2020年小升初数学专题复习训练—数与代数:探索规律(2)(知识点总结+同步练习)

合集下载

小升初数学知识点《数与代数》专项训练

小升初数学知识点《数与代数》专项训练

小升初数学知识点《数与代数》专项训练数与代数是数学中的一个重要分支,也是小学数学的基础。

下面是小升初数学知识点《数与代数》的专项训练:I.数的概念与性质1.实数的概念:自然数、整数、有理数、无理数。

练习题:判断下列数是自然数、整数、有理数还是无理数。

(1)23(2)-5(3)2.5(4)√22.数的比较:大小比较、大小关系。

练习题:用大于号、小于号或等号填空。

(1)-3_____-2(2)1.2_____1.25(3)0.5_____-0.26II.数的计算1.数的加减法:整数的加减法。

练习题:计算下列运算。

(1)-6+4(2)5-(-3)(3)3+(-2)-(-1)2.数的乘除法:整数的乘除法。

练习题:计算下列运算。

(1)7×(-2)(2)(-5)÷(-1)(3)(-4)×(-3)÷2III.代数基础1.代数和字母:代数式的概念。

练习题:下列哪些是代数式?哪些是算式?(1)3x+2(2)5+3=8(3)2y-72.代数式的运算:代数式的加减法。

练习题:计算下列运算。

(1)3x+2x(2)5y-3y+7y(3)2p-3q+4r-pIV.代数方程式的应用1.代数方程式的概念:如何解代数方程式。

练习题:解下列方程。

(1)2x+5=10(2)3y-2=7(3)-4z+3=-12.代数方程式的应用:问题的转化和求解。

练习题:用方程解下列问题。

(1)一根绳子的2/3等于42米,绳子的全长是多少米?(2)一支笔的价钱是5元,比一支笔贵2元的是一本书,那么一本书的价钱是多少元?(3)有7本书,其中平装书占总数的2/5,阅读书籍比平装书多9本,求阅读书籍的数量。

以上是小升初数学知识点《数与代数》的专项训练,希望对你的学习有所帮助。

小升初数学考试数与代数复习要点知识点总结

小升初数学考试数与代数复习要点知识点总结

小升初数学考试数与代数复习要点知识点总结
基础教育一直是最受学校和家长关注的,最为基础教育重中之重的初等教育,更是得到更多的重视。

小升初频道为大家准备了数与代数复习要点,希望能帮助大家做好小升初的复习备考,考入重点初中院校!
小升初数学考试数与代数复习要点
数与代数
1、百分数的应用
百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。

要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。

通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。

2、比例的有关知识
比例的知识有比例的意义、比例的基本性质和解比例。

这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。

3、成正比例和成反比例的量
教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。

根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。

小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的数与代数复习要点能让大家在小升初的备考过程助大家一臂之力!。

2020年小升初数学专题复习训练—数与代数:数的认识(2)(知识点总结)

2020年小升初数学专题复习训练—数与代数:数的认识(2)(知识点总结)

2020年小升初数学专题复习训练——数与代数数的认识(2)知识点复习一.整数的读法和写法【知识点解释】读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续几个0都只读一个零.写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0.【命题方向】常考题型:例:下面各数中,读两个零的数是()A、606000B、6060000C、6060606D、6060600分析:整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其余数位连续几个0都只读一个零,据此读出个选项中的数,然后分析选择.解:A、606000读作:六十万六千,一个零也不读出;B、6060000读作:六百零六万,读出一个零;C、6060606读作:六百零六万零六百零六,读出三个零;D、6060600读作:六百零六万零六百,读出两个零;故选:D.点评:本题主要考查整数的读法,注意零的读法.二.整数的改写和近似数【知识点归纳】一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的数,写成近似数.1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数.改写后的数是原数的准确数.例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿.2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示.例如:1302490015 省略亿后面的尾数是13 亿.3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1.例如:省略345900 万后面的尾数约是35 万.省略4725097420 亿后面的尾数约是47 亿.【命题方向】常考题型:例:四川雅安地震后,社会各界踊跃捐款,据不完全统计总额达1058181200元,把它改写成用”万”作单位的数是105818.12万,省略亿位后面的尾数约是11亿.分析:改写成用万作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.解:1058181200=105818.12万≈11亿.故答案为:105818.12;11亿.点评:本题主要考查整数的改写和求近似数,注意改写和求近似数时要带计数单位.三.整数大小的比较【知识点归纳】比较整数的大小,位数多的那个数就大;如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大,那个数就大.【命题方向】常考题型:例1:在横线里填上“>”、“<”或“=”分析:(1)527023和4969200位数不同,位数多的这个数就大.因为525023是6位数字,4969200是7位数字,所以527023<4969200;(2)先估算48×7,看作50×7=350,再比较,所以48×7<350;(3)根据商不变性质进行解答,(360÷10)÷(60÷10)=36÷6,所以360÷60=36÷6;(4)175-(30-6)去括号为175-30+6,175-(30+6)去括号为175-30-6,所以175-(30-6)>175-(30+6).解:(1)527023<4969200;(2)48×7<350;(3)360÷60=36÷6;(4)175-(30-6)>175-(30+6).点评:此题先跟据它的数据特点选择合适方法分析,再比较大小;整数比较大小,先比较数位,数位多的数就大;数位相同的在从最高位开始比较,最高位上的数字大的这个数就大,最高位上的数字相等的在比较第二位…例2:由5、7、0、4、5、9、0、2、1、2组成的十位数中,最大的数是9755422100,最小的数是1002245579.分析:(1)要使组成的十位数最大,则最高位上应该是9,然后依次是7、5、5、4、2、2、1、0、0,写出这个十位数即可;(2)要使组成的十位数最小,则最高位上应该是1,然后依次是0、0、2、2、4、5、5、7、9,写出这个十位数即可.解:由5、7、0、4、5、9、0、2、1、2组成的十位数中,最大的数是:9755422100,最小的数是:1002245579.故答案为:9755422100、1002245579.点评:解答此题的关键是从最高位开始,逐一判断出每个数位上的数字即可.四.分数的意义、读写及分类【知识点归纳】分数的意义:把一个物体或一个计量单位平均分成若干份,这样的一份或几份可用分数表示.在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份.分数的分类:(1)真分数:分子比分母小的分数,叫做真分数.真分数的分数值小于1.(2)假分数:和真分数相对,分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.带分数:分子不是分母的倍数关系.形式为:整数+真分数.【命题方向】A、第一根长B、第二根长C、两根同样长所以第一根剩下的部分长.故选:A.点评:此题重在区分分数在具体的题目中的区别:有些表示是某些量的几分之几,有些表示具体的数,做到正确区分,选择合适的解题方法.在具体的题目中,带单位是一个具体的数,不带单位是把某一个数量看单位“1”,是它的几分之几.五.整数、假分数和带分数的互化【知识点归纳】1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子.2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子.【命题方向】例2:如果a÷b=2 …1,那么(5a)÷(5b)=2…1×.(判断对错)分析:商不变规律是:被除数和除数同时扩大或缩小相同的倍数,商不变,但是有余数的余数也要扩大或缩小相同的倍数,据此解答.解:如果a÷b=2 …1,那么(5a)÷(5b)=2…5;所以如果a÷b=2 …1,那么(5a)÷(5b)=2…1是错误的;故答案为:×.点评:本题主要考查商不变规律的应用.注意只有商不变,余数要同时扩大或缩小相同的倍数.。

2020年小升初数学专题复习训练—数与代数:探索规律(1)(知识点总结+同步测试)

2020年小升初数学专题复习训练—数与代数:探索规律(1)(知识点总结+同步测试)

2020年小升初数学专题复习训练——数与代数探索规律(1)知识点复习一.算术中的规律【知识点归纳】在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,进而,根据规律填出这一类算式的结果.例如:1×1=1;11×11=121;111×111=12321;1111×1111=1234321;通过观察发现:每个算式中,两个因数各个数位上的数字都是1,且个数相同.积里的数字呈对称形式,且前半部分是从1开始,写至某个数字(此数即因数的位数),积的后半部分再顺次写出.①一个数乘11,101的规律一个数乘11的规律:可采用“两头一拉,中间相加”的方法计算.如:123×11=1353一个数乘101的规律:可采用“两两一位,隔位一加”的方法计算.如:58734×101=5932134②一个数乘5,15,25,125的规律一个数乘5,转化为一个数乘10,然后,再除以2.如:28×5=28×10÷2=280÷2=140这种情况可以概括为“添0求半”.根据同级运算可交换位置的性质,也可以先除以2,再乘10.如:28×5=28÷2×10=14×10=140.即“求半添0”的方法.一个数乘15,可分解为先用这个数乘10,再加上这个数乘5,乘5的方法同上.如:264×15=264×10+264×5=2640+264×10÷2=2640+2640÷2=2640+1320=3960.这种情况可以概括为“添0补半”一个数乘125,因为125×8=1000,所以,可将一个数乘125转化为先乘1000,再除以8,或先除以8,再乘1000.如:864×125=864×1000÷8=864000÷8=108000.【命题方向】常考题型:例1:4÷11的商用循环小数表示,则小数点后面第20位数字是()A、0 B、3 C、7 D、6分析:把4÷11的商用循环小数表示出来,看看循环节有几位小数,然后用20除以循环节的位数即可判断.解:4÷11=••63.0,循环节是36两个数字;20÷2=10,所以20位上的数是6;故选:D.点评:此题考查学生循环节的概念,以及分析判断能力.例2:按规律计算.3+6+12=12×2-3=213+6+12+24=24×2-3=453+6+12+24+48=48×2-3=933+6+12+24+…+192=192×2-3=381a+2a+4a+8a+16a+…+1024a=2047a.分析:由3+6+12=12×2-3=21,3+6+12+24=24×2-3=45,3+6+12+24+48=48×2-3=93可知:结果都是算式中的最后一个数乘以2再减去第一个数所得,由此得出结论.解:(1)3+6+12+24+…+192=192×2-3=381;(2)a+2a+4a+8a+16a+…+1024a=1024a×2-a=2048a-a=2047a.故答案为:381,2047a.点评:此题在于考查学生总结规律的能力.二.数列中的规律【知识点归纳】按一定的次序排列的一列数,叫做数列.(1)规律蕴涵在相邻两数的差或倍数中.例如:1,2,3,4,5,6…相邻的差都为1;1,2,4,8,16,32…相邻的两数为2倍关系.(2)前后几项为一组,以组为单位找关系,便于找到规律.例如:1,0,0,1,1,0,0,1…从左到右,每四项为一组;1,2,3,5,8,13,21…规律为,从第三个数开始,每个数都是它前面两个数的和.(3)需将数列本身分解,通过对比,发现规律.例如,12,15,17,30,22,45,27,60…在这里,第1,3,5…项依次相差5,第2,4,6…项依次相差15.(4)相邻两数的关系中隐含着规律.例如,18,20,24,30,38,48,60…相邻两数依次差2,4,6,8,10,12…【命题方向】常考题型:例1:一列数1,2,2,3,3,3,4,4,4,4,….中的第35个数为()A、6B、7C、8D、无答案分析:从这组数可以得出规律,当数为n时,则共有n个n,所以第35个数为n,则1+2+3+…+n-1<35<1+2+3+…+n,可以求出n所以n=8.故选:C.点评:通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.例2:一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成144对兔子.分析:从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.找到这个数列的第12项即可.解:兔子每个月的对数为:1,1,2,3,5,8,13,21,34,55,89,144,所以,从一对新生兔开始,一年后就变成了144对兔子.故答案为:144.点评:本题属于斐波那契数列,先找到兔子增加的规律,再根据规律求解.三.“式”的规律【知识点归纳】把一些算式排列在一起,从中发现规律,也是探索规律的重要内容.在探索“式”的规律时,要从组成“式”的要素中去探索.【命题方向】常考题型:例:观察1+3=4 4+5=9 9+7=16 16+9=25 25+11=36这五道算式,分析:观察所给出的式子,知道从第二个算式起,第一个加数分别是前一算式的和;从第二个式子起,第二个加数分别是前一算式中的第二个加数加2所得;由此得出要求的算式.解:因为,要求的算式的前一个算式是:25+11=36,所以,要求的算式的第一个加数是:36,第二个加数是:11+2=13,所以要求的算式是:36+13=49,故答案为:36+13=49.点评:解答此题的关键是观察所给出的算式,找出算式之间数与数的关系,得出规律,再根据规律解决问题.四.数与形结合的规律【知识点归纳】在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.【命题方向】常考题型:例:用小棒照下面的规律搭正方形,搭一个用4根,搭2个用7根…,搭10个要用31根小棒,搭n个要用3n+1根小棒.分析:能够根据图形发现规律:多一个正方形,则多用3根火柴.解:观察图形发现:第一个图形需要4根火柴,多一个正方形,多用3根火柴,则第n个图形中,需要火柴4+3(n-1)=3n+1.当n=10,3n+1=31,答:搭10个要用3根小棒,搭n个要用3n+1根小棒.故答案为:31,3n+1.点评:本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.五.数表中的规律【知识点归纳】【命题方向】常考题型:例:如图是一张月历卡,用形如的长方形去框月历卡里的日期数,每次同时框出3个数.框出的3个数的和最大是84,一共可以框出20种不同的和.分析:框出3个数是27,28,29时和最大.根据月历卡可知第2,3,4,5行每行有5种不同的和,依此即可求解.解:27+28+29=28×3=84,5×4=20(种).故答案为:84,20.点评:考查了数表中的规律,月历卡中不同的和的情况要一行一行的找,再相加进行解答.2020年小升初数学专题复习同步测试卷题号一二三四五六总分得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)循环小数的小数部分的第50位上的数字是()A.5 B.6 C.72.(2分)根据3×4=12、33×34=1122、333×334=111222,推测3333×3334=()A.11111222 B.11122222 C.11112222 D.111111123.(2分)2.22,2.30,2.38,2.46,()括号里应填()A.2.22 B.2.50 C.2.544.(2分)一列数1,,,,,,,,,……中的第27个数是()A.B.C.D.5.(2分)下面算式中,与1+3+5+7+9+7+5+3+1的得数相等的是()A.52+32B.42+52C.52﹣326.(2分)小红用计算器探索计算规律,她算出了以下3个算式的积.7×9=63,77×99=7623,777×999=776223.照此规律,第7个算式的积是()A.7777777622222223 B.77777762222223C.7777776222223 D.77777622222237.(2分)把正方形桌子拼在一起,一张正方形桌子能坐8个人,两张正方形桌子能坐12个人,如图.如果10张桌子拼在一起能围坐()人.A.36 B.40 C.44 D.488.(2分)在如图的百数表中,用十字架框住五个数(如图),这五个数之和可能是()A.205 B.216 C.220 D.2249.(2分)小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入… 1 2 3 4 5 …输出……那么,当输入数据是8时,输出的数据是()A.B.C.D.10.(2分)一个自然数表如下(零除外,表中下一行数的个数是上一行的2倍),第六行最后一个数是()第一行 1第二行 2 3第三行 4 5 6 7……A.31 B.63 C.64 D.127二.填空题(共9小题,满分19分)11.(5分)通过计算发现规律.6543﹣2345=9876﹣5678=7654﹣3456=按找到的规律,再写两个算式.12.(1分)德国数学家马力欧•西格麦尔于1980年发明了一个非常特别的数列.数列的规律与数的大小无关,从第二个数起,每个数都是对上一个数的描述.第一个数:1,第二个数:11,第三个数:21,第四个数:1211,第五个数:111221,第六个数是.13.(3分)找规律填数,6.877、6.872、6.867、、、.14.(2分)根据前面三道算式,直接填出括号里的数9×8=7299×88=8712999×888=8871129999×8888=99999×88888=15.(2分)找规律,填数字.0.9+0.09+0.009+0.0009++……照这样加下去,结果越来越接近.16.(2分)如图,强强用小棒搭房子,照这样搭下去,搭5间房子要用根小棒;搭间房子要用61根小棒.17.(2分)看图回答下面的问题.展览了张照片.一共用了个图钉.18.(1分)A 1 6 7 12 13 18 19B 2 5 8 11 14 17 20C 3 4 9 10 15 16 21将所有数如此排列,2018在第组(填A/B/C)19.(1分)先找规律,然后填上合适的数.三.判断题(共5小题,满分10分,每小题2分)20.(2分)将化成小数以后,小数点后第2008位上的数字是7..(判断对错)21.(2分)若一列数为:2,4,6,8,10,……96,98,100,则这列数的和是2550.(判断对错)22.(2分)下面一组有规律排列的数:60、75、90、105、120,则1415不是这组数中的数..(判断对错)23.(2分)在1+3+5+7+9+…中,从“1”到数“13”的和是49..(判断对错)24.(2分)摆1个正方形需要4根小棒,往后每多摆1个正方形就增加3根小棒,按这样的规律摆10个正方形,一共需要31根小棒..(判断对错)四.计算题(共1小题,满分6分,每小题6分)25.(6分)已知:=+ =+ =+利用上面的规律计算:1+﹣+﹣+﹣.五.应用题(共5小题,满分25分,每小题5分)26.(5分)如图,小朋友们玩多米诺骨牌的游戏,假设每一张牌倒下去所用的时间是0.2秒,并且每一张骨牌倒下后会碰倒它后边的两张骨牌,那么照这样下去,1秒钟内所倒下的骨牌数是多少?27.(5分)用6根同样长的小棒可以摆成一个正六边形(如图①),再接着摆下去(如图②、③、④),图⑧一共需要多少根小棒?28.(5分)用小棒按下面的方式拼图形.(1)如果按下面的规律拼成5个这样的五边形,一共要用根小棒.五边形个数拼成的形状小棒根数1 52 93 134 17(2)接着拼下去,一共用了57根小棒,你知道一共拼成了多少个五边形吗?29.(5分)一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人.30.(5分)如图:自然数按照顺序排列成下列的三角数阵,那么2019上方的数是多少?31.六.操作题(共1小题,满分5分,每小题5分)31.(5分)根据前面3个图形的变化规律把第4个图形画完整.七.解答题(共3小题,满分15分,每小题5分) 32.(5分)从左到右按顺序填空.2018171533.(5分)下列各图是用“”按一定规律排列而成的图案,第1个由4个组成,第2、3、4个图案由几个组成?第n (n 是整数)个图案由几个组成? 图案 1234……n“”个数4……34.(5分)如图所示,第一张卡片上写有1,第二张卡片上写有1~4,第三张卡片上写有1~9,并按如图的规律将其中的一组数画上○,照这样第四张、第五张、…继续写下去.回答下列各题.(1)把由第五张卡片中画有○的数字,按由大到小的顺序排列起来.(2)试求81是由哪几张卡片上圈出来的数字?(本题只需写出答案即可)参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.【分析】根据循环小数的特征,循环小数的小数部分的数字是6767…,每两个数(67)一个循环,所以用50除以2,根据商和余数的情况,判断出循环小数的小数部分的第50位上的数字是多少即可.【解答】解:循环小数的小数部分的数字是6767…,每两个数(67)一个循环,因为50÷2=25,所以循环小数的小数部分的第50位上的数字是7.故选:C.【点评】此题主要考查了循环小数的特征,以及算术中的规律的应用,要熟练掌握,解答此题的关键是要明确:循环小数的小数部分的数字是6767…,每两个数(67)一个循环.2.【分析】根据观察知:当因数是3和4时,它们的积是12,当因数是33,34时,积是1122,当因数是333,334时积是111222,它们的规律是当在每个因数的前面添上一个3时,它的积的前面就是添一个1,后面就要添一个2.也就是因数有3的个数与积中1的个数和2的个数相同.据此解答.【解答】解:根据观察知:因数有3的个数与积中1的个数和2的个数相同.3333×3334=11112222.故选:C.【点评】本题的关键是找出题目中的规律再进行解答.3.【分析】2.30﹣2.22=0.08,2.38﹣2.30=0.08,2.46﹣2.38=0.08,规律:依次增加0.08.【解答】解:2.46+0.08=2.54故选:C.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.4.【分析】从这组数的分母可以得出规律,当分母数为n时,则共有n个,所以第27个数为,则1+2+3+…+n﹣1<27<1+2+3+…+n,可以求出n,进而得解.【解答】解:根据规律,设第27个数为,则1+2+3+…+n﹣1<27<1+2+3+…+n,所以<27<;所以n=7,则第27个数是.故选:B.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.5.【分析】1+3+5+7+9+7+5+3+1=(1+3+5+7+9)+(1+3+5+7)=52+42,进而判断即可.【解答】解:1+3+5+7+9+7+5+3+1=(1+3+5+7+9)+(1+3+5+7)=52+42;故选:B.【点评】解答此题的关键是根据各算式的特征(从1开始的相邻奇数相加)找算式中加数的个数与算式的序数之间关系,然后根据这一关系解答.6.【分析】通过上面的四个算式可得出规律:积中的数字“7”和“2”的个数等于因数中“7”的个数减去1;数字“6”和“3”的个数只有一个,数字“6”在“7”和“2”之间;数字“3”在末尾,依照这个规律填写即可.【解答】解:第7个算式是:7777777×9999999=77777762222223,故选:B.【点评】考查了“式”的规律,要利用已知的式子去观察、对比找出规律,然后解答.7.【分析】根据题意,1张桌子可以坐8人可以写成1×4+4人,2张桌子可以坐12人可以写成2×4+4人,3张桌子16人,可以写成3×4+4=16人,…,y张桌子就可以坐4y+4人,由此即可解决问题.【解答】解:1张桌子可以坐8人可以写成1×4+4人,2张桌子可以坐12人可以写成2×4+4人,3张桌子16人,可以写成3×4+4=16人,…,则y张桌子就可以坐4y+4人,当y=10时,学生总数为:4×10+4=44(人),答:如果10张桌子拼在一起能围坐44人.故选:C.【点评】此类规律题一定要注意结合图形进行分析,发现规律:每多一张桌子,多坐4人.从而得出y张桌子可以坐4y+4人.8.【分析】由图表可知,设中间数为x,则上下两个数是x﹣10、x+10,左右两个数是x﹣1、x+1,所以框住的5个数的和就是x﹣10+x﹣1+x+x+1+x+10=5x,即用十字架框住五个数,这五个数之和就是中间数的5倍,也就是五个数之和应是5的倍数,根据5的倍数的特征,逐项分析判断即可得解.【解答】解:设中间数为x,则上下两个数是x﹣10、x+10,左右两个数是x﹣1、x+1,所以框住的5个数的和就是:x﹣10+x﹣1+x+x+1+x+10=5x,所以十字框中五个数的和是中间的数的5倍.因为205、216、220、224中只有205和220是5的倍数,205÷5=41,220÷5=44,而41在图表的最边上,不能框在中间位置,而44能框在中间,所以这五个数之和可能是220.故选:C.【点评】读懂图意找到所框住的5个数之间的关系是解决本题的关键,要耐心仔细地观察.9.【分析】观察表格发现,输入的数字是几,输出数的分子就是几;输入1,输出数的分母是12+1=2,输入2输出数的分母是22+1=5,输入3输出数的分母是32+1=10,输入4输出数的分母是42+1=17,输入5输出数的分母是52+1=26,输入几,输出数的分母就是这个数的平方再加上1,由此求解.【解答】解:输入8,输出数的分子就是8;分母是:82+1=64+1=65输出的数就是.故选:C.【点评】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.10.【分析】第一行,只有1;第二行,有2个数,最后一个数字是1+2=3;第三行,有4个数字,是2个2的积,最后一个数字是1+2+4=7,…,第六行,应该有5个2的积个数,最后一个数应该是1+2+4+8+16+32,即可得解.【解答】解:1+2+4+8+16+32=63,答:第六行最后一个数是63,故选:B.【点评】先找到规律,再根据规律求解.二.填空题(共9小题,满分19分)11.【分析】通过计算可以得出:被减数从低位到高位各数位上的数字依次加1,减数从高位到低位各数位数字依次减1,且被减数的最高位上的数字比减数的最高位数字大4.【解答】解:6543﹣2345=41989876﹣5678=41987654﹣3456=4198另外两个算式:8765﹣4567=41985432﹣1234=4198故答案为:4198,4198,4198.【点评】仔细观察被减数和减数的特征以及差的规律,是解答此类题的关键.12.【分析】根据规律:第一个数是“1”,第二数是对第一个数的理解“1个1”,也就是“11”;第三个数就是对第二个数“11”的理解“2个1”,也就是“21”;第四个数就是对第三个数的理解“1个2,1个1”,即“1211”;第五个数是对第四个数的理解“1个1,1个2,2个1”,即“111221”;那么,第六个数就是对第五个数的理解,即“3个1,2个2,1个1”,即“312211”,据此解答.【解答】解:本题的规律是:第一个数是“1”,第二数是对第一个数的理解“1个1”,也就是“11”;第三个数就是对第二个数“11”的理解“2个1”,也就是“21”;第四个数就是对第三个数的理解“1个2,1个1”,即“1211”;第五个数是对第四个数的理解“1个1,1个2,2个1”,即“111221”;那么,第六个数就是对第五个数的理解,即“3个1,2个2,1个1”,即“312211”.故答案为:312211.【点评】解答本题的关键是找出规律,然后利用规律解题.13.【分析】6.877﹣6.872=0.005,6.872﹣6.867=0.005,可得后一个数比前一个数少0.005;据此解答.【解答】解:6.867﹣0.005=6.8626.862﹣0.005=6.8576.857﹣0.005=6.852即6.877、6.872、6.867、6.862、6.857、6.852.故答案为:6.862、6.857、6.852.【点评】先根据给出的数据找出规律,再利用规律进行求解.14.【分析】根据观察,第一个因数中9个数与第二个因数中8的个数相同,积中8的个数比因数9或8的个数少1,然后写一个数字7,接下来写数字1,1的个数比因数9或8的个数少1,最后写一个数字2即可.【解答】解:9×8=7299×88=8712999×888=8871129999×8888=8887111299999×88888=8888711112故答案为:88871112,8888711112.【点评】解答本题的关键是仔细观察前三个算式的特征,找出特点或规律.15.【分析】根据小数加法的计算法则计算,发现这个算式的整数部分是0,小数部分从十分位起依次是99999999……,可得结果是循环小数,越来越接近1,据此解答.【解答】解:根据题意,后面一个加数依次比前一个多一位小数,且前几位小数都是0,最后一位小数是9,所以算式是:0.9+0.09+0.009+0.0009+0.00009+……=0.,结果越来越接近1.故答案为:0.00009,1.【点评】此题考查了式的规律,要求学生掌握循环小数的意义.16.【分析】搭一间房用6根小棒,2间房用11根小棒,3间房用16根小棒,以后每增加一间房就多用5根小棒,所以搭n间房子需要(1+5n)根小棒.由此解决问题.【解答】解:搭一间房用6根小棒,可以写成1+1×5;2间房用11根小棒,可以写成1+2×5;3间房用16根小棒,可以写成1+3×5;…所以搭n间房子需要(1+5n)根小棒.当n=5时,需要小棒1+5×5=26(根),61根小棒可以搭:(61﹣1)÷5=60÷5=12(间)答:搭5间房子要用26根小棒;搭12间房子要用61根小棒.故答案为:26,12.【点评】主要考查了通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17.【分析】根据图示可知:展览1张照片需要4个图钉;展览2张照片,需要4+2=6(个)图钉;展览3张照片需要4+2+2=8(个)图钉.【解答】解:1张照片需要4个图钉;展览2张照片,需要4+2=6(个)图钉;展览3张照片需要4+2+2=8(个)图钉.答:展览了3张照片,一共用了8个图钉.故答案为:3;8.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.18.【分析】通过观察分析:A组:1,6,7,12,13,18,19,…B 组:2,5,8,11,14,17,20,…C组:3,4,9,10,15,16,21,…,可知它们6个数分成一组,用2018除以6,2018÷6=336…2,余数是2,所以2018和2在同一组,据此解答即可.【解答】解:由表可知,6个数分成一组,2018÷6=336…2,余数是2,所以2018和2在同一组,所以应该在B组.答:2018在第B组.故答案为:B.【点评】解答本题关键是清楚6个数分成一组,看看2018里有几个6,余数是几,据此计算可知.19.【分析】60÷12=5,20÷4=5,90÷18=5.每个表中第一行的第二个数是第一个数的5倍,第二个表中第二行的第一个数字已知,据此即可求出第二个表示中第二行的第二个数.【解答】解:由分析可知,每行中第二个数是第一个数的5倍6×5=30【点评】解答此题的关键是根据两个表中每行两个数之间的关系描出规律,然后再根据规律求出未知的数填表.三.判断题(共5小题,满分10分,每小题2分)20.【分析】把分数化成小数,就会发现小数点后的数字是有规律的:=0.142857142857…,一直重复142857,所以小数点后的数字周期为6,2008÷6=334…4,每个周期第四个数为8,所以小数点后第2008位上的数字是8.【解答】解:=1÷7=0.142857142857…,一直重复142857,所以小数点后的数字周期为6.2008÷6=334…4,故小数点后第2008位上的数字是8.故答案为:×.【点评】考查了小数与分数的互化,算术中的规律,本题的关键是得到转化为小数,找出数字循环周期为6.21.【分析】求2,4,6,8,10,……96,98,100的和即为求:2+4+6+8+10+…+100=?n=50,根据等差数列的求和公式完成计算.【解答】解:2+4+6+8+10+…+100===2550所以原题计算正确.故答案为:√.【点评】根据等差数列求和公式进行计算,找出等差数列的公差,首项,尾项和项数是计算的关键.22.【分析】这组数每次递增15,所以用1415减去60,看能否被15整除即,如果能整除就是,否则不是;据此解答.【解答】解:75﹣60=15,90﹣75=15,…,所以这组数每次递增15,(1415﹣60)÷15≈90.33,所以,1415不是这组数中的数.故答案为:√.【点评】此题考查了数列的规律,关键是求出每次递增的数.23.【分析】在1+3+5+7+9+…中首先求出“13”是第几项(由于项数比较少,可能用数的方法),由于相邻两数的差是1,所以项数等于(末项﹣首项)÷2+1,据即可求13是第几项;前n项和的计算公式是(末项+首项)×,根据公式可求出前13项的和,根据计算结果进行判断.【解答】解:在1+3+5+7+9+…中,从“1”到数“13”的项数为:(13﹣1)÷2+1=12÷2+1=6+1=7前6项的和为:(13+1)×=14×3.5=49因此,在1+3+5+7+9+…中,从“1”到数“13”的和是49,原题的说法是正确的.故答案为:√.【点评】此题项数较少,写出所有项,通过计算即可得到正确的结果.如果项数较多,只能先总结出求项数、前n项和公式解答.24.【分析】摆一个正方形要小棒4根;摆两个正方形要小棒(4+3)根,即7根;摆三个正方形要小棒(4+3×2)根,即10根,由此得到摆n个正方形要小棒4+3×(n﹣1)=3n+1根;然后把n=10代入3n+1中即可求出摆10个正方形需要的小棒数.【解答】解:摆一个正方形要小棒4根;摆两个正方形要小棒(4+3)根,即7根;摆三个正方形要小棒(4+3×2)根,即10根,…,所以摆n个正方形要小棒:4+3×(n﹣1)=3n+1(根);n=10,3×10+1=31(根);答:摆10个正方形一共需要31根小棒.原题说法正确.故答案为:√.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.四.计算题(共1小题,满分6分,每小题6分)25.【分析】由已知条件可以看出:分母是相邻自然数,分子是1的两个分数相加,这两个自然数的和为分子,积为分母.根据这规律先算式中的、、、、,然后再计算.【解答】解:1+﹣+﹣+﹣=1+﹣(+)+(+)﹣(+)+(+)﹣(+)=1+﹣﹣++﹣﹣++﹣﹣=1﹣=【点评】解答此题的关键是把算式中的、、、、,分别用+、+、+、+代换,相同的分数加、减相抵消,可使计算简便.五.应用题(共5小题,满分25分,每小题5分)26.【分析】1÷0.2=5,即1秒里面有5个0.2秒.第一张倒下后过0.2秒(1个0.2秒)会倒下2张、再过0.2秒(2个0.2秒)后会倒下4张、再过0.2秒(3个0.2秒)后会倒下8张、再过0.2秒(4个0.2秒)会倒下16张、再过0.2秒(5个0.2秒)会倒下32张.1、2、4、8、16、32.是公比为2的等比递增数列.最后把这些张数相加.【解答】解:1÷0.2=5,即1秒里面有5个0.2秒倒下第1张后第1个0.2秒后会倒下2张第2个0.2秒后会倒下4张第3个0.2秒后会倒下8张第4个0.2秒后会倒下16张第5个0.2秒后会倒下32张1+2+4+8+16+32=1+2+(4+16)+(8+32)=1+2+20+40=63(张)答:1秒钟内所倒下的骨牌数是63张.【点评】这个数列项数是有限的,可以求出每次倒下的张数,然后再把倒下的总张数相加.如果项数较多要找规律解答.用小学知识只能这样解答.27.【分析】摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;…由此可以推理得出一般规律解答问题.【解答】解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要小棒:5×3+1=16;摆n个需要小棒:5×n+1=5n+1;当n=8时,5n+1=5×8+1=41;答:图⑧一共需要41根小棒.【点评】根据题干中已知的图形的排列特点及其数量关系,推理得出一般的结论进行解答,是此类问题的关键.28.【分析】(1)由图示可知,拼1个五边形,需要小棒根数:5根;拼2个五边形,需要小棒根数:5+4=9(根);拼3个五边形,需要小棒根数:5+4+4=13(根);……有摆n个五边形,需要小棒根数:5+4×(n﹣1)=(4n+1)(根).根据规律计算即可.(2)由(1)的规律可知,当4n+1=57时,n=14.【解答】(1)拼1个五边形,需要小棒根数:5根拼2个五边形,需要小棒根数:5+4=9(根)拼3个五边形,需要小棒根数:5+4+4=13(根)……有拼n个五边形,需要小棒根数:5+4×(n﹣1)=(4n+1)(根)当n=5时,所需小棒根数:4×5+1=20+1=21(根)答:拼成5个这样的五边形,一共要用21根小棒.(2)解:设一共拼成了x个五边形.4x+1=574x=56x=14答:一共拼成了14个五边形.故答案为:21.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现图示排列的规律,并运用规律做题.29.【分析】由一张桌子坐6人,两张桌子坐10人,三张桌子坐14人,可以发现每多一张桌子多4个人,由此用字母表示这一规律,然后代值计算.【解答】解:1张桌子可坐2×1+4=6人,2张桌子拼在一起可坐2×4+2=10人,3张桌子拼在一起可坐4×3+2=14人,…所以五张桌子坐4×5+2=22人,…那么n张桌子坐(4n+2)人.当共有50人时,4n+2=504n=48n=12答:这样共12张桌子拼起来可以坐50人.【点评】此题考查图形的变化规律,找出规律,利用规律解决问题.30.【分析】第1个奇数为1,第2个奇数为3,第3个奇数为5…,第k个奇数为2k﹣1,前k个奇数之和为1+3+5+…+(2k﹣1)=k2,于是,在如图所示的三角形数阵中,前k行共有k2个奇数,前k﹣1行共有(k﹣1)2个奇数,于是第k行第1个奇数为2[(k﹣1)2+1]﹣1=2(K﹣1)2+1.现在2×312=1922,2×322=2048故2019位于第32行上.第32行第1个数为1923,1923~2019共有(2019﹣1923)÷2+1=49个奇数,因此,2019为第32行,第49个数.第31行,第48个奇数位:2×302+1+(48﹣1)×2=1895,即2019上面的奇数位1895.【解答】第1个奇数为1,第2个奇数为3,第3个奇数为5…,第k个奇数为2k﹣1,前k个奇数之和为1+3+5+…+(2k﹣1)=k2,于是,在如图所示的三角形数阵中,前k行共有k2个奇数,前k﹣1行共有(k﹣1)2个奇数,于是第k行第1个奇数为2[(k﹣1)2+1]﹣1=2(K﹣1)2+1.现在2×312=1922,2×322=2048故2019位于第32行上.第32行第1个数为1923,1923~2019共有(2019﹣1923)÷2+1=49个奇数,因此,2019为第32行,第49个数.第31行,第48个奇数位:2×302+1+(48﹣1)×2=1801+94=1895答:2019上方的数是1895.【点评】本题主要考查数列中的规律,关键根据所给图示,发现规律,并运用规律做题.六.操作题(共1小题,满分5分,每小题5分)31.【分析】(1)每个图形对比,发现规律:5个花瓣是顺时针旋转一个瓣;(2)把三个小正方形看做一个整体,顺时针旋转90°就是下一个图形;。

小升初数学常考的性质和规律知识点总结

小升初数学常考的性质和规律知识点总结

小升初数学常考的性质和规律知识点总结
小升初考试是小学生面临的第一次重要的考试,它关系到小学生是否可以接受更好的初等教育。

为了帮助小学生更好的做好小升初的复习备考,小升初频道为大家准备了小升初数学常考的性质,希望大家在小升初的备考过程中有所参考!
小升初数学常考的性质和规律
性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍
2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍
3. 小数点向左移或者向右移位数不够时,要用0补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系
1. 被除数除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数相当于分子,除数相当于分母。

希望我们准备的小升初数学常考的性质符合小学生的实际需求,能在你们复习备考过程中起到实际的作用,愿大家都以优异的成绩考入理想的重点初中院校!。

小升初数学代数知识点总结

小升初数学代数知识点总结

小升初数学代数知识点总结一、一元一次方程1. 解一元一次方程一元一次方程通常是指一个未知数的一次方程,解一元一次方程的基本步骤是首先将方程化为等式形式,然后通过加减乘除的运算,将方程化简为最简形式,最后找到未知数的解,对于方程2x+3=7,我们首先化简方程得到2x=4,然后再除以2,得到x=2,所以方程的解是x=2。

2. 解一元一次方程的实际问题一元一次方程的解决实际问题是代数知识在解决实际问题的应用,例如:小华的妈妈告诉她:“你放学后乘地铁回家,地铁票是3元,坐两站要花费15元,你可以用一元钱坐一站地铁,坐两站要花多少钱?” 本题就可以通过一元一次方程来解决。

二、整式运算1. 同类项的加减在整式的加减中,同类项的加减是一个非常重要的步骤,同类项是指具有相同的字母部分和相同的指数部分的代数项,对同类项进行加减时,只需要对它们的系数部分进行加减操作,例如:3x+2x=5x。

2. 整式的乘法整式的乘法是指两个整式相乘的操作,整式的乘法有分配律、结合律、交换律等性质,例如:(3x+4)(2x+5)=6x^2+15x+8x+20=6x^2+23x+20。

3. 整式的除法整式的除法是指两个整式相除的操作,通常是将整式按照幂从高到低的顺序排列,然后再进行除法运算。

三、方程的解法1. 因式分解法因式分解法是指将一个多项式化为若干个因式相乘的形式,例如:2x^2+7x+3=0,可以分解为(2x+1)(x+3)=0,从而得到方程的解x=-1/2,x=-3。

2. (平方)根的概念、性质和运算平方根是指一个非负数a,使得b^2=a,通常用符号√a表示。

平方根有一些性质,如:√a*√b=√(a*b),√(a/b)=√a/√b等。

3. 一次根的性质与求法(用公式)一次根的性质是指一元一次方程的根与系数之间的关系,例如:方程ax+b=0有唯一解x=-b/a。

四、实数及其运算1. 绝对值的概念和性质绝对值的概念是指一个实数离原点的距离,通常用符号|a|表示,当a>=0时,|a|=a;当a<0时,|a|=-a。

2020年小升初数学专题一:数与代数--运算与规律

2020年小升初数学专题一:数与代数--运算与规律

2020年小升初数学专题一:数与代数--运算与规律姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、选择题 (共8题;共16分)1. (2分)“()÷21=20……()”要使余数最大,被除数、余数各应填几,正确的是()A . 被除数450,余数21.B . 被除数440,余数20.C . 被除数450,余数18.D . 被除数440,余数19.2. (2分)5×0.9和0.9×5的()A . 乘积相同,意义也相同B . 乘积相同,意义不同C . 乘积不相同,意义也不相同3. (2分) (2019六上·河北期末) a× = b÷ ( a 、b都不为0),那么a 与b比较,()。

A . a <bB . a>bC . a =b4. (2分) (四上·拱墅期末) 与(366×5)÷(122×5)结果一样的是()。

A . (366÷4)÷(122×4)B . (366÷6)÷(366÷6)C . (366÷6)÷(122÷6)D . (366+5)÷(122+5)5. (2分)160×4=()A . 970B . 680C . 640D . 1706. (2分)下面运算顺序一样的一组算式是()A . 58﹣27+3638÷2×7B . 72﹣56÷8(72﹣12)÷6C . 40÷5×8 40﹣5×8. .7. (2分)计算(能简算的要简算)()A .B .C . 1D .8. (2分)因为+=1,所以和()。

A . 互为倒数B . 相等C . 和为1二、判断题 (共5题;共10分)9. (2分) (2020六上·即墨期末) 一个数(0除外)除以真分数,商一定大于被除数。

总复习一、数与代数 1.6《探索规律》知识点

总复习一、数与代数 1.6《探索规律》知识点

(六)探索规律
第10节 探索规律
知识点1:探索数字规律
数字排列中的规律的主要类型:
1.一列数中,相邻的两项的差是一个固定的数值。

例如:1,3,5,7,9,……这个数列就是后一项总比前一项多2;或者例如:19,16,13,10,7……这个数列就是前一项总比后一项多3.
2.一列数中,相邻的两项,后一项总是前一项的n倍。

或者后一项总是前一项的
3.一列数中,奇数位上的数相邻的两项的差是一个固定的数值或者偶数位上的数相邻的两项的差是一个固定的数值。

4.一列数中,奇数位上的数是相同的倍数关系或者偶数上的数也是相同的倍数关系。

例如:2,5,6,10,18,20,……这个数列中,奇数位上的数中后一项总是它前一项的3倍,偶数位上的数后一项总是它前一项的2倍。

5.一列数中,每个数位上的数分别是它所在位置号的平方或立方。

知识点2:探索图形规律
找图形中的规律的方法与数字之间规律的类型一、二有些类似,就是将数字转化成了图形。

知识点3:生活中的数学规律
生活皆规律,要善于用观察的眼睛探索数之间蕴含的规律,图形之间蕴含的规律、实际生活中蕴含的规律。

小升初数学规律归纳总结

小升初数学规律归纳总结

小升初数学规律归纳总结数学作为一门学科,对于小学生来说是非常重要的,而在小学数学学习的过程中,我们会发现有很多规律与归纳需要总结。

本文将从小升初数学的不同章节切入,逐一归纳总结其中的规律及方法。

一、整数运算规律在整数运算中,有几个常见的规律需要注意:1. 相反数规律:两个数的和等于0,则这两个数互为相反数,例如2和-2,5和-5。

2. 加法和乘法交换律:两个数相加或相乘的结果不会受到数的顺序的影响,即a+b=b+a,a*b=b*a。

3. 减法和除法不满足交换律:两个数相减或相除的结果会受到数的顺序的影响,即a-b≠b-a,a/b≠b/a。

4. 加法与乘法结合律:当有多个数相加或相乘时,结果不会受到运算顺序的影响,即(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)。

5. 乘法分配律:两个数相乘,再与另外一个数相加,等于两个数分别与这个数相乘再相加,即a*(b+c)=a*b+a*c。

二、几何问题规律总结几何问题是小学数学中的重要内容,以下是一些几何问题的规律总结:1. 线段长度的比较:当两条线段相互比较长度时,可以通过直观比较或利用尺规作图来确定长短关系。

2. 直角三角形规律:直角三角形的斜边平方等于两个直角边平方和,即a²+b²=c²,这被称为勾股定理。

3. 等边三角形规律:等边三角形的三条边相等,三个内角均为60度。

4. 面积计算规律:不同形状的图形有不同的计算公式,例如长方形的面积为长乘以宽,三角形的面积为底乘以高再除以2。

三、分数的规律归纳小学阶段,分数的学习和掌握是非常重要的,以下是分数相关的规律归纳:1. 分数的比较大小:分数大小的判断可以通过通分后的分子比较,或者利用小数形式的换算来进行。

2. 分数的加减法:分数的加减法需要找到它们的最小公倍数,并根据最小公倍数将分数化为相同的分母,然后进行加减操作。

3. 分数的乘法:分数的乘法直接将分子相乘得到新的分子,分母相乘得到新的分母。

【小升初】2020版数学总复习知识点归纳总结

【小升初】2020版数学总复习知识点归纳总结

小升初数学总复习知识整理一、数的认识1.数的分类提示:按不同的标准划分,数的分类也会不同。

例如:按正、负数分,数分为正数、0、负数;按整数与分数分,数分为整数、分数(小数)等。

(1)整数:像-3、-2、-1、0、1、2、3……这样的数统称为整数。

整数的个数是无限的.........,.没有最小的整数.......,.也没有最大的整数。

.........(2)自然数:用来表示物体个数的1、2、3、4……叫做自然数。

一个物体也没有,用0表示,0.也是自然数。

自然数的个数是无限的................,.最小..数的自然数是.....0,..没有最大的自然数。

自然数是整数的一部分...................,.正整数和....0.都是自然数。

......提示:0表示一个物体也没有;0是正、负数的分界点;0表示起点(如0刻度);计数时,0起占位作用。

(3)分数:把单位“....1.”平均分成若干份........,.表示这样的一份或者几份...........的数叫做分数......,.表示这样一份的数就是这个分数的分数单位。

....................一个分数的分母是几,它的分数单位就是几分之一,分子是几,它就有几个这样的分数单位。

注意:带分数只有化成假分数后,它的分子才能表示这个带分数的分数单位的个数。

(4)百分数:表示一个数是另一个数百分之几的数叫做百分数.....................,.也.叫百分率或百分比。

百分数的计数单位是..................1%..。

.百分数是一种特殊的分数,通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。

(5)分数和百分数的关系:分数既可以表示一个数..........,.也可以表示两......个数的比....;.而百分数只表示一个数占另一个数的百分比...................,.不能用来表示......具体的数。

备战2020年小升初数学专题一:数与代数--运算与规律

备战2020年小升初数学专题一:数与代数--运算与规律

备战2020年小升初数学专题一:数与代数--运算与规律姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、选择题 (共8题;共16分)1. (2分)有8只兔子去拔萝卜,一共有590只萝卜,每只兔子拔()只萝卜,还有剩()只没有拔。

A . 73 3B . 83 2C . 73 62. (2分)哪个式子的运算用的是简便计算?()A .B .3. (2分),a和b的关系是()A . >bB . <bC . =bD . 无法判断4. (2分) (2016五上·台安月考) 在下列算式中,与132÷12相等的式子是()A . 13.2÷1.2B . 1.32÷1.2C . 1320÷12D . 0.132÷0.125. (2分) (2018四下·云南期中) 98×63的简便算法是()。

A . 100×63-63B . 100×63-63×2C . 100×63-26. (2分)2+3×4与(2+3)×4的得数()。

A . 相等B . 不相等C . 无法确定7. (2分)计算 + + 时,为使用简便方法,可采用加法的()A . 交换律B . 结合律C . 交换律和结合律8. (2分)下面各组数中,互为倒数的是()。

A . 0.5和2B . 和C . 和D . 和二、判断题 (共5题;共10分)9. (2分)判断对错一个数除以0.36,所得的商一定大于这个数.10. (2分)判断正误98×16=(100-2)×16=100×16-16=1600-16=158411. (2分)一个真分数乘一个假分数,积一定大于这个真分数.()12. (2分) (2018二下·云南期中) 在一个算式里,必须先算乘法,再算除法。

2020年小升初数学专题复习训练—数与代数:数的运算(2)(知识点总结)

2020年小升初数学专题复习训练—数与代数:数的运算(2)(知识点总结)

2020年小升初数学专题复习训练——数与代数数的运算(2)知识点复习一.有余数的除法【知识点归纳】(1)一个整数除以另一个自然数,并不是永远可以得到整数的商叫有余数的除法.如:15÷7=2 (1)(2)有余数除法的性质:①余数必须小于除数②不完全商与余数都是唯一的.(3)运算法则被除数÷除数=商+余数,被除数=除数×商+余数.【命题方向】常考题型:例1:在除法算式m÷n=a…b中,(n≠0),下面式子正确的是()A、a>nB、n>aC、n>b分析:根据在有余数的除法中,余数总比除数小,即除数大于余数;由此解答即可.解:根据有余数的除法中,余数总比除数小,即除数大于余数,所以:n>b;故选:C.点评:解答此题的关键:应明确在有余数的除法中,余数总比除数小.例2:31÷7=4…3,如果被除数、除数都扩大10倍,那么它的结果是()A、商4余3B、商40余3C、商40余30D、商4余30分析:根据商不变的性质,被除数、除数同时扩大或缩小相同的倍数(0除外)商不变,但是在有余数的除数算式中,被除数、除数同时扩大或缩小相同的倍数(0除外)商不变,余数也会扩大或缩小相同的倍数.解:31÷7=4…3,310÷70=4…30,所以当被除数、除数同时扩大10倍,商不变,余数也会扩大10倍.点评:此题主要考查的是商不变的性质在有余数的除法算式中的应用.二.乘与除的互逆关系【知识点归纳】乘法中的积相当于除法中的被除数,乘法中的一个因数相当于除法中的除数(或商),另一个因数相当于除法中的商(或除数).乘与除的互逆运算:被除数÷除数=商;被除数÷除数=商+余数除数=被除数÷商;除数=(被除数-余数)÷商被除数=商×除数;被除数=商×除数+余数.【命题方向】常考题型:例1:被除数+除数×商=258,则被除数是()即可选择.故选:A.点评:此题考查除法各部分之间的关系:除数×商=被除数.例2:如果△是○的32倍,下面算式对的是()A、△+32=○;B、○+32=△;C、○×32=△分析:依据题意△是○的32倍,把△看作被除数,○看作除数,32看作商,依据被除数、除数、商之间关系解答.解:因为△是○的32倍,所以△÷○=32,△=32×○,○=△÷32,点评:解决本题时只要把△看作被除数,○看作除数,32看作商,依据被除数、除数、商之间关系解答即可.三.整数四则混合运算【知识点归纳】1.加、减、乘、除四种运算统称四则运算.加法的意义:把两个(或几个)数合并成一个数的运算叫做加法.减法的意义:已知两个加数的和与其中的一个加数求另一个加数的运算叫做减法.减法中,已知的两个加数的和叫做被减数,其中一个加数叫做减数,求出的另一个加数叫差.乘法的意义:一个数乘以整数,是求几个相同加数的和的简便运算,或是求这个数的几倍是多少.除法的意义:已知两个因数的积与其中一个因数求另一个因数的运算叫做除法.在除法中,已知的两个因数的积叫做被除数,其中一个因数叫做除数,求出的另一个因数叫商.四则运算分为二级,加减法叫做第一级运算,乘除法叫做第二级运算.2.方法点拨:运算的顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算.在有括号的算式里,要先算括号里的,再算括号外的.【命题方向】常考题型:例1:72-4×6÷3如果要先算减法,再算乘法,最后算除法,应选择()A、72-4×6÷3B、(72-4)×6÷3C、(72-4×6)÷3分析:72-4×6÷3的计算顺序是先算乘法,再算除法,最后算减法,要把减法提到第一步,需要只给减法加上小括号.解:72-4×6÷3如果要先算减法,再算乘法,最后算除法,应为:(72-4)×6÷3;故选:B.点评:本题考查了小括号改变运算顺序的作用,看清楚运算顺序,是把哪一种运算提前计算,在由此求解.例2:由56÷7=8,8+62=70,100-70=30组成的综合算式是()A、100-62+56÷7;B、100-(56÷7+62);C、不能组成分析:由于56÷7=8,8+62=70,则将两式合并成一个综合算式为56÷7+62=70,又100-70=30,则根据四则混合运算的运算顺序,将56÷7=8,8+62=70,100-70=30组成的综合算式是:100-(56÷7+62).解:根据四则混合运算的运算顺序可知,将56÷7=8,8+62=70,100-70=30组成的综合算式是:100-(56÷7+62).故选:B.点评:本题考查了学生根据分式及四则混合运算的运算顺序列出综合算式的能力.四.数的估算【知识点解释】没有经过准确计算,是对计算结果的一种估计,叫做估算.估算方法:①四舍五入法:例:π(保留两位小数)≈3.14②进一法:例:一支笔2.6元,四支需多少钱(保留到整数)解:2.6×4=10.4元≈11元如果四舍五入的话是10元,是不够的,所以是要进上去的③去尾法:例:有20元,买3元一支的笔,可卖多少支?解:20÷3=6.6666…支≈6支如果四舍五入是7支,买不到,所以是要去掉的.【命题方向】常考题型:例:估计与288.9×1.756的积最接近的数是()A、400B、500C、600D、1000分析:根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算;288.9≈290,1.756≈1.8,所以与288.9×1.756的积最接近的数是290×1.8≈500,据此选择即可.解:因为288.9×1.756≈290×1.8≈500,所以与288.9×1.756的积最接近的数是500.故选:B.点评:此题考查了小数乘法的估算方法,注意把相乘的数看成最接近它的整数.五.运算定律与简便运算【知识点归纳】1、加法运算:①加法交换律:两个加数交换位置,和不变.如a+b=b+a②加法结合律:先把前两个数相加,或先把后两个数相加,和不变.如:a+b+c=a+(b+c)2、乘法运算:①乘法交换律:两个因数交换位置,积不变.如a×b=b×a.②乘法结合律:先乘前两个数,或先乘后两个数,积不变.如a×b×c=a×(b×c)③乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac④乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个数的积,可以把另外两个数加起来再乘这个数.如ac+bc=(a+b)×c3、除法运算:①除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除.如a÷b÷c=a÷(b×c)②商不变规律:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变.如a÷b=(an)÷(bn)=(a÷n)÷(b÷n)(n≠0 b≠0)4、减法运算:减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a-b-c=a-(b+c)【命题方向】常考题型:例1:0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的()A、交换律B、结合律C、分配律分析:乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b)c=ac+ac.据此可知,0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法分配律.解:根据乘法分配律的概念可知,0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法分配律.故选:C.点评:本题利用具体的算式考查了学生对于乘法分配律的理解.例2:125×25×32=(125×8)×(25×4),这里运用了()A、乘法交换律B、乘法结合律C、乘法交换律和乘法结合律分析:在125×25×32=(125×8)×(25×4)中,是把32看作8×4,然后用乘法交换律变成125×8×25×4,再运用乘法结合律计算,即(125×8)×(25×4).解:125×25×32=(125×8)×(25×4),运用了乘法交换律和乘法结合律.故选:C.点评:此题重点考查了学生对乘法交换律和结合律的掌握与运用情况.。

2020届《小升初数学》知识点专项训练:专题(一)数与代数 含答案

2020届《小升初数学》知识点专项训练:专题(一)数与代数  含答案

数与代数(一)整数与小数一、填空题。

(每空一分,共33分)1、从个位起第( )位是万位,第( )位是百万位,第九位是( )位,亿位的右边一位是( )位,亿位左边一位是( )位。

2、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作(),读作(),改写成以万作单位的数(),省略万后面的尾数是()万。

3、900606000是( )位数,9在( )位上,表示( ),左边的6在( )位上,右边的6在( )位上,两个6表示的数相差( )。

这个数读作( )。

4、小红和小明从同一个地方相背而行,如果小红向南走50米,记作+50米,那么小明向北走33米,记作( )米。

5、0.045里面有45个( )。

78个0.1是()6、把 4.87的小数点向左移动三位,再向右移动两位后,这个数是()。

7、9.5607是()位小数,保留一位小数约是(),保留两位小数约是()。

8、把下面各数改写成用“万”或“亿”作单位的数。

7500000=( )万 1700000000=( )亿4020000=( )万 12000000000=( )亿9、单位换算。

57厘米=( )米 4吨25千克=( )吨 4.02千克=()克3元5分=( )元 6042克=( )千克 1.85cm²=()dm²二、判断题。

(5分)1. 4.7和4.70的计数单位相同。

( )2.一个整数省略“万”后面的尾数约等于20万,这个数最大是199999。

( )3.小数点后面添上“0”或去掉“0”,小数大小不变。

( )4.三位小数比两位小数大。

( )5.351000000元≈3.5亿。

( )三、选择题。

(10分)1. 4720590最高位上的数表示( )。

A. 4个万B. 4个十万C. 4个百万D. 4个千万2.下面各数中,一个零也不读出来的数是( )。

A. 630900000B. 639008000C. 639070000D. 400240773.把0.8亿改写成用“万”作单位的数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年小升初数学专题复习训练——数与代数探索规律(2)知识点复习一.事物的间隔排列规律【知识点归纳】【命题方向】常考题型:例:六一儿童节用彩色小灯泡布置教室,按“三红、二黄、二绿”的规律连接起来,第37个小灯泡是()A、红B、黄C、绿D、不确定分析:彩灯的排列规律是:按照颜色特点,7个灯泡一个循环周期:按照3红、2黄、2绿依次循环排列;解:37÷7=5…2,所以第37个小灯泡是第6个循环周期的第2个,与第一个周期的第2个灯泡颜色相同,是红色;故选:A.点评:得出这组灯泡颜色排列的周期特点,是解决本题的关键.二.事物的简单搭配规律【知识点归纳】【命题方向】小红有2顶不同的帽子,3件不同的上衣,2条不同的裤子.若帽子、分析:有2×3×2=12种方法.设帽子为a,b;上衣为c,d,e;裤子为f,g.每件上衣有两种裤子作为选择:cf,cg,df,dg,ef,eg;二妹顶帽子有三种上衣作为选择:acf,acg,adf,adg,aef,aeg,bcf,bcg,bdf,bdg,bef,beg.则一共有12种选择.解:2×3×2=12(种).故答案为:12种.点评:此题考查学生对事物的简单搭配规律的掌握情况.三.简单周期现象中的规律【知识点归纳】【命题方向】常考题型:例:体育课上同学们站成一排,老师让他们按1、2、3、4、5循环报数,最后一个报的数是2,这一排同学有()人.A、26B、27C、28分析:把这5个数看成一组,最后一个报的数是2,这一排的人数就是除以5,余数是2的数.解:26÷5=5…1;27÷5=5…2;28÷5=5…3;这一排可能的人数是27.故选:B.点评:先找到规律,再根据规律求解.四.简单图形覆盖现象中的规律【知识点归纳】【命题方向】常考题型:例:如图是2006年6月的月历,认真观察阴影部分五个数的关系.想一想:如果像这种形式的五个数的和105,则中间的那个数是21.分析:观察表中的阴影部分这五个数与中间的数知道五个数的和是中间的数的5倍,依此计算即可求解.解:因为像这种形式五个数的和是105,那么五个数的和是中间的数的5倍,所以中间的数是:105÷5=21,即中间的那个数是21.故答案为:21.点评:考查了简单图形覆盖现象中的规律,解答此题的关键是,根据所给出的阴影部分的数与数的关系,得出规律,再根据规律解决问题.五.通过操作实验探索规律【知识点归纳】【命题方向】常考题型:例:小红把10根绳子打结连起来,变成一根长绳,这根长绳上有()个结.A、10B、9C、8分析:两根绳有一个结,三根绳有两个结,那么四根绳有三个结…,以后每增加一根绳子就增加一个结,而结的数量要比绳子的数量少一.解:结的数量要比绳子的数量少1,10跟绳子有:10-1=9(个);答:10根绳子有9个结.故选:B.点评:本题关键是打结处的理解,每相邻的两根绳子就会有1个结,由此找出规律求解.2020年小升初数学专题复习同步测试卷题号一二三四五六总分得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)如图所示,按三个图的顺序,第四个图应该是ABCD的()A.B.C.D.2.(2分)一串珠子按●●●〇〇的顺序依次排列,第48颗珠子是()色.A.黑B.白C.不能确定3.(2分)老师要求将下面图1中的每个图形都绕它的中心顺时针旋转90°后画下来.图2是小强画的,但有一个图他画错了,这个图形是()A.图1 B.图2 C.C、D.D、4.(2分)在里填上合适的图形()A.B.C.D.5.(2分)〇〇◎◎◎□〇〇◎◎◎□……像这样画下去,第34个图形是()A.〇B.◎C.□D.不确定6.(2分)3÷7商的小数部分第100位数字是()A.2 B.8 C.5 D.77.(2分)小强观察一个建筑物模型(由若干个相同的小正方体拼成),分别从前面,右面,上面观察,看到的图案如图所示,那么该模型共由()个小正方体拼成.A.8 B.9 C.10 D.118.(2分)10张连号的世博园如愿券,张老师一家人要拿3张连号的,共有()种不同的拿法.A.6 B.7 C.89.(2分)长度为1m的绳子,第一次截去一半,然后将剩下的再截去一半,如此下去,若最后余下的绳子长不足1cm,则至少需截()次.A.5 B.6 C.7 D.810.(2分)下面有A、B、C、D四根绳子,如果在绳子两端用力拉,除一根外,其余三根都打不成结,则能打结的绳子是()A.B.C.D.二.填空题(共7小题,满分10分)11.(2分)一串彩灯按照“红、黄、蓝、绿”的规律排列着,第8个彩灯是颜色,第25个彩灯是色.12.(2分)如果把○与△一个隔一个地排成一行,○有36个,△最多有个,最少有个.13.(1分)将一圆形纸片对折后再对折,得到图2,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是.14.(1分)一次大型运动会上,工作人员按照3个红气球,2个黄气球,1个绿气球的顺序把气球穿起来装饰运动场,那么第2013个气球是颜色的(填“红”、“黄”或“绿”)15.(1分)有同样大小的红、黄、绿纸片共85张,它们按照一张红纸,两张黄纸,三张绿纸的顺序排列,笫82张是色纸.16.(2分)按照下面的规律把剪纸串成一串,符合编号的剪纸画在括号里.第19张剪纸是,第23张剪纸是.17.(1分)昊昊背对着小雪,让小雪按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出一张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小雪准确说出了中间一堆牌的张数.聪明的同学,你认为中间的一堆这时候有张.三.判断题(共5小题,满分10分,每小题2分)18.(2分)如果把一个□和一个△一个隔一个地排成一行,有15个□,△最少有15个.(判断对错)19.(2分)沿道路的一边,按3面红旗、2面黄旗、1面蓝旗的顺序插了一行彩旗.第190面应该是红旗.(判断对错)20.(2分)按照1、4、7、10的排列规律,第5个数是13.(判断对错)21.(2分)操场上20名同学站成一行,老师想从中挑选相邻的4人做游戏,刘强说:“有16种不同的挑选方法”..(判断对错)22.(2分)在下面图案排列中,第57个图案是⊙.(判断对错)□⊙⊙◇◇◇□⊙⊙◇◇◇□⊙⊙◇◇◇….四.应用题(共3小题,满分15分,每小题5分)23.(5分)彩色气球一共150个,把它们排成这样的一串,排列规律如图,最后一个气球是什么颜色?24.(5分)教师节快到了,同学们准备买红色鲜花和黄色鲜花共28束来装饰教室.如果按照“2红1黄”的规律排列,那么红花和黄花分别占总花数的几分之几?25.(5分)有一列数2,1,0,3,4,2,1,0,3,4,2,1,0,3,4,……,第64个数是多少?这64个数的和是多少?五.操作题(共5小题,满分25分,每小题5分)26.(5分)按规律画图..27.(5分)根据下面图形和字母的关系将ab的图补上.28.(5分)仔细观察图形,找出变化规律,想一想空白处应该怎样填?试着画一画吧!29.(5分)分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.30.(5分)如图是2010年5月的台历.(1)小明的爸爸每上4天班休息一天,妈妈却是上3天班休息一天,5月2日爸爸、妈妈都在家休息,下一次他们同时在家休息是星期.(2)算一算,上表中被阴影覆盖的5个数的和与中间的数有什么关系?(计算后再说明)(3)如果框出的5个数的和是75,那么这5个数分别是多少,在图中框出来.(4)一共可以框出个不同的和.六.解答题(共4小题,满分20分,每小题5分)31.(5分)过春节要布置房间,按“☆☆★★★☆☆★★★…”的顺序布置,第31颗是什么颜色的星星?32.(5分)接着摆什么?圈出正确答案.33.(5分)小红用小棒摆了8个三角形,如果用这些小棒摆正方形,可以摆多少个?(图形的边不能重合)34.(5分)盒子里放有一只球.一位魔术师第一次从盒子里拿出一只球,将它变成3只球放回盒子里;第二次从盒子里拿出2只球,将每只球各变成3只球后放回盒子里;…第10次从盒子里拿出10只球,将每只球各变成3只球后放回盒子里,这时,盒子里共有多少只球.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.【分析】观察图形可知第一个图形和第三个图形的符号:上下交换位置,然后左右交换位置,圆圈与三角形白黑交替,由此可得第二个图形和第四个图形的符号也应该是:上下交换位置,左右交换位置,圆圈与三角形白黑交替,由此即可解答.【解答】解:第四幅图是:把第二幅图的符号上下、左右交换位置,圆圈与三角形白黑交替,应是:,故选:D.【点评】此题考查了学生观察图形和归纳总结图形搭配规律的能力.2.【分析】根据题干分析可得,这串珠子的排列规律是5颗珠子一个循环周期,分别按照3黑2白的顺序依次循环排列,据此计算出第48颗珠子是第几个循环周期的第几个即可解答问题.【解答】解:48÷5=9 (3)所以第48颗珠子是第10个周期的第3颗珠子,是黑色.答:第48颗珠子是黑色.故选:A.【点评】根据题干得出这串珠子的排列规律,是解决此类问题的关键.3.【分析】根据旋转的特征,图1中的每个图形都绕它的中心顺时针旋转90°,画出旋转后的图形,然后判断即可.【解答】解:旋转90度后如图:所以图形D画错;故选:D.【点评】旋转作图要注意:①旋转方向;②旋转角度.整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.4.【分析】从下按照顺时针的方向观察,花的顺序是:→→→,由此进行选择.【解答】解:在里应填上.故选:D.【点评】解决本题关键是找清花的排列顺序.5.【分析】观察图形可知,6个图形一个循环周期,分别按照〇〇◎◎◎□的顺序依次循环排列,据此求出第34个是第几个循环周期的第几个即可解答问题.【解答】解:34÷6=5…4,所以第34个图形是第6循环周期的第4个,是◎.故选:B.【点评】此题考查简单周期现象中的规律,找出循环的规律,利用规律解决问题.6.【分析】求出3÷7的商,用循环节表示,然后用50除以循环节的位数,根据余数即可确定.【解答】解:3÷7=0. 2857循环节是6位100÷6=16 (4)余数是4,所以商的小数部分第100位上的数字是5;答:商的小数部分第100位上的数字是5.故选:C.【点评】求出商,用循环节表示,要求小数点后面第100位是几,就是看100里面有几个循环节还余几,根据余数即可确定第100位上的数字.7.【分析】前面正右面:正上面:正正正正正正正正正正正正正正正正(一个“正”字代表一个正方形)【解答】解:通过观察与想象知道该模型共由9个小正方体拼成.即3+2+1+1+2=9(个).故选:B.【点评】此题属于简单图形覆盖现象中的规律问题,考查学生的空间想象力.8.【分析】把这10张如愿券排号为1~10,那么能拿出3连号可能是:1、2、3,2、3、4,…,8、9、10,只有9和10号不能放在开头,由此求解.【解答】解:给这10张如愿券编号为1~10,只有第9、10号不能放在开头,所以一共有:10﹣2=8(种);答:共有8种不同的拿法.故选:C.【点评】本题关键是找出这些卡片开头的号数,确定开头的号数,其它就可以确定,进而求解.9.【分析】由于截去一次还剩下米,截去两次还剩下()2米,截去3次还剩下()3米,…,截去n次还剩下()n米,然后根据最后余下的绳子长不足1cm=0.01m,确定n的值即可.【解答】解:根据题意可得,由于截去一次还剩下米,截去两次还剩下()2米,截去3次还剩下()3米,…,截去n次还剩下()n米,1cm=0.01m()7<0.01<()6,所以,若最后余下的绳子长不足1cm,则至少需截7次.答:若最后余下的绳子长不足1cm,则至少需截7次.故选:C.【点评】本题考查了极值问题和平方数的灵活应用,关键是找到剩余长度的变化规律.10.【分析】假定固定绳子的一头,拉起绳子的另一头,顺着绳子观察,想象是否会出现打结的情况.【解答】解:由分析逐一验证,会发现D选项会出现打结的情况.故选:D.【点评】本题主要考查学生的空间想象能力,注意B和C的不同.二.填空题(共7小题,满分10分)11.【分析】根据题干分析可得,这串彩灯的排列规律是:4盏灯一个循环周期,分别按照:红、黄、蓝、绿依次循环排列,据此计算出第8个和第25个是第几个循环周期的第几个即可解答.【解答】解:8÷4=2,所以第8盏彩灯是第二个循环周期的最后一个,是绿色;25÷4=6…1,所以第25个是第7循环周期的第一个,是红色的.故答案为:绿;红.【点评】根据题干得出这串彩灯的排列周期规律是解决此类问题的关键.12.【分析】有两种排法:第一种:△○△○△○…○,一个三角形,一个圆间隔排列,则○有26个,则△有36个(圆后面无三角形)或37个(圆后面有三角形);第二种排法:○△○△○△…○△○,一个圆一个三角形间隔排列,圆有36个,则三角形有两种可能,一种可能是圆的后面没有三角形,有35个三角形,或圆后面有三角形,有36个三角形;据此得解.【解答】解:根据以上方向,得:如果把○与△一个隔一个地排成一行,○有36个,△可能有36个,可能有35个,也可能有37个;故答案为:37,35.【点评】据题干分析,得出这组图形的排列规律是解决此类问题的关键.13.【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【解答】解:根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选:C.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.14.【分析】根据题干可得,这组气球的排列规律是:6个气球一个循环周期,分别按照3红、2黄、1绿的顺序依次循环排列,计算出第2013个气球是第几个周期的第几个即可.【解答】解:2013÷6=335…3,所以第2013个气球是第336周期的第3个,是红气球.故答案为:红.【点评】根据题干得出这组气球的排列规律是解决此类问题的关键.15.【分析】根据题干分析可得,这些纸的排列规律是:6张一个循环,分别按照1红、2黄、3绿的顺序依次排列,由此计算出第82张是第几个周期的第几张纸片即可解答.【解答】解:82÷(1+2+3)=82÷6=13 (4)所以82张纸是第14周期的第4张,是绿色纸.答:笫82张是绿色纸.故答案为:绿.【点评】根据题干得出纸张按照颜色排列的规律即可解答问题.16.【分析】根据图示可知,这组图形每6个图形一个循环,19÷6=3(组)……1(个),所以第19个图形和第1个图形一样,选择A 图形;23÷6=3(组)……5(个),所以第23个图形和第5个图形一样,选择E.【解答】解:19÷6=3(组)……1(个)所以第19个图形和第1个图形一样,选择A图形;23÷6=3(组)……5(个)所以第23个图形和第5个图形一样,选择E.故答案为:A;E.【点评】本题主要考查周期现象中的规律,关键找对几个图形一循环.17.【分析】设每堆牌原来各有a张,按照操作步骤,求出中间的一堆最后的张数即可.【解答】解:设每堆牌原来各有a张,第二步、三步操作后:左边一堆还有:a﹣1张;中间一堆有:a+1+1=a+2张;第四步操作:中间的张数:(a+2)﹣(a﹣1),=a+2﹣a+1,=a﹣a+2+1,=3(张);故答案为:3.【点评】本题也可以采用赋值法,令每堆牌原来各有2张,再根据操作求解.三.判断题(共5小题,满分10分,每小题2分)18.【分析】有两种排法:第一种:△□△□△□…□,一个三角形,一个正方形间隔排列,则□有15个,则△有15个(正方形后面无三角形)或16个(正方形后面有三角形);第二种排法:□△□△□△…□△□,一个正方形一个三角形间隔排列,正方形有15个,则三角形有两种可能,一种可能是正方形的后面没有三角形,有14个三角形,或正方形后面有三角形,有15个三角形;据此得解.【解答】解:根据以上方向,得:如果把□与△一个隔一个地排成一行,□有15个,△可能有15个,可能有14个,也可能有16个;所以如果把一个□和一个△一个隔一个地排成一行,有15个□,△最少有15个的说法是错误的;故答案为:×.【点评】据题干分析,得出这组图形的排列规律是解决此类问题的关键.19.【分析】根据题干可得,这些彩旗的排列规律是:6面旗一个循环周期,分别按照3红、2黄、1蓝的顺序依次排列,据此求出第190面彩旗是的高循环周期的第几个即可解答.【解答】解:190÷6=31…4,所以第190面彩旗是第32循环周期的第4个,是黄旗.题干说法错误.故答案为:×.【点评】根据题干得出彩旗的排列规律是解决此类问题的关键.20.【分析】4﹣1=3,7﹣4=3,10﹣7=3,13﹣10=3,相邻两个数的差都是3,这个数列就是公差是3的等差数列,据此得解.【解答】解:10+3=13所以按照1、4、7、10的排列规律,第5个数是13得说法是正确的;故答案为:√.【点评】解决本题关键是根据相邻两个数的差都是3这一特点,得出这个数列是等差数列.21.【分析】20名同学站成一行,老师想从中挑选相邻的4人做游戏,挑到倒数第三名的时候一共有20﹣3=17种,最后三名就不能挑选了,据此解答即可.【解答】解:20﹣3=17(种)故答案为:×.【点评】把相邻的四名同学看做一个整体是解决此题的关键.22.【分析】观察图形可知,这组图形的排列规律是:6个图形一个循环周期,分别按照□⊙⊙◇◇◇的顺序依次循环排列,据此计算出第57个图形是第几个循环周期的第几个图形即可解答问题.【解答】解:57÷6=9…3,所以第57个图形是第10循环周期的第3个图形,是⊙.故答案为:√.【点评】根据题干得出这组图形的排列规律是解决此类问题的关键.四.应用题(共3小题,满分15分,每小题5分)23.【分析】根据题干分析可得,这串彩色气球的排列规律是:除了第一个橘色气球,以后都是4个颜色一个周期,分别按照蓝,绿,紫,黄,的顺序依次循环排列,据此计算得出第150个气球是第几个循环周期的第几个即可解答.【解答】解:规律:除了第一个橘色气球,以后都是4个颜色一个周期.150﹣1=149(个)149÷4=37(组)……1(个)→蓝色答:最后一个气球是蓝色.【点评】根据题干得出这串彩色气球的排列规律是解决本题的关键.24.【分析】首先根据这些鲜花按2红1黄,3束花的规律排列,即3束花一个循环周期;然后用28除以3,根据商和余数的情况,判断出红色鲜花和黄色鲜花的数量各是多少;最后根据求一个数占另一个数的几分之几,用除法解答,分别用两种花的数量除以28,求出两种颜色的花各占总数的几分之几即可.【解答】解:28÷(1+2)=28÷3=9 (1)最后1束花是红色的;(2×9+1)÷28=19÷28=9÷28=答:红花占总花数的;黄花占总花数的.【点评】根据题干找出这组鲜花的排列周期规律是解决此类问题的关键.25.【分析】这列数是按照“2,1,0,3,4”5个数为一个循环进行排列的,先用64除以5,求出有多少个循环,还余几,再根据余数得出第64个数是多少;求出这5个数的和,再乘循环数,然后加上剩下的数即可求出这64个数的和.【解答】解:“2,1,0,3,4”5个数为一个循环;64÷5=12 (4)余数是4,那么第64个数字是第13个循环第4个,是3;每个循环的和:2+1+0+3+4=1012×10+2+1+0+3=120+6=126答:第64个数是3,这64个数的和是126.【点评】解决这类问题关键是把重复出现的部分看成一组,根据除法的意义,求出总数量里面有多少个这样的一组,还余几,然后根据余数进行推算.五.操作题(共5小题,满分25分,每小题5分)26.【分析】(1)根据图示可知,这组图形的规律为:第一个图形为1行,共1个菱形;第二个图形2行,共1+2=3(个)菱形;第3个图形有3行,共1+2+3=6(个)菱形;……第n个图形有n行,共1+2=3+……+n=个菱形.据此解答即可.(2)根据观察可知圆该图形的规则是:图形按顺时针旋转,原位置图形个数不变.根据规律做题即可.【解答】解:(1)如图:.(2)如图:故答案为:;.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.27.【分析】由图可知:a表示大圆形,b表示小三角形,c表示大三角形,d表示小圆形;ab就表示一个大圆里面有一个小三角形,据此解答.【解答】解:根据题意与分析可得:ab为:.故答案为:.【点评】本题关键是归纳出a、b、c、d分别表示的图形,再由此求解.28.【分析】由图示发现这组图形的变化规律:四个图形依次顺时针旋转位置得到下一组图形.依据规律做题即可.【解答】解:根据所给图形,补充图形如下:【点评】本题主要考查简单周期变化的规律,关键发现并运用规律做题.29.【分析】从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.【解答】解:画图如下:【点评】本题是观察图形变化规律题,需要从平移,轴对称,旋转等图形变换中寻找变换规律.30.【分析】(1)由分析可知:爸爸每5天中有一个休息日,妈妈每4天中就有一个休息日.5月2日,他们同时休息,从第一个同时休息到下一次他们同时休息经过的时间,既是5的倍数也是4的倍数,然后用5和4的最小公倍数加上前面的2日即的到休息的日子,问题得解;(2)用“”来框数,将5个数相加即可;即11+17+18+19+25=90;5个数的和是90,是中间数18的5倍;(3)因为这5个数的和是中间的数的5倍,所以中间数是75÷5=15,则框出的5个数为:8、14、15、16、22;(4)最上边一行能框的数从1开始,到2结束,有1个;第二行能框的数从3开始,到9结束,有5个,竖着能框出的数有2﹣2=2行,总共有:1+5×2=11(个).据此解答即可【解答】解:(1)5和4是互质数,所以5和4的最小公倍数是:5×4=20,所以5月2日,他们同时休息,那么下一次他们同时休息是:2+20=22,即5月22日,星期六;(2)上表中被阴影覆盖的5个数和是:11+17+18+19+25=90;90÷18=5,所以这5个数的和是中间的数的5倍;(3)因为这5个数的和是中间的数的5倍,所以中间数是75÷5=15,则框出的5个数为:8、14、15、16、22;如图:(4)1+5×2=11(个)所以,一共可以框出11个不同的和.故答案为:六、11.【点评】解答此题的关键是,根据所给的筐法,及表中数的特点,即可找出它们之间的规律,再根据规律作答即可.六.解答题(共4小题,满分20分,每小题5分)31.【分析】把☆☆★★★看成一组,一组中前两个是白色的星星,后三个是黑色的星星,一共有5个;先用31除以5求出有这样的几组,还余几个,再根据余数判断.【解答】解:31÷5=6(组)…1(个);余数是1,第31个星星的颜色和第一个相同,是白色的星星.答:第31颗是白颜色的星星.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.32.【分析】观察图可知,原题是按照一个正方体、一个圆柱、一个球的依次顺序排列的,下一个图形正好是每组排列的第一个,即是正方体,由此求解.【解答】解:下一个图形是正方体,如下:【点评】解决本题关键是找清楚图形排列的规律,再根据规律求解.33.【分析】摆一个三边角形需要5根小棒,根据乘法的意义可知,摆8个三角形需要3×8根小棒,摆一个正方形需要4根小棒,根据除法的意义可知,摆8个三角形的小棒如果摆正方形,可以摆3×8÷4个.【解答】解:3×8÷4=24÷4=6(个)答:可以摆成6个.【点评】完成本题的依据为乘法与除法的意义,乘法与除法互为逆运算.34.【分析】根据题意,一只球变成3只球,实际上多了2只球.第一次多了2只球,第二次多了2×2只球,…,第十次多了2×10只球.因此拿了十次后,多了:2×1+2×2+…+2×10=2×(1+2+…+10)=2×55=110(只).加上原有的1只球,盒子里共有球110+1=111(只).【解答】解:(3+1)×(1+2+…+10)+1=2×[(1+10)×10÷2]+1=2×55+1=111(只)答:盒子里共有111只乒乓球.【点评】此题考查了学生分析问题的能力,重点要弄清“一只球变成3只球,实际上多了2只球…第10次多了2×10只”.。

相关文档
最新文档