1.1.2弧度制(2015年人教A版数学必修四导学案)

合集下载

高一数学《1.1.2 弧度制》教案高中新课程数学(新课标人教A版)必修四

高一数学《1.1.2 弧度制》教案高中新课程数学(新课标人教A版)必修四

1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点: 理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67P P ,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).3.探究:如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A ,终边与圆交于点B .请完成表格.-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?角α的弧度数的绝对值是:r l =α,其中,l 是圆心角所对的弧长,r 是半径. 5.根据探究中180rad π︒=填空:1___rad ︒=,1___rad =度显然,我们可以由此角度与弧度的换算了.6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1)精确值;(2)精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.y x A αO B8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =. 其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积.例4.利用计算器比较sin1.5和sin85︒的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习教材10P .9.学习小结(1)你知道角弧度制是怎样规定的吗?(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?五、评价设计1.作业:习题1.1 A 组第7,8,9题.2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.。

人教A版数学四1.1.2弧度制导学案

人教A版数学四1.1.2弧度制导学案

1.1.2弧度制【使用说明及学法指导】先精读一遍教材P6 P9,用红笔进行勾画;再针对导学案问题导学部分二次阅读并回答,时间不超过40分钟;2.限时完成导学案合作探究部分,书写规范。

3.找出自己的疑惑和需要讨论的得问题准备课上讨论质疑;4.必须记住的内容:○1理解1弧度的角、弧度制的定义、换算.熟记特殊角的弧度数;○2角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的。

【学习目标】1.自主学习,合作探究,学会○1理解1弧度的角、弧度制的定义、换算.熟记特殊角的弧度数 。

2.激情投入,享受学习成功的快乐。

【合作探究】: 1.度量角的大小第一种单位制—角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1°的 角是如何定义的?规定周角的3601作为1°的角,我们把用度做单位来度量角的制度 叫做角度制,有了它,可以计算弧长,公式为180rn l π=2.探究30°的圆心角,半径r 为1,2,3,4,分别计算对应的弧 长l ,再计算弧长与半径的比 。

结论:圆心角不变,则比值 。

学习新课:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad探究:1.平角、周角的弧度数 。

2.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是03.角α的弧度数的绝对值rl =α(l 为弧长,r 为半径)4.利用弧度制证明下列关于扇形的公式:其中R 是半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.. ()1l Rα=()2122S R α=()132S lR =2. 角度制与弧度制的换算:∵ 360︒= rad ∴180︒= rad∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad1 把'3067化成弧度2 把rad π53化成度3用弧度制表示: 终边分别在x 轴、y 轴、坐标轴上的角的集合4.用弧度制表示:第二象限角的集合5.教材P9练习1---6(做在课本上) 课外作业1. 选出终边相同的角的选项( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或 第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角 为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度 数为 .8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B .9. 教材P9习题1.1A 组4--10(做在课本上) 【我的疑惑】【课堂小结】 1.知识方面:2.数学思想方面:。

高中数学 1.1.2弧度制教案1 新人教A版必修4-新人教A版高一必修4数学教案

高中数学 1.1.2弧度制教案1 新人教A版必修4-新人教A版高一必修4数学教案

〔三〕给出一般规律ɑ所对弧的长为L ,那么,角ɑ的弧度数的绝对值是|a|=rl 教师引导:继续观察上述表格,看一看∠AOB 的弧度数与∠AOB 的度数的符号有什么关系?〔建立角的集合与实数集之间的一一对应关系,而这种关系在表中很容易发现。

〕 (四)角度制与弧度制的换算360º = 2π rad 180º = π rad 学生回答公式,老师再次强调:必须熟记住180º = π rad ,这是知识的本源.只要记住方法弧度制与角度制的换算就会迎刃而解. 三、应用举例及课 堂练习约15分钟 课本第7页例题1:把67°30′化成弧度;补充:把〔1〕300 ,〔2〕-450化成弧度。

引导学生通过利用换算方法把度换算为弧度,在黑板上写出解题过程.〔强化弧度的表示.〕补充例题2:把(1)54π,(2) 2 化成角度。

引导学生解题,掌握弧度换算为角度的方法〔板书〕.并填写完下表.〔强化互化公式的应用〕再次阐述一一对应关系引入了弧度制之后,角和实数就存在了一一对应的关系〔阐明引入弧度制的优点之一.〕课堂练习:度 00300600 1200 1350 2700弧度4π2π65ππ2π2.将分针拨快15分钟,那么分针转过的弧度数是〔 〕 A -3π B 3π C -2π D 2π 3.5弧度的角所在的象限为〔 〕A 第一象限B 第二象限C 第三象限D 第四象限〔对本节课的重点进行针对性的训练。

〕1,2,3题学生口答,教师多媒体展示,并再次强调互化的两种方法。

rad 01745.01801≈=︒π;815730.57)180(1'︒=︒≈︒=πrad ;〖板书设计〗。

高一数学人教A版必修4第一章1.1.2 弧度制 教学设计

高一数学人教A版必修4第一章1.1.2 弧度制 教学设计

长来定义角度,而产生新的角度单位呢?那么我们就先通过简单的计算来看看能不能发现什么规律?【学生活动】分组讨论,探索研究探究1:角度为30,60的圆心角,当半径1,2,3,4r =时,分别计算对应的弧长l ,计算后你们能发现什么规律?有没有什么比值或者量是不变的?30θ=, 1r =时,3011801806n r l πππ⨯⨯===,6π=r l 2r =时,3021801803n r l πππ⨯⨯===,6π=r l3r =时,3031801802n r l πππ⨯⨯===,6π=r l4r =时,30421801803n r l πππ⨯⨯===,6π=r l 60θ=,1r =时,6011801803n r l πππ⨯⨯===,3π=r l2r =时,60221801803n r l πππ⨯⨯===,3π=r l 3r =时,603180180n r l πππ⨯⨯===,3π=r l4r =时,60441801803n r l πππ⨯⨯===,3π=r l 发现结论:圆心角不变则比值不变,这个比值与弧长和半径的大小无关,只和角度大小有关。

(抽取两个小组分享他们的发现)因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是度量角的另外一种单位制——弧度制(客观性,有理可循)。

环节三:归纳概括(新概念和新公式),初步巩固及总结(一收)【教师活动】弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号1 rad 表示,读作1弧度。

这种以弧度为单位来度量角的制度叫做弧度制。

如图, 角在形成过程中,射线上的任意一点在旋转过程中,走过的弧长以及圆弧所在圆的半径虽然不同,但是走过的角度是相同的(几何画板展示)【学生活动】即时回答:弧长分别为r,2r,半圆,一个圆所对的圆心角的弧度数,可以发现圆心角弧度数等于弧长和半径的比值,得出结论rl=α 【教师活动】几何画板展示问题,并顺便说明正角的弧度数为正,负角弧度数为负,零角的弧度数为0.【教师活动】提问:弧度制与角度制相比,不同之处在哪里? (教师引导学生进行小结) 【学生活动】在教师的引导下,整理得:1.定义方式不同:弧度制是以“弧度”为单位的度量角的单位制,角度制是以“度”教师提供的素材,通过小组探究讨论,让学生有充足的时间空间自主完成知识建构让学生体会数学中下定义本质上是抓住事物的本质,而事物的本质则是变化过程中的不变性.通过具体图象,以形助数,直观定义新概念。

高中数学 1.1.2弧度制说课稿 新人教A版必修4-新人教A版高一必修4数学教案

高中数学 1.1.2弧度制说课稿 新人教A版必修4-新人教A版高一必修4数学教案

1.1.2《弧度制》说课稿我说课的内容是必修4第一章第一节第二课时《弧度制》。

下面我将从教材分析﹑教法与学法﹑教学过程﹑板书设计、教学反思五个方面进行阐述。

一、教材分析:⒈内容要求:①新课程标准对于《弧度制》的要求是“了解弧度制的概念,能进行弧度与角度的互化”。

②实际上高考对弧度制的考察没出过单独的题目,都是掺杂在其他题目中,或者说对它的考察倾向于计算工具的考察。

③另外,本节课有着承上启下的作用。

学生在初中已经学过角的度量单位“度”,本节课还是后继学习任意角的三角函数等知识的理论准备。

此外,弧度制统一了度量弧与半径的单位,大大简化了有关公式及运算。

⒉教学目标:知识目标:理解1弧度概念,能进行弧度与角度的互化。

能力目标:我在本节课的教学过程中设置了3个探究,由此提高学生自主解决问题的能力;情感目标:也是通过上述3个探究使学生体验主动提出问题,自主解决问题的快乐;同时懂得事物之间是相互联系的、相互转化的;懂得用联系的观点来看待问题。

⒊教学重点、难点:重点:理解弧度制的意义,能进行角度制与弧度制的互化。

难点:1弧度角定义的合理性。

4.课时的安排及教具准备用一课时来完成这一节内容,使用的教具是多媒体。

二、教法与学法:⒈学情分析:一方面,学生已经学习过角度制的定义;加之教材内容编排上由浅到深、层层递进,因此本节课采用以下教学方法:⑴小组合作教学法:将学生分成8个小组,每组6人左右以便于学生自主探究;⑵运用“问题解决”的教学模式,层层递进的设置一些问题,逐渐的将学生引入到教学过程中,进而获取问题的答案;具体到本节课中,体现为:3次提出问题,学生3次探究,解决3个问题这样一个流程。

另一方面,我所授课的班级学生的基础不是很扎实,平时大部分学生比较懒,不愿意动脑筋,但反应速度还是比较快的。

所以在教学过程中我采取循序渐进的方法,加深他们对基础知识的理解,并加强课堂巩固训练。

2.教法和依据我在本节课中,采用学案导学,学案提前一天下发,上课前我对小组长进行了培训,以此引领学生通过自主学习和小组合作探究的方法进行教学,必要时老师给予适当的点评和补充。

高中数学(1.1.2弧度制)教案新人教A版必修4

高中数学(1.1.2弧度制)教案新人教A版必修4

1.1.2 弧度制整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要•现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单1位进行度量,并且一度的角等于周角的,记作1 °.360°通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法•在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性•这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的- 对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的•通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性•通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的•进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点三维目标1•通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2•通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣• 重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算•教学难点:弧度的概念及其与角度的关系• 课时安排1课时教学过程导入新课思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器一一日晷,或者利用普遍使用的钟表•实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法一一弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系一一弧的度数等于圆心角的度数随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数. 圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里我们学习过角的度量,1。

人教A版高中数学必修四弧度制教案(2)

人教A版高中数学必修四弧度制教案(2)

4-1.1.2弧度制(2)教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。

教学过程:一、复习:弧度制的定义,它与角度制互化的方法。

二、由公式:⇒=r l α α⋅=r l 比相应的公式180rn lπ=简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积例一 利用弧度制证明扇形面积公式lR S 21=其中l 是扇形弧长,R 是圆的半径。

证: 如图:圆心角为1rad 的扇形面积为:221R ππ弧长为l 的扇形圆心角为rad R l ∴lR R R l S 21212=⋅⋅=ππ比较这与扇形面积公式 3602R n S π=扇要简单 例二 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π ⑵ ο165 解: cm r 10= ⑴: )(3401034cm r l ππα=⨯=⋅= ⑵:rad rad 1211)(165180165ππ=⨯=ο ∴)(655101211cm l ππ=⨯=例三 如图,已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

解:设扇形的半径为r ,弧长为l ,则有⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22162l r rl l r ∴ 扇形的面积221rl S ==例四 计算4sin π5.1tan解:∵ο454=π∴ 2245sin 4sin==οπ'578595.855.130.571.5rad οο==⨯=•∴ 12.14'5785tan 5.1tan ==οo R S l例五 将下列各角化成0到π2的角加上)(2Z k k ∈π的形式⑴π319⑵ ο315- 解:πππ63319+=ππ2436045315-=-=-οοο例六 求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m 解: ∵ 360π=ο∴ )(471514.3453m R l ≈⨯≈⨯=⋅=πα三、练习: 四、作业:。

新人教A版必修四1.2《弧度制》word导学案

新人教A版必修四1.2《弧度制》word导学案

§1.1.2 弧度制导学案主编:段小文审核:彭小武班级姓名【学习目标】了解弧度制,并能进行弧度与角度的换算。

【学习过程】一、自主学习(一)知识链接:复习1、写出终边在下列位置的角的集合。

(1)x轴:;(2)y轴:。

复习2、角度制规定,将一个圆周分成份,每一份叫做度,故一周等于度,平角等于度,直角等于度。

(二)自主研讨:(预习教材P6-P9)探究一:弧度制定义:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad,这种度量角的单位制称为。

新知:①正角的弧度数是数,负角的弧度数是数,零角的弧度数是。

②角α的弧度数的绝对值lrα=(l为弧长,r为半径)反思:① 1rad等于度,②1︒等于弧度。

试试:完成特殊角的度数与弧度数的对应表:二、合作探究1、按要求解答下列各题:(1)把3730'︒化成弧度,(2)把35radπ化成度。

2、用弧度制表示:(1)终边在x轴上的角的集合,(2)终边在y轴上的角的集合。

3、利用弧度制证明扇形面积公式:(1)12S lR=,(2)212S Rα=。

三、交流展示1、把2230'︒化成弧度表示是( ) A. 4π B. 8π C. 16π D. 32π 2、下午正2点时,时针和分针的夹角为( ) A. 6π B. 4π C. 3π D. 2π 3、半径为2的圆的圆心角所对弧长为6,则其圆心角为 rad 。

4、54π化为度表示是 。

四、达标检测(A 组必做,B 组选做)A 组:1、时钟经过一小时,时针转过了( ) A. 6πrad B.-6π rad C. 12πrad D.-12πrad2、若α=-3,则角α的终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、半径为πcm ,中心角为120o的弧长为( ) A .cm 3π B .cm 32π C .cm 32π D .cm 322π 4、若扇形的圆心角α=2,弧长l =3π,则该扇形的面积S =( )A. 3πB. 32π C. 6π D. 6 B 组:1、已知集合M ={x ∣x = 2π⋅k , k ∈Z },N ={x ∣x = 2ππ±⋅k , k ∈Z },则( ) A .集合M 是集合N 的真子集 B .集合N 是集合M 的真子集C .M = ND .集合M 与集合N 之间没有包含关系2、如图,终边落在阴影部分(包括边界)的角的集合是( )A .{α∣120°<α<330°}B .{α∣k ·360°-30°≤α≤k ·360°+120°,k ∈Z }C .{α∣k ·360°+120°≤α≤k ·360°+330°,k ∈Z }D .{α∣k ·180°+120°≤α≤k ·180°+330°,k ∈Z }3、已知一个扇形的周长是6cm,该扇形的中心角是1弧度,求该扇形的面积。

高一数学人教A版必修四教案:1.1.2 弧度制 Word版含答案

高一数学人教A版必修四教案:1.1.2 弧度制 Word版含答案

1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67P P ~,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,yxAαOB或1弧度,或1(单位可以省略不写).3.探究:如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A ,终边与圆交于点B .请完成表格.-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为r 的圆的圆心角α所对的弧长是,那么a 的弧度数是多少?角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 5.根据探究中180rad π︒=填空:1___rad ︒=,1___rad =度显然,我们可以由此角度与弧度的换算了. 6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =. 其中R 是半径,是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 例4.利用计算器比较sin1.5和sin85︒的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习 教材10P .9.学习小结(1)你知道角弧度制是怎样规定的吗?(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?五、评价设计1.作业:习题1.1 A 组第7,8,9题. 2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.。

人教A版高中数学必修四教案弧度制

人教A版高中数学必修四教案弧度制

1.1.2弧度制(一) 教学目标知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的?规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制.二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质:①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=r r③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=.r l4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180()nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.7.弧长公式l l r ra a=??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度.例2.把rad53π化成度.例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-.解: (1),672319πππ+= 而67π是第三象限的角,193p \是第三象限角. (2)315316,666p p pp -=-+\-是第二象限角.ORl.,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lRR R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴Rl R R n S ⋅=⋅⋅=2118021π.可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P6 –P8;②教材P9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.。

高中数学必修四1.1.2弧度制学案新人教A版必修4

高中数学必修四1.1.2弧度制学案新人教A版必修4

度制.
2.弄清 1 弧度的角的含义是了解弧度制,并能进行弧度与角度换算的关键.
3.引入弧度制后,应与角度制进行对比,明确角度制和弧度制下弧长公式和扇形面积公式的
联系与区别 .
1. 1 弧度的角:把长度等于
的弧所对的圆心角叫做
读作

2.弧度制:用
作为单位来度量角的单位制叫做弧度制.
3.角的弧度数的规定:
最大面积是多少?
解 设扇形的圆心角为 θ,半径为 r ,弧长为 l ,面积为 S,
1 ∴ S= 2lr

1 2×
(40

2r
)
r

20r

r
2=-
(
r

10)
2+ 100.
∴当半径 r = 10 cm 时,扇形的面积最大,最大值为 100 cm 2,
l 40-2×10 此时 θ =r = 10 rad =2 rad.
l 径为 r 的圆的圆心角 α 所对弧的长为 l ,那么,角 α 的弧度数的绝对值是 | α | = r . 这里, α
的正负由角 α 的终边的旋转方向决定.
问题 4 角度制与弧度制换算时,灵活运用下表中的对应关系,请补充完整
.
角度化弧度
弧度化角度
360°= rad
2π rad =
180°= rad
180
12
180 π °即可化为角度.
225
225 π 5π
所以, (1)112 °30′= 112.5 °= 2 °= 2 × 180= 8 .
7π 7π 180 (2) - 12 =- 12 × π °=- 105°.
小结 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记

高中数学人教A版必修四1.1.2教学设计《1.1.2 弧度制》

高中数学人教A版必修四1.1.2教学设计《1.1.2 弧度制》

《1.1.2弧度制》一.讲什么1. 教学内容:(1)教学原理:通过类比引出弧度制。

(2)思想方法:运用类比的方法。

(3)能力素养:激发学生探究新知识的兴趣,体验成功的快乐。

2.内容解析:通过类比长度、重量的不同度量制,使学生体会一个量是可以用不同的单位制来度量的。

在单位圆中,弄清1弧度的角的含义,了解弧度制,并能进行弧度制与角度的换算,同事体会到角的集合与实数集R之间可以建立一一对应关系。

遵循了学生的知识发展过程,由浅入深,由已有的知识过渡到未知的知识,让学生体会到探索新知识的乐趣。

二.为何讲1、教学目标:(1)从长度、重量的不同度量制入手,使学生体会到同一个角度是可以用不同的单位制度量。

(2)结合单位圆,弄给出1弧度角的定义,了解弧度制。

(3)引导学生建立角的弧度数的绝对值与圆的半径、弧长的关系。

(4)引出弧度制后,应与角度制进行对比,进行互化。

2、目标解析:(1)类比于现有度量制,让学生易于接受角的不同度量制。

(2)在单位圆中了解弧度制,弄清楚1弧度的角的含义,是学习弧度制的基础和关键。

(3)采用由特殊到一般的思维方式,让学生归纳总结出=l r,求圆心角时,强调其结果是圆心角弧度数的绝对值。

(4)两种度量制之间的转化与互化,使得学生清楚同一大小的角,可以在两种度量制下进行刻画,同时也明确弧度制是以“弧度”为单位来度量角的单位制,角度值是以“度”为单位来度量角的单位制。

教学重点:从现有不同度量制入手,引出弧度制,弧度制与角度制之间的转化。

三.怎样讲(一)教学准备1.教学问题(1)弧度制的引入及1弧度角的定义是我们的第一个问题。

1弧度角的概念是如何产生的?怎么理解?这是一种新的度量角的方式,是学生很难理解的。

我们在单位圆中,采用数形结合的方式给出定,学生较易接受。

(2)一定大小的圆心角所对应的弧长与半径的比值是唯一确定的,与半径的大小无关,这是我们遇到的第二个问题。

解决这个难题,我们采用几何画板作图对比即可。

人教A版高中数学必修4导学案设计:1.1.2弧度制(无答案)

人教A版高中数学必修4导学案设计:1.1.2弧度制(无答案)

第一章§1.1.2弧度制学习目标:1. 了解1弧度的角,弧度制的定义,熟记特殊角的弧度数2. 掌握角度与弧度的换算公式并能熟练进行角度和弧度的换算3.了解角的集合与实数集R之间可以建立起一一对应关系4.掌握弧度制下的弧长公式,扇形面积公式5.会用弧度制解决某些实际问题预习导航:要求:在上课前认真阅读教材,完成导学案上的预习导航,并将不懂知识进行标注1.弧度(1)长度等于半径长的弧所对的圆心角叫做,记作。

用弧度为单位来度量角的单位制,叫做。

(2)正角的弧度数是,负角的弧度数是,零角的弧度数是,角α的弧,其中l是以角α作为圆心角时所对弧的长,r是圆的半径。

2.角度与弧度的换算360°= ,=πrad 。

1°= rad,1rad = 。

3.扇形的弧长与面积公式(1)在弧度制下,弧长公式为,扇形面积公式为。

(2)在弧度制下,弧长公式为,扇形面积公式为。

探究问题(一)弧度的概念:思考1:在平面几何中,1°的角是怎么定义的?思考2:在半径为r的圆中,圆心角n°所对应的圆弧长如何计算?思考3:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad,读作1弧度。

那么,1弧度圆心角的大小与所在圆的半径的大小是否有关?为什么?思考4:约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.如果将半径为r的圆的一条半径OA,绕圆心顺时针旋转到OB,若弧AB长为2r,那么∠AOB的大小为多少弧度?思考5:如果半径为r的圆的圆心角α所对的弧的长为l,那么角α的弧度数的绝对值如何计算?探究问题二角度与弧度的换算思考1:一个圆周角以度为单位度量是多少度?以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?思考2:根据上述关系,1°等于多少弧度?1弧度等于多少度?思考3:根据度与弧度的换算关系,完成下表(2)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.()1l R α=()2122S R α=()132S l R=课堂小结:1.这节课学到了什么2.各小组表现如何课下作业:说明(1)今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数.如α=2表示α是2rad 的角. 例2: 利用弧度制证明下列关于扇形公式: 课本P10 习题1.1 A 组:6,7,8,9,10.练习: 1、在弧度制下,与角α终边相同的角如何表示? 终边在坐标轴上的角如何表示?。

高中数学 第一章 三角函数 1.1.2 弧度制导学案 新人教A版必修4-新人教A版高一必修4数学学案

高中数学 第一章 三角函数 1.1.2 弧度制导学案 新人教A版必修4-新人教A版高一必修4数学学案

1.1.2 弧度制学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一 角度制与弧度制思考1 在初中学过的角度制中,1度的角是如何规定的? 答案 周角的1360等于1度.思考2 在弧度制中,1弧度的角是如何规定的,如何表示?答案 把长度等于半径长的弧所对的圆心角叫做1弧度(radian)的角,用符号rad 表示. 思考3 “1弧度的角”的大小和所在圆的半径大小有关系吗?答案 “1弧度的角”的大小等于半径长的圆弧所对的圆心角,是一个定值,与所在圆的半径大小无关.梳理 (1)角度制和弧度制 角度制用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360弧度制长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制(2)角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr. 知识点二 角度制与弧度制的换算思考 角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢? 答案 利用1°=π180rad 和1 rad =(180π)°进行弧度与角度的换算.梳理 (1)角度与弧度的互化角度化弧度 弧度化角度 360°=2π rad2π rad=360°180°=π rad π rad=180° 1°=π180rad≈0.017 45 rad1 rad =⎝⎛⎭⎪⎫180π°≈57.30°(2)一些特殊角的度数与弧度数的对应关系度0° 1° 30° 45° 60° 90°120°135° 150° 180° 270° 360° 弧度 0π180π6π4π3π22π33π45π6π3π22π知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示?答案 设扇形的半径为R ,弧长为l ,α为其圆心角,则:α为度数 α为弧度数 扇形的弧长l =απR 180°l =αR 扇形的面积S =απR 2360°S =12lR =12αR 2类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.解 (1)20°=20π180=π9.(2)-15°=-15π180=-π12.(3)7π12=712×180°=105°.(4)-11π5=-115×180°=-396°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad=180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝ ⎛⎭⎪⎫180π°即可.跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.解 (1)112°30′=⎝⎛⎭⎪⎫2252°=2252×π180=5π8.(2)-5π12=-⎝ ⎛⎭⎪⎫5π12×180π°=-75°.类型二 用弧度制表示终边相同的角例2 把下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出是第几象限角. (1)-1 500°;(2)23π6;(3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角. (2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角. (3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角. 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°.∴在[0°,720°]内与2π5角终边相同的角为72°,432°.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A.π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A.2 B.2sin 1 C.2sin 1 D.4sin 1答案 (1)A (2)D解析 (1)扇形的中心角为120°=2π3,半径为3,所以S 扇形=12|α|r 2=12×2π3×(3)2=π.(2)连接圆心与弦的中点,则以弦心距、弦长的一半、半径长为长度的线段构成一个直角三角形,半弦长为2,其所对的圆心角也为2,故半径长为2sin 1.这个圆心角所对的弧长为2×2sin 1=4sin 1. 反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.下列说法中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用角度制和弧度制度量角,都与圆的半径有关 答案 D解析 根据1度、1弧度的定义可知只有D 是错误的,故选D. 2.时针经过一小时,转过了( ) A.π6 rad B.-π6 radC.π12 rad D.-π12rad答案 B解析 时针经过一小时,转过-30°, 又-30°=-π6 rad ,故选B.3.若θ=-5,则角θ的终边在( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限答案 D解析 2π-5与-5的终边相同, ∵2π-5∈(0,π2),∴2π-5是第一象限角,则-5也是第一象限角.4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4答案 C解析 设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1.5.已知⊙O 的一条弧的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是 . 答案 - 3解析 设⊙O 的半径为r ,其内接正三角形为△ABC .如图所示,D 为AB 边中点, AO =r ,∠OAD =30°, AD =r ·cos 30°=32r , ∴边长AB =2AD =3r . ∴的弧长l =AB =3r . 又∵α是负角, ∴α=-l r=-3rr=- 3.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.课时作业一、选择题1.-300°化为弧度是( ) A.-43πB.-53πC.-74πD.-76π答案 B解析 -300°=-300×π180=-53π.2.下列与9π4的终边相同的角的表达式中,正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )答案 C解析 A ,B 中弧度与角度混用,不正确. 9π4=2π+π4,所以9π4与π4的终边相同. -315°=-360°+45°,所以-315°也与45°的终边相同.故选C. 3.下列转化结果错误的是( ) A.60°化成弧度是π3B.-103π化成度是-600°C.-150°化成弧度是-76πD.π12化成度是15° 答案 C解析 C 项中-150°=-150×π180=-56π.4.设角α=-2弧度,则α所在的象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 C解析 ∵-π<-2<-π2,∴2π-π<2π-2<2π-π2,即π<2π-2<32π,∴2π-2为第三象限角, ∴α为第三象限角.5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( )A.-34πB.-2πC.πD.-π答案 A解析 ∵-114π=-2π+⎝ ⎛⎭⎪⎫-34π =2×(-1)π+⎝ ⎛⎭⎪⎫-34π,∴θ=-34π.6.若扇形圆心角为π3,则扇形内切圆的面积与扇形面积之比为( )A.1∶3B.2∶3C.4∶3D.4∶9答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsinπ6=r +2r =3r .∴S 内切圆=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切圆∶S 扇形=2∶3.7.《九章算术》是我国古代数学成就的杰出代表作.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径为4 m的弧田,按照上述经验公式计算所得弧田面积约是( )A.6 m 2B.9 m 2C.12 m 2D.15 m 2答案 B解析 根据题设,弦=2×4sin π3=43(m),矢=4-2=2(m),故弧田面积=12×(弦×矢+矢2)=12(43×2+22)=43+2≈9(m 2). 二、填空题8.在直径长为20 cm 的圆中,圆心角为165°时所对的弧长为 cm. 答案55π6解析 ∵165°=π180×165=11π12(rad),∴l =11π12×10=55π6(cm).9.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B = . 答案 [-4,-π]∪[0,π] 解析 如图所示,∴A ∩B =[-4,-π]∪[0,π].10.若2π<α<4π,且α与-76π角的终边垂直,则α= .答案 73π或103π解析 α=-76π-π2+2k π=2k π-53π,k ∈Z ,∵2π<α<4π,∴k =2,α=73π;或者α=-76π+π2+2k π=2k π-23π,k ∈Z ,∵2π<α<4π,∴k =2,α=103π.综上,α=73π或103π.11.如果圆心角为2π3的扇形所对的弦长为23,则扇形的面积为 .答案4π3解析 如图,作BF ⊥AC .已知AC =23,∠ABC =2π3,则AF =3,∠ABF =π3.∴AB =AFsin ∠ABF =2,即R =2.∴弧长l =|α|R =4π3,∴S =12lR =4π3.三、解答题12.已知一扇形的圆心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积; (2)若扇形的周长是30,当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓,∵α=60°=π3,R =10(cm),∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝ ⎛⎭⎪⎫π3-32 (cm 2). (2)∵l +2R =30,∴l =30-2R ,从而S =12·l ·R =12(30-2R )·R =-R 2+15R =-⎝⎛⎭⎪⎫R -1522+2254. ∴当半径R =152 cm 时,l =30-2×152=15(cm), 扇形面积的最大值是2254 cm 2,这时α=l R=2(rad). ∴当扇形的圆心角为2 rad ,半径为152 cm 时,面积最大,为2254cm 2. 13.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角;(2)在区间[-4π,π]上找出与α终边相同的角.解 (1)∵α=1 200°=1 200×π180=20π3=3×2π+2π3, 又π2<2π3<π, ∴角α与2π3的终边相同,∴角α是第二象限的角. (2)∵与角α终边相同的角(含角α在内)为2k π+2π3,k ∈Z , ∴由-4π≤2k π+2π3≤π,得-73≤k ≤16. ∵k ∈Z ,∴k =-2或k =-1或k =0.故在区间[-4π,π]上与角α终边相同的角是-10π3,-4π3,2π3.。

高中数学人教A版必修4教学案设计:1.1.2-弧度制

高中数学人教A版必修4教学案设计:1.1.2-弧度制

1.1.2 弧度制问题提出1.角是由平面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形,其中正角、负角、零角分别是怎样规定的?2.在直角坐标系内讨论角,象限角是什么概念?3.与角α终边相同的角的一般表达式是什么?S={β|β=α+k·360°,k ∈Z}4.长度可以用米、厘米、英尺、码等不同的单位度量,物体的重量可以用千克、磅等不同的单位度量.不同的单位制能给解决问题带来方便,以度为单位度量角的大小是一种常用方法,为了进一步研究的需要,我们还需建立一个度量角的单位制. 探究1:弧度的概念思考1:在平面几何中,1°的角是怎样定义的?将圆周分成360等份,每一段圆弧所对的圆心角就是1°的角.思考2:在半径为r 的圆中,圆心角n°所对的圆弧长如何计算? n r l ⋅=3602π=180rn π 1.1弧度的角把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1rad ,读作1弧度. 思考3:1弧度圆心角的大小与所在圆的半径的大小是否有关?为什么?思考4:约定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.如果将半径为r 圆的一条 半径OA ,绕圆心顺时针旋转到OB ,若弧AB 长为2r ,那么∠AOB 的大小为多少弧度?-2rad思考5:如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?|α|=l r2.角α的弧度数如果半径为r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值|α|=lr.思考6:半径为r 的圆的圆心与原点重合,角的始边与x 轴的非负半轴重合,交圆于点A ,终边与圆交于点弧AB 的长 πr 2πr r 2r 3πr OB 旋转的方向逆时针逆时针 逆时针逆时针顺时针探究(二):度与弧度的换算思考1:一个圆周角以度为单位度量是多少度?以弧度为单位度量是多少弧度?由此可得度与弧度有怎样的换算关系?360°、2π弧度、360°=2π rad思考2:根据上述关系,1°等于多少弧度?1rad 等于多少度? 1°=π180rad ≈0.01745 rad 、1 rad =(180π)°≈57.30°=57︒18/ 思考3:今后用弧度制表示角时,“弧度”二字或“rad ”通常略去不写,而只写该角所对应的弧度数.如α=2表示α是2rad 的角. 思考4:在弧度制下,角的集合与实数集R 之间可以建立一个一一对应关系,这个对应关系是如何理解的?角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一种一一对应关系:每一个角都有唯一的一个实数(角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(弧度数等于这个实数的角)和它对应.探究(三):弧长公式与扇形面积公式思考5:已知一个扇形所在圆的半径为R ,弧长为l ,圆心角为α(0<α<2π),那么扇形的面积如何计算?l =|α|·R ,S =12lR =12|α|R 23.扇形所在圆的半径为R ,弧长为l ,圆心角为α(0<α<2π),那么扇形的弧长l =|α|·R ,扇形面积S =12|α|R 2.思考6:在弧度制下,与角α终边相同的角如何表示? 终边在坐标轴上的角如何表示?)(2Z k k ∈+=παβ终边x 轴上:k π(k ∈z) 终边y 轴上:)(2Z k k ∈+ππ知识运用一、弧度制的概念问题例1.下列命题中,错误的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用弧度制度量角时,角的大小与圆的半径有关[思路点拨]正确理解角度制和弧度制的概念,对每个命题认真分析并作出判断.[解析]根据角度制和弧度制的定义可以知道,A ,B 是正确的;1 rad 的角是(180π)°≈57.30°,∴C 正确;无论是用角度制还是用弧度制度量角,角的大小都与圆的半径无关,故D 错误. [答案] D[一点通] 准确理解概念是判断的前提,弧度制与角度制的异同:例2.A.1弧度是1度的圆心角所对的弧B.1弧度是长度为半径长的弧C.1弧度是1度的弧与1度的角之和D.1弧度是长度等于半径长的弧所对的圆心角解析:根据1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.对照各选项,可知D 为正确答案. 答案:D二、角度与弧度的换算 例3.(1)把202°30′化成弧度;(2)把-512π化成角度;(3)已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α、β、γ、θ、φ的大小.[思路点拨] 第(1)(2)小题可直接利用1°=π180rad ,1 rad =(180π)°进行转化;第(3)小题可先统一单位,再比较大小.[精解详析] (1)202°30′=202.5°=4052×π180=98π.(2)-512π=-(512π×180π)°=-75°.(3)法一(化为弧度):α=15°=15×π180=π12,θ=105°=105×π180=7π12.显然π12<π10<1<7π12.故α<β<γ<θ=φ.法二(化为角度):β=π10=π10×(180π)°=18°,γ=1≈57.30°,φ=7π12×(180π)°=105°.显然,15°<18°<57.30°<105°. 故α<β<γ<θ=φ.[一点通] ①在进行角度与弧度的换算时,关键是抓住π rad =180°这一关系.②用弧度制表示角时,“弧度”或“rad ”可以省略不写,只写这个角所对应的弧度数即可.但是在用角度表示时,“度”或“°”却不能省略,以防止与弧度混淆.③用弧度作为单位时,常出现π,如果题目中没有特殊的要求,应当保留π的形式,不要写成小数.例4.与π4角终边相同的角的表达式是( )A.45°+2k πB.π4+k ×360°C.-315°+k ×360°,k ∈ZD.4π5+k π,k ∈Z解析:π4=45°,∴用角度制表示为k ·360°+45°,k ∈Z ,用弧度制表示为2k π+π4,k ∈Z .结合选项,∵45°与-315°终边相同,∴选项C 正确. 答案:C 例5.已知两角和为1弧度,且两角差为1°,这两个角的弧度数分别是多少?解:设两个角的弧度数分别为x ,y .∵1°=π180 rad ,∴⎩⎪⎨⎪⎧x +y =1,x -y =π180. 解得⎩⎨⎧x =12+π360,y =12-π360. 即所求两角的弧度数分别为12+π360,12-π360.三、扇形的弧长和面积公式例6.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?[思路点拨] 设出半径和圆心角,列出周长关系式,构建面积的函数解析式,应用二次函数求最值. [精解详析] 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r ,(4分)∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.(8分)∴当半径r =10 cm 时,扇形的面积最大,最大面积为100 cm 2,这时θ=l r =40-2×1010=2 rad. (12分)[一点通] 有关扇形的弧长l 、圆心角α、面积S 的题目,一般是知二求一的问题,解此类问题的关键在于灵活运用l =|α|·R ,S =12lR =12|α|R 2两组公式,采用消元思想或二次函数思想加以解决.4.弧度制与角度制的比较:(1)从定义上:弧度制是以“弧度”为单位度量角的单位制,角度制是以“度”为单位度量角的单位制.因此,弧度制和角度制一样,都是度量角的方法.(2)从意义上:1弧度是等于半径长的圆弧所对的圆心角(或该弧)的大小,而1°是圆的周长的1360所对的圆心角(或该弧)的大小;任意圆心角α的弧度数的绝对值|α|=lr,其中l 是以角α作为圆心角时所对的圆弧长,r 为圆的半径.(3)从换算上:1 rad =(180π)°,1°=π180rad.(4)从写法上:用弧度为单位表示角的大小时,“弧度”两字可以省略不写;如果以度(°)为单位表示角时,度(°)就不能省去.(5)作角的运算或表示角的集合时,角度制和弧度制不能混用,如2k π+30°或k ·360°+π4都是错误的.小结作业1.用度为单位来度量角的单位制叫做角度制,用弧度为单位来度量角的单位制叫做弧度制.2.度与弧度的换算关系,由180°=rad 进行转化,以后我们一般用弧度为单位度量角.3.利用弧度制,使得弧长公式和扇形的面积公式得以简化,这体现了弧度制优点. 作业:1.P10 习题1.1 A 组: 6,7,8,9,10.2.作业本. 课后作业 1.1 920°的弧度数为( )A.163 B .323 C.16π3 D.32π3解析:1 920°=π180×1 920弧度=323π弧度.答案:D 2.29π6是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角解析:29π6=4π+5π6,∵56π是第二象限角,∴29π6是第二象限角.答案:B3.若角α为第二象限角,则角α2是( )A.第一象限角B.第二象限角C.第一或第三象限角D.第一或第二象限角解析:∵角α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z .π4+k π<α2<π2+k π,k ∈Z ,则角α2是第一或第三象限角.答案:C4.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,则该弧所对的圆心角是原来的( )A.12倍 B .2倍 C.13倍 D .3倍 解析:设圆的半径为r ,弧长为l ,其弧度数为l r .将半径变为原来的一半,弧长变为原来的32倍,则弧度数变为32l 12r =3·lr ,即弧度数变为原来的3倍.答案:D 5.把-114π写成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是________.解析:-114π=-34π-2π=54π-4π,∴使|θ|最小的θ的值是-34π.答案:-34π6.用弧度表示终边落在y 轴右侧的角的集合为________.解析:y 轴对应的角可用-π2,π2表示,所以y 轴右侧角的集合为⎩⎨⎧⎭⎬⎫θ|-π2+2k π<θ<π2+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫θ|-π2+2k π<θ<π2+2k π,k ∈Z。

高中数学 弧度制学案 新人教A版必修4

高中数学 弧度制学案 新人教A版必修4

数学必修4学案第一章 1.1.2 弧度制
一、学习目标:
1、知识与技能:从明确引入弧度制的必要性,理解新单位制意义.
2、过程与方法:学生经历熟练掌握角度制与弧度制的换算.
3、情感态度与价值观:学生经历数学活动,感受数学活动充满了探索性与创造性.
二、重点与难点:
重点:理解弧度制引入的必要性,掌握定义,能熟练地进行角度制与弧度制的互化。

难点:用弧度制定义的理解。

三、课前学习:
在角度制下,当把两个带着度、分、秒各单位的角相加、相减时,由于运算进率非十进制,总给我们带来不少困难.那么我们能否重新选择角单位,使在该单位制下两角的加、减运算与常规的十进制加减法一样去做呢?从中能发现什么?
四、课中学习:
对课前的学习,进一步分析:
1、复习角度制的定义:
2、正确理解弧度制定义的含义。

3、掌握角度制与弧度制的互换方法。

4、分析例题1,总结方法
5、总结弧度制的作用:
8、第9页,练习1-6,
五、课后反思
对这一节的收获是什么?有什么问题期待解决?
六、作业设计:
P10习题A组4-10。

山东省高中数学《1.1.2 弧度制》导学案 新人教A版必修

山东省高中数学《1.1.2 弧度制》导学案 新人教A版必修

§1.1.2 弧度制1.理解弧度制的意义,正确地进行弧度制与角度制的换算,熟记特殊角的弧度数.2.了解角的集合与实数集R之间可以建立起一一对应关系.3.掌握弧度制下的弧长公式、扇形面积公式,会利用弧度制、弧长公式、扇形面积公式解决.69在初中,我们常用量角器量取角的大小,那么角的大小的度量单位为什么?二、新课导学※探索新知问题1:什么叫角度制?问题2:角度制下扇形弧长公式是什么?扇形面积公式是什么?问题3:什么是1弧度的角?弧度制的定义是什么?问题4:弧度制与角度制之间的换算公式是怎样的?问题5:角的集合与实数集R之间建立了________对应关系。

问题6:用弧度分别写出第一象限、第二象限、第三象限、第四象限角的集合.问题7:回忆初中弧长公式,扇形面积公式的推导过程。

回答在弧度制下的弧长公式,扇形面积公式。

※ 典型例题例1:把下列各角进行弧度与度之间的转化(用两种不同的方法) (1)53π(2)3.5 (3)252º (4)11º15¹变式训练:①填表②若6-=α,则α为第几象限角?③用弧度制表示终边在y 轴上的角的集合___ ____.用弧度制表示终边在第四象限的角的集合__ _____.例2: ①已知扇形半径为10cm,圆心角为60º,求扇形弧长和面积 ②已知扇形的周长为8cm , 圆心角为2rad,求扇形的面积变式训练(1):一扇形的周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求此扇形的最大面积.变式训练 (2):A=()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k,21ππ, B=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,22ππ则A 、B 之间的关系为 .※ 动手试试1、将下列弧度转化为角度:(1)12π= °;(2)-87π= ° ′; (3)613π= °;2、将下列角度转化为弧度:(1)36°= rad ; (2)-105°= rad ; (3)37°30′= rad ;3、已知集合M ={x ∣x = 2π⋅k , k ∈Z },N ={x ∣x = 2ππ±⋅k , k ∈Z },则 ( )A .集合M 是集合N 的真子集B .集合N 是集合M 的真子集C .M = ND .集合M 与集合N 之间没有包含关系4、圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变 C .扇形的面积增大到原来的2倍 D .扇形的圆心角增大到原来的2倍三、小结反思角度制与弧度制是度量角的两种制度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l r
3600 =
10 =
三:课堂研讨
rad
rad 0.01745 rad
1800 =
1 rad = (
rad
180

) 57.300
例 1 ①把 rad 化成度;②把 3.5 化成度.
3 5
课堂检测——
1.1.2 弧度制
'
姓名:
例 2①把 67 30 ' 化成弧度;②把 11 15 化成弧度;③②把 252 化成弧度。
r 2
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小 无关。 思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别 又是多少?
2.弧度的推广及角的弧度数的计算: 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 (其中 l 是以角 作为圆心角时所对弧的长, 的弧度数的绝对值是 | | , 。 r 是圆的半径) 说明:我们用弧度制表示角的时候, “弧度”或 rad 经常省略,即只写一实 数表示角的度量。 3.角度与弧度的换算
l r
3600 =
10 =
三:课堂研讨
rad
rad 0.01745 rad
1800 =
1 rad = (
rad
180

) 57.300
例 1 ①把 rad 化成度;②把 3.5 化成度.
3 5
课堂检测——
ቤተ መጻሕፍቲ ባይዱ
1.1.2 弧度制
姓名:
1.填空将下表中弧度制化为角度
一:学习目标 1.理解弧度制的意义; 2.能正确的应用弧度与角度之间的换算; 3.记住公式 | | 二:课前预习 我们把周角的
④ 12
4.把下列各角从度转化为弧度 ① 75

② 210

③ 135

④ 22 30

'
5.已知扇形的周长为 20 cm,当它的半径和圆心角各取什么值时,才能使扇形 的面积最大?最大面积是多少?
课外作业——弧度制
姓名:
1.
2.已知一扇形的周长为 c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的 最大值. π 3.如果弓形的弧所对的圆心角为 3 ,弓形的弦长为 4 cm,则弓形的面积是_____cm2. 4.已知扇形的圆心角为 2 rad,扇形的周长为 8 cm,则扇形的面积为_________cm2. 5.圆的半径变为原来的 3 倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心 角的 倍. 6.已知扇形 AOB 的圆心角α =120°,半径 r=3,求扇形的面积.
7.1 弧度的圆心角所对的弦长为 2,求这个圆心角所对的弧长及圆心角所夹的扇形的面 积.
课题:
——1.1.2 弧度制
姓名: 备 注
一:学习目标 1.理解弧度制的意义; 2.能正确的应用弧度与角度之间的换算; 3.记住公式 | | 二:课前预习 我们把周角的
l ( l 为以角 作为圆心角时所对圆弧的长, r 为圆半径) 。 r
1 规定为 1 度的角,而把这种用度作单位来度量角的单位制 360
叫做角度制. 1.弧度角的定义: 规定:我们把长度等于半径的弧所对的圆心角叫做 1 弧度的角,记此角为 1rad . 练习: 圆的半径为 r , 圆弧长为 2 r 、3r 、 的弧所对的圆心角分别为多少?
r 2
说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小 无关。 思考:什么 弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别 又是多少?
0
6
4
3
2
2 3
3 4
5 6

3 2
2
四:学后反思
1.填空将下表中弧度制化为角度
0
6
4
3
(2)
2
5 6
2 3
3 4
5 6

3 2
2
2.写出与下面角终边相同的角的集合 (1)
4
3.把下列各角从弧度转化为度 ①
12

2 5

4 3


l ( l 为以角 作为圆心角时所对圆弧的长, r 为圆半径) 。 r
1 规定为 1 度的角,而把这种用度作单位来度量角的单位制 360
叫做角度制. 1.弧度角的定义: 规定:我们把长度等于半径的弧所对的圆心角叫做 1 弧度的角,记此角为 1rad . 练习: 圆的半径为 r , 圆弧长为 2 r 、3r 、 的弧所对的圆心角分别为多少?
2.弧度的推广及角的弧度数的计算: 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;角 (其中 l 是以角 作为圆心角时所对弧的长, 的弧度数的绝对值是 | | , 。 r 是圆的半径) 说明:我们用弧度制表示角的时候, “弧度”或 rad 经常省略,即只写一实 数表示角的度量。 3.角度与弧度的换算
例 3. ①已知扇形的周长为 8cm,圆心角为 2rad,求该扇形的面积. ②已知扇形的周长为 8cm,扇形的面积是 4cm ,求扇形的圆心角。 ③已知扇形的周长为 8cm,该扇形的面积的最大值是多少?
2
一些特殊角的度数与弧度数的对应表:
0° 30° 45° 60° 90° 120 ° 135 ° 150 ° 180 ° 270 ° 360 °
相关文档
最新文档