信息D.距离矢量协议是广播路由信息 [填空题]吃势是指某部位()予定的量。 [单选]怎样路由器的配置才能够避免split-horizon阻止路由更新()。A.为每个有独一无二DLCI的PVC配置一个分割的子接口,并且给予接口分配分隔的子网B.配置每个点到点帧中继电路支持多播和广播流量C.在相同子网上配置许多子接口D.配置一个单独的子接口去建立多个PVC连接到多个远程 [单选]导致充填材料与洞壁界面间产生微渗漏的原因中不包括()A.充填材料小于牙体组织的热膨胀系数B.充填材料体积收缩C.充填压力不够D.洞缘的垫底材料溶解E.备洞时未去除无基釉 [单选]急性骨髓炎诊断与鉴别诊断最恰当的手段是()。A.SPECT局部断层显像B.局部骨静态显像C.骨三相检查D.全身骨显像E.骨关节显像 [单选]城乡规划是()。A.一定时期内城市和乡村建设、发展和管理的依据B.包括城市规划和乡村规划C.城市或乡村在一定时期内的发展计划D.城乡空间布局各项建设的综合部署和具体安排E.以上都是 [单选,B型题]肾手术的备皮范围为()A.白乳头至耻骨联合平面,两侧到腋后线B.白剑突至大腿上1/3前内侧及外阴部,两侧到腋后线C.自脐平线至大腿上1/3包括外阴D.自乳头连线至耻骨联合,前后均过正中线E.自唇下至乳头连线,两侧至斜方肌前缘 [单选]安全审计是保障计算机系统安全的重要手段之一,其作用不包括()A.检测对系统的入侵B.发现计算机的滥用情况C.发现系统入侵行为和潜在的漏洞D.保证可信网络内部信息不外泄 [多选]引起气化废热锅炉液位波动的因素有()。A、与之相连的蒸汽管网压力波动B、气化炉温度波动C、废热锅炉上水流量波动D、废热锅炉排污阀故障 [单选]一侧提睾反射消失常提示()A.胸1~2损害B.腰1~2损害C.骶1~2损害D.骶4~5受损E.脊髓横贯性损害 [问答题,简答题]采循环油样的操作 [多选]土壤环境质量评价指标主要包括()。A.土壤资源评价指标B.化学指标C.物理指标D.单项评价指标E.综合指标 [问答题,简答题]如何设计定(减)径机的孔型? [判断题]出境快件在其运输工具离境6小时前,快件运营人应向离境口岸检验检疫机构办理报检手续。()A.正确B.错误 [单选]航空器可否飞入空中危险区或临时空中危险区:()。A.不行B.可以,但必须得到相关部门的批准C.可以,但必须在规定时限以外 [单选]某二叉树为单枝树(即非叶子节点只有一个孩子节点)且具有n个节点(n>1)则该二叉树()。A.共有n层,每层有一个节点B.共有log2n层,相邻两层的节点数正好相差一倍C.先序遍历序列与中序遍历序列相同D.后序遍历序列与中序遍历序列相同 [单选]对肝右叶门脉血管的描述,哪一项错误A.门脉右前、后叶支可清晰显示B.门脉右支与胆囊长轴或垂直关系C.门脉右干、右前叶支与右后叶下段支构成"Y"形结构D.门脉右前叶支与胆囊长轴构成平行关系E.门脉右干及前后叶支构成"Y"形结构 [单选]临床医师在全面康复中应做到()A.是康复二级预防的组织者和执行者B.是康复医疗的执行者C.是康复三级预防的组织者D.是负责住院患者的医疗康复者E.是全面康复的执行者 [单选,A1型题]下述哪种糖尿病不需首选胰岛素()。A.幼年重型糖尿病B.合并严重感染的糖尿病C.轻型糖尿病D.需作手术的糖尿病患者E.合并妊娠的糖尿病患者 [单选]对煤的工业分析包括测定煤的()。A.灰分、水分、挥发分、固定碳B.灰分、水分、挥发分、粘结性C.灰分、水分、发热量、硫分 [单选]我国门静脉高压症病人的最常见原因是()A.胆汁性肝硬化B.血吸虫性肝硬化C.肝炎后肝硬化D.先天性门静脉狭窄E.酒精性肝硬化 [单选]下列关于内文版式设计的表述,错误的是()。A."上下居中"是指在一定高度的版心部位内图文要排在高低适中的地方B."另面"表示某一部分图文要从新的一个页面开始排,这个新的页面必须是单码面C.页码按照标示方式的不同,可以分成显性的明码和隐性的暗码D.期刊排版转页时,下转 [单选,A型题]以下哪项不属于食管的生理性狭窄()A.与咽连接处B.主动脉弓压迹C.左主支气管压迹D.食管下段鸟嘴样狭窄E.与胃连接部位 [单选,A1型题]我国现存最早的脉诊专著是()A.《脉经》B.《脉诀》C.《濒湖脉学》D.《三指禅》E.《脉象统类》 [单选,A1型题]可以增强母畜超排的同期排卵效果的生殖激素是()A.催产素B.孕马血清促性腺激素C.前列腺素D.人绒毛膜促性腺激素E.促卵泡素 [单选]狭窄性腱鞘炎的病理改变为()A.腱鞘炎B.滑囊炎C.肌腱炎.腱鞘炎和滑囊炎E.肌腱炎和腱鞘炎 [问答题]在公共场所怎样避震? [单选]对拟建安装工程数量的计算与确定,指的是()。A.安装工程计量B.设计概算计量C.施工图预算计量D.工程量清单计量 [判断题]一般来说,人们随着知识,能力的提高和增强,会自己作出肯定的回答和评价,也希望别人认可并得到他人,集体和社会的尊重与爱护,这就产生了自尊心理.在这里,自我承认往往比社会承认更重要.A.正确B.错误 [单选]流行性腮腺炎为()A.呼吸道飞沫传播B.粪-口传播C.血液及注射传播D.虫媒传播E.接触传播 [单选,A1型题]预防医学研究的主要内容是()A.人群的健康状况B.环境因素的生物学效应C.改善生活、生产环境,增进人群健康D.人类疾病的预防措施E.人群中疾病发生发展的规律和影响健康的各种因素 [问答题,简答题]成功销售主管应该有几种? [单选,案例分析题]某新建电厂装有2×300MW机组,选用一组200V动力用铅酸蓄电池容量2000Ah,二组控制用铅酸蓄电池容量600Ah,蓄电池布置在汽机房层,直流屏布置在汽机房,电缆长28m。该厂直流系统有微机监控装置,请说明直流柜上可装设下列哪项测量表计()?A.直流母线电压表B.蓄 [单选]事业单位在财产清查中发现事业用材料盘亏,其中属于正常损耗的应()。A.计入当期经营支出B.计入当期事业支出C.直接抵减一般基金D.冲减事业用材料盘盈价值 [单选,A1型题]具有高等学校医学专科学历,参加执业助理医师资格考试者,应在医疗、预防、保健机构中试用期满()A.6个月B.18个月C.1年D.2年E.3年 [单选]家庭承包的承包方是()。A.本集体单位以外的个人B.本集体经济组织的农户C.本集体单位以外的单位D.既可以是本集体经济组织的农户,也可以是本集体经济组织以外的单位或个人 [单选]在稀溶液凝固点降低公式△tf=Kfb中,b表示的是溶液的。A.摩尔分数B.质量摩尔浓度C.物质的量浓度D.质量分数 [单选,A1型题]让心理创伤患者学习正确地觉知和识别自己的情绪属于()A.心理教育B.情绪情感的减压和调控训练C.认知重构D.创伤暴露和创伤加工E.促进未来安全和发展的技能训练 [问答题,简答题]什么叫稀土?写出所有稀土元素的名称及符号。