第4章 弹性力学空间问题的有限单元法.

合集下载

《弹性力学问题的有限单元法》

《弹性力学问题的有限单元法》

《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。

有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。

有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。

基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。

有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。

其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。

其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。

在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。

由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。

有限单元法在工程应用中的实际作用是显而易见的。

它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。

此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。

通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。

因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。

有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。

弹性力学基础及有限单元法

弹性力学基础及有限单元法

第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。

实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。

根据这个假设所得的结果与实验结果是符合的。

(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。

这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。

钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。

木材不是各向同性的。

(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。

同时还假定材料服从胡克定律,即应力与形变成正比。

(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。

在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。

在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。

(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。

也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。

物体中初应力的性质及数值与物体形成的历史有关。

若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。

上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。

弹性力学平面问题的有限单元法

弹性力学平面问题的有限单元法

(c)
深梁(离散化结构)
14
§6.2 有限单元法的概念
例如:将深梁划分为许多三角形单元,这
些单元仅在角点用铰连接起来。
图(c)与图( a)相比,两者都是离散 化结构;区别是,桁架的单元是杆件,而 图(c)的单元是三角形块体(注意:三角 形单元内部仍是连续体)。
15
§6.2 有限单元法的概念
2.单元分析
f y )T 。
f y )T 。
T
面力: f ( f x 应变:
应力:
位移函数: d (u ( x, y ) , v( x, y )) 。
ε (ε x ε y γxy )T 。 σ (σ x σ y τ xy )T 。
F ( Fix Fiy Fjx Fjy )T 。
T δ ( u v u v ) 。 结点位移列阵: i i j j
5.本章介绍平面问题的FEM 仅叙述按位移求解的方法。 且一般都以平面应力问题来表示。
7
§6.1 基本量和基本方程的矩阵表示
采用矩阵表示,可使公式统一、简洁, 且便于编制程序。 本章无特别指明,均表示为平面应力 问题的公式。
8
§6.1 基本量和基本方程的矩阵表示
基本物理量: 体力: f ( f x
25
§6.3 单元的位移模式与解答的收敛性
1 ~ 6
xi , yi ,及ui , vi ,。
将式(a)按未知数 ui , vi , 归纳为:
u N i ui N j u j N m u m , v N i vi N j v j N m vm。
或用矩阵表示为:
结点力列阵:
9
§6.1 基本量和基本方程的矩阵表示

《弹性力学及有限单元法》学习指南

《弹性力学及有限单元法》学习指南

第一章绪 论学习指导在学习本章时,要求学生理解和掌握下面的主要内容:1、弹性力学的研究内容,及其研究对象和研究方法,认清他们与材料力学的区别;2、弹性力学的几个主要物理量的定义、量纲、正负方向及符号规定等,及其与材料力学相比的不同之处;3、弹性力学的几个基本假定,及其在建立弹性力学基本方程时的应用。

§1-1弹性力学的内容弹性体力学,简称弹性力学,弹性理论(Theory of Elasticity或Elasticity),研究弹性体由于受外力、边界约束或温度改变等原因而发生的应力、形变和位移。

这里指出了弹性力学的研究对象是弹性体;研究的目标是变形等效应,即应力、形变和位移;而引起变形等效应的原因主要是外力作用,边界约束作用(固定约束,弹性约束,边界上的强迫位移等)以及弹性体内温度改变的作用。

首先,我们来比较几门力学的研究对象。

理论力学一般不考虑物体内部的形变,把物体当成刚性体来分析其静止或运动状态。

材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。

结构力学研究杆系结构,如桁架、刚架或两者混合的构架等。

而弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。

因此,弹性力学的研究对象要广泛得多。

其次,从研究方法来看,弹性力学和材料力学既有相似之外,又有一定区别。

弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。

而材料力学虽然也考虑这几方面的条件,但不是十分严格的。

例如,材料力学常引用近似的计算假设(如平面截面假设)来简化问题,使问题的求解大为简化;並在许多方面进行了近似的处理,如在梁中忽略了бy的作用,且平衡条件和边界条件也不是严格地滿足的。

一般地说,由于材料力学建立的是近似理论,因此得出的是近似的解答。

但是,对于细长的杆件结构而言,材料力学解答的精度是足够的,附合工程上的要求(例如误差在5%以下)。

有限元基本理论

有限元基本理论
第1章 预备知识
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:

第1章 预备知识
两项近似解,取W1=1,W2=x

则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)

则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)

弹性力学问题有限单元的一般原理

弹性力学问题有限单元的一般原理

80%
有限单元法的步骤
包括离散化、单元分析、整体分 析、求解等步骤。
02
弹性力学基础
弹性力学基本方程
平衡方程
描述了物体内部力的平衡状态 ,是弹性力学中最基本的方程 之一。
几何方程
描述了物体在应力作用下的变 形和位移,涉及到应变和位移 的关系。
物理方程
描述了应力与应变之间的关系 ,涉及到材料的弹性常数。
单元分析
对每个单元体进行力学分析, 建立其平衡方程和本构关系, 并推导出单元刚度矩阵和等效 节点载荷。
整体分析
将所有单元的刚度矩阵和等效 节点载荷进行集成,形成整体 的平衡方程和约束条件,并求 解得到结构的位移和应力分布 。
结果后处理
对计算结果进行可视化、分析 和评估,以便更好地理解结构 的性能和行为。
弹性力学问题的分类
根据边界条件和载荷情况,弹性力学问题可以分为 多种类型,如静力问题、动力问题、稳定问题等。
有限单元法的概述
80%
有限单元法的基本思想
将连续的弹性物体离散成有限个 小的单元,对每个单元进行分析 ,然后通过单元组合来近似描述 整个物体的行为。
100%
有限单元法的优点
可以处理复杂的几何形状和边界 条件,能够适应各种复杂载荷和 材料性质,计算精度可调等。
弹性力学问题有限单元的一般 原理

CONTENCT

• 引言 • 弹性力学基础 • 有限单元法的基本原理 • 有限单元法的应用 • 弹性力学问题有限单元法的实现 • 结论与展望
01
引言
弹性力学简介
弹性力学
研究弹性物体在外力作用下的应力、应变和位移的 学科。
弹性力学的基本方程
包括平衡方程、几何方程、物理方程等,用于描述 物体的应力、应变和位移之间的关系。

平面单元的有限元法

平面单元的有限元法

u
1
5
3
2
y
2x
3
5
2
y

则单元刚体位移为
v

4

5
2
3
x

6
y

3
2
5

u
1

5
3
2
y

v

4

5
2
3
x
记为
u v

1 4
0 y 0x

显然,位移函数包含 了单元的刚体位移 (平动和转动)


u v
j j


um

vm
[I]是单位矩阵,
[N]称为形函数矩阵,
Ni只与单元节点坐标有关,称为 单元的形状函数
4-2 平面问题的常应变(三角形)单元
据弹性力学几何方程得单元的应变分量
u





x y
xy


x

4-1 有限单元法的计算步骤
弹性力学平面问题的有限单元法包括五个主要步骤: 1、所分析问题的数学建模 2、离散化 3、单元分
析 4、整体分析与求解 5、结果分析
图 3-1
4-2 平面问题的常应变(三角形)单元
有限单元法的基础是用所谓有限个单元的集合 体来代替原来的连续体,因而必须将连续体简化为 由有限个单元组成的离散体。对于平面问题,最简 单,因而最常用的单元是三角形单元。因平面问题 的变形主要为平面变形,故平面上所有的节点都可 视为平面铰,即每个节点有两个自由度。单元与单 元在节点处用铰相连,作用在连续体荷载也移置到 节点上,成为节点荷载。如节点位移或其某一分量 可以不计之处,就在该节点上安置一个铰支座或相 应的连杆支座。如图3-1

第3讲—弹性力学问题的有限单元法

第3讲—弹性力学问题的有限单元法

1 T U d Kd 2
u1 d u 2 u 3
有限单元法
崔向阳
Step 3: 单元集成
单元集成——外力功
整体节点 位移列阵
整体等效节 点力列阵
u1 d u2 u 3
f1 R1 f f 2 0 f F 3
有限单元法
崔向阳
Step 2.单元特征分析
xi
单元节点位移列阵: 单元节点坐标列阵: 单元等效节点力列阵:
II=0
有限单元法 崔向阳
真实位移
6
最小势能原理
1 II ij ij dV bi ui dV pi ui dA 2 Sp 1 II Dijkl ij kl dV bi ui dV pi ui dA Sp 2

ij
ij
dV biui dV piui dA
Sp
弹性问题中等价于最小势能原理!
有限单元法 崔向阳
比较:虚功原理和能量变分原理
虚功原理是理论力学上的一个根本性原理,可以用于
一切非线性力学问题。
最小势能原理只是虚功原理对弹性体导出的一种表述
形式,但是对于线弹性问题,最小势能原理的应用非 常方便。
ij ui ij ui Dijkl ij kl dV bi ui dV pi ui dA Sp ij ij dV bi ui dV pi ui dA Sp
V= – W
弹性势能—弹性体变形后,产生弹性内力,这种力也具有对外作 功的能力,称为弹性势能,或弹性应变能。

弹性力学简介及其求解方法

弹性力学简介及其求解方法

弹性力学简介及其求解方法2010-08-27弹性力学简介及其求解方法弹性力学又称弹性理论,是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移。

确定弹性体的各质点应力、应变和位移的目的就是确定构件设计中的强度和刚度指标,以此用来解决实际工程结构中的强度、刚度和稳定性问题。

材料力学、结构力学三门学科所研究的内容和目的相同,但是研究对象和研究方法不同。

材料力学研究对象是杆状构件,结构力学是在材料力学基础上研究由多杆构成的杆系结构的强度和刚度问题。

而对于一般弹性实体结构,如板与壳结构、挡土墙与堤坝、地基以及其他三维实体结构来说,相应的强度和刚度问题要用弹性理论的方法来解决。

在研究方法上,弹性力学和材料力学都从静力学、几何关系、物理方程三方面着手来进行分析,但不同点是材料力学常借助于直观和实验现象做一些假设。

在具体问题计算时材料力学与结构力学都利用解决单一变量的常微分方程,在数学上求解容易。

弹性力学需解决的是满足边界条件的高阶多变量偏微分方程,在数学上求解困难,一般弹性体问题很难得到解析解。

所以,与材料力学相比,弹性力学的研究对象更加广泛,研究方法更加严密,能解决更加复杂的实际问题,因此需要用较多的数学工具。

弹性力学问题可以归结为边值问题:在弹性体内必须满足基本方程,即平衡微分方程、几何方程和物理方程;在应力边界上应满足应力边界条件;在位移边界上应满足位移边界条件;在混合边界上应满足相应的应力边界和位移边界条件。

满足基本方程的解答叫做弹性力学解;既满足基本方程,又满足边界条件的解答叫做弹性力学问题的解。

在求解弹性力学问题时,通常已知的是物体的形状、尺寸、约束情况和外载荷以及材料的物理常数。

需要求解的是应力、应变和位移,它们都是物体内点的坐标的函数。

对于空间问题,一共有15个未知函数:3个位移分量、6个应变分量和6个应力分量。

可利用的独立方程也有15个,即3个平衡微分方程、6个几何方程和6个物理方程。

弹性力学及有限单元法

弹性力学及有限单元法
b.简化几何方程:在几何方程中,由于 (ε,γ)>>(ε,γ)2>>(ε,γ)3... , 可 略 去 (ε,γ)2 等 项 , 使 几何方程成为线性的方程。
目录
34
§1.3 弹性力学中的基本假定 弹力基本假定,确定了弹力的研究范围:
理想弹性体的小变形问题。
目录
35
Mechanics forms the backbone of science and engineering.
Mechanics paves the foundation for the infrastructures of numerous cities in the word.
目录
5
第一章 绪 论
即应力与应变关系可用胡克定律表示(物 理线性)。
目录
31
§1.3 弹性力学中的基本假定
(3)均匀性 ─ 假定物体由同种材料组成。由 此得出 E、μ等与位置(x,y,z)无关。 (4)各向同性 ─ 假定物体各向同性。由此得 出 E、μ等与方向无关。
由(3),(4)得出 E、μ等为常数。 符合(1)-(4)假定的称为理想弹性体。
目录
9
§1.1 弹性力学的内容
材力也考虑这几方面的条件,但不是十分严 格的:常常引用近似的计算假设(如平面截 面假设)来简化问题,并在许多方面进行了 近似的处理。
因此材力建立的是近似理论,得出的是近 似的解答。从其精度来看,材力解法只能 适用于杆件形状的结构。
目录
10
§1.1 弹性力学的内容
研究方法的差别造成弹性力学与材料力 学问题的最大不同。
目录
7
§1.1 弹性力学的内容
结构力学─在材料力学基础上研究杆系结 构(如桁架、刚架等)。

弹性力学及其有限元法

弹性力学及其有限元法

弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。

我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。

2、 根据力学特性,固体通常分为韧性固体和脆性固体。

首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。

a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。

随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。

弹性阶段另一个明显特征是,应力与应变保持线性关系。

设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。

通常把弹性极限和比例极限规定为一个值。

b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。

当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。

从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。

c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。

脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。

为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。

如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。

现代设计方法第4章-3弹性力学平面问题的有限单元法(4)

现代设计方法第4章-3弹性力学平面问题的有限单元法(4)

(11)
上式即为本题的总体线性代数方程组,但不能获得唯 一解,因为上式中的矩阵是奇异的。这种奇异性不是因数据 巧合造成的,而是有其必然性。原因在于总体方程组式(8)
只考虑了力平衡条件,而只根据力平衡不能唯一地确定系统
的位移,因为系统在有任意刚性位移的情况下仍可处于力平 衡状态。为获得各节点位移的唯一解,必须消除可能产生的 刚体位移,即必须计入位移边界条件。
3.单元方程(单元节点位移与节点力的关系)
由等截面杆变形与拉力的关系(虎克定律)得到
Ae E e (ui u j ) Pi e l e e A E (u u ) P j i j e l
(3)
式中,Pi和Pj分别为作用于单元e的节点i和节点j的节点力。
式(3)写成矩阵形式为:
0 (1) P u 1 1 A( 2 ) E ( 2 ) (1) ( 2) ( 2) u2 P2 P2 l ( 2) ( 2) ( 2) u P3 3 A E l ( 2)
k11 k12 [k ] k k 21 22
(1)
i=2; j=3
[k ]
( 2)
k22 k32
k23 k33
具体来说,单元1的扩展方程为:
A(1) E (1) l (1)
(1) P 1 1 1 0 u1 (1) 1 1 0 u 2 P2 u 0 0 0 0 3
别记为ui和uj 。设单元中坐标为x处的场变量为u(x) 。
单元的位移场为u(x) 由两个端点的位移来进行线形插值确定,
设u(x) 为:

弹性力学及有限元方法-空间问题

弹性力学及有限元方法-空间问题

4.2 应变与应力
– 将假定的位移代入式(4.12),得到单元内应
变为:
– 将应变矩阵[B]按节点分块表示为:
– 由(4.12),得到应变矩阵[B]中任一子矩阵 [Bi] 为:
• 其中bi、ci及D如前,而
• 按物理关系式,有应力 • 注意轴对称问题三角形单元的形函数虽与平面
问题三角形单元相同,但其应变、应力则不相
• 同理,用v式可求得a5到a8 ,用w求得a9到 a12 ,为:
• 用矩阵记法统一表达为:
• [N]为形状函数矩阵,可表示为:
• [I]为三阶单位矩阵,而各节点的形状函数 可按下式计算得到,即
• 如记矩阵
为四面体单元的体积,其他系 数皆可由[L]确定,如
• 为矩阵第一行各元素的代数余子式。同样 可以确定al、bl、cl、dl…an、bn、cn、dn等, 它们是矩阵[L]第二、三、四行元素的代数 余子式。
• 轴对称问题中,上述截面内任一点p,实 际上代表一个半径为r的圆周(图4-2),当 此圆周上各点都有径向位移u时,圆周被 拉伸,多出一个环向应变q。有:
• 全部应变的4项分量与两项位移分量之间 的几何关系(几何方程),以矩阵表示为:
• 轴对称问题的4项应力分量,以列阵表示为:
• 轴对称问题的应力与应变间的物理关系仍写为:
用位移法,就是只研究这个代表截面的位 移求得一个截面的位移分布,也就有了整 个三维结构内的位移分布,从而可以求得 体内任一点的应变及应力。这样,一个三 维问题,就可以转化为一个二维问题。 由于结构的变形是对称于中心轴的,因而 子午面内各点都只有沿径向r的位移u和沿 轴向z的位移w,一般应为截面坐标r,z的 函数,即
• 单元内应变为常值,按物理方程,单元内的 应力也是常值。当然,一般受力情况下,三 维体内有限大小的四面体内的应力并不是常 值,用常应力单元来代替它,只是近似的。 • 对此单元,单元间的应力是不连续的。只有 当单元划分得较小时,单元内的应力才会接 近于常值,此时计算的应力在单元间的不连 续才会比较小,因而可以作为真实应力分布 的近似。 • 一般,把这种单元应力的计算值作为单元中 心一点的应力近似值是比较适当的。

有限元法_精品文档

有限元法_精品文档
这种方法要求能建立微分方程,并能给出边 界条件的数学表达式,因此,对于一些不规则的 几何形状和不规则的特殊边界条件难以应用。
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。

8 第四章 用常应变三角形单元解力学平面问题 (2)解析

8 第四章 用常应变三角形单元解力学平面问题 (2)解析

um xm ym
1 um ym
1 xm um
其中
1 xi yi
2 1 x j y j
1 xm ym
(c) (d) (1)
从解析几何可知,式中的 就是三角形i、j、m的面积。
为保证求得的面积为正值,节点i、j、m的编排次序必须是逆 时针方向,如图1所示。
7. 由单元的节点位移列阵计算单元应力
解出整体结构的节点位移列阵 后,再根据单元节点的 编号找出对应于单元的位移列阵 e,将 e代入(3-3)式就
可求出各单元的应力分量值。
8. 计算结果输出
求解出整体结构的位移和应力后,可有选择 地整理输出某些关键点的位移值和应力值,特别 要输出结构的 变形图、应力图、应变图、结构仿 真变形过程动画图及整体结构的弯矩、剪力图等 等。
平面问题可用三角元,四边元等。
例如:
3. 选择单元的位移模式
结构离散化后,要用单元内结点的位移通过插值来获得 单元内各点的位移。在有限元法中,通常都是假定单元的位 移模式是多项式,一般来说,单元位移多项式的项数应与单 元的自由度数相等。它的阶数至少包含常数项和一次项。至 于高次项要选取多少项,则应视单元的类型而定。
有限元法的实质是:把有无限个自由度的连续体, 理想化为只有有限个自由度的单元集合体,使问题简化 为适合于数值解法的结构型问题。
二、经典解与有限元解的区别:
微分 经 典 解 法 —— (解析法)
数目增到∞ 大小趋于 0
建立一个描述连续体 性质的偏微分方程
有限单元 离散化 集合
总体分析解
有限元法——连续体——单元——代替原连续体
式中:
Re ke e
(3-4)
——单元刚度矩阵
ke BT DBdxdydz

弹性力学平面问题的有限单元法

弹性力学平面问题的有限单元法

§2.3 三角形单元分析
从离散体系中任取一个单元,如图所示。三 个结点按反时针方向顺序编号为i、j、m。结点坐 标分别为(xi,yi)(xj,yj)(xm,ym)。
一、单元的结点位移和结点力向量
由弹性力学平面问题可知,一个连续体,每点
应有两个位移,因此每个结点应有两个位移分量,
则三角形共有六个自由度:ui,vi,uj,vj,um,vm 。如图 b所示。各结点位移向量可写成
入上式,同时考虑到矩阵相乘的转置规则,式(b)可改写为
({}e )T {P}e
({}e )T ([N]Tb ){Q}
{F}o K o{}o
式中,[K] o是6×6阶矩阵,称为单元刚度矩阵。 单元分析先要建立单元内的应变、应力分别与结点位
移的关系,这不光是推导上式的需要,也为最后求出 结点位移后再顺利求得单元内的应变和应力作好准备。
2-9
二、单元位移模式 有限单元法虽然对计算对象的整体作了物理近
似,但在每个单元内部,则仍然认为符合弹性力学 的基本假设,因此弹性力学的基本方程在每个单元 内部仍然适用。
ym
A为三角形单元的面积。
2-12
经过运算得用单元结点位移表示的单元位移模式为
{
f
}o
u(x, { v(x,
y) }
y)
Ni (x,
0
y)
0 Ni (x, y)
N j (x, y) 0
0 N j (x, y)
Nm (x, y) 0Biblioteka Nm0 (x,
y){}o
(2-1)
式中的Ni、Nj、Nm由下式轮换得出
{δΔ}o=[δui,δvi,δuj,δvj,δum,δvm]T 单元内的虚位移则为

第四章 弹性力学平面问题的有限单元法

第四章  弹性力学平面问题的有限单元法
(4-14)

(i, j,m)
22
如果注意到(4-1)式,则(4-11)式可写成
S i i S j j S m m
从(4-13)、(4-14)式可以看出, S 中的元素都是常量,所以每 个单元中的应力分量也是常量。因而,相邻单元将具有不同的应 力和应变。这样,越过公共边界,从一个单元到另一个与它相邻 的单元,应力和应变的值都将有突变,但是位移是连续的(参阅 下节),常应变单元的这些性质实际上都是由于选取线性的位移 模式所造成的。

(f)
式(e)和式(f)可以看出单元内部位移是由节点位移表示的
14
如令
1 Ni (ai bi x ci y ) , 2
位移模式(e)、(f)就可以写成
(i, j,m)
(4-4)
u N i ui N j u j N m u m v N i vi N j v j N m vm
yi yj ym
的面积,
(4-2)
等于三角形 i , j , m
, j,m
为使求得面积的值不致成负值,结点 i 转向,如图所示。
的次序必须是逆时针
13
将(d)式代入(b)式中的第一式,并稍加整理得
u
其中
1 (ai bi x ci y ) ui (a j b j x c j y ) u j 2 (am bm x cm y ) um

15
例1
求图示的三角形单元的形函数
三角形单元
16
二 单元的应变
有了单元的位移模式,就可以利用平面问题的几何方程
u x x v y y xy u v y x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档