(精品)材料力学课件:扭转 (2)

合集下载

材料力学第四版课件 第三章 扭转

材料力学第四版课件 第三章 扭转
2
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD

浙江大学材料力学乙-第七讲-扭转2

浙江大学材料力学乙-第七讲-扭转2
T (1 )

2
d 02 t (1 2 )

T (1 ) 1 2 A0 t (1 2 ) 1 2
§3.4 圆轴扭转时的应力
例题2
一厚度为30 mm、内直径为230 mm t d 的空心圆管,承受扭矩T=180 kN· m。 试求管中的最大切应力,使用: (1)薄壁管的近似理论; (2)精确的扭转理论。 d0 解: (4)精确解 2 2 max 1 ( 1) err 1 1 max max 1 1 1
-0.025 -0.05 -0.075 -0.1 -0.125
d
d0

0.2 0.4 0.6 0.8 1
即当 t

r0 10
-0.15
,可视为薄壁圆筒。
-0.175 -0.2
err
§3.4 圆轴扭转时的应力
例题3
图示阶梯圆轴, AB 段的直径 d1 = MA 120 mm , BC 段的直径 d2 = 100 mm 。 扭 转 力 偶 矩 为 MA = 22 kN· m,MB = 36 kN· m ,MC =14 A kN· m . 已知材料的许用切应力[] T 22 kN· m = 80 MPa,试校核该轴的强度。 + 解: (1)做轴的扭矩图 分别校核两段轴的强度
§3.4 圆轴扭转时的应力
例题2
一厚度为30 mm、内直径为230 mm t 的空心圆管,承受扭矩T=180 kN· m。 试求管中的最大切应力,使用: (1)薄壁管的近似理论; (2)精确的扭转理论。 解: (1)利用薄壁管的近似理论可求得
d
d0
d0 d t 230 30 260mm

材力讲稿第3章扭转1-2

材力讲稿第3章扭转1-2

内外径之比
Wp =
Ip D/2
=
π
16
D 3 (1 − α 4 )
扭 转/圆轴扭转时的应力和变形
Tρ τ ρ = Gρθ = Ip
T
由两种不同材料组成的圆轴, 讨论 由两种不同材料组成的圆轴,里层和外层材 料的剪切弹性模量分别为G 料的剪切弹性模量分别为 1和G2,且G1=2G2。圆轴 尺寸如图中所示。 尺寸如图中所示。 圆轴受扭时, 外层之间无相对滑动。 圆轴受扭时,里、外层之间无相对滑动。关于 横截面上的切应力分布,有图中( 、 横截面上的切应力分布,有图中(A)、(B)、(C)、(D) 、 、 所示的四种结论,请判断哪一种是正确的。 所示的四种结论,请判断哪一种是正确的。
T
扭 转/圆轴扭转时的应力和变形 观察到的变形现象 (1)A ) B C D A B C ∴横截面上存在切应力! 横截面上存在切应力! D
(2)圆周线大小、位置、形状、间距保持不变,绕轴线产生相 圆周线大小、位置、形状、间距保持不变, 对转动。 对转动。 ∴横截面上不存在正应力! 横截面上不存在正应力!
薄壁圆轴的扭转 扭 转/薄壁圆轴的扭转
薄壁圆轴两端截面之间相对 转动的角位移, 转动的角位移,称为 相对扭
m
A B
γ
D C
m
ϕ
转角 ,用ϕ 表示。 表示。
薄壁圆轴表面上每个格子的直 角的改变量,称为 切应变。 角的改变量, 用 γ 表示 。
(c)
A D
横截面上没有正应力,只有切应力。 横截面上没有正应力,只有切应力。 且横截面上的切应力的方向是沿着 B 圆周的切线方向, 圆周的切线方向,并设沿壁厚方向 是均匀分布的(壁厚较小 。 是均匀分布的 壁厚较小)。 壁厚较小

材料力学-第四章 扭转_2

材料力学-第四章 扭转_2

T
T 6b 3T TS 2 2 2 2 4G 4G ( 2b ) 8Gb 3
1 2b 2
1 4b 2 2 2 3
结论 若将开口件加工为闭口件,将极大地提高构件的扭转
强度和刚度。
本 章 作 业
4-5,4-10, 4-13,4-29 4-16, 4-17 , 4-19 4-21(c),4-23 4-32,4-34
max
T h b2 T [ ] 2 0.246 2b b
取 b = 45 mm。
6 T 3 10 b 3 3 44.3 0.492[ ] 0.492 70
由 h / b = 2 查表得 = 0.229
T 3 10 6 2 1 2 10 m G 2b b 3 80 103 0.229 2 454
闭口薄壁杆件切应力分析
F
dx dx
x
0
1 1dx 2 2 dx 0
1
1
2
x
2
1 1 2 2
dFS ds
Const
dT ds
T ds ds 2
S S


闭口薄壁杆件切应力

ds dFS
例 正方形截面轴两端承受转矩而产生自由扭转。在强度相同
长度相等的条件下计算圆轴与正方形截面轴的重量比。
转矩 T 在矩形边中点引起最大切应力。 max 由正方形 h / b = 1
T h b2
3
查表得 = 0.208
圆轴
max
T [ ] 3 0.208b
16T d π[ ]

2.约束扭转

材料力学 扭转(2)

材料力学 扭转(2)
2. 刚度校核
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n

材料力学扭转PPT课件

材料力学扭转PPT课件

方向如图所示
Nm
MB
MC
MA
MD
14

料 力
外力偶矩、扭矩和扭矩图

Mechanics of Materials
各段的扭矩为
MB 1 MC 2
MA 3
MD
T1=MB=3.5103 N·m
1
2
3
T2=MB+ MC =7103 N·m T3= -MD= -4.68103 N·m
MB
T1
若扭矩为正,表明
B
C
A
主动轮 D
13
材 料 力 学
Mechanics of Materials
外力偶矩、扭矩和扭矩图
解 主动轮和从动轮的外力偶矩分别为
MA
9549 PA n
11.68 103
Nm
MB
MC
9549 PB n
3.50 103
Nm
MD
9549 PD n
4.68 103
材 料 力 学
Mechanics of Materials
第四章 扭转
1
材 料 力 学
Mechanics of Materials
引言-概念
工程实例
2
材 料 力 学
Mechanics of Materials
引言-概念
受力特点:两个等值反向的 力偶矩分别作用在杆件两端 垂直于轴线的平面内
变形特点:杆件的各横截面 绕杆的轴线发生相对转动
12
材 料 力 学
Mechanics of Materials
外力偶矩、扭矩和扭矩图
例 如图所示的传动轴的转速n=300转 /分,主动轮的输入功率PA=367kW,从动 轮B、C及D的输出功率分别为 PB=PC=110kW,PD=147kW,绘制该轴 的扭矩图,并确定最大扭矩Tmax及其所在位

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)

材料力学扭转第2节 扭矩和扭矩图

材料力学扭转第2节 扭矩和扭矩图

• 假截留半; • 内力代换; • 内外平衡。
例4-1 如图所示,传动系统的主轴ABC,其转速
n 1450r/min,输入功率 PA 100kW,输出功率PB 80kW,PC 20kW,不计轴承摩擦等功率消耗。并画
扭矩图。
解:1)计算外力偶矩
MA
9550
PA n
659 N m
MB
9550
PB n
527 N m
MC
9550 PC n
132 N m
2)用截面法求扭矩 a)取1-1截面左侧
T11 M 659 N m
b)取2-2截面右侧
T22 M C 132 N m
3)作出扭矩图如图
1 1
T1 T
659 Nm
2 2
3)作出扭矩图如图
3kNm
扭矩图的简捷画法
• 在外力偶矩作用处的截面上,扭矩发生突变,突变 量等于外力偶矩的数值。利用这一突变特性,可较 快地画出扭矩图。
• 当轴上有多个外力偶矩作用时,愈显示出这种方法 的快捷简便。
T2
132 Nm
例4-2 求如图所示传动轴1-1截面和2-2截面的扭矩, 并画扭矩图。
解:用截面法求扭矩 1)取1-1截面左侧
T11 M 3 kN m
2)取2-2截面右侧
= 3kNm 1
= 5kNm = 2kNm
2
1
2
2kNm
T
T22 M C 2 kN m
(a)
(b)
三、扭矩图
• 扭矩图:为了直观地表示沿轴线各横截面上扭矩的 变化规律,取平行于轴线的横坐标表示横截面的位
置,用纵坐标表示扭矩的代数值,画出各截面扭矩 的变化图。

材料力学扭转教学课件PPT

材料力学扭转教学课件PPT
200 kW。试做轴力图。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。

河海大学 , 材料力学 , 课件 , 第3章 , 扭转

河海大学 , 材料力学 , 课件 , 第3章 , 扭转

Mx 2 2r0
(a)
l r0
r0 l
b
τ b τs a τp O
τp——剪切比例极限 τs——剪切屈服极限
γ
α
低碳钢τ-γ曲线
切变模量 G = τ/ γ= tanα
α——直线的倾角
各向同性材料:
E G 21
铸铁扭转破坏试验:
τ
τb——剪切强度极限
∴ 横截面上最大切应力发生在厚度δi 最大的狭 长矩形的长边中点处。
max
MX 1 3 max 3 hi i
例3-5:两薄壁钢管。(a)为闭口薄同,且δ / D0= 1 / 10,试求在相同的外力偶
矩作用下,哪种截面形式较好。
P(kW) T 9.55 (kN m) n(rpm)
§3-2 圆杆扭转时的应力
一、横截面上的应力
Mx
分析步骤?
变形分析→应变分布
应力应变关系→应力分布 静力学关系→应力值
周线 T
纵线 T υ 轴线
1、几何方面
a
b
c
γ
d
(1)变形现象
A、周线大小、形状和周线间距不变,只是绕
轴线作相对转动。
d dx
—单位长度相对扭转角
γρ——切应变

2、物理方面
γρ
e e`
弹性变形时: τ= Gγ
——剪切胡克定律。 G—材料的切变模量。
d G G ---(a) dx
τmax τ
O
3、静力学方面

A
dA M x
2
τ
r
ρ
dA
d (b )式代入, A G dA M x dx

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

材料力学课件 第四章扭转

材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?

材料力学第3章 扭转幻灯片PPT

材料力学第3章  扭转幻灯片PPT
对于承受几个外力偶矩作用的轴,其不同横截面上的扭 矩不尽一样。为了表示扭矩的大小和正负随截面位置的变化, 可用扭矩图来形象描述之。
第3章 扭 转 图3-4
第3章 扭 转 例3-1 传动轴〔见图3-5(a)〕的转速n=300r/min,主动轮 为A,输入功率PA=50kW,两个从动轮为B、C,其中B轮输 出功率PB=30kW。试作轴的扭矩图。 解 (1〕扭力偶矩计算。A轮为主动轮,故MA的方向与 轴的转向一致;而作用在从动轮B、C上的扭力偶矩MB、 MC的方向与轴的转向相反。MA、MB的大小分别为
第3章 扭 转
图3-6
第3章 扭 转
由于圆筒两横截面间的距离不变,故横截面上没有正应 力;圆筒的半径不变,故在通过轴线的纵向截面上亦无正应 力。在变形过程中,相邻横截面p-p与q-q发生相对错动,矩 形变成了平行四边形,这种变形称为剪切变形。纵向线倾斜 的角度γ是矩形方格变形前后直角的改变量,即为切应变 〔见图3-6(e)〕,故横截面上只有切应力,它组成与扭力偶 矩平衡的内力系。由于筒壁很薄,可认为切应力沿壁厚均匀 分布〔见图3-6(c)〕,q-q 截面上切应力组成的内力是横截 面的扭矩T,由q-q截面以左局部圆3
第3章 扭 转
3.2 扭力偶矩、扭矩与扭矩图
1.扭力偶矩的计算
在工程实际中,可以根据力偶与力矩的理论,计算轴承
受的扭力偶矩。对于传动轴等构件,往往只给出轴所传递的
功率和转速,可利用动力学知识,根据功率、转速和扭力偶
矩之间的关系
P=Meω
求出作用在轴上的扭力偶矩为
MeN?m9549nPr/kmwin
(3-1)
第3章 扭 转
2.扭矩与扭矩图 为了计算圆轴的应力和变形,首先要分析其横截面上 的内力。如图3-4(a)所示圆轴,承受外力偶矩Me作用,现用 截面法分析任意横截面n-n上的内力。在n-n截面处假想地将 圆轴截开,取其左段为研究对象,作用在轴左段上的外力 偶矩为Me,由平衡理论可知,作用在n-n截面上分布内力系 的合成结果必为一力偶,而且该力偶的作用面在横截面内。 将作用于横截面的内力偶矩称为该截面的扭矩,用T来表示 〔见图3-4(b)〕。由轴左段平衡条件

材料力学课件 第四章 扭 转

材料力学课件 第四章  扭  转

3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a

b

dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转



T ( 2 A 0t)


( L ) R

剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4

材料力学课件(路桥)第4章扭转

材料力学课件(路桥)第4章扭转
计算过程中需要考虑材料的弹性模量、泊松比、剪切模量等参数,以及 结构的几何尺寸和边界条件。
强度条件的工程意义
满足强度条件是保证路桥工程安全性和 稳定性的基础。
通过满足强度条件,可以防止桥梁结构 在承受外力矩和扭矩时发生破坏或过度
变形。
在路桥工程的设计、施工和运营过程中 ,需要定期进行检测和维护,以确保结
扭矩的量纲
扭矩的量纲是力和长度(L)的乘积,表示为ML^2。
量纲是描述物理量本质属性的方式,通过量纲可以判断物理量的性质和相互关系 。
03
扭转的应力分析
切应力与剪切应变的关系
切应力与剪切应变的关系是线 性的,即剪切应变与切应力成 正比。
在剪切弹性范围内,切应力与 剪切应变之间的关系可以用剪 切弹性模量来描述。
扭转过程中,杆件上各点的角位移和 剪切变形程度不同,导致杆件横截面 绕其自身轴线发生转动。
扭转的物理现象
01
杆件在扭转时,横截面上的正应 力分布不均匀,呈现出剪切变形 的特点。
02
杆件上各点的剪切变形程度与该 点到轴线的距离成正比,导致横 截面上的切向力分布不均匀。
扭转的分类
根据杆件上所受外力矩的方向, 扭转可分为左旋和右旋两种类型
构的强度和稳定性。
05
扭转的刚度条件
刚度条件的定义
刚度条件是指在材料力学中,杆件在受到扭矩作用时,其横 截面上的剪切应力和剪切变形之间的关系。
刚度条件是材料力学中一个重要的基本概念,它描述了杆件 在扭矩作用下抵抗变形的能力。
刚度条件的计算方法
根据材料力学的基本理论,刚度条件可以通过杆件的剪切 弹性模量和剪切应变来计算。
材料力学课件(路桥)第4章 扭转
目录 CONTENTS

《材料力学》课件3-2薄壁圆筒的扭转

《材料力学》课件3-2薄壁圆筒的扭转

切应力计算
根据材料力学的基本原理,切应力的大小可以通过扭矩和横截面 面积的比值计算得到。
变形量计算
通过测量薄壁圆筒在扭转变形前后的长度变化,可以计算出其变 形量。
弹性模量
在一定条件下,切应力和变形量之间的关系可以用弹性模量来描 述。
薄壁圆筒的变形特性
变形方向
薄壁圆筒的扭转变形是沿着圆筒轴线的方向进行的。
04
根据实验结果,讨论薄壁圆筒在纯扭状态 下横截面上的应力分布规律。
实验结论与讨论
01
实验结果表明,薄壁圆筒在纯扭 状态下横截面上的应力分布符合 剪切应力与剪切应变线性关系;
02
与理论公式对比,实验结果与理 论公式基本一致,验证了理论公
式的正确性;
在实验过程中,应采取措施减小 误差,提高实验精度;
薄壁圆筒的扭转原理
当薄壁圆筒受到一对大小相等、 方向相反的力偶作用时,圆筒
就会发生扭转。
薄壁圆筒的剪切模量是衡量 其抗扭能力的物理量,剪切 模量越大,抗扭能力越强。
薄壁圆筒的弯曲应力与轴向应 力在剪切模量中得到体现,弯 曲应力与轴向应力的比值决定
了圆筒的形状变化。
薄壁圆筒的扭转应用
薄壁圆筒广泛应用于机械、化工、建筑等工程领域,如管道、压力容器、塔器等。
计算时应根据实际情况选择合适的 公式进行计算。
薄壁圆筒的应力特性
01
薄壁圆筒的应力特性主要表现为剪切应力和弯曲应力的共同作 用。
02
在扭转载荷作用下,圆筒的外侧受到较大的剪切应力和弯曲应
力,而内侧受到较小的剪切应力和弯曲应力。
圆筒的应力特性与圆筒的材料属性、几何形状以及扭转载荷的
03
大小有关。
03
《材料力学》课件3-2薄壁圆 筒的扭转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

横截面上剪应力
T
IP
验证?
Page13
➢ 圆轴横截面上最大扭转切应力

T
IP
max
圆轴扭转最大切应力:
max
TR IP
T IP / R
定义
WP
IP R
max
T WP
Page14
公式的适用范围
max
T WP
● 材料在比例极限范围内。
● 只能用于圆截面轴(包括空心圆截面轴)。
Page15
➢ 极惯性矩与抗扭截面模量
Page8
变形几何方程 小变形
bb' tan ab
d
dx
d
dx
dx
O1
O2
d
b
a b’
d c
d’
Page9
d
dx
2、物理方程
a
b
c
d
d’
G
G d
dx
O1
O2
A
B
C
D
分布:与 成正比
方向:垂直于半径
Page10
3、静力学方面
微剪力 dQ dA
微力矩 dT dQ
则有:
G
求A,B端的支反力距
A
C
B
M
a
b
A MA
C M
B MB
变形协调条件:
AC BC 0
M MB MA
AC
M Aa GI P
BC
MBb GI P
Page31
例:套管与轴两端用刚性板固定,其扭转刚度分别为 G1IP1 、 G2IP2。求在扭力距M作用下,套管与轴的扭矩。
A
BM
C
M
l1
l2
T1
M dD
a
a
a
a
解:
1、扭矩图 T
d T dx
l
l GI P
M
x
2M
Page28
2、总扭转角
T
A

a 0
2M xdx a
G D4
2Ma
G D4
Ma
G D
4
G
2M
Ma
D4 d 4
32
32
32
32
M
Bx
3、强度校核
T Wp
max
AB,CD段为危险段
dD
a
a
a
a
max
m
ax
G1
组合轴G2>G1
R1
R2
G2 G1
Page18
组合轴扭转切应力分析
平面假设成立
r
d
dx
0 R1
G
所以:
G2 G1
d
dx
d
dx
0 R2 R2 R1
R1
R2
T
G2
G1
R1 R2 G2 G1
组合轴 G2 G1
扭转应力的一般公式适用范围:圆截面轴, max
Page19
T
WP
max
[
]
根据强度条件可以解决以下几类强度问题
max
T WP
max
?[
]
WP
Tmax
[ ]
Tmax WP [ ]
1、校核构件的强度 2、选择构件截面尺寸 3、确定构件承载能力
给定T、 [],确定结构参数
4、最轻重量设 计
Page22
例:已知 T=1.5kN.m, 50MPa
GI P
GI P
工程实际中,通常是限制扭转角沿轴线的变化率。
许用扭转角变化率: []
工作时扭转角变化率: d T
dx GIP
刚度条件:
T ( GI P
)max
[
]
一般[]单位为度/m
强度条件:
max
T
WP
max
[ ]
Page27
例:计算总扭转角,并校核轴的强度与刚度
m=2M/a 3M
➢ 研究思路
几何、物理、静力学三方面分析
1、几何方面 方法: 观察外部变形 建立几何方程
假设内部变形
Page4
观察外部变形
圆周线: 形状与大小不变
径向无变形
间距不变
轴向无变形
纵向线 : 偏转同一个角度
周向无变形
结论:相邻圆周线只绕轴线作相对刚性转动
Page5
内部变形规律(假设): 相邻横截面只绕轴线作相对 刚性转动
B
:
2M
A: D3
16 M
D3(1
16
4
)
T
AB
M
C Dx
2M
Page29
4、刚度校核
d T
dx GI p
a
a
a
T AB
AB,CD段为危险段
2M
max
m
a
x
B
:
A G
2M
: G D4
32 M
D4(1
32
4
)
dD a
M
C Dx
Page30
➢ 扭转静不定问题
d
dx
dA
T
T
dT
A
A dA
G d 2dA T dx A
定义 A 2dA IP
圆轴扭转角变化率
d T
dx GIP
极惯性矩
Page11
G
d
dx
d T
dx GIP
圆轴扭转剪应力一般公式
T
IP
分布:与 成正比
方向:垂直于半径
Page12
总结
外部变形
平面假设
切应变
d
dx
物理方程(应力应变关系) 静力学条件(平衡方程)
d
DD dd
dA 2d
I p
2dA
D/ 2 2 2d
d/2
(D4 d4)
32
A
WP
IP D/2
(D4 d4)
16D
Page16
例: 画空心轴横截面扭转剪应力示意图
R1 R2
T
T
IP
空心轴
M’
M’
M’
M’
Page17
例:画组合轴横截面扭转切应力示意图
R1 R2 T G2
➢ 薄壁圆管的扭转切应力 1、精确计算
R1 R2
——按空心圆筒的计算办法
2、近似计算
管壁薄——假设切应力沿 管壁均匀分布
T= AR0
T
A2R0
2 R02
当R0/10时,足够精确
适用于弹性、非弹性、各向同性、各向异性的均质材料薄壁管。
Page20
§4-3 圆轴扭转强度
➢ 扭转失效与扭转极限应力
取: Dk 77mm
dk Dk 69mm
3、二者重量比β等于横截面面积之比
4
( Dk2
d
2 k
)
/(
4
Ds2 )
39.5%
Page24
➢ 圆轴合理设计
实心轴
空心轴
如果管壁过薄,
管受扭时会产 生皱折现象
过渡处有应力集中
圆角过渡可以减小应力集中
Page25
§4-4 圆轴扭转变形与刚度
➢ 圆轴扭转变形
max
T
WP
max
[
]
根据强度条件设计轴的直径:1)实心轴;
2)=0.9的空心轴
解:1、实心轴直径
T
16
DS3
[ ]
取:Ds=54mm
16T
Ds 3 [ ] 53.5mm
Page23
2、空心轴直径
T
[ ]
D3(1 4)
16 空
max
T
WP
max
[
]
16T
D空 3 (1 4 )[ ] 76.3mm
T1’
T2
T2
M
A,C截面的相对扭转角相等
T Z T AB BC
T1 T2 M T1 T2 0
Page32
扭转极限应力
u
s b
塑性材料 脆性材料
➢ 圆轴扭转强度条件
许用切应力: u
n
塑性材料:[ ] (0.5 ~ 0.577)[ ] 脆性材料: [ ] (0.8 ~ 1.0)[ t ]
工作应力:
max
T
WP
max
强度条件:
max
T
WP
max
[ ]
Page21
强度条件
max
思考:
M
M’
M’
M
(1)
M’
(2)
M’
(3)
Page1
内容
§4-2 圆轴扭转横截面上的应力 §4-3 圆轴扭转强度 §4-4 圆轴扭转变形与刚度计算
Page2
§4-2 圆轴扭转横截面上的应力
➢ 问题的性质 已知条件: 横截面的扭矩 未知量: 横截面上各点的应力 (类型、大小、方向?) o
T
Page3
d T
dx GIP
d T dx
GI P
相距l的两横截面间的扭转角:
l
d
l
T dx GI P
对于常扭矩等截面圆轴的相对扭转角: T l
GI P
M
2M
M
M l1 M l2
GI P
GI P
m
l mx dx
0 GI P
x
Page26
➢ 圆轴扭转刚度条件
M
2M
M
M l1 M l2
相关文档
最新文档