几何图形展开图和折叠图
人教版数学七年级上册几何图形展开图
G
下列图形能折叠成什么立体图形?
圆棱 柱柱
圆棱 锥柱
下列图形是哪些多面体的展开图?
正方体
长方体
四棱锥
三棱柱
1、你还记得长方体、圆柱的侧面展开图吗? 下面是一些立体图形的展开图,用它们能围 成什么样的立体图形,把它们画在一张硬纸 片上,剪下来,折叠、粘贴,看看得到的图 形和你想象的是否相同。
用它们能围成什么样的立体图形? 先想一想, 再折一折。
同学们,努力吧!找到自 己的方向,在不同的道路 上展示自己的才华,为人 类的发展而努力学习!
给我最大快乐的,
不是已懂的知识,
而是不断的学习. ----高斯
人教版七年级数学(上)
立体图形展开图
学习目标
❖ 1、能把一些平面图形的问题转化为立体图形 进行研究和处理,探索平面图形与立体图形 之间的关系。
❖ 2、经历探索平面图形与立体图形之间的关系, 发展空间观念,培养学生的提高观察、分析、 抽象、概括能力及动手操作能力。
三 棱 柱
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
பைடு நூலகம்
及时练习:
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
展开
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
棱柱
展开
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
人教版数学七年级上册4.1.1几何图形 (3)-- 展开图
第四章多姿多彩的几何图形4.1.4立体图形的展开图
长方体
展开
棱柱
展开
圆锥
展开
三 棱 锥
三 棱 柱
练习:
活动二:
用剪刀把正方体纸盒,按任意方式沿棱
展开,你能得到哪些展开图?
第一类: 中间四连方,两侧各一个,共六种。
第二类:
中间三连方,两侧各有一、二个,共三种。
第三类:
中间二连方,两侧各有二个,只有一种。
第四类: 两排各三个,只有一种。
(A〕
(B)
(C)
(D)
如图所示的正方体,如果把它展开, 可以是下列图形中的( D )
小丽制作了一个对面图案均相同的正
方体礼盒(如下图)则这个正方体礼品盒的平 面展开图可能是 ( A )
A
B
C
D
下图是正方形的展开图,如果a
在后面,b在下面,c在左面,试说明
其他各面的位置。
a
b
c
d e f
小壁虎的难题:
下面六个正方形连在一起的图形,经 折叠后能围成正方体的图形有哪几个? (自己动手试试吧)
A
B
C
D
E
F
G
下列图形能折叠成什么立体图形?
圆 柱 圆 锥
棱 柱Байду номын сангаас
棱 柱
由平面展开图得出多面体的唯一性
图中哪些图形经过折叠可以围 成一个多面体?
四棱锥
四棱柱
三棱柱
不能
三棱柱
三棱柱
下边的4个图形中,哪一个是由左 边的盒子展开而成的( C )。
立体图形的展开图
有些立体图形是由一些平面图形围
成的,将立体图形的表面适当剪开,可 以展开成平面图形,这样的平面图形叫 做相应立体图形的展开图. 注意:不是所有的平面图形都能围成 立体图形,也不是所有的立体图形 都能展开成平面图形,例如:球.
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)
展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
七年级数学上册第4章 几何图形初步思维导图
图形的初步认识立体图形的展开与折叠
几何体的展开
正方体的表面展开图
棱柱的表面展开图
圆柱的表面展开图
圆锥的表面展开图
折叠将平面展开图折叠成立体图形
常见的平面图形
直线两点确定一条直线
射线
线段
性质两点之间线段最短
中点
比较长短
度量法
叠合法
角
概念及表示方法
角的大小比较
度量法
1°=60'
1'=60''
叠合法
角的平分线
余角和补角
余角α与β互余:∠α+∠β=90°
补角α与β互补:∠α+∠β=180°
方向角和方位角
常见的立体图形
棱柱
圆柱上下底面是圆,侧面是曲面
棱柱
棱柱的所有侧棱长都相等
棱柱的上、下底面的形状相同
n棱柱有(n+2)个面、2n个顶点、3n条棱
锥体
圆锥底面是圆,侧面是曲面
棱锥底面是多边形,侧面是三角形
球由一个曲面围成
图形的构成元素
点点动成线
线线动成面
面面动成体
面与面相交得到线,
线与线相交得到点
立体图形的视图
主视图从正面看反映几何体的长和高
左视图从左面看反映几何体的宽和高
俯视图从上面看反映几何体的长和宽
视图到立体图形
七巧板的组成5块等腰直角三角形(2小形三角形、1块中形三角形和2块大形三角形)、
1块正方形和1块平行四边形
七年级数学上册 第四章 几何图形初步。
长方体、正方体展开图PPT课件
主题背景
长方体和正方体是常见的几何形 状,了解它们的展开图对于解决 实际问题、培养空间思维等具有 重要意义。
主题内容
介绍长方体和正方体的定义、性 质、展开图的特点和分类等。
教学目标
01
02
03
知识目标
掌握长方体和正方体的展 开图特点,理解展开图与 原几何体的关系。
能力目标
培养学生的空间想象能力 和动手操作能力,能够根 据实际需求绘制长方体和 正方体的展开图。
正方体的定义与性质
定义
正方体是特殊的长方体,其六个面都是正方形。
性质
正方体的所有面都相等,所有棱的长度相等,有12条棱,每个角都是直角。
2023
PART 03
长方体与正方体的展开图
REPORTING
长方体的展开图
总结词
长方体的展开图是展示长方体在平面上的表示方式。
详细描述
长方体的展开图是将长方体的六个面在平面上进行展开,每个面都是一个矩形。 展开后的图形由三个矩形组成,其中两个矩形是长方形,一个矩形是正方形。
结构设计
在包装设计中,展开图还可以用于结构设计,如纸盒的拼接 、连接和固定等。通过合理的结构设计,可以提高包装的稳 定性和承重能力,确保产品在运输和存储过程中的安全。
在建筑领域中的应用
建筑设计
在建筑设计中,长方体、正方体的展开图可以用于构建建筑的外观和内部空间。通过合理的设计,可 以实现建筑的美观、实用和功能性。
结构工程
在结构工程中,展开图可以用于构建建筑的框架和结构体系。通过合理的结构设计,可以提高建筑的 稳定性和安全性,确保建筑在使用过程中的安全。
在教学领域中的应用
几何教学
在几何教学中,长方体、正方体的展开 图可以用于帮助学生理解几何形状和空 间关系。通过观察和操作展开图,可以 培养学生的空间想象能力和几何思维能 力。
2021年北师在版七年级数学上册1 展开与折叠(第2课时 )课件
►Never underestimate your power to change yourself! 永远不要低估你改变自我的能力!
►Living without an aim is like sailing without a compass. 生活没有目标,犹如航海没有罗盘。
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
(2)因为AB=5,AD=3,BE=4,DF=6, 所以侧面积为3×6+5×6+4×6=18+30+24=72, 底面积为 1 3 4 2 12.
2
所以这个食品包装盒的表面积为72+12=84.
方法点拨:此题是将动手操作和计算相结合,了解立体图形 表面展开图与立体图形间的关系,掌握图形面积的计算(公式) 是解本题的关键.由表面展开图可知立体图形的表面积等于表 面展开图各部分图形面积之和.
是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和
②.根据你所学的知识,回答下列问题:
(1)小明总共剪开了
条棱.
解:(1)由展开图发现,小明一共剪开了8条棱.
课堂检测 (2)现在小明想将剪断的②重新粘贴到①上去,而且经过 折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该 将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上 补全.(请在备用图中画出所有可能)
探究新知
知识点 1 棱柱的展开图
问题1 将图中的棱柱沿某些棱剪开,展开成一个平面
七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件
“凹”“L”型形状.
图1-2-1
2021/12/10
第三页,共四十六页。
例1 (2016四川成都树德实验中学期中)在下面的图形中,是正方体的 展开图的是 ( )
解析(jiě xī) 充分发挥想象力和动手实践能力是解决此类问题的有效途径. 答案(dáàn) C
2021/12/10
第四页,共四十六页。
2021/12/10
第十五页,共四十六页。
6.图1-2-4是一个食品包装盒的表面展开图. (1)请写出这个包装盒的形状的名称; (2)根据图中所标的尺寸,计算此包装盒的表面积和体积.
图1-2-4
解析 (1)包装盒的形状(xíngzhuàn)是四棱柱. (2)表面积为4ab+2b2,体积为ab2.
2021/12/10
方体后,相对面上的两个数之和为6,则x=
,y=
.
答案(dáàn) 5;3 解析 由正方体的展开图知,2所在的面与空白的正方形为相对(xiāngduì)面,1与x
为相对面上的数,3与y为相对面上的数,故x=5,y=3.
2021/12/10
第三十页,共四十六页。
选择题 1.(2017内蒙古包头中考,4,★☆☆)将一个无盖正方体形状盒子的表面 沿某些棱剪开,展开后不能得到的平面图形是 ( )
第十六页,共四十六页。
1.(2017山西农大附中月考)下列展开图不能叠合成无盖正方体的是 ()
答案(dáàn) C 正方体的表面展开图不可能出现“凹”字形,故选C.
2021/12/10
第十七页,共四十六页。
2.如图,四个三角形均为等边三角形,将图形折叠,得到的立体图形是 ()
A.三棱锥 B.圆锥 C.圆柱 D.六面体
第一讲 立体图形的展开与折叠(学生版)
第一讲 立体图形的展开与折叠知识清单1. 棱柱棱柱分为直棱柱和斜棱柱,初中阶段只讨论直棱柱.n 棱柱的定点有n 2个,棱有n 3条,面有(2 n )个,因此任意一个棱柱的顶点数、棱数和面数之间存在着这样的关系:顶点数+面数-棱数=2.2. 点、线、面、体从运动的角度看:点动成线,线动成面,面动成体. 3. 展开图与折叠图(1)几种常见的立体图形的展开图:(2)将正方体表面沿着某些棱剪开展成一个平面图形,需要剪开7条棱,由于剪开的方法不同,会得到11种不同形状的展开图.①“一四一”型:如下图,四个一行中排列,上下各一任意放,共6种;①“二三一”型:如下图,二在三上露一端,一在三下任意放,共3种;①“二二二”型:如下图,两两三行排有序,恰是登天上云梯,仅1种;①“三三”型:如下图,三个三排两行,中间一“日”放光芒,仅1中.题型突破题型1 识别几何体1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.下列几何体中,是圆柱的为()A.B.C.D.3.下列图形中,属于立体图形的是()A.B.C.D.4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.一个棱柱共有9条棱,这个棱柱是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱题型2 立体题图像的表面积1.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?2.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm23.小华自己动手做了一个铁皮圆柱形笔筒,它的底面直径为6cm,高为10cm,则其表面积为()A.156πcm2B.120πcm2C.69πcm2D.60πcm24.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm25.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?6.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.题型3 点、线、面、体1.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.3.天上一颗颗闪烁的星星给我们以“”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“”的形象;宾馆里旋转的大门给我们以“”的形象.4.流星划过天空时留下一道明亮的光线,用数学知识解释为.5.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.题型4 几何体的展开图1.下列图形中,可以是正方体表面展开图的是()A.B.C.D.2.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.3.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅6.如图所示的正方体的展开图是()A.B.C.D.7.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)题型5 展开图折叠成几何体1.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民3.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.4.如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中②、②、②、②中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.②B.②C.②D.②题组A基础过关一.选择题(共4小题)1.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.2.小明同学中考前为了给自己加油,课余时间制作了一个六个面分别写有“17”“中”“考”“必”“胜”“!”的正方体模型,这个模型的表面展开图如图所示,与“胜”相对的一面写的()A.17B.!C.中D.考3.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1B.x1+x2﹣x3=1C.x1﹣x2+x3=2D.x1+x2﹣x3=2 4.如图,模块②由15个棱长为1的小正方体构成,模块②﹣②均由4个棱长为1的小正方体构成.现在从模块②﹣②中选出三个模块放到模块②上,与模块②组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,②,②B.模块②,②,②C.模块②,②,②D.模块②,②,②二.填空题(共3小题)5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.6.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明.7.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三.解答题(共3小题)8.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.9.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.10.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图②),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图②),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图②,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图②的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图②,此时,形成一个新的长方体表面积最小,求c的取值范围.题组B提优过关一.选择题(共3小题)1.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.2.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数123456A.15B.16C.21D.173.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.48二.填空题(共2小题)4.如图,是由8个相同的小立方块达成的几何体,它的三个方向看到的都是2×2的正方形,拿掉若干个小立方块后,其三个方向观察到图形仍都为2×2的正方形.若已知该几何体不论拿掉哪一块小立方块,剩余立方块在几何体中的位置不变即几何体不会倒掉,则最多能拿掉小立方块的个数为5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.解答题(共2小题)6.如图所示,左边是小颖的圆柱形的笔筒,右边是小彬的六棱柱形的笔筒.仔细观察两个笔筒,并回答下面问题.(1)圆柱、六棱柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直的吗?(3)六棱柱有几个顶点?经过每个顶点有几条棱?(4)试写出圆柱与棱柱的相同点与不同点.7.一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).。
北师大版数学七年级上册第一章丰富的图形世界展开与折叠
2 展开与折叠
栏目索引
知识点一 正方体的展开与折叠 1.(2018河北临西一中月考)下列平面图形中,不是正方体的展开图的是 ( )
图1-2-3 答案 正方体;长方体;圆锥;圆柱;三棱柱 解析 由展开图各面的形状及展开图中各面的数量确定.
2 展开与折叠
栏目索引
1.(2017山西农大附中月考)下列展开图不能叠合成无盖正方体的是 ()
答案 C 正方体的表面展开图不可能出现“凹”字形,故选C.
2 展开与折叠
2.一个几何体的表面展开图如图所示,则这个几何体是
2 展开与折叠
栏目索引
题型二 由正方体展开图确定相对面 例2 图1-2-9是每个面上都有一个汉字的正方体的一种平面展开图,那 么在原正方体中,和“国”字所在面相对的面上的汉字是 ( )
图1-2-9 A.钓 B.鱼 C.岛 D.中
2 展开与折叠
栏目索引
解析 根据正方体的表面展开图的特征,易知与“中”字所在面相对的 面上的汉字是“的”,与“钓”字所在面相对的面上的汉字是“岛”, 与“国”字所在面相对的面上的汉字是“鱼”,故选B.
答案 A 可以自己动手折一下.
2 展开与折叠
知识点二 柱体、锥体的展开与折叠 3.图1-2-2是一个长方体包装盒,则它的平面展开图是 (
栏目索引
)
图1-2-2
答案 A 长方体包装盒展开后,相对的面不能相邻,故B、C不正确;两 个底面不可能在四个长方形的同侧,故D不正确.故选A.
4.1.1几何图形3(展开图)
第一类,中间四连方,两侧各一 个,共六种。
1 2 3
4
5
6
第二类,中间三连方,两侧各有一、二个,共三种。
第三类,中间二连方,两侧各有二个,只有一种。
第四类,两排各三个,只有一种。
结果: 共有 11 种情况
小结:
立体图形可以展开成平面图形, 并且一个立体图形按不同方式展开可 得到不同的平面展开图。 提出问题:平面图形能否折叠成立体 图形呢?
常见的平面图形
三角形
长方形
五边形
圆形
正方形
六边形
答:有三角形、正方形、长方形、梯形、圆、五角星、多边形等
常见的立体图形
长方体 正方体
圆柱体
球
圆锥体
下列实物与给出的哪个几何体相似?
1 2 3
A
C
想 一 想 ?
下面三视图是表示哪个几何体?
A
B
C
D
说一说 在生活中, 制作这些美丽的包装盒 ,我们需 要知道些什么呢●
●
蚊
● 蚊子
子
壁虎
●
壁虎 ●
2.圆锥体展开图
3.三棱锥展开图
4.三棱柱展开图
5.正方体(含长方体-四棱柱)展开图
想一想:上一题中如果将圆柱改成正方体壁虎又应 该怎样走?
展开
练习1:用线连接展开图和立体图
(2) (4)
(1)
(3)
练习: 2 65
24 3
用剪刀把正方体纸盒按任意方式沿棱 展开,你能得到哪些不同的展开图?
讨论:如何制作长方体的墨水盒?
常常需要了解整个立体图形在同一个平面内 展开的形状(即立体图形的平面展开图),根 据它的平面展开图来裁剪纸张。
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。
立体图形的展开图
THANK YOU
汇报人:XXX
添加标题
正方体的展开图可以通过折叠、剪裁等方式制作出来,也可以使用计算机软件进行设计
添加标题
正方体的展开图在工程、建筑、设计等领域有着广泛的应用,例如:在工程领域,可以 用于制作模型、结构设计等;在建筑领域,可以用于制作建筑模型、室内设计等
长方体的展开图
长方体的展开图有11种 常见的展开图有:长方形、正方形、三角形、梯形等 展开图的特点:每个面都是长方形或正方形 展开图的应用:用于包装、建筑、家具等领域
添加副标题
立体图形的展开图
汇报人:XXX
目录
PART One
立体图形的展开图 概念
PART Three
立体图形展开图的 绘制步骤
PART Five
立体图形展开图的 应用
PART Two
立体图形的展开图 类型
PART Four
立体图形展开图的 绘制技巧
立体图形的展开图 概念
展开图的定义
立体图形的展开图是指将立体图形展开成平面图形的过程
立体图形展开图可以帮助设计师确 定机械结构的受力情况,从而更好 地进行强度分析和优化设计。
在科学研究中的应用
立体图形展开图在数学、物理、化学等领域的研究中具有重要应用价值。
在数学中,立体图形展开图可以用于研究几何体的性质和结构,如体积、表面积、对称性等。
在物理中,立体图形展开图可以用于研究物体的运动和力,如力学、光学、电磁学等。
绘制展开图:根据验证结果,绘制立体图形的展开图,注意线条的流畅性和准确性。
检查和修改:绘制完成后,对展开图进行检查和修改,确保其符合立体图形的性质和特点。
立体图形的展开图(课件)
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图
方
体
展
开
图
立体图形的展开图
正
第二类: "1-3-2"型
方
体
展
开
图
立体图形的展开图
正
第三类: "2-2-2"型
方
体
展
开
第四类: "3-3"型
图
立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相
隔
不 相 连
蓝
?
黄
立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能
展开与折叠(一)
)
A.
B.
C. )
D.
8、 (2007 福建泉州)观察下列图形,其中不是正方体的展开图的为( ..
A
B
C
D
(2008 徐州)下列平面展开图是由 5 个大小相同的正方形组成,其中沿正方形的边不能折成 .. 无盖小方盒的( .. )
2、在下面的图形中,不是正方体表面展开图 的是( )
A.
B.
C.
D.
(Ⅱ)动手操作,探究新知
第二类,2,3,1型,共三种。
(Ⅱ)动手操作,探究新知
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
(Ⅲ)先猜想再实践,发展几何直觉
想一想,做一做
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
A B C D F E
中考链接
考考你
下面图形中,哪些是正方体的平面展开图?
1 2 3 4 5 6 祝 前 你 似 程 锦 A B C D E F
(2008 遵义)如图(1)是一个小正方体的侧面形展开图,小正方体从图(2)所示的位置依次翻到第 1 格、第 2 格、第 3 格,这时小正方体朝上一面的字是 ( ) 迎 接 奥 运 圣 火
(2008 山西太原)右图是一个正方体的平面展开图,这个正方体是(
)
A.
B.
C.
D.
(06 贵阳)如图是正方体的一个平面展开图,如果折叠成原来的正方体时与边 a 重合的是 (A)
d
(B)
e
(C)
f
(D)
i
如图,这是一个正方体的展开图,如 果将它组成原来的正方体,哪些点与 点P重合。
S TPHR黑红白兰绿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G
7/22/2020
活动一
把下面的立体图形展开,看 它的平面展开图是什么。
7/22/2020
圆 柱
展开
7/22/2020
长方体
展开
7/22/2020
棱柱
展开
7/22/2020
圆锥
展开
7/22/2020
下面是一些立体图形的展开图,用它们能围成什么样的 立体图形,把它们画在一张硬纸片上,剪下来,折叠、粘 贴,看看得到的图形和你想象的是否相同.
பைடு நூலகம்值.
-2
3 -4 1
7/22/2020
3x—2=—4
A 3x-2
x=—2/3
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
7/22/2020
下列图形哪个不是长方体的表面展开图?
A
C
7/22/2020
BX D
5.小壁虎的选择:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子, 壁虎要想尽快吃到蚊子,应该走哪条路?
制作立体模型的方法:
1.画出展开图; 2.裁剪、折叠、粘贴; 3.修饰、加工.
注意! 画出正确的展开图是关键.
1.把相应的立体图形与它的平面展开图用线连起来.
2.(1)如图,右面哪一个图形是左面正方体的展开图?
A
B
C
D
答:选择——D——
(2)如图,右面哪一个图形是左面正方体的展开图?
A
B
C
D
答:选择——C—— 3.如图,下列图形能折叠成什么图形?
圆柱
五棱柱
圆锥
三棱柱
4.如图是一个正方体纸盒的展开图,如果 折叠成正方体后相对两面上的两个数互为相 反数,则a=__-_5__,b=__-_7__,c=___8__.
7 -8 a c 5b
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左
面与右面所标注代数式的值相等,求x 的
一四一型
二三一型
二二二型
三三型
下面的图形都是正方体的展开图吗?
不是
是
不是
不是 是
考考你 下面图形中,哪些是正方体的平面展开图?
1
祝
23 45 6
前你 似程
锦
ABC DE F
7/22/2020
都是
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
●
●
●
zxxk
学科网
●
交流归纳:
有些立体图形
展开
平面图形
有些平面图形
折叠
立体图形
7/22/2020
通过本节课的学习,你掌握了什么本领?向大家汇报一下!
作业:
1.教科书
2. 根据所学知识,帮老师做一个长方体形状的盒子.
几何图形
展开图和折叠图
想知道这些精美的包装 盒是怎么制成的吗?
有些立体图形是由一些平面图形围成的,将它 们的表面适当剪开,可以展成平面图形.这样的平 面图形称为相应立体图形的展开图.
将正方体的表面适当剪开,看看它的展开 图是怎样的结构,并画出示意图. 比一比,看哪
一组得到的结果多! 共有11种基本情况