中考复习模拟试题集锦——命题与证明
中考复习必备之命题与证明(阶段性提高中考真题)
图形的性质——命题与证明1一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=03.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.424.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形6.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形二.填空题(共7小题)9请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= _________ (写出一个x的值即可).10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________ ,该逆命题是_________ 命题(填“真”或“假”).11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有_________ (只需填正确命题的序号)12.命题“对顶角相等”的逆命题为_________ .13.命题“对顶角相等”的题设是_________ ,结论是_________ .14命题“直角三角形两个锐角互余”的条件是_________ ,结论是_________ .15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是_________ (只填序号)三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,_________ .求证:_________ .证明:17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):_________ .结论(求证):_________ .证明:_________ .图形的性质——命题与证明1参考答案与试题解析一.选择题(共8小题)1.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形考点:命题与定理.分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A. b=﹣1 B.b=2 C.b=﹣2 D.b=0考点:命题与定理;根的判别式.专题:常规题型.分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解答:解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A. 2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选:D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A. 4个B.3个C.2个D.1个考点:命题与定理;平行四边形的判定.专题:常规题型.分析:分别利用平行四边形的判定方法判断得出即可.解答:解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.点评:此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.5.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形考点:命题与定理.专题:常规题型.分析:根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.解答:解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:常规题型.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A. 1个B.2个C.3个D.4个考点:命题与定理.专题:常规题型.分析:先对原命题进行判断,再判断出逆命题的真假即可.解答:解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.8.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形考点:命题与定理.分析:利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项.解答:解:A、四条边都相等的是菱形,故错误,是假命题;B、菱形的对角线互相垂直但不相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形但不一定是正方形,故错误,是假命题;D、正确,是真命题.故选:D.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.二.填空题(共7小题)9.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).考点:命题与定理.专题:开放型.分析:先进行配方得到x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,则有x2+5x+5=﹣<0.解答:解:x2+5x+5=x2+5x+﹣=(x﹣)2﹣,当x=时,x2+5x+5=﹣<0,∴是假命题.故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.10.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).考点:命题与定理.分析:交换原命题的题设和结论即可得到该命题的逆命题.解答:解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.点评:本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.11.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y= 两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)考点:命题与定理.专题:推理填空题.分析:利用菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识分别判断后即可确定答案.解答:解:①每一条对角线都平分一组对角的平行四边形是菱形,故①正确.②当m>0时,﹣m<0,y=﹣mx+1是y随着x的增大而减小,y= 是在同一象限内y随着x的增大而减小,故②错误.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(﹣,1),故③错误.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为,故④错误,故答案为:①.点评:本题考查了命题与定理的知识,解题的关键是了解菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识,难度一般.12.命题“对顶角相等”的逆命题为如果两个角相等,那么它们是对顶角.考点:命题与定理.分析:把一个命题的题设和结论互换即可得到其逆命题.解答:解:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:如果两个角相等,那么它们是对顶角.故答案为:如果两个角相等,那么它们是对顶角.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.命题“对顶角相等”的题设是两个角是对顶角,结论是这两个角相等.考点:命题与定理.分析:任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论.解答:解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”,结论是“这两个角相等”.点评:本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.14.命题“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.考点:命题与定理.分析:命题有条件和结论两部分组成,条件是已知的,结论是结果.解答:解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.点评:本题考查了命题的条件和结论的叙述.15.请阅读下列语句:①一个数的相反数是它本身,则这个数一定是正数;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;③函数y=kx+b,当k>0时,图象有可能不经过第二象限;④两边一角对应相等的两个三角形全等;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好.其中正确的是②③(只填序号)考点:命题与定理.分析:利用相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义分别判断后即可确定正确的答案.解答:解:①一个数的相反数是它本身,则这个数一定是正数,错误;②方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根,正确;③函数y=kx+b,当k>0时,图象有可能不经过第二象限,正确;④两边一角对应相等的两个三角形全等,错误;⑤某校对A、B两个班在一次数学测试中成绩统计为:A班的方差>B班的方差,得出结论是:B班的成绩比A班的好,错误,故答案为:②③.点评:本题考查了命题与定理的知识,解题的关键是了解相反数的定义、根的判别式、一次函数的性质、全等三角形的判定及方差的意义,属于基础题,比较简单.三.解答题(共5小题)16.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,在△ABC中,∠B=∠C.求证:AB=AC .证明:考点:命题与定理;等腰三角形的性质.专题:证明题.分析:根据图示,分析原命题,找出其条件与结论,然后根据∠B=∠C证明△ABC为等腰三角形,从而得出结论.解答:解:在△ABC中,∠B=∠C,AB=AC,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.点评:本题主要考查学生对命题的定义的理解,难度适中.17.已知命题:“如图,点B、F、C、E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并加以证明.考点:命题与定理.分析:根据平行线的性质与判定分析得出即可.解答:解:如图,点B、F、C、E在同一条直线上,则AB∥DE,是假命题,当添加:∠B=∠E时,AB∥DE,理由:∵∠B=∠E,∴AB∥DE.点评:此题主要考查了命题与定理,熟练利用平行线的判定得出是解题关键.18.已知命题:“P是等边三角形ABC内的一点,若P到三边的距离相等,则PA=PB=PC.”证明这个命题,并写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.考点:命题与定理.分析:首先画出图形,由PD⊥AB于D,PE⊥BC于E,PD=PE,根据角平分线的判定得出BP平分∠ABC,由BA=BC,根据等腰三角形三线合一的性质得出BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,那么P是△ABC三边垂直平分线的交点,根据线段垂直平分线的性质即可证明PA=PB=PC;将原命题的题设与结论交换位置即可写出其逆命题;可证明其逆命题成立.先由PA=PB,AC=BC,根据线段垂直平分线的判定得出CP 是AB的垂直平分线,根据等腰三角形三线合一的性质得出CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,那么P是△ABC三个角的角平分线的交点,根据角平分线的性质即可得出PD=PE=PF.解答:解:如图,已知P是等边三角形ABC内的一点,PD⊥AB 于D,PE⊥BC于E,PF⊥AC于F,PD=PE=PF.求证:PA=PB=PC.证明:∵PD⊥AB于D,PE⊥BC于E,PD=PE,∴BP平分∠ABC,∵BA=BC,∴BP是AC的垂直平分线,同理,AP是BC的垂直平分线,CP是AB的垂直平分线,∴P是△ABC三边垂直平分线的交点,∴PA=PB=PC.逆命题:P是等边三角形ABC内的一点,若PA=PB=PC,则P到三边的距离相等.其逆命题成立.证明:∵PA=PB,∴P在AB的垂直平分线上,∵AC=BC,∴C在AB的垂直平分线上,∴CP是AB的垂直平分线,∴CP平分∠ACB,同理,BP平分∠ABC,AP平分∠BAC,∴P是△ABC三个角的角平分线的交点,∴PD=PE=PF.点评:本题考查了命题与定理,角平分线、线段垂直平分线的判定与性质,等腰三角形的性质,难度适中.利用数形结合是解题的关键.19.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.考点:推理与论证;反证法.专题:推理填空题.分析:用反证法证明就可以代入特殊值来看看,令b=4,c=5可以证明命题①不正确,b=1,c=,可以证明命题③不正确若,命题②正确可证明.解答:解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c>>,c>>0故a2+ab+c=+(c﹣)>0点评:本题考查灵活运用反例的能力以及灵活掌握不等式的能力.20.如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.在下面三个式子中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC、CD⊥BC,②BE∥CF,③∠1=∠2.题设(已知):①②.结论(求证):③.证明:省略.考点:命题与定理;平行线的判定与性质.专题:计算题.分析:可以有①②得到③:由于AB⊥BC、CD⊥BC得到AB∥CD,利用平行线的性质得到∠ABC=∠DCB,又BE∥CF,则∠EBC=∠FCB,可得到∠ABC﹣∠EBC=∠DCB﹣∠FCB,即有∠1=∠2.解答:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴AB∥CD,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC﹣∠EBC=∠DCB﹣∠FCB,∴∠1=∠2.故答案为①②;③;省略.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题称为定理.也考查了平行线的性质.图形的性质——命题与证明2一.选择题(共9小题)1.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°2.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半3.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等4.下列四个命题中,真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形5.下列命题:①对角线相等且垂直的四边形是正方形;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧一定相等;④买彩票中奖概率是,则买4张彩票一定一张会中奖;⑤真命题的逆命题一定是真命题,其中正确的命题个数是()A.0个B.1个C.2个D.3个6.说明命题“如果a,b,c是△ABC的三边,那么长为a﹣1,b﹣1,c﹣1的三条线段能构成三角形”是假命题的反例可以是()A.a=2,b=2,c=3 B.a=2,b=2,c=2 C.a=3,b=3,c=4 D.a=3,b=4,c=57.已知下列命题:①若a>0,b>0,则a+b>0;②若a=b,则a2=b2;③角的平分线上的点到角的两边的距离相等;④矩形的对角线相等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个8下列命题是真命题的是()①若ac>bc,则a>b;②抛物线y=x2﹣2x﹣3与坐标轴有2个不同交点;③对角线相等的菱形是正方形;④过三点可以作一个圆.A.①②③B.②③C.③ D.③④9.已知下列命题:①若a>0,b>0,则ab>0;②直径是弦;③若,则a>0;④线段垂直平分线上的点到这条线段两个端点的距离相等.其中原命题与逆命题均为真命题的个数是()A.4 B.3 C.2 D.1二.填空题(共7小题)10.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是_________ .(填写所有真命题的序号)11.写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:_________ .12.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:_________ .13.下列命题中,其逆命题成立的是_________ .(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.14.下列命题①不相交的直线是平行线;②同位角相等;③矩形的对角线相等且互相平分;④平行四边形既是中心对称图形又是轴对称图形;⑤同圆中同弦所对的圆周角相等.其中错误的序号是_________ .15.在命题“同位角相等,两直线平行”中,题设是:_________ .16.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:_________ .三.解答题(共5小题)17.如图,现有以下3句话:①AB∥CD,②∠B=∠C.③∠E=∠F.请以其中2句话为条件,第三句话为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请加以证明.。
命题与证明的真题汇编及答案解析
命题与证明的真题汇编及答案解析一、选择题1.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.2.“两条直线相交只有一个交点”的题设是()A.两条直线 B.相交C.只有一个交点 D.两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D.【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.4.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选C.5.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个 B.1个 C.2个 D.3个【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确; ③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.6.下列命题中,正确的命题是( )A .度数相等的弧是等弧B .正多边形既是轴对称图形,又是中心对称图形C .垂直于弦的直径平分弦D .三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A 、完全重合的两条弧是等弧,错误;B 、正五边形不是中心对称图形,错误;C 、垂直于弦的直径平分弦,正确;D 、三角形的外心到三个顶点的距离相等,错误;故选:C .【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题. 详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.8.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题; ③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是( )A .2个B .3个C .4个D .5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A .【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.下列命题是真命题的是( )A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1a【答案】C【解析】【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;C. 若a>|b|,则a2>b2,正确;D. a<1,如a=-1,此时a=1a,故D选项错误,故选C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.11.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上,故D是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.14.下列命题中,是真命题的是( )A .同位角相等B .若两直线被第三条直线所截,同旁内角互补C .同旁内角相等,两直线平行D .平行于同一直线的两直线互相平行【答案】D【解析】【分析】 根据平行线的判定、平行线的性质判断即可.【详解】A 、两直线平行,同位角相等,是假命题;B 、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C 、同旁内角互补,两直线平行,是假命题;D 、平行于同一直线的两条直线互相平行,是真命题;故选:D .【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.15.下列说法正确的是( )①函数y =x 的取值范围是13x …. ②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.A .①②③B .①④⑤C .②④D .③⑤ 【答案】D【解析】【分析】根据二次根式定义,等腰三角形性质,正多边形内角和外角关系,平行线性质,根判别式定义进行分析即可.【详解】①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .【点睛】此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.16.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.17.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y =k x.当k <0时,在每个象限内y 随x 的增大而增大,故原题说法错误; 正确命题有1个,故选:A .【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个【答案】A【解析】【分析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.20.下列命题的逆命题正确的是( )A .如果两个角是直角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a b =,则22a b =【答案】C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.。
初中数学命题与证明专题训练50题-含答案
初中数学命题与证明专题训练50题含参考答案一、单选题1.如图,已知AC 与BD 相交于点O ,OE 是AOD ∠的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A .AOB DOC ∠=∠ B .EOC DOC ∠<∠ C .EOB EOC ∠=∠D .EOC DOC ∠>∠2.下列四个命题①过一点有且只有一条直线与已知直线垂直;①两条直线被第三条直线所截,内错角相等;①一个正实数的算术平方根一定是正实数;①2-是4的平方根,其中真命题的个数为( ) A .1个B .2个C .3个D .4个3.下列命题的逆命题不正确的是( ) A .全等三角形的对应边相等 B .直角三角形两锐角互余 C .如果,a b =那么22a b = D .两直线平行,同旁内角互补4.下列命题中假命题是( ) A .对顶角相等B .直线5y x =-不经过第二象限C .两直线平行,内错角相等D .两个锐角的和是钝角5.下列命题中,是真命题的是( ) A .对角线互相垂直的平行四边形是正方形 B .相似三角形的周长之比等于相似比的平方C .若(1,1y )、(2,2y )是双曲线1y x=-上的两点,则1y <2yD .方程2230x x -+=有两个不相等的实数根 6.下列命题是真命题的是( ) A .如果a +b =0,那么 a ,b 互为相反数 B .同位角相等C .过一点有且只有一条直线与已知直线平行D .两条直线被第三条直线所截,内错角相等7.有下列命题:①方程240x -=的解是2x =;①64的平方根是±8;①两边和它们的夹角对应相等的两个三角形全等;①若22a b =,则a b =;①1x >.其中假命题有( )A .4个B .3个C .2个D .1个8.说明命题“如果01n <<,那么210n ->”是假命题的一个反例可以是( ) A .12n =B .12n =-C .2n =D .2n =-9.下列语句中,不属于命题的个数是( )①延长线段AB ;②自然数都是整数;③两个锐角的和一定是直角;④同角的余角相等. A .1B .2C .3D .410.下列命题是假命题的是( )A .如果两角相等,那么它们一定是对顶角B .等角(同角)的余角相等C .等腰三角形两底角相等D .全等三角形面积相等11.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ①对角线相等且互相平分的四边形是矩形; ①对角线垂直且互相平分的四边形是菱形;①顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形. 其中你认为正确的个数有( ) A .1个B .2个C .3个D .4个12.下列命题:①如果一个数的相反数等于它本身,则这个数是0;①在三角形中,连接一个顶点和对边中点直线叫做三角形的中线;①任何三角形都有三条中线、三条内角平分线、三条高线,它们都相交于一点;①直角三角形的高只有一条.①三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;①一个数的算术平方根等于它本身,则这个数是1或0;其中真命题有( ). A .1个B .2个C .3个D .4个13.下列命题是假命题的是( ) A .若x <y ,则x +2008<y +2008B .单项式2347x y -的系数是﹣4C .若|x ﹣1|+(y ﹣3)2=0则x =1,y =3D .平移不改变图形的形状和大小 14.下列命题中,假命题...是( )A .2-的绝对值是2-B .对顶角相等C .平行四边形是中心对称图形D .如果直线,a c b c ∥∥,那么直线ab15.下列命题是假命题的是( ) A .对顶角相等 B .直角三角形两锐角互余 C .同位角相等D .全等三角形对应角相等16.下列语句中,不是命题的是( ) A .相等的角都是对顶角 B .数轴上原点右边的点 C .钝角大于90度 D .两点确定一条直线 17.下列命题正确的是( ) A .矩形的对角线互相垂直平分B .一组对角相等,一组对边平行的四边形一定是平行四边形C .正八边形每个内角都是145D .三角形三边垂直平分线交点到三角形三边距离相等 18.下列说法正确的是( ) A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,21.8S =乙.则甲组学生的身高较整齐 C .命题“若||1a =,则1a =”是真命题 D .三角形的外角大于任何一个内角19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( ) A .可以是a =-0.2,不可以是 a =2 B .可以是a =2,不可以是 a =-0.2 C .可以是a =-0.2,也可以是 a =2 D .既不可以是a =-0.2,也不可以是 a=2二、填空题20.命题“不是对顶角的两个角不相等”的逆命题是__________.21.已知:在△ABC 中,AB ≠AC ,求证:①B ≠①C .若用反证法来证明这个结论,可以假设__________.22.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.23.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做___________.要说明一个命题是假命题,通常可以通过___________的方法,命题的反例是具备命题的条件,但不具备命题的___________的实例.24.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________25.将命题“乘积为1的两个数互为倒数”改写成“如果……那么……”的形式:________________________________________________.26.命题“等腰三角形底边上的高线与中线互相重合”的逆命题是______27.把命题“等角的补角相等”改写成“如果…,那么…”的形式为________________________.题设是:________________________.结论是:________________________.28.命题“有两个角互余的三角形是直角三角形”的逆命题是_____命题.(填“真”或“假”)29.命题“如果两个实数相等,那么它们的平方相等”的逆命题是_____________________________.逆命题是______(填“真“或“假”)命题.30.命题“一组数据的中位数只有一个”是_______命题(填“真”或“假”)31.“两个无理数的积还是无理数”这句话是错误的,请举出一个反例进行说明______.32.“同位角相等,两直线平行”的逆命题是______;这是______命题(真或假).33.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).34.命题“对角线相等的平行四边形是矩形”的逆命题为________________________35.命题“互为相反数的两数的和是0”的逆命题是______________,它是__命题.(填“真、假”)36.下列命题的逆命题成立的序号是____ ① 同旁内角互补,两直线平行 ① 等边三角形是锐角三角形① 如果两个实数相等,那么它们的平方相等 ① 全等三角形的三条对应边相等 37.下列说法正确的是_____(填序号).①在同一平面内,a ,b ,c 为直线,若a ①b ,b ①c ,则a ①c ; ①“若ac >bc ,则a >b ”的逆命题是真命题;①若点M (a ,2)与N (1,b )关于x 轴对称,则a +b =﹣1;a ,小数部分是b ,则ab =﹣3.38.根据下图和命题“等腰三角形底边上的中线是顶角的角平分线”写出:已知:_______________________________ 求证:_______________ .三、解答题39.指出下列命题的条件和结论. (1)若a >0,b >0,则ab >0. (2)同角的补角相等.40.利用反证法证明:一个三角形中不能有两个角是钝角.41.如图,有如下四个论断:①AC DE ∥;①DC EF ∥;①CD 平分BCA ∠;①EF 平分BED ∠,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.42.判断命题“对角线互相垂直且相等的四边形是正方形”是否成立.如果认为不成立,请增加一个条件使它成立.43.下列命题中,哪些是真命题?哪些是假命题?若是假命题,请举一反例. (1)互为邻补角的两角之和等于180°; (2)如果ab >0,那么a+b >0;(3)如果一个有理数既不是正数,也不是负数,那么它一定是0.44.先判断下列各命题的真假,然后写出它们的逆命题,并判断逆命题的真假: (1)对角线互相垂直的四边形是菱形; (2)相似四边形对应边成比例.45.指出下列命题的条件和结论,并判断命题的真假. (1)垂直于同一条直线的两条直线平行. (2)同位角相等. (3)若a 2=b 2,则a =b .(4)两条直线相交只有一个交点.46.如图所示,D 、E 分别为①ABC 的边AB 、AC 上点,①BE 与CD 相交于点O .现有四个条件:①AB=AC ;①OB=OC ;①①ABE=①ACD ;①BE=CD .(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号) (2)证明你写的命题.47.在四边形ABCD 中,对角线AC 与BD 相交于点O . ①如果//AB CD ,BO DO =,那么四边形ABCD 是平行四边形; ①如果//AB CD ,ABC ADC ∠=∠,那么四边形ABCD 是平行四边形; ①如果AB CD =,BO DO =,那么四边形ABCD 是平行四边形;①如果ABC ADC=,那么四边形ABCD是平行四边形.∠=∠,BO DO(1)判断上述四个命题的真假;(2)证明上述四个命题的真假.(提示:证明一个命题是假命题,只要举个反例.)参考答案:1.C【分析】根据角平分线定义得到①AOE=①DOE,利用角的加减可得①EOB=①EOC,由于反例要满足角相等且不是对顶角,所以①EOB=①EOC可作为反例.【详解】①OE是①AOD的平分线,①①AOE=①DOE,①①AOE+①AOB=①DOE+①COD,即①EOB=①EOC可作为说明命题“相等的角是对顶角”为假命题的反例.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.B【分析】直接利用垂线的性质、平行线的性质以及平方根的定义等知识分别判断得出答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故①是假命题;①两条平行线被第三条直线所截,内错角相等,故①是假命题;①一个正实数的算术平方根一定是正实数,是真命题;①-2是4的平方根,是真命题;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.C【分析】把一个命题的条件和结论互换就得到它的逆命题,然后进行判断即可.【详解】解:A.全等三角形的对应边相等的逆命题是对应边相等的三角形全等,逆命题是真命题;B.直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,逆命题是真命题;C.如果a=b,那么a2=b2的逆命题是如果a2=b2,那么a=b,逆命题是假命题;D .两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,逆命题是真命题. 故选:C .【点睛】考查了命题与定理的知识,解题的关键是知道如何写出一个命题的逆命题,难度不大. 4.D【分析】根据对顶角的性质,一次函数的图象与平行线的性质,锐角,钝角的定义,逐一判断选项,即可得到答案. 【详解】①对顶角相等,正确, ①原命题是真命题,①直线5y x =-不经过第二象限,正确 ①原命题是真命题, ①两直线平行,内错角相等, ①原命题是真命题,①两个锐角的和不一定是钝角, ①原命题是假命题. 故选D .【点睛】本题主要考查判断命题的真假,掌握基本的数学定义,定理和推论,是解题的关键. 5.C【分析】根据特殊平行四边形的判定可判断A ,根据相似三角形的性质判断B ,根据反比例函数的增减性可判断C ,计算一元二次方程的判别式可判断D. 【详解】A. 对角线互相垂直的平行四边形是菱形,故A 是假命题; B. 相似三角形的周长之比等于相似比,故B 是假命题;C. 反比例函数1y x=-,k=-1<0,所以在二、四象限内y 随x 的增大而增大,而0<1<2,所以1y <2y ,故C 为真命题;D. 方程2230x x -+=,=412=80∆--<,所以方程无实数根,故D 为假命题. 故选C.【点睛】本题考查真假命题的判断,熟练掌握各种基本概念和知识点是判断命题真假的关键.6.A【分析】根据相反数的定义、同位角的性质、平行的判定及性质等知识逐项判定即可. 【详解】解:A 、如果a +b =0,那么a ,b 互为相反数,为真命题; B 、两直线平行,同位角相等,故原命题为假命题;C 、过直线外一点有且只有一条直线与已知直线平行,故原命题为假命题;D 、两条平行直线被第三条直线所截,内错角相等,故原命题为假命题. 故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解相反数的定义、同位角的性质、平行的判定及性质等知识,难度不大,属于基础题. 7.B【分析】根据解一元二次方程、平方根的性质、全等三角形的判定以及二次根式有意义的条件分别进行判断即可. 【详解】易知①①是真命题,方程²40x -=的解是2x =±,故①是假命题; 取1a =,1b,则22a b =,但ab ,故①是假命题;1x ,故①是假命题. 故选B.【点睛】本题考查命题真假的判断,真命题要经过推理验证其正确性,假命题只需举出一个反例即可. 8.A【分析】根据举反例的定义:符合某个命题的条件,但不符合该命题结论的例子,即可进行解答.【详解】解:A 、当12n =时,221311024n ⎛⎫-=-=-< ⎪⎝⎭,与原命题矛盾,故原命题为假命题,符合题意;B 、12n =-不符合条件01n <<,故B 不符合题意;C 、当2n =不符合条件01n <<,故C 不符合题意;D 、2n =-不符合条件01n <<,故D 不符合题意. 故选:A .【点睛】本题主要考查了用举反例的定义,解题的关键是熟练掌握举反例的定义:符合某个命题的条件,但不符合该命题结论的例子.9.A【详解】命题是判断一件事情的语句,①自然数都是整数;①两个锐角的和一定是直角;①同角的余角相等,都对情况作出了判断,都是命题,①延长线段AB,对情况没有作出了判断,不是命题,故选A.10.A【分析】根据对顶角的、余角与补角、全等三角形、等腰三角形的性质逐个判断即可.【详解】解:A、对顶角相等,但相等的角不一定是对顶角,故如果两角相等,那么它们一定是对顶角错误,符合题意;B、等角(同角)的余角相等,是真命题,不符合题意;C、等腰三角形两底角相等, 是真命题,不符合题意;D、全等三角形面积相等,是真命题,不符合题意;故选:A.【点睛】本题考查了判断真假命题,对顶角的、余角与补角、全等三角形、等腰三角形的性质,能够根据已有知识点判断出命题的真假是解决本题的关键.11.C【详解】题中①①①根据平行四边形、矩形、菱形的判定,是正确的,①只能判定是平行四边形而不具备矩形的条件.故选C.12.B【分析】根据相反数的定义,算术平方根的定义,以及三角形的高线,中线和角平分线的定义及性质对各小题分析判断即可得解.【详解】解:①如果一个数的相反数等于它本身,则这个数是0,正确;①在三角形中,连接一个顶点和对边中点线段叫做三角形的中线,错误;①任何三角形都有三条中线、三条内角平分线、三条高线所在的直线,它们都相交于一点,错误;①直角三角形的高有三条,故①错误;①三角形的三条高所在的直线相交于一点,可以在三角形的内部,或在三角形的外部,还可以在三角形上,故①错误;①一个数的算术平方根等于它本身,则这个数是1或0,正确;综上所述,正确的命题有①①,共2个,故选B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.B【分析】非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.然后结合等式性质与单项式系数的定义进行判断.【详解】解:A 、根据不等式的性质,故正确;B 、单项式2347x y -的系数是47-,故错误; C 、若|x ﹣1|+(y ﹣3)2=0,则x =1,y =3,故正确;D 、平移不改变图形的形状和大小,故正确.故选B .【点睛】此题涉及面较广,涉及到等式的性质、非负数的性质、平移的性质及单项式的系数,是一道好题.14.A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A . 2-的绝对值是2,故原命题是假命题,符合题意;B .对顶角相等,故原命题是真命题,不符合题意;C .平行四边形是中心对称图形,故原命题是真命题,不符合题意;D . 如果直线,a c b c ∥∥,那么直线a b ,故原命题是真命题,不符合题意;故选:A .【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.15.C【分析】根据对顶角的性质、直角三角形的性质、平行线的性质、全等三角形的性质逐项判断即可得.【详解】解:A 、对顶角相等,则此项命题是真命题;B 、直角三角形两锐角互余,则此项命题是真命题;C 、两直线平行,同位角相等,则此项命题是假命题;D 、全等三角形对应角相等,则此项命题是真命题;故选:C .【点睛】本题考查了对顶角、直角三角形的性质、平行线的性质、全等三角形的性质、命题,熟练掌握各性质是解题关键.16.B【详解】试题分析:命题是判断一件事情的语句,所以A 、C 、D 都是命题,B 不是命题,故选B .考点:命题的概念.17.B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.证明:①//AB CD ,①180A D ∠+∠=︒,①A C ∠=∠,①180C D ∠+∠=︒,①//AD BC ,又①//AB CD ,①四边形ABCD 是平行四边形,①一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:()180821358︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B .【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.18.A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键.19.A【详解】当a= - 0.2时,a²=0.04>0.01;a <0.1.当a=2时,a²=4>0.01;a >0.1.于是可以证明命题“若a²>0.01,则a >0.1”是假命题的反例的可以是a= - 0.2,不可以是a=2.故选A.20.不相等的两个角不是对顶角【分析】根据逆命题的概念即可得出答案.【详解】命题“不是对顶角的两个叫不相等”的逆命题是:不相等的两个角不是对顶角, 故答案为:不相等的两个角不是对顶角.【点睛】本题主要考查逆命题,掌握逆命题的写法是解题的关键.21.①B =①C【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:①B ≠①C 的反面是①B =①C .故可以假设①B =①C .故答案为:①B =①C .【点睛】本题主要考查了反证法的基本步骤,正确确定①B ≠①C 的反面,是解决本题的关键.22.如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等23.证明举反例结论【分析】根据根据证明的概念和举反例的概念直接填空即可..【详解】解:要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做证明.要说明一个命题是假命题,通常可以通过举反例的方法,命题的反例是具备命题的条件,但不具备命题的结论的实例.故答案为:证明;举反例;结论.【点睛】本题主要考查了证明和举反例的概念,熟知相关知识是解题的关键.24.错误错误错误错误错误错误正确错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误.(4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误.(5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误.(7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确.(8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断.25.如果两个数的乘积为1,那么这两个数互为倒数【详解】试题解析:乘积为1的两个数互为倒数”改写成“如果……那么……”的形式为:如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.26.如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形【分析】根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,找出已知命题的题设和结论,即可写出其逆命题.【详解】解:“等腰三角形底边上的高线与中线互相重合”的题设为:如图一个三角形是等腰三角形,结论为:那么它底边上的高线和中线互相重合①该命题的逆命题为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形故答案为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形.【点睛】此题考查的是写一个命题的逆命题,掌握逆命题的定义是解决此题的关键.27.如果两个角相等,那么这两个角的补角相等两个角相等这两个角的补角相等【分析】根据任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论,进而得出答案即可.【详解】命题“等角的补角相等”的题设是“两个角相等”,结论是“这两个角的补角相等”.故命题“等角的补角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的补角相等.故答案为如果两个角相等,那么这两个角的补角相等;两个角相等;这两个角的补角相等.【点睛】本题考查了命题的改写问题.找准原命题的题设与结论是正确解答本题的关键.命题的一般叙述形式为“如果…..,那么……”,其中,“如果”所引出的部分是题设(条件),“那么”所引出的部分是结论.28.真;【分析】命题“有两个角互余的三角形是直角三角形”的题设为三角形中有两个锐角互余,结论为这个三角形为直角三角形,然后交换题设与结论即可得到原命题的逆命题,然后再判断出命题的真假.【详解】“有两个角互余的三角形是直角三角形”的逆命题“直角三角形的两个锐角互余”,是真命题.故答案为真.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.29.如果两个实数的平方相等,那么这两个实数相等假【分析】逆命题即将原命题的结论变为已知,原命题的已知变为结论,若22a b=,则a和b可能相等,也可能互为相反数;【详解】逆命题为:如果两个实数它们的平方相等,那么这两个实数相等,若22=,则a ba和b可能相等,也可能互为相反数,所以是假命题;故答案是:如果两个实数它们的平方相等,那么这两个实数相等;假.【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.30.真【分析】根据中位数的计算方法判断即可.【详解】解:①中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;①中位数的位置是确定的,①一组数据的中位数只有一个,故答案为:真;【点睛】本题考查了真命题(正确的命题),中位数的定义;掌握中位数的计算方法是解题关键.3122==(答案不唯一)【分析】根据无理数的乘法运算法则,即可求解.【详解】解:“两个无理数的积还是无理数”这句话是错误的,举反例如下:2=.22(答案不唯一)【点睛】此题比较灵活地考查了无理数的有关运算,需考虑到无理数相乘的特殊情况.32.两直线平行,同位角相等真【分析】交换原命题的题设与结论即可得到其逆命题,然后根据平行线的性质判断逆命题的真假.。
中考数学专题复习卷:命题与证明(含解析)
命题与证明一、选择题1.以下说法正确的选项是)(A. 真命题的抗命题是真命题B. 原命题是假命题,则它的抗命题也是假命题C. 定理必定有逆定理D. 命题必定有抗命题【答案】D【分析】: A 、真命题的抗命题可能是真命题,也可能是假命题,故 A 不切合题意;B、原命题是假命题,则它的抗命题可能是假命题,也可能是真命题,故 B 不切合题意;C、逆定理必定是真命题,定理不必定有逆定理,故 C 不切合题意;D、随意一个命题都有抗命题;故 D 切合题意;故答案为:D【剖析】依据把一个命题的条件和结论交换就获取它的抗命题,用逻辑方法判断为正确的命题叫定理,任何命题都有抗命题,对各选项逐个判断即可。
2.以下命题为真命题的是()。
A.两条直线被一组平行线所截,所得的对应线段成比率B.相像三角形面积之比等于相像比C.对角线相互垂直的四边形是菱形D. 按序连接矩形各边的中点所得的四边形是正方形【答案】A【分析】: A. 依据平行线分线段成比率定理即可判断正确, A 切合题意;B. 相像三角形面积之比等于相像比的平方,故错误, B 不切合题意;C.对角线相互垂直的平行四边形是菱形,故错误, C 不切合题意;D. 按序连接矩形各边的中点所得的四边形是正菱形,故错误, D 不切合题意;故答案为:A.【剖析】 A. 依据平行线分线段成比率定理即可判断对错;B.依据相像三角形的性质即可判断对错;C.依据菱形的判断即可判断对错;D.依据矩形的性质和三角形中位线定理即可判断对错;3.用反证法证明时,假定结论“点在圆外”不建立,那么点与圆的地点关系只好是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】 D【分析】:点与圆的地点关系只有三种:点在圆内、点在圆上、点在圆外,假如点不在圆外,那么点就有可能在圆上或圆内故答案为 D【剖析】运用反证法证明,第一步就要假定结论不建立,即结论的反面,要考虑到反面全部的状况。
初中数学命题与证明专题训练50题含参考答案
初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角2.下列命题正确的是( )A .所有的实数都可用数轴上的点表示B .直线外一点到这条直线的垂线段叫做点到直线的距离C D .如果一个数有立方根,那么这个数也一定有平方根3.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C 2D .证法2只要测量够一百个三角形进行验证,就能证明该定理4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.下列命题为真命题的是( )A .内错角相等,两直线平行B C .1的平方根是1D .一般而言,一组数据的方差越大,这组数据就越稳定6.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,37.能说明命题“若x 2≥9,则x ≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣2 8.下列命题是真命题的是( )A .内错角互补,两直线平行B .三角形的外角大于任意一个不相邻的内角C .三角形的两边之和小于第三边D .三角形的三条高一定在三角形内部 9.下面四个命题:∠若=1x -,则31x =-;∠面积相等的两个三角形全等;∠相等的角是对顶角;∠若24x =,则2x =.是真命题的有( )A .4个B .3个C .2个D .1个 10.下列语句:∠过一点有且只有一条直线与已知直线平行;∠数轴上的点和实数是一一对应的;∠同位角相等;∠同一平面内,过一点有且只有一条直线与已知直线垂直;其中( )是真命题.A ∠∠B ∠∠C ∠∠D ∠∠11.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .平行四边形是中心对称图形12.下列命题,假命题是( )A .如果两个三角形全等,那么这两个三角形的面积相等B .等腰三角形两腰上的高相等C .三角形的一个外角大于与它不相邻的任何一个内角D .已知ABC ,求作A B C ''',使A B C ABC ''≌的依据是三角形全等的性质定理 13.下面命题中是真命题的有( )∠相等的角是对顶角∠直角三角形两锐角互余∠三角形内角和等于180°∠两直线平行内错角相等A .1个B .2个C .3个D .4个14.下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角15.下列命题正确的是( )A .相等的角是对顶角;B .a 、b 、c 是直线,若a //b ,b //c ,则a //c ;C .同位角相等;D .a 、b 、c 是直线,若a ∠b ,b ∠c ,则a ∠c .16.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等17.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个18.下列说法:∠同位角相等;∠对顶角相等;∠等角的补角相等;∠两直线平行,同旁内角相等,正确的个数有( )A .1 个B .2 个C .3 个D .4 个19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( )A .可以是a =-0.2,不可以是 a =2B .可以是a =2,不可以是 a =-0.2C .可以是a =-0.2,也可以是 a =2D .既不可以是a =-0.2,也不可以是 a=220.下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =二、填空题21.命题“对顶角相等”的题设是________,结论是________,它是________命题.(填“真”或“假”)22.命题“互余的角不相等”的逆命题是_____.23.命题“若a b =,那么a b =”是一个____________命题(填真、假),写出它的逆命题:____________.24.举反例说明命题“对于任意实数x ,221x x +-的值总是正数”是假命题,你举的反例是x =__________(写出一个x 的值即可).25.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.26.下列说法中,真命题有______.(填入序号即可)∠和为180°且有一条公共边的两个角是邻补角; ∠过一点有且只有一条直线与已知直线垂直;∠同位角相等;∠经过直线外一点,有且只有一条直线与这条直线平行; ∠两点之间,直线最短。
2022中考数学专题25 命题与证明(专项训练)(解析版)
专题25 命题与证明一、单选题1.(2021·河南九年级)能说明命题“关于x 的方程240x x n -+=一定有实根”是假命题的反例为( )A .2n =-B .1n =-C .0n =D . 6.8n =【答案】D【分析】计算一元二次方程根的判别式即可【详解】依题意“关于x 的方程240x x n -+=一定有实根”是假命题则:2(4)40n ∆=--< 解得:4n >故选D.【点睛】本题考查了一元二次方程根的判别式,命题与假命题的概念,熟悉概念是解题的关键.2.(2021·沙坪坝区·重庆八中)下列命题,真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一个角为直角的四边形为矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形【答案】D【分析】由题意根据平行四边形的判定定理、矩形、菱形、正方形的判定定理判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B 、有一个角为直角的平行四边形为矩形,本选项说法是假命题;C 、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;D 、一组邻边相等的矩形是正方形,本选项说法是真命题;故选:D .【点睛】本题考查的是命题的真假判断,注意掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2021·山西九年级)《几何原本》是欧几里得的一部不朽之作,本书以公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法.这种方法所体现的数学思想是()A.数形结合思想B.分类讨论思想C.转化思想D.公理化思想【答案】D【分析】结合题意,根据公理化思想的性质分析,即可得到答案.【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D.【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解.4.(2021·湖南九年级)下列各命题是真命题的是()A.矩形的对称轴是两条对角线所在的直线B.平行四边形一定是中心对称图形C.有一个内角为60 的平行四边形是菱形D.三角形的外角等于它的两个内角之和【答案】B【分析】根据矩形的性质、轴对称图形和中心对称图形的概念、三角形的外角性质判断即可.【详解】解:A、矩形的对称轴是任意一边的垂直平分线,两条对角线所在的直线不一定是矩形的对称轴,本选项是假命题;B、平行四边形一定是中心对称图形,本选项是真命题;C、有一个内角为60°的平行四边形不一定是菱形,本选项是假命题;D、三角形的外角等于与它不相邻的两个内角之和,本选项是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2021·广西九年级)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有( )A .1个B .2个C .3个D .4个【答案】B【详解】①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,筝形的对角线垂直但不相等,不是正方形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④等边三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故该命题错误;故选B .6.(2021·浙江)下列选项中,可以用来证明命题“若a >b ,则1a <1b ”是假命题的反例是( )A .a =2,b =1B .a =2,b =﹣1C .a =﹣2,b =1D .a =﹣2,b =﹣1 【答案】B【分析】把各选项提供的数据代入计算,进行比较即可求解.【详解】解:A.当 a =2,b =1时,111,12a b ==,则11a b <,无法说明原命题为假命题,不合题意; B. 当a =2,b =﹣1时,111,12a b ==-,则11a b>,说明原命题为假命题,符合题意; C.当 a =﹣2,b =1时,a <b ,条件错误,无法说明原命题为假命题,不合题意.D.当 a =﹣2,b =﹣1时,a <b ,条件错误,无法说明原命题为假命题,不合题意. 故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是真命题,一般需要推理、论证,而判断一个命题是假命题,只需要举出一个反例即可.7.(2021·辽宁九年级)下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .同位角相等,两直线平行C .对顶角相等D .若0a >,0b >,则0a b +>【答案】B【分析】 分别写出原命题的逆命题,然后判断真假即可.【详解】解:A 、若a b =,则||||a b =的逆命题是若||||a b =,则a b =,逆命题是假命题,不符合题意;B 、同位角相等,两直线平行的逆命题是两直线平行,同位角相等,逆命题是真命题,符合题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.8.(2021·辽宁九年级)下列说法错误..的是( ) A .“对顶角相等”的逆命题是真命题B .通过平移或旋转得到的图形与原图形全等C .“经过有交通信号灯的路口,遇到红灯”是随机事件D .函数1y x=-的图象经过点()1,1- 【答案】A【分析】根据平移、旋转的性质、对顶角的性质、反比例函数图象上点的坐标特征、随机事件的概念判断即可.【详解】解:“对顶角相等”的逆命题是相等的角是对顶角,是假命题,A 错误,符合题意; 通过平移或旋转得到的图形与原图形全等,B 正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,C 正确,不符合题意;因为1x =时,11y x =-=-,所以函数1y x=-的图象经过点(1,1)-,D 正确,不符合题意; 故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2021·湖南九年级)下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .平分弦的直径垂直于这条弦C .正方形既是轴对称图形又是中心对称图形D .一组对边平行,另一组对边相等的四边形是平行四边形【答案】C【分析】根据全等三角形的判定、垂径定理、正方形的性质、平行四边形的判定定理判断即可.【详解】解:A 、有两条边和其夹角对应相等的两个三角形全等,原命题是假命题;B 、平分弦(非直径)的直径垂直于这条弦,原命题是假命题;C 、正方形既是轴对称图形又是中心对称图形,是真命题;D 、一组对边平行且相等的四边形是平行四边形,原命题是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(2021·重庆九年级)下列命题中,是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .菱形的对角线相等D .有一组邻边相等的平行四边形是菱形【答案】D【分析】由平行四边形的判定得出A 错误;由矩形的判定得出B 不正确;由菱形的定义得出C 正确;由菱形的判定得出D 正确;即可得出答案.【详解】解:A. 对角线互相平分的四边形是平行四边形,∴A 不正确;B. 对角线互相垂直的平行四边形是菱形,∴B 不正确;C. 菱形的对角线互相垂直平分∴C 不正确;D. 有一组邻边相等的平行四边形是菱形∴不正确;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题,正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.二、填空题11.(2021·山西九年级)若举反例说明命题“若a b <,则ac bc <”是假命题时,令a 的值为5,b -的值为2-,则可给c 取一个具体的值为_______.【答案】1c =-(答案不唯一)【分析】“若a b <时,则ac bc <”是假命题,则a b <时,ac ≥bc ,即可.【详解】解:ac -bc ≥0,c (a -b )≥0-3c ≥0c ≤0即可.故答案为:1c =-(答案不唯一).【点睛】本题考查了命题,掌握真假命题是解题的关键.12.(2021·江苏无锡市·)请写出“两直线平行,同位角相等”的逆命题:_____________________________.【答案】如果同位角相等,那么两直线平行【分析】命题是由题设和结论两部分组成的,把原命题的题设作结论,原命题的结论作题设,这样就将原命题变成了它的逆命题.【详解】解:原命题是:两直线平行,同位角相等.改成如果…那么…的形式为:如果两直线平行,那么同位角相等.∴逆命题为:如果同位角相等,那么两直线平行,故答案为:如果同位角相等,那么两直线平行.【点睛】本题是一道命题与定理的概念试题,考查了命题的组成,原命题与逆命题的关系.13.(2021·安徽合肥·)直角三角形斜边上的中线等于斜边的一半逆命题________________【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【详解】解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【点睛】本题考查了互逆命题的知识及命题的真假判定,两个命题中,如果第一个命题的条件是第二个命题结论,而第一个命题的结论是第二个命题条件,那么这两个命题叫做互逆命题,其中一个命题成为另一个命题的逆命题.14.(2021·安徽九年级)命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.(2021·江苏九年级)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题16.(2021·贵州九年级)同学们,你们知道吗?三角形的内角和不一定是180°.德国数学家黎曼创立的黎曼几何中描述:在球面上选三个点连线构成一个三角形,这个三角形的内角和大于180°.黎曼几何开创了几何学的新领域,近代黎曼几何在广义相对论里有着重要的应用.同样,在俄国数学家罗巴切夫斯基发表的新几何(简称罗氏几何)中,描述了在双曲面里画出的三角形,它的内角和永远小于180°.罗氏几何在天体理论中有着广泛的应用.而我们所学习的欧氏几何中描述“在平面内,三角形的内角和等于180°”是源于古希腊数学家欧几里得编写的《原本》.欧几里得创造的公理化体系影响了世界2000多年,是整个人类文明史上的里程碑.请你证明:在平面内,三角形的内角和等于180°.要求画出图形....,写出已知....、求证和证明...... 【答案】见解析【分析】过点A 作//EF BC ,由两直线平行,内错角相等得到1B ∠=∠,2C ∠=∠,再根据平角的定义解题.【详解】已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:过点A 作//EF BC ,∴1B ∠=∠,2C ∠=∠,∵12180BAC ∠+∠+∠=︒,∴180B BAC C ∠+∠+∠=︒.【点睛】本题考查三角形内角和定理的证明,涉及平行线性质、平角定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·潍坊市寒亭区教学研究室九年级)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.【答案】(1)甲:1,2,3,4,5;乙:6,8,10,12;丙:7,9,11;丁:13,15;(2)甲丙丁、甲丁丙、丙甲丁、丁甲丙,共4种情况【分析】(1)由所选的座位号之和最小和购票的先后顺序即可推理.(2)根据题意可确定乙的购票结果.再结合所选的座位号之和最小并利用分类讨论的思想确定甲、丙、丁的购票顺序即可得出结果.【详解】(1)由所选的座位号之和最小可知,甲先选:5,3,1,2,4;则乙选:6,8,10,12;丙选11,9,7;丁选15,13.(2)根据题意可确定乙选的座位号为3,1,2,4.①若甲在乙选完之后选,则甲选的座位号为13,11,9,7,5.Ⅰ若丙在甲选完之后选,则丙选的座位号为6,8,10.此时丁可选的座位号为12,14.即在乙选完之后的顺序为:甲、丙、丁.Ⅱ若丁在甲选完之后选,则丁选的座位号为6,8.此时丙可选的座位号为10,12,14.即在乙选完之后的顺序为:甲、丁、丙.②若丙在乙选完之后选,则丙选的座位号为9,7,5.Ⅰ若甲在丙选完之后选,则甲可选的座位号为6,8,10,12,14.此时丁可选的座位号为13,11.即在乙选完之后的顺序为:丙、甲、丁.Ⅱ若丁在丙选完之后选,则丁选的座位号为6,8.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.③若丁在乙选完之后选,则丁选的座位号为7,5.Ⅰ若甲在丁选完之后选,则甲可选的座位号为6,8,10,12,14.此时丙可选的座位号为13,11,9.即在乙选完之后的顺序为:丁、甲、丙.Ⅱ若丙在丁选完之后选,则丙选的座位号为6,8,12.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.综上可知,甲、丙、丁的购票顺序可以为:甲、丙、丁或甲、丁、丙或丙、甲、丁或丁、甲、丙.【点睛】本题考查推理与论证,理解题意并利用分类讨论的思想是解答本题的关键.18.(2021·河南九年级)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在O 中,弦AB CD ⊥于M ,连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点,EM BD ⊥于,G FM AD ⊥于H ,当M 是AB 中点时,直接写出四边形EMFC 是怎样的特殊四边形:__________.【答案】(1)见解析;(2)菱形【分析】(1)先写出已知、求证,先证明BMF MAF ∠=∠,再证明DE ME =,DE CE =即可证明 (2)先证明CE CF =,再证明AC BC =,由布拉美古塔定理证明ME EC CF FM ===即可证明 【详解】(1)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 证明:,AC BD EF AB ⊥⊥9090BMF AMF MAF AMF ∴∠+∠=︒∠+∠=︒,,BMF MAF ∴∠=∠,EDM MAF EMD BMF ∠=∠∠=∠,, EDM EMD ∴∠=∠, DE ME ∴=,同理可证ME CE =,DE CE ∴=, ∴点E 是DC 的中点故答案为:已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 (2)四边形EMFC 是菱形理由:由布拉美古塔定理可知,,E F 分别是,AC BC 的中点, 11,22CE AC CF CB ∴== AB CD ⊥ 11,22ME AC MF CB ∴== AB CD M ⊥,是AB 中点AC BC ∴=ME EC CF FM ∴===∴四边形EMFC 是菱形 故答案为:四边形EMFC 是菱形 【点睛】本题考查菱形的判定、根据题意写已知求证、灵活进行角的和差关系的转换是解题的关键 19.(2020·江苏鼓楼区·)点E 、F 分别是菱形ABCD 边BC 、CD 上的点. (1)如图,若CE =CF ,求证AE =AF ;(2)判断命题“若AE =AF ,则CE =CF ”的真假.若真,请证明;若假,请在备用图上画出反例.【答案】(1)见解析;(2)假命题,见解析 【分析】(1)连接AC ,利用菱形的性质和全等三角形的判定和性质解答即可; (2)举出反例解答即可. 【详解】解:(1)连接AC ,∵四边形ABCD 是菱形, ∴∠ACE =∠ACF , 在△ACE 与△ACF 中CE CF ACE ACF AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ACF (SAS ), ∴AE =AF ,(2)当AE =AF =AF'时,CE ≠CF',如备用图,∴命题“若AE =AF ,则CE =CF ”是假命题. 【点睛】此题考查命题与定理,关键是根据菱形的性质和全等三角形的判定和性质解答.20.(2020·丰台·北京十八中)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答案可能是CACCC或CBCCC或CABAB或BBBBB等,故答案为:CACCC或BBBBB(答案不唯一).【点睛】本题主要考查是推理与论证问题和分类讨论的思想,确定出甲选错的题号是解本题的关键. 21.(2020·浙江台州·九年级期末)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点. ①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】(1)见解析;(2)①DEtan ∠DBC. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可; ②连接AC ,由自相似菱形的定义即可得出结论; ③由自相似菱形的性质即可得出结论; (2)①由(1)③得△ABE ∽△DEA ,得出AB BE AEDE AE AD==,求出AE =,DE =②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM,求出BN =7,再由三角函数定义即可得出答案. 【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下: 如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点, ∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°, 在△ABE 和△DCE 中 AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠, ∴△ABE ≌△DCE (SAS ), ∴△ABE ∽△DCE , ∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C >90°,且∠ABC +∠C =180°,△ABE 与△EDC 不能相似, 同理△AED 与△EDC 也不能相似, ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠AEB =∠DAE ,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED , 故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点, ∴BE =2,AB =AD =4, 由(1)③得:△ABE ∽△DEA , ∴AB BE AEDE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE DE =AB AE BE ⋅,故答案为:AE DE②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形, ∴DN =EM ,DM =EN ,∠M =∠N =90°, 设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即2﹣(x +4)22﹣x 2, 解得:x =1, ∴AM =1,EN =DM =5,∴DN =EM = 在Rt △BDN 中, ∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.22.(2020·渠县崇德实验学校九年级)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:)则丁同学的得分是;(2)如果有一个同学得了1分,他的答案可能是(写出一种即可)【答案】(1)3;(2)CACCC【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对,针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,。
中考复习《命题与证明》练习题
中考复习《命题与证明》练习题一、选择题(共10小题)1. 下列命题中,真命题的个数有①同一平面内,两条直线一定互相平行;②有一条公共边的角叫邻补角;③内错角相等;④对顶角相等;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离.A. 个B. 个C. 个D. 个2. 下列命题是真命题的是A. 非正数没有平方根B. 相等的角不一定是对顶角C. 同位角相等D. 和为的两个角一定是邻补角3. 下列命题正确的是A. 菱形的对角线相等B. 矩形的对角线互相垂直C. 平行四边形的对角线相等且互相平分D. 正方形的对角线相等且互相垂直平分4. 下列命题是真命题的是A. 平行四边形的对角线互相平分且相等B. 任意多边形的外角和均为C. 邻边相等的四边形是菱形D. 两个相似比为的三角形对应边上的高之比为5. 下列命题中,真命题是A. 对角线互相垂直且相等的四边形是菱形B. 有一组邻边相等的平行四边形是菱形C. 对角线互相平分且相等的四边形是菱形D. 对角线相等的四边形是菱形6. 下列语句:①不带“”号的数都是正数;②如果是正数,那么一定是负数;③射线和射线是同一条射线;④直线和直线是同一条直线,其中说法正确的有A. 个B. 个C. 个D. 个7. 下面给出五个命题:①若,则;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若,则;⑤面积相等的两个三角形全等,是真命题的个数有A. 个B. 个C. 个D. 个8. 下列命题中,为真命题的是A. 有一组邻边相等的四边形是菱形B. 有一个角是直角的平行四边形是矩形C. 有一组对边平行的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形9. 有下列四个命题:①相等的角是对项角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④平面内垂直于同一条直线的两条直线互相平行.其中真命题的个数为A. B. C. D.10. 下列命题错误的是A. 经过三个点一定可以作圆B. 同圆或等圆中,相等的圆心角所对的弧相等C. 三角形的外心到三角形各顶点的距离相等D. 经过切点且垂直于切线的直线必经过圆心二、填空题(共6小题)11. 把命题“对顶角相等”改写成“如果那么”的形式:.12. 把命题“同角的余角相等”改写成“如果那么”的形式.13. 把命题“等角的补角相等”改写成“如果那么”的形式是.14. 如图,在平行四边形中,,,以点为圆心,以任意长为半径作弧,分别交,于点,,再分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点,连接并延长交于点,则的长为.15. 如图,平行四边形中,为上一点,为上一点,与对角线交于点,以下三个条件:①;②;③,以其中一个作为题设,余下的两个作为结论组成命题,其中真命题的个数为.16. 一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.()某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是.()若乙盒中最终有个红球,则袋中原来最少有个球.三、解答题(共9小题)17. 如图,已知,,求证:,请补充完成下面证明过程.证明:(已知),,(同角的补角相等),,(两直线平行,内错角相等),,,(同位角相等,两直线平行),.18. 已知:如图,,,,求的度数.完成如下推理填空:解:(已知),,又(已知),,,,又(已知),,.19. 已知命题:如图,点,,,在同一条直线上,且,,则.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.20. 先化简,再求值:,其中.21. 点,分别是菱形边,上的点.(1)如图,若,求证;(2)判断命题“若,则”的真假.若真,请证明;若假,请在备用图上画出反例.22. 证明下列命题是假命题.(1)三角形的外角大于它的任何一个内角.(2)等腰三角形一边上的中线也是这一边上的高.23. 如图,在和中,点,,,在同一直线上,有下面四个论断:();();();().请用其中三个作为条件,余下的一个作为结论,写出一个真命题,并给出证明.24. 判断下列命题是真命题还是假命题;如果是假命题,举一个反例加以证明.(1)三角形的外角大于它的任何一个内角.(2)有两角及一边对应相等的两个三角形全等.(3)等腰三角形一边上的中线也是这边上的高.25. 如图,直线,被直线所截,直线,被所截.请你从以下三个条件:;;中选出两个作为已知条件,另一个作为结论,得出一个正确的命题.(1)请按照:“,;”的形式,写出所有正确的命题;(2)在()所写的命题中选择一个加以证明,写出推理过程.答案第一部分1. B2. B3. D 【解析】A.菱形的对角线不一定相等,本选项说法错误;B.矩形的对角线不等于互相垂直,本选项说法错误;C.平行四边形的对角线互相平分但不一定相等,本选项说法错误;D.正方形的对角线相等且互相垂直平分,本选项说法正确.4. B 【解析】A.平行四边形的对角线互相平分但不一定相等,故错误,是假命题;B.任意多边形的外角和均为,正确,是真命题;C.邻边相等的平行四边形是菱形,故错误,是假命题;D.两个相似比为的三角形对应边上的高之比为,故错误,是假命题.5. B6. B 【解析】①不带“”号的数不一定是正数,错误;②如果是正数,那么一定是负数,正确;③射线和射线不是同一条射线,错误;④直线和直线是同一条直线,正确.7. C 【解析】①若,则,正确;②角平分线上的点到角的两边距离相等,正确;③相等的角是对顶角,错误;④若,则,故此选项错误;⑤面积相等的两个三角形全等,错误.8. B9. B10. A【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解析】.经过不在同一直线上的三个点一定可以作圆,故本选项错误;.同圆或等圆中,相等的圆心角所对的弧相等,正确;.三角形的外心到三角形各顶点的距离相等,正确;.经过切点且垂直于切线的直线必经过圆心,正确;故选:.【点评】此题主要考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.第二部分11. 如果两个角是对顶角,那么它们相等12. 如果两个角是同一个角的余角,那么这两个角相等13. 如果两个角是等角的补角,那么它们相等14.【解析】根据作图的方法得:平分,.四边形是平行四边形,,,,,,.15.16. 红,第三部分17. (已知),邻补角的定义,(同角的补角相等),内错角相等,两直线平行,(两直线平行,内错角相等),已知,等量代换,(同位角相等,两直线平行),两直线平行,同位角相等.故答案为:邻补角的定义;;内错角相等,两直线平行;;已知;等量代换;;两直线平行,同位角相等.18. 同旁内角互补,两直线平行;;;内错角相等,两直线平行;;;平行于同一直线的两直线平行;两直线平行,同旁内角互补;等量代换;19. 是假命题.添加条件:.(答案不唯一)证明:,,即.在和中,.20.当时,.21. (1)连接,四边形是菱形,,在与中,,.(2)当时,,如备用图,命题“若,则”是假命题.22. (1)略.(2)略.23. 略.24. (1)假命题.反例:如图(),中,,的外角与相等.(2)假命题(注意:这个命题有两种情况).(3)假命题.反例:如图(),中,,,分别是边上的中线、高.但.25. (1)命题:,;;命题:,;;命题:,;;(2)证明命题:,,,,,即.。
初中数学命题与证明专题训练50题含答案
初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是真命题的是( )A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .菱形的对角线相等且互相垂直2.用反证法证明“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A .a b <B .a b ≤C .a b =D .a b ≥ 3.下列四个命题中,属于真命题的是( )A .同角(或等角)的补角相等B .三角形的一个外角大于任何一个内角C .同旁内角相等,两直线平行D .如果∠1=∠2,那么∠1和∠2是对顶角4.下列语句不是命题的是( )A .画两条相交直线B .互补的两个角之和是180°C .两点之间线段最短D .相等的两个角是对顶角 5.下列定理中,不存在逆定理的是( )A .等边三角形的三个内角都等于60°B .在同一个三角形中,如果两边相等,那么它们所对的角也相等C .同位角相等,两直线平行D .全等三角形的对应角相等6.下列命题:∠相等的两个角是对顶角;∠邻补角互补;∠同位角相等,两直线平行;∠过一点有且只有一条直线与已知直线垂直.其中,真命题的个数是( ) A .4个 B .3个 C .2个 D .1个 7.下列命题中,真命题有( )(1)如果一个数的算术平方根等于它本身,则这个数是1;(2)一个数的立方根等于它本身,则这个数是﹣1,0,1;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直;(4)在同一平面内,垂直于同一直线的两条直线互相平行.8.下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可以是直角;D.直角三角形的两锐角互余.9.下列各命题的逆命题成立的是().A.正方形是轴对称图形B.如果两个角是直角,那么它们相等C.如果两个实数相等,那么它们的平方相等D.同旁内角互补,两直线平行10.已知下列命题:∠抛物线y=3x2+5x-1与两坐标轴交点的个数为2个;∠相等的圆心角所对的弦相等;∠任何正多边形都有且只有一个外接圆;∠三角形的外心到三角形各顶点的距离相等;∠圆内接四边形对角相等;真命题的个数有()A.1个B.2个C.3个D.4个11.关于命题“等角对等边”,下列说法错误的是()A.这个命题是真命题B.条件是“一个三角形有两个角相等”C.结论是“这两个角所对的边也相等”D.可以用“举反例”的方法证明这个命题是真命题12.下列命题的逆命题是假命题的是()A.对顶角相等B.两直线平行,同位角相等C.两直线平行,内错角相等D.在同一个三角形中,等边对等角13.下列说法正确的是()A.经验、观察或实验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个14.下列句子中,是命题的是()A.延长线段AB到点CB.正数都大于负数C.垂直于同一条直线的两条直线平行吗?D.作线段AB∠CD15.用反证法证明命题“在三角形中,至少有一个内角大于或等于60”时,首先假设这个三角形中()A.三个内角都小于60°B.只有一个内角大于或等于60°C.至少有一个内角小于60°D.每一个内角都小于或等于60°16.下列命题中,假命题是()A .菱形的面积等于两条对角线乘积的一半B .矩形的对角线相等C .对角线互相垂直的平行四边形是矩形D .对角线相等的菱形是正方形17.平面内,下列命题为真命题是( )A .经过半径外端点的直线是圆的切线B .经过半径的直线是圆的切线C .垂直于半径的直线是圆的切线D .经过半径的外端并且垂直于这条半径的直线是圆的切线18.下面给出四个命题:①各边相等的六边形是正六边形;②顶角和底边对应相等的两个等腰三角形全等;③顺次连结一个四边形各边中点所成的四边形是矩形,则原四边形是菱形;④正五边形既是中心对称图形又是轴对称图形其中真命题有( ) A .0个 B .1个 C .2个 D .4个 19.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=45°,∠2=45°C .∠1=60°,∠2=30°D .∠1=50°,∠2=50°20.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个二、填空题21.命题“如果两个角是直角,那么它们相等”的逆命题是 ;逆命题是 命题(填“真”或“假”).22.“互余的两个角相等”的逆命题是______________________________.23.“相等的角是对顶角”是命题.__(判断对错)24.“同位角相等”改写成“如果那么”的形式25.写出命题“对顶角相等”的逆命题:______.(写成“如果…那么…”的形式) 26.用一个平底锅烙饼(每次只能放两张饼),烙热一张饼2分钟(正反面各需一分钟),问烙热3张饼至少需________ 分钟.27.命题“同旁内角互补,两直线平行”的条件是______.28.如果12∠=∠,23∠∠=,那么13∠=∠;该命题的结论是_______.29.“如果1a >1b,那么a<b.”是假命题,举一个反例,其中a=_____,b=_____.30.命题“如果两个角的和为180 ,那么这两个角互补”的逆命题是_______. 31.A、B、C、D、E五名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优”B说:“如果我得优,那么C也得优”C说:“如果我得优,那么D也得优”D说:“如果我得优,那么E也得优”大家都没有说错.如果C得优,那么A、B、D、E中还有________也一定得优(填字母).32.将命题“过一点有且只有一条直线与已知直线垂直”改写“如果……那么……”的形式__________________.33.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是________________.34.用反证法证明命题“在一个三角形中,不能有两个内角为钝角”时,第一步应假设______.35.命题“等腰三角形底边上的高线和中线互相重合”是__________.(填“真命题”或“假命题”)36.写出“两直线平行内错角相等”的逆命题:_______________,此逆命题是__________(填“真”或“假”)命题.37.有下列五个命题:①对顶角相等;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤一个非负实数的绝对值是它本身,其中是真命题的是______.(只填序号)38.把命题“同位角相等”改写成“如果…那么…”的形式是_____,它是_____命题.(填“真”或“假”)39.下列说法中,正确的个数有_____个.(1)三点确定一个圆(2)相等的圆心角所对的弧相等(3)四边形都有一个外接圆(4)三角形有且只有一个外接圆(5)正五边形是轴对称图形.40.命题“两个全等三角形的面积相等”的逆命题是________,该逆命题是______(填真、假)命题.三、解答题41.如图,直线AB,CD被直线AE所截,直线AM,EN被MN所截.请你从以下三个条件:∠AB∠CD;∠AM∠EN;∠∠BAM=∠CEN中选出两个作为已知条件,另一个作为结论,得出一个正确的命题.(1)请按照:“∠ ,;∠ ”的形式,写出所有正确的命题;例如命题1:∠AB∥CD,AM∥EN;∠∠BAM=∠CEN.(2)在(1)所写的命题中选择一个加以证明,写出推理过程.42.如图,已知直线AB CD,直线MN分别交AB、CD于M、N两点,若ME、NF∥.分别是∠AMN、∠DNM的角平分线,试说明:ME NF解:∠AB CD,(已知)∠∠AMN=∠DNM()∠ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∠∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∠∠EMN=∠FNM(等量代换)∥()∠ME NF(1)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.(2)解题过程中是否应用了互逆命题,如果有,请写出来.43.说出下列命题的逆命题.这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.44.把下列命题改写成“如果…那么…”的形式:(1)同旁内角互补,两直线平行;(2)末位数字是0的数,一定能被5整除;(3)直角都相等;(4)同角的余角相等.45.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.46.把下列命题改写成“如果……那么……”的形式.(1)在同一平面内,垂直于同一条直线的两条直线平行;(2)绝对值相等的两个数一定相等;(3)每一个有理数都对应数轴上的一个点.47.“如果a>b,那么ac>bc”是真命题还是假命题?如果是假命题,举一个反例并添加适当的条件使它成为真命题.48.说出下列命题的逆命题,并判断原命题和逆命题的真假.(1)直角三角形斜边上的中线等于斜边的一半.(2)直角三角形只有两个锐角.(3)有一条边和这条边上的中线对应相等的两个三角形全等.49.命题“当n是整数时,两个连续整数的平方差22+-等于这两个连续整数的n n(1)和”正确吗?试着用你学过的知识说明理由.50.如图所示,在∠DE∠BC;∠∠1=∠2;∠∠B=∠C三个条件中,任选两个作题设,另一个作为结论,组成一个命题,并证明.参考答案:1.B【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由菱形的性质得出D是假命题;综上,即可得出答案.【详解】解:A.同旁内角互补,两直线平行,原说法错误,是假命题,不符合题意.B.对角线互相平分的四边形是平行四边形,说法正确,是真命题,符合题意.C.相等的两个角不一定是对顶角,原说法错误,是假命题,不符合题意.D.菱形的对角线互相垂直,但不一定相等,原说法错误,是假命题,不符合题意.故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、菱形的性质;熟练掌握相关性质和定理、定义是解决本题的关键.2.B【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判断即可.【详解】解:用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a >b”,第一步应假设a≤b,故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.A【详解】解:A、同角(或等角)的补角相等,正确,为真命题;B、三角形的一个外角大于任何一个不相邻的内角,原命题错误,为假命题;C、同旁内角互补,两直线平行,原命题错误,为假命题;D、如果∠1=∠2,那么∠1和∠2不一定是对顶角,原命题错误,为假命题,故选A.4.A【分析】根据命题的定义对四个语句分别进行判断即可.【详解】A.画两条相交直线不是对一件事情的判断,不是命题;B.互补的两个角之和是180°是命题;C.两点之间线段最短是命题;D.相等的两个角是对顶角是命题.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D【分析】根据逆命题的定义先写出各选项中原命题的逆命题,再对得到的逆命题判断真假.【详解】A的逆命题:三个内角都是60°,那么这个三角形是等边三角形,正确;B的逆命题:在同一个三角形中,如果两角相等,那么它们所对的边也相等,正确;C的逆命题:两直线平行,同位角相等,正确;D的逆命题:对应角相等,两个三角形全等,错,是相似;故答案为D【点睛】本题考查命题与定理-原命题、逆命题、互逆命题.6.C【分析】根据对顶角、邻补角的定义,平行线的判定定理,垂线的性质逐个分析判断即可求解.【详解】解:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,则相等的角不一定是对顶角,故∠是假命题;两条直线相交后所得的有一个公共顶点且有一条公共边的两个角或两个角有一个公共顶点并且一个角的两条边是另一个叫两条边的反向延长线叫做邻补角,则邻补角互补,故∠是真命题;同位角相等,两直线平行,∠是真命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,∠是假命题,故∠∠是真命题,共2个.故选:C.【点睛】本题考查了判断真假命题,掌握相关定义定理是解题的关键.7.C【分析】利用0的算术平方根为0可对(1)进行判断;利用立方根的定义可对(2)进行判断;根据垂直公理可对(3)进行判断;根据平行线的判定方法可对(4)进行判断.【详解】解:(1)如果一个数的算术平方根等于它本身,那么这个数是0或1,所以(1)为假命题;(2)一个数的立方根等于它本身,则这个数是-1,0,1,所以(2)为真命题;(3)在同一平面内,过一点有且只有一条直线与已知直线垂直,所以(3)为真命题;(4)在同一平面内,垂直于同一直线的两条直线互相平行,所以(4)为真命题.综上,(2)(3)(4)三个正确,故选:C.【点睛】本题考查了命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.C【分析】根据平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质分别判断即可.【详解】解:A. 两直线平行,同旁内角互补,正确;B. 等边三角形的三个内角都相等,正确;C. 由于等腰三角形的两个底角相等,且三角形内角和是180°,故等腰三角形的底角不可以是直角,错误;D. 直角三角形的两锐角互余,正确,故选:C.【点睛】本题考查了平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质,熟练掌握各性质是解题关键.9.D【分析】分别写出各个命题的逆命题,然后判断真假即可.【详解】解:A、命题正方形是轴对称图形的逆命题为:轴对称图形是正方形,该逆命题是假命题,不符合题意;B、命题如果两个角是直角,那么它们相等的逆命题为:如果两个角相等,那么这两个角是直角,该逆命题为假命题,不符合题意;C、命题如果两个实数相等,那么它们的平方相等的逆命题为,如果两个实数的平方相等,那么这两个实数相等,该逆命题是假命题,不符合题意;D、命题同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,该逆命题是真命题,符合题意;故选D.【点睛】本题主要考查了写出一个命题的逆命题,判断命题真假,轴对称图形的定义,实数的性质,平行线的性质与判定,直角的定义等等,正确写出每个命题的逆命题是解题的关键.10.B【分析】分别利用二次函数的性质、圆的性质、多边形的性质及圆内接四边形的性质分别判断后即可确定正确的选项.【详解】解:∠抛物线y=3x2+5x-1与两坐标轴交点的个数为2个,错误,为假命题;∠相等的圆心角所对的弦相等,错误,为假命题;∠任何正多边形都有且只有一个外接圆,正确,为真命题;∠三角形的外心到三角形各顶点的距离相等,正确,为真命题;∠圆内接四边形对角相等,错误,为假命题;故选B.【点睛】本题考查了命题与定理的知识,解题的关键是了解二次函数的性质、圆的性质、多边形的性质及圆内接四边形的性质,难度不大.11.D【分析】分析原命题,找出其条件与结论,然后写成“如果…那么…”形式即可.【详解】解:在三角形中,如果有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”,则选项A、B、C正确,不符合题意,不可以用“举反例”的方法证明这个命题是真命题.故选:D.【点睛】本题考查了命题与定理的知识,正确理解定义是关键.12.A【分析】分别写出逆命题,然后判断真假即可.【详解】解:A.逆命题为:相等的角为对顶角,错误,是假命题;B.逆命题为:同位角相等,两直线平行,正确,是真命题;C.逆命题为:内错角相等,两直线平行,正确,是真命题;D.逆命题为:在同一个三角形中,等角对等边,正确,是真命题,故选:A.【点睛】本题考查了命题与定理的知识,能够写出命题的逆命题是解答本题的关键,难度不大.13.D【详解】试题分析:依次分析各项,判断是否为真命题即可.A、经验、观察或实验完全不一定能判断一个数学结论的正确与否,B、我们每个人都有学习推理的必要,C、对于自然数n,n2+n+37不一定是质数,故错误;D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个,本选项正确.考点:命题与定理点评:此类问题对常识性知识要求较高,贴近生活,在中考中较常见,常以选择题形式出现,属于基础题,难度一般.14.B【分析】根据命题的特点可知,命题是判断一件事情的句子,这个判断可能是正确的也可能是错误的,而不做判断的句子肯定不是命题.【详解】A.延长线段AB到点C不是判断句,没有做出判断,不是命题;B.正数都大于负数,是命题;C.直于同一条直线的两条直线平行吗?不是判断句,没有做出判断,不是命题;D.作线段AB∠CD不是判断句,没有做出判断,不是命题.故选B.【点睛】本题考查了命题的定义:在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,比较简单.15.A【分析】反证法的第一步是假设结论不成立,据此解答即可.【详解】∠要证明命题“在三角形中,至少有一个内角大于或等于60”,∠用反证法证明时,首先假设这个三角形中三个内角都小于60°,故选:A.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案.【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线互相垂直的平行四边形是菱形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.D【分析】利用切线的判定方法逐一判断即可得到答案,也可举出反例进行说明.【详解】解:根据切线的判定定理:“经过半径的外端且垂直于半径的直线是圆的切线”得到D正确,故选D.【点睛】本题考查了命题与定理的知识,牢记这些命题与定理是解决本类问题的关键. 18.B【分析】根据正六边形六条边相等且六个角也相等可对∠进行判断,利用等腰三角形的性质及全等三角形的判定定理可对∠进行判断;利用三角形中位线的性质,根据四边形的对角线不一定互相平分对∠进行判断;根据轴对称图形和中心对称图形的定义对∠进行判断,综上即可得答案.【详解】∠正六边形六条边相等且六个角也相等,∠各边相等的六边形不一定是正六边形,故∠不是真命题,∠等腰三角形的顶角对应相等,∠两个等腰三角形的两个底角对应相等,∠底边对应相等,∠两个等腰三角形全等(ASA),故∠是真命题,∠如图,由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∠FG∠BD,EF∠AC∠HG;∠四边形EFGH是矩形,即EF∠FG,∠AC∠BD.∠四边形ABCD是对角线互相垂直的四边形,不一定是菱形,故∠不是真命题,正五边形是轴对称图形,不是中心对称图形,故∠不是真命题,综上所述:是真命题的有∠,共1个,故选B.【点睛】本题考查了命题的判断,涉及的知识点有正多边形的定义、全等三角形的判定、菱形的判定及轴对称图形和中心对称图形的识别,熟练掌握相关性质与定理是解题关键. 19.B【详解】A . 当∠1=50°,∠2=40°时,∠1+∠2=90°,∠1≠∠2;B . 当∠1=45°,∠2=45°时,∠1+∠2=90°,∠1=∠2,与∠1≠∠2矛盾;C . 当∠1=60°,∠2=30° 时,∠1+∠2=90°,∠1≠∠2;D . ∠1=50°,∠2=50°时,∠1+∠2≠90°.故选B .20.B【分析】根据菱形的判定及性质、一元二次方程的解法、位似图形的性质逐一判断即可.【详解】解:∠的原命题:对角线互相垂直的四边形是菱形.对角线互相垂直的平行四边形才是菱形,如果只有垂直,不能判定为菱形,故∠的原命题为假命题,∠的逆命题:菱形是对角线互相垂直的四边形,这是菱形的性质,故∠的逆命题是真命题,故∠不符合题意; ∠的原命题:若x a =,则20x a b x ab -++=();若x a =,则220x a b x ab a a b a ab -++=-++=()(),故∠的原命题是真命题:∠的逆命题:若 20x a b x ab -++=().则x a =.解方程20x a b x ab -++=(),得:()()0x a x b --=,解得:1x a =,2x b =,故∠的逆命题为假命题;故符合题意;∠的原命题:两个位似图形一定是相似图形,根据位似图形的性质知:(1)两个图形必须是相似形;(2)对应点的连线都经过同一点:(3)对应边平行.故两个位似图形一定是相似图形,故∠的原命题是真命题:∠的逆命题:两个相似图形一定是位似图形.很显然,根据位似图形的性质知其不符合位似图形的性质(2)和(3),故∠的逆命题是假命题,符合题意;∠的原命题:若22x x =,则2x =;解方程22x x =,10x =,22x =.故∠的原命题是假命题;∠的逆命题:若2x =,则22x x =,等式左边224==,等式右边224=⨯=:故当2x =时,22x x =,故∠的逆命题是真命题,故∠不符合题意,满足题意的命题是∠∠,共2个.故答案为:B .【点睛】本题考查了命题的判断,涉及原命题与逆命题、菱形的判定及性质、一元二次方程的解法、位似图形的性质,解题的关键是掌握上述知识点并灵活运用.21.如果两个角相等,那么它们是直角;假.【分析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.22.相等的两个角互余【分析】根据逆命题的定义即可得.【详解】由逆命题的定义得:相等的两个角互余,故答案为:相等的两个角互余.【点睛】本题考查了逆命题,掌握理解定义是解题关键.23.对【分析】根据命题的概念判断即可.【详解】解:判断一件事情的语句,叫做命题,所以相等的角是对顶角是命题,对 故答案为:对.【点睛】本题考查了命题与定理,命题是指可以判断真假的陈述语句,加深对相关概念的理解是解此类问题的关键.24.如果两个角是同位角,那么这两个角相等.【分析】命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.【详解】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为:如果两个角是同位角,那么这两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.25.如果两个角相等,那么这两个角是对顶角.【分析】由题意将原命题写成条件与结论的形式,进而将结论和条件进行互换即可.【详解】解:命题“对顶角相等”写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等;逆命题为:如果两个角相等,那么这两个角是对顶角,为假命题.故答案为:如果两个角相等,那么这两个角是对顶角.【点睛】本题考查命题与定理的知识,解决本题的关键是将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,并将结论和条件进行互换.26.3【分析】若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎.【详解】应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只并同时熟,共需3分钟.故答案为3.【点睛】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.27.同旁内角互补【分析】根据命题的概念解答即可.【详解】解:命题“同旁内角互补,两直线平行”的条件是同旁内角互补,故答案为:同旁内角互补.【点睛】本题考查的是命题的概念,命题写成“如果⋯,那么⋯”的形式,这时,“如果”后面接的部分是题设,即条件,“那么”后面解的部分是结论.28.13∠=∠。
命题与证明的经典测试题含答案
命题与证明的经典测试题含答案一、选择题1.下列命题中,假命题是( )A .同旁内角互补,两直线平行B .如果a b =,则22a b =C .对应角相等的两个三角形全等D .两边及夹角对应相等的两个三角形全等【答案】C【解析】【分析】根据平行线的判定、等式的性质、三角形的全等的判定判断即可.【详解】A 、同旁内角互补,两直线平行,是真命题;B 、如果a b =,则22a b =,是真命题;C 、对应角相等的两个三角形不一定全等,原命题是假命题;D 、两边及夹角对应相等的两个三角形全等,是真命题;故选:C .【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.2.下列结论中,不正确的是 ( )A .两点确定一条直线B .两点之间,直线最短C .等角的余角相等D .等角的补角相等【答案】B【解析】【分析】根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.【详解】A .两点确定一条直线,正确;B . 两点之间,线段最短,所以B 选项错误;C .等角的余角相等,正确;D .等角的补角相等,正确.故选B3.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.4.下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.【答案】A【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D .【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.7.下列命题中,是真命题的是( )A .将函数y =12x +1向右平移2个单位后所得函数的解析式为y =12x B .若一个数的平方根等于其本身,则这个数是0和1 C .对函数y =2x,其函数值y 随自变量x 的增大而增大 D .直线y =3x +1与直线y =﹣3x +2一定互相平行【答案】A【解析】【分析】 利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A 、将函数y =12x +1向右平移2个单位后所得函数的解析式为y =12x ,正确,符合题意;B 、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C 、对函数y =2x,其函数值在每个象限内y 随自变量x 的增大而增大,故错误,是假命题,不符合题意; D 、直线y =3x +1与直线y =﹣3x +2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A .【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.8.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l P ,直线23l l P ,那 么13l l P .其中真命题的序号是( ) A .①②B .①③C .②③D .①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题;③如果直线12l l P ,直线23l l P ,那 么13 l l P ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.9.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角【答案】C【解析】【分析】根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】A . 若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A 选项错误;B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,故选C .【点睛】本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.10.下列命题中,是真命题的是( )A .同位角相等B .若两直线被第三条直线所截,同旁内角互补C .同旁内角相等,两直线平行D .平行于同一直线的两直线互相平行【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.下列命题中,假命题是()A .平行四边形的对角线互相垂直平分B .矩形的对角线相等C .菱形的面积等于两条对角线乘积的一半D .对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.13.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.14.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =-B .0m =C .4m =D .5m =【答案】D【解析】【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0,因为△=(-4)2-4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.15.下列命题是真命题的是( )A .一组对边平行且有一组对角相等的四边形是平行四边形B .对角线相等的四边形是矩形C .一组对边平行且另一组对边相等的四边形是平行四边形D .对角线互相垂直且相等的四边形是正方形【答案】A【解析】【分析】根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.【详解】解:如下图,若四边形ABCD ,AD ∥BC ,∠A=∠C ,∵AD ∥BC ,∴∠A+∠B=180°,∵∠A=∠C ,∴∠C+∠B=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;B 、对角线相等的四边形也可能为等腰梯形,故B 错误;C 、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C 错误;D 、对角线互相垂直平分且相等的四边形是正方形,故D 错误.故选:A .【点睛】本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.16.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.下列命题中,真命题的序号为( )①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A .①②B .①③C .①②④D .②④【答案】D【解析】【分析】根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.【详解】①相等的角不一定是对顶角,是假命题;②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,是真命题;③两直线平行,同旁内角互补; 是假命题;④互为邻补角的两角的角平分线互相垂直,是真命题;故选:D .【点睛】此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.18.下列说法正确的是( )①函数y =x 的取值范围是13x …. ②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.A .①②③B .①④⑤C .②④D .③⑤ 【答案】D【解析】【分析】根据二次根式定义,等腰三角形性质,正多边形内角和外角关系,平行线性质,根判别式定义进行分析即可.【详解】①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .【点睛】此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出三个命题,根据不等式的性质判断命题的真假.【详解】若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1 若0,ab a b >>,则a b >为假命题.反例:a=-2,b=-1 故选:A【点睛】本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.。
初中数学命题与证明专题训练50题-含参考答案
初中数学命题与证明专题训练50题含参考答案一、单选题1.下列说法正确的是()A.真命题的逆命题是真命题B.假命题的逆命题是假命题C.一个定理一定有逆定理D.一个命题一定有逆命题2.命题“平行于同一条直线的两条直线平行”的条件是()A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线3.下列命题是假命题的是()A.对顶角相等B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线互相平行D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行4.下列命题是真命题的是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相平分且垂直的四边形是菱形D.对角线互相垂直的四边形是菱形5.下列命题是假命题的是()A.所有等边三角形一定相似B.所有等腰直角三角形一定相似C.有一个角为120︒的两个等腰三角形相似D.有一条边对应成比例的两个等腰三角形相似6.下列命题中正确的是【】A.函数y=x的取值范围是x>3B.菱形是中心对称图形,但不是轴对称图形C.一组对边平行,另一组对边相等四边形是平行四边形D.三角形的外心到三角形的三个顶点的距离相等7.有下列是真命题的有()个.①同一平面内,两条直线的位置关系分为相交、平行、垂直;①同一平面内,过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①对顶角相等;①内错角相等.A .1B .2C .3D .48.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A .9B .16C .8D .49.下列命题是假命题的是( )A .两直线平行,内错角相等B .三角形内角和等于180︒C .对顶角相等D .若a b =,则a b =10.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是( )A .31B .16C .8D .411.下列命题是真命题的是( )AB .三个连续的整数不能构成直角三角形的三边长C .一次函数3y kx =+的图象不可能同时经过三、四象限D .二元一次方程的解一定是整数解12.下列命题中:①有公共顶点且相等的角是对顶角;①直线外一点到这条直线的垂线段,叫做点到直线的距离;①互为邻补角的两个角的平分线互相垂直;①经过一点有且只有一条直线与已知直线平行.其中真命题的个数有( )A .1个B .2个C .3个D .4个13.下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成的线段平行(或共线)且相等14.现有下列命题:①若525x =,则2550x =;①若a b >,则2211a b c c >++;①若22x y =,则x y =,其中真命题有( )个. A .3 B .2 C .1 D .015.下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b >16.下列叙述:①最小的正整数是0;①单项式33x y 的次数是3;①用一个平面去截正方体,截面不可能是六边形:①若AC BC =,则点C 是线段AB 的中点;①若x 表示有理数,且x x =,则0x >.其中正确的个数有( )A .0个B .1个C .2个D .3个17.下列命题中,是假命题的是( )A .三个角都是60︒的三角形是等边三角形B .两个锐角的和是钝角C .若||3a =,则3a =±D .在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥18.下列命题是真命题的是( )A .抛物线22y x x =-与坐标轴有3个不同交点B .若分式方程41(1)(1)1m x x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D .若一个角的两边分别与另一个角的两边平行,则这两个角相等19.下列命题中,真命题是( )A .如果把分式xy x y+中的x 和y 都扩大3倍,那么分式的值也扩大3倍 B .若b >a >0,则11a a b b +>+ C .对角线相等的四边形是矩形D .顺次连接菱形四边中点得到的四边形是正方形20.已知下列命题:①对角线互相垂直的四边形是菱形;①若x a =,则()20x a b x ab -++=;①两个位似图形一定是相似图形;①若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个二、填空题21.如图,直线AB 、CD 被直线EF 所截,①1、①2是同位角,如果①1≠①2,那么AB 与CD 不平行.用反证法证明这个命题时,应先假设:________.22.命题“等边三角形是锐角三角形”的逆命题是____________(填“真”或“假”)命题. 23.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________24.用一个a 的值说明命题“a -一定表示一个负数”是错误的,a 的值可以是__________.25.“如果0a =,0b =,那么0ab =”的逆命题是______.26.把命题“等角的余角相等”改写成“如果……,那么…….”的形式:如果___________,那么___________.27.用反证法证明“若a b =,则a b ”时,应假设__________.28.对于命题“若22a b >,则a b >”,为了说明这个命题是假命题,若取3a =-,则b 可取___________(写出符合题意的一个值).29.用一组a ,b 的值说明命题“若a 2>b 2,则a >b”是错误的,这组值可以是a=____,b=____.30.命题“若22a b >,则a b >”,能说明它是假命题的反例是=a ________,b =________.31.用反证法证明“a b <”时,应假设 .32.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)33.把“在同一平面内,两条直线相交,只有一个交点”改写成“如果⋯那么⋯”的形式是______ .34.用反证法证明“两直线平行,内错角相等”时应先假设____________;35.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内.全村设有四个投票点,目前第一、第二、第三投票点已公布投票结果,剩下第四投票点尚未公布投票结果,如表所示:(单位:票)三名候选人_____有机会当选村长(填甲、乙、丙),并写出你的推断理由_____. 36.写出命题“如果0a >,0b <,那么0a b <”的逆命题是______. 37.要说明命题“若a <1,则a 2<1”是假命题,可以举的反例是a =________(一个即可)38.两条直线相交成直角,就叫做两条直线互相垂直.这个句子是_____(填“定义”或“命题”).39.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :______________________;并写出一个例子(该例子能判断命题B 是错误的)40.求证:在直角三角形中至少有一个角不大于45°.已知:如图所示,①ABC 中,①C=90°,求证:①A ,①B 中至少有一个不大于45°. 证明:假设__________,则①A__________45°,①B______45°. ①①A+①B+①C>45°+ _______+__________,这与________________________相矛盾. 所以___________不能成立,所以①A ,①B 中至少有一个角不大于45°.三、解答题41.求证:在同一平面内,如果一条直线与两条平行直线中的一条相交,那么和另一条也相交.42.用反证法证明:如果一个三角形的两条较短边的平方和不等于较长边的平方,那么这个三角形不是直角三角形.43.指出下列命题的题设和结论:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)相交的两条直线一定不平行.44.下列定理中,哪些有逆定理?如果有逆定理,说出它的逆定理.(1)等腰三角形的两个底角相等.(2)内错角相等,两直线平行.(3)对顶角相等.45.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分、一支足球队在某一赛季共需比赛14场,现已经比赛了8场,输了一场,得了17分.请问:(1)前8场比赛中,这支球队共胜了几场?(2)请你分析一下,这支球队在后面的6场比赛中,至少要胜几场比赛,才能使总得分不低于29分?46.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸”.如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是谁?谁闯了祸?47.能否在图中的四个圆圈内填入4个互不相同的数,使得任意两个圆圈中所填的数的平方和等于另外两个圆圈中所填数的平方和?如果能填,请填出一个例;如果不能填,请说明理由.48.在证明定理“三角形的中位线平行于第三边,且等于第三边的一半“时,小明给出如下部分证明过程.已知:在①ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DE=4,请你直接写出边AB的取值范围.49.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.50.先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)同旁内角互补,两直线平行;(2)一个角的补角一定是钝角.参考答案:1.D【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A.真命题的逆命题可能是真命题,也可能是假命题,故本选项不符合题意;B.假命题的逆命题不一定是假命题,故本选项不符合题意;C.一个定理不一定有逆定理,故本选项不符合题意;D.一个命题一定有逆命题,正确,故本选项符合题意.故选D.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】解:“平行于同一条直线的两条直线平行”的条件是“两条直线平行于同一条直线”,故选D.【点睛】本题考查了对命题的题设和结论的理解,许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.4.C【分析】根据菱形的判定方法一一判断即可.【详解】解:A、对角线互相垂直且相等的四边形是菱形,是假命题,本选项不符合题意;B、对角线互相平分且相等的四边形是菱形,是假命题,本选项不符合题意;C、对角线互相平分且垂直的四边形是菱形,是真命题,本选项符合题意;D、对角线互相垂直的四边形是菱形,是假命题,本选项不符合题意.故选:C.【点睛】本题考查菱形的判定、真假命题,熟练掌握相关知识是解题的关键.5.D【分析】根据相似三角形的判定定理进行判定即可.【详解】解:A、所有等边三角形一定相似,故A选项为真命题;B、所有等腰直角三角形一定相似,故B选项为真命题;C、有一个角为120︒的两个等腰三角形相似,故C选项为真命题;D、有一条边对应成比例的两个等腰三角形不一定相似,故D选项为假命题,故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.D【详解】根据二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质分别判断得出即可:A、函数y=x的取值范围是x≥3,故此选项错误;B、菱形是中心对称图形,也是轴对称图形,故此选项错误;C、一组对边平行,另一组对边相等四边形是也可能是等腰梯形,故此选项错误;D、根据外心的性质,三角形的外心到三角形的三个顶点的距离相等,故此选项正确.故选D.考点:命题与定理,函数自变量的取值范围,二次根式的性质,菱形的性质,等腰梯形的判定,外心的性质.7.B【分析】根据两直线的位置关系、垂直的定义、平行公理、对顶角相等、平行线的性质判断即可.【详解】解:①同一平面内,两条直线的位置关系分为相交、平行,故本小题说法是假命题;①同一平面内,过一点有且只有一条直线与已知直线垂直,本小题说法是真命题; ①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题; ①对顶角相等,本小题说法是真命题;①两直线平行,内错角相等,故本小题说法是假命题;综上,①①是真命题,共2个,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.D【分析】根据偶数与倍数的定义对各选项进行验证即可.【详解】解:A 、9不是偶数,故本选项不符合题意;B 、16是8的倍数,故本选项不符合题意.C 、8是8的倍数,故本选项不符合题意;D 、4是偶数但不是8的倍数,故本选项符合题意;故选:D .【点睛】本题考查了命题的真假和举反例,熟练掌握偶数与倍数的定义是解题的关键. 9.D【分析】利用平行线的性质、三角形的内角和、对顶角的定义及绝对值的性质分别判断后即可确定正确的选项.【详解】解:A 、两直线平行,内错角相等,正确,是真命题;B 、三角形内角和等于180︒,正确,是真命题;C 、对顶角相等,正确,是真命题;D 、若a b =,则a b =或a=-b ,故错误,是假命题,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和及平行线的性质,对顶角的定义、绝对值的性质,难度不大.10.D【详解】A.31是奇数,不合题意;B.16是8的2倍,不合题意;C.8是8的1倍,不合题意;D.4不是8的倍数,符合题意;故选D.11.C【分析】根据真命题的定义,无理数的定义,勾股定理的逆定理,一次函数的图象,二元一次方程的解的特征对各选项进行判断即可.【详解】解:A 9=是有理数,原命题错误,故不符合题意;B 中三个连续的整数如3,4,5能构成直角三角形的三边,原命题错误,故不符合题意;C 中根据k 的不同取值,一次函数3y kx =+的图象可能经过一、二、三象限或一、二、四象限,原命题正确,故符合题意;D 中二元一次方程的解不一定是整数解,原命题错误,故不符合题意;故选:C .【点睛】本题考查了真命题,无理数,勾股定理的逆定理,一次函数经过的象限,二元一次方程的解等知识.解题的关键在于对知识的灵活运用.12.A【分析】根据真假命题的概念结合相关知识对各个命题逐一分析判断即可.【详解】有公共顶点且相等的角不一定是对顶角,故①是假命题;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故①是假命题; 互为邻补角的两个角的平分线互相垂直,故①是真命题;经过直线外一点有且只有一条直线与已知直线平行,故①是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了真假命题的判断,熟练掌握相关概念是解题关键.13.C【分析】根据相关的概念和性质对各选项分析判断后利用排除法求解.【详解】A 、连接两点的线段的长度叫做两点间的距离,是定义,正确;B 、两条直线平行,同旁内角互补,是平行线的性质,正确;C 、如图,①AOB 、①AOC 有公共顶点且有一条公共边,和等于平角,而这两个角不是邻补角,故本选项错误;D 、平移变换中,各组对应点连成的线段平行(或共线)且相等,正确.故选C .14.C【分析】根据幂的乘方、不等式的性质和开平方运算判断即可.【详解】①若525x =,则2225(5)25625x x ===,原命题是假命题;①若a b >,则2211a b c c >++,是真命题; ①若22x y =,则x y =或x y =-,原命题是假命题;综上,真命题有①故选:C .【点睛】本题考查命题与定理,涉及幂的乘方、不等式的性质和开平方运算,熟练掌握知识点是解题的关键.15.A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.16.A【分析】对各语句逐一判断即可得.【详解】解:①最小的正整数是1,原叙述错误;①单项式33x y 的次数是4,原叙述错误;①用一个平面去截正方体,截面与六个面均相交即可得六边形,原叙述错误;如图:①若AC BC =,且点C 在线段AB 上,则点C 是线段AB 的中点,原叙述错误; ①若x 表示有理数,且x x =,则x 0≥,原叙述错误.故选A.【点睛】本题主要考查数、式、几何图形的综合问题,解题的关键是熟练掌握有理数的概念、单项式的定义、中点的定义等知识点.17.B【分析】根据锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理逐项分析即可.【详解】解:A. 三个角都是60︒的三角形是等边三角形,是真命题;B. 两个锐角的和是钝角,是假命题,两个锐角的和有可能是钝角或者直角;C. 若||3a =,则3a =±,是真命题;D. 在同一平面内,若直线a l ⊥,b l ⊥,则a b ∥,是真命题.故选B.【点睛】本题主要考查了判断命题的真假,涉及了锐角与钝角的定义,等边三角形的定义,绝对值的定义以及平行线的判定定理等知识点,熟练掌握各知识点的相关概念是解题的关键.18.B【详解】解:A 、在22y x x =-中,令0x =得0y =,①与y 轴交点坐标为(0,0),令0y =得120,2x x ==,①与x 轴交点坐标为(0,0)、(2,0),①抛物线22y x x =-与坐标轴有2个不同交点,故A 是假命题,不符合题意;B 、若分式方程41(1)(1)1m x x x -=+--有增根,则增根可能是1或-1,去分母得,4111()()()m x x x -+=+-,当增根为1时,420m -=,解得2m =;当增根为-1时,4=0,不存在,故增根为1,故B 是真命题,符合题意;C 、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形,故C 是假命题,不符合题意;D 、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故D 是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解二次函数与坐标轴交点坐标的求法、分式方程的增根、中点四边形和平行线的性质等知识.19.A【分析】根据分式的性质、不等式的性质、正方形和矩形的判定分别判断后即可确定正确的选项.【详解】解:A 、如果把分式xy x y+中的x 和y 都扩大3倍,则3?3333x y xy x y x y =++,那么分式的值也扩大3倍,真命题,符合题意;B 、()()()()111111a b b a a a a b b b b b b b +-++--==+++, ①b >a >0,①a -b <0,b >0,b +1>0,则()01a b b b -<+, ①11a ab b +<+,故原命题是假命题,不符合题意; C 、对角线相等的平行四边形是矩形,故原命题是假命题,不符合题意;D 、顺次连接菱形四边中点得到的四边形是矩形,故原命题是假命题,不符合题意; 故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解分式的基本性质、不等式的性质、正方形和矩形的判定等知识.20.B【分析】根据菱形的判定及性质、一元二次方程的解法、位似图形的性质逐一判断即可.【详解】解:①的原命题:对角线互相垂直的四边形是菱形.对角线互相垂直的平行四边形才是菱形,如果只有垂直,不能判定为菱形,故①的原命题为假命题,①的逆命题:菱形是对角线互相垂直的四边形,这是菱形的性质,故①的逆命题是真命题,故①不符合题意; ①的原命题:若x a =,则20x a b x ab -++=();若x a =,则220x a b x ab a a b a ab -++=-++=()(),故①的原命题是真命题:①的逆命题:若 20x a b x ab -++=().则x a =.解方程20x a b x ab -++=(),得:()()0x a x b --=,解得:1x a =,2x b =,故①的逆命题为假命题;故符合题意;①的原命题:两个位似图形一定是相似图形,根据位似图形的性质知:(1)两个图形必须是相似形;(2)对应点的连线都经过同一点:(3)对应边平行.故两个位似图形一定是相似图形,故①的原命题是真命题:①的逆命题:两个相似图形一定是位似图形.很显然,根据位似图形的性质知其不符合位似图形的性质(2)和(3),故①的逆命题是假命题,符合题意;①的原命题:若22x x =,则2x =;解方程22x x =,10x =,22x =.故①的原命题是假命题;①的逆命题:若2x =,则22x x =,等式左边224==,等式右边224=⨯=:故当2x =时,22x x =,故①的逆命题是真命题,故①不符合题意,满足题意的命题是①①,共2个.故答案为:B .【点睛】本题考查了命题的判断,涉及原命题与逆命题、菱形的判定及性质、一元二次方程的解法、位似图形的性质,解题的关键是掌握上述知识点并灵活运用.21.AB ①CD【分析】【详解】利用假设法来进行证明时,首先假设结论成立,即应先假设AB①CD . 故答案为:AB①CD .22.假【分析】把原命题改写为逆命题再进行判断即可.【详解】解:“等边三角形是锐角三角形”的逆命题是“锐角三角形是等边三角形”,内角分别为40°,60°,80°的三角形为锐角三角形,但不是等边三角形,故原命题的逆命题是假命题,故答案为:假.【点睛】本题考查了判断逆命题的真假性,掌握把原命题改写为逆命题并会用事实真理或定义定理来判断其真假是解题的关键.23. 错误 错误 错误 错误 错误 错误 正确 错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误. (4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误. (5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误. (7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确. (8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断. 24.答案不唯一,如1a =-【分析】根据题意找到一个使得命题不成立的a 值即可.【详解】当1a =-时,1a -=不是一个负数,故命题错误.故答案为:1a =-【点睛】本题主要考查了举例说明真(假)命题,根据题意找到反例是解题的关键. 25.如果0ab =,那么0a =,0b =【分析】将原命题的结论改为条件,条件改为结论即可得出逆命题.【详解】“如果0a =,0b =,那么0ab =”的逆命题是:如果0ab =,那么0a =,0b =.故答案为:如果0ab =,那么0a =,0b =.【点睛】本题考查根据原命题写逆命题,熟练掌握逆命题与原命题的关系是解题的关键. 26. 两个角相等 这两个角的余角也相等【分析】根据命题的概念解答即可.【详解】解:把命题“等角的余角相等”改写成“如果……那么……”的形式是如果两个角相等,那么这两个角的余角也相等,故答案为:两个角相等,这两个角的余角也相等.【点睛】本题考查的是命题的概念,命题写成“如果……那么……”的形式,这时,“如果”后面接题设,“那么”后面接结论.27.a b =【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:a ,b 的等价关系有,a b a b =≠两种情况,因而a b 的反面是a b =.因此用反证法证明“a b ”时,应先假设a b =. 故答案为:a b =.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.28.2(不唯一)【分析】对于命题“若a 2>b 2,则a>b”,为了说明这个命题是假命题,只需举反例若a 2>b 2, a<b 即可.【详解】“若a 2>b 2,则a>b” 是假命题,举出a<b ,有a 2>b 2成立,找a<b<|a|,a=-3,-3<b<3中取数满足条件.故答案为:2(不唯一).【点睛】本题考查验证假命题问题,关键是会举反例,利用不等式找出满足条件的范围是难点,是举反例的范围.29. 3a =-, 1b【分析】举出一个反例:a =−3,b =−1,说明命题“若a 2>b 2,则a >b”是错误的即可.【详解】解:当a =−3,b =−1时,满足a 2>b 2,但是a <b ,①命题“若a 2>b 2,则a >b”是错误的.故答案为−3、−1.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个。
初中数学命题与证明专题训练50题(含答案)
初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题的逆命题是真命题的是( ) A .同位角相等B .对顶角相等C .同一个三角形中,等边对等角D .全等三角形的面积相等2.下列命题是真命题的是( )A .一个数的算术平方根等于它本身,这个数是0B .数轴上没有点可以表示π这个无理数C .两直线被第三条直线所截,同位角相等D .邻补角是互补的角3.命题“如果a <0,b <0,那么ab >0”的逆命题是( ) A .如果a <0,b <o ,那么ab <0 B .如果ab >0,那么a <0,b <0 C .如果a >0,b >0,那么a <0D .如果ab <0,那么a >0,b >0 4.对于命题“若29m >,则3m >”,则下列m 值能说明该命题是假命题的是( ) A .4m =-B .3m =-C .3m =D .4m =5.下列命题中,是真命题的是( ) A .同旁内角互补 B .只有正数才有算术平方根 C .垂线段最短D .平行于同一条直线的两直线垂直6.下列命题错误..的是( ) A .对角线相等的平行四边形是矩形 B .同弧或等弧所对的圆周角相等 C .对角线相互垂直的四边形是菱形D .检查对乘坐飞机的旅客是否携带违禁物品,我们最适合用全面调查(普查)的方式7.下列关于直角三角形的命题中是假命题的是( ) A .一个锐角和斜边分别相等的两个直角三角形全等 B .两直角边分别相等的两个直角三角形全等C .如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形D .两个锐角分别相等的两个直角三角形全等 8.下列命题是假命题的是( ) A .n 边形(3n ≥)的外角和是360B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形9.下列语句中,是命题的是()A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AM D.两个锐角的和大于直角10.下列命题是假命题的是()A.到线段两端点距离相等的点在该线段的垂直平分线上B.两边分别相等的两个直角三角形全等C.有一个角等于60°的等腰三角形是等边三角形D.三角形三条角平分线交于一点,并且这一点到三个顶点的距离相等11.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③过一点有且只有一条直线与已知直线垂直.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个12.下列三个命题中,是真命题的有()∠对角线相等的四边形是矩形;∠三个角是直角的四边形是矩形;∠有一个角是直角的平行四边形是矩形.A.3个B.2个C.1个D.0个13.下列命题中,是真命题的是()A.1的平方根是1-B.5是25的一个平方根C.64的立方根是1±D.()22-的平方根是2-14.给出下列四个命题:∠相等的角是对顶角;∠两条直线被第三条直线所截,同位角相等;∠如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;∠若三角形中有一个内角是钝角,则其余两个角都是锐角.其中是真命题的个数是()A.1B.2C.3D.415.给出下列5 命题,其中真命题的个数为()∠两个锐角之和一定是钝角;∠直角小于平角;∠同位角相等,两直线平行;∠内错角互补,两直线平行;∠如果a<b,b<c,那么a<c.A .1B .2C .3D .416.下列四个命题中,真命题有( )∠实数与数轴上的点是一一对应的; ∠三角形的一个外角大于任何一个内角; ∠平面内点(12)A -,与点(12)B --,关于x 轴对称; ∠两条直线被第三条直线所截,同旁内角互补. A .1个B .2个C .3个D .4个17.下列命题中是真命题的个数( )∠在ABC 中,::3:4:5A B C ∠∠∠=,则ABC 是直角三角形π,227,3.14,0.301001…有3个数是无理数 ∠0m <,则点()5P m -,在第二象限 ∠若三角形的边a b c 、、满足:()()2a b c a b c ab +-++=,则该三角形是直角三角形 A .1个B .2个C .3个D .4个18.下列说法中,不正确的是( )A .命题“若a +b >0,则a >0”的逆命题为“若a >0,则a +b >0”B .∠ABC 的三边长a ,b ,c 满足a 2+bc =b 2+ac ,那么∠ABC 是等腰三角形 C .平行四边形是中心对称图形,两条对角线的交点是它的对称中心D .若分式方程62x -﹣1=2ax x-有增根,则a 的值为2 19.对于命题“如果22a b >,那么a b >”,能说明它是假命题的反例是( ) A .3a =,2b = B .2a =,3b = C .3a =-,2b =D .3a =,2b =-二、填空题20.命题“等腰梯形的对角线相等”,它的逆命题是__21.“同位角相等”_________(填“是真命题”或“是假命题”或“不是命题”).22.命题“如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a ²+b ²=c ²”的逆命题为:_____.23.将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式_________.24.命题:“三角形中至多有两个角大于60度”,用反证法证明时第一步需要假设_________________________.25.把命题“两条直线被第三条直线所截且同位角相等,这两条直线平行.”改为“如果…那么…”的形式为____.26.命题“如果a 2>b 2,则a >b ”的逆命题是____ 命题(填“真”或“假”) 27.命题:“如果m 是自然数,那么它是有理数”,则它的逆命题为:__________. 28.如图是家用的双排折叠晾衣架的一部分,在晾衣架折叠或拉伸的过程中,1∠与2∠的大小关系是_________,理由是__________________,其逆命题是___________________________.29.命题“如果|a|=|b|,那么a 2=b 2”的逆命题是_____,此命题是_____(选填“真“或“假”)命题.30.甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有1、2、3、4、5五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是____.31.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.32.下列命题:∠经过直线外一点,有且只有一条直线与这条直线平行;∠在同一平面内,过一点有且只有一条直线与已知直线垂直;∠直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;∠如果直线a b ∥,b c ⊥,那么a c ∥.其中是真命题的有______.(填序号) 33.有下列四个命题: ∠相等的角是对顶角;∠两条直线被第三条直线所截,同位角相等; ∠同一种四边形一定能进行平面镶嵌; ∠垂直于同一条直线的两条直线互相垂直.请把你认为是真命题的命题的序号填在横线上_____.34.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A :“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:______________________;并写出一个例子(该例子能判断命题B是错误的)35.小冬发现:232=29,(23)2=26.所以他归纳c b a≥(ab)c,请你举反例说明小冬的结论是错误的,你的反例是_____.36.请写出数学命题“勾股定理”的含义,如果__________,那么__________.37.某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则丁同学的得分是_____;(2)如果有一个同学得了1分,他的答案可能是_____(写出一种即可)38.命题“对应角相等的三角形是全等三角形”是____命题(填“真”或者“假”).三、解答题39.把命题“等角的补角相等”写成“如果……,那么……”的形式.40.对于命题“相等的角是直角”,解决下列问题.(1)指出命题的条件和结论,并改写成“如果…那么…”的形式;(2)判断此命题是真命题还是假命题.41.指出下列命题的条件和结论,并改写成“如果……那么……"的形式(1)绝对值相等的两个数相等.(2)直角三角形的两个锐角互余.42.(用反证法证明)已知直线a∠c,b∠c,求证:a∠b.43.如图,有如下四个论断:∠AC DE ∥;∠DC EF ∥;∠CD 平分BCA ∠;∠EF 平分BED ∠,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.44.用反证法证明:等腰三角形的底角必定是锐角. 已知:在∠ABC 中,AB=AC .求证:∠B ,∠C 必为锐角.45.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半. (1)根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.已知:在锐角ABC 中,AB AC =,______; 求证:______. (2)证明:46.如图,点D 在AB 上,直线DG 交AF 于点E .请从∠DG AC ∥,∠AF 平分BAC ∠,∠DAE DEA ∠=∠中任选两个作为条件,余下一个作为结论,构造一个真命题,并求证.已知:______,求证:______.(只须填写序号) 证明:47.如图,有如下四个论断:∠//AC DE ,∠//DC EF ,∠CD 平分BCA ∠,∠EF 平分BED ∠.(1)若选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个数学命题,其中正确的有哪些?不需说明理由.(2)请你在上述正确的数学命题中选择一个进行说明理由.48.如图,点E 在四边形ABCD 外,90B D ︒∠=∠=.(1)利用直尺和圆规画出∠O ,使得A 、B 、C 、D 四个点都在∠O 上; (不写作法,保留作图痕迹)(2)小明度量了100AEC ︒∠=,请你判断点E 是否在(1)中所作的 ∠O 上?并说明理由.参考答案:1.C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】A、原命题的逆命题为:相等是同错角,不正确;B、原命题的逆命题为:相等的角为对顶角,不正确;C、原命题的逆命题为:同一个三角形中,等角对等边,正确;D、原命题的逆命题为:面积相等的三角形全等,不正确;故选:C.【点睛】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,对选项要逐个验证,判断命题真假时可举反例说明.2.D【分析】根据算数平方根的算法、实数的性质,平行线的性质以及邻补角的性质逐项进行判断即可.【详解】解:A、一个数的算术平方根等于它本身,这个数是0或1,故原命题错误,是假命题,不符合题意;B、实数与数轴上的点一一对应,数轴上有点可以表示 这个无理数,故原命题错误,是假命题,不符合题意;C、两平行直线被第三条直线所截,同位角相等,故原命题错误,是假命题,不符合题意;D、邻补角是互补的角,正确,是真命题,符合题意.故选:D.【点睛】本题考查了判断命题真假,解题的关键是要熟悉有关定理,掌握算数平方根的算法、实数的性质,平行线的性质以及邻补角的性质.3.B【分析】根据互逆命题概念解答即可.【详解】解:命题“如果a<0,b<0,那么ab>0”的逆命题是“如果ab>0,那么a<0,b <0”,故选:B.【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题. 4.A【分析】说明命题为假命题,即m 的值满足29m >,但3m >不成立,把四个选项中的m 的值分别代入验证即可.【详解】解:A. 4m =-,2691m =>,但3m <,符合题意 B. 3m =-,29m =,不符合题意中的条件; C. 3m =,29m =,不符合题意中的条件 D. 4m =,2691m =>,且3m >,不符合题意 故选:A【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立. 5.C【分析】根据各个选项的真假进行判断即可.【详解】A :两直线平行,同旁内角互补;故A 为假命题,不符合题意; B :只有非负数才有算数平方根;故B 为假命题,不符合题意;C :直线外一点到直线的所有连线中,垂线段最短,简称:垂线段最短;故C 为真命题,符合题意;D :平行于同一直线的两直线互相平行;故D 为假命题,不符合题意; 故选:C【点睛】本题主要考查了命题的真假判断,熟练地掌握各个真命题和定理的内容是解题的关键. 6.C【分析】A 、B 、C 选项分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,D 选项根据普查得到的结果比较准确即可判断.【详解】解:A 、对角线相等的平行四边形是矩形,是真命题,故本选项不符合题意; B 、相等圆周角所对的弧也相等,是真命题,故本选项不符合题意; C 、对角线互相垂直的平行四边形是菱形,故本选项符合题意;D 、对乘坐飞机的旅客是否携带违禁物品的调查是事关重大的调查,适合普查,故本选项不符合题意,故选:C.【点睛】本题考查的是命题的真假判断以及抽样调查和全面调查的区别,判断命题的真假关键是要熟悉课本中的性质定理,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用.7.D【分析】根据全等三角形的判定定理,以及勾股定理的逆定理进行判断.【详解】A.两个直角三角形有一个锐角和斜边相等,加上直角相等,可用AAS判定全等,故本选项是真命题,不符合题意;B.两个直角三角形的两直角边分别相等,加上直角相等,可用SAS判定全等,故本选项是真命题,不符合题意;C.由勾股定理的逆定理可知如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,故本选项是真命题,不符合题意;D.两个直角三角形的两个锐角分别相等,无对应边相等,无法判定全等,故本选项是假命题,符合题意;故选D.【点睛】本题考查真假命题判断,熟练掌握全等三角形的判定定理与勾股定理的逆定理是解题的关键.8.C【分析】根据多边形外角和定理判断A,根据垂直平分线的性质判断B,根据对顶角只是角相等的其中一种情况判断C,根据轴对称图形的定义判断D.【详解】多边形外角和都是360°,这是多边形外角和定理,故A是真命题;线段垂直平分线上的点到线段两个端点的距离相等,这是垂直平分线的性质,故B是真命题;只要度数相等,这两个角就相等,两直线平行,同位角、内错角也相等,对顶角只是其中一种情况,故C是假命题;沿着角平分线折叠,两边可以重合,所以角是轴对称图形,故D是真命题;故选C.【点睛】本题考查了判断命题真假,熟记各类基本性质定理是解题的关键.9.D【详解】选项A,B,C不能写成如果……那么……的形式.选项D,如果两个角是锐角,那么它们的和大于直角.所以选D.10.D【详解】解:A.到线段两端点距离相等的点在该线段的垂直平分线上,是真命题,故A 不符合题意;B.两直角边分别相等的两个直角三角形全等,是真命题,故B不符合题意;C.有一个角等于60°的等腰三角形是等边三角形,是真命题,故C不符合题意;D.三角形三条角平分线交于一点,并且这一点到三边的距离相等,故D是假命题,符合题意;故选:D.【点睛】本题考查命题与定理,解题的关键是掌握教材上相关的定理.11.A【分析】利用平行线的性质、对顶角的性质、垂直的定义,不等式的性质,分别判断后即可确定正确的选项.【详解】∠两条平行线被第三条直线所截,内错角相等,原命题是假命题.∠如果∠1和∠2是对顶角,那么∠1=∠2,是真命题.∠在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题.∠如果x2>0,那么x>0或x<0,原命题是假命题.故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂直的定义、不等式的性质,属于基础知识,难度不大.12.B【分析】根据矩形的判定方法逐一进行判断即可.【详解】∠对角线相等的平行四边形是矩形,故∠错误;∠三个角是直角的四边形是矩形,故∠正确;∠有一个角是直角的平行四边形是矩形,故∠正确;综上分析可知,真命题有2个,故B正确.故选:B.【点睛】本题主要考查了矩形的判定,熟练掌握矩形的判定方法,是解题的关键.13.B【分析】根据平方根、立方根进行判断即可.【详解】解:A、1的平方根是±1,原命题是假命题,不符合题意;B、5是25的一个平方根,是真命题,符合题意;C、64的立方根是4,原命题是假命题,不符合题意;D、(-2)2的平方根是±2,原命题是假命题,不符合题意;故选B.【点睛】本题考查了命题的真假,平方根和立方根的定义,解题的关键在于能够熟练掌握平方根和立方根的定义.14.A【分析】根据对顶角的性质、同位角的性质、平行线的性质和三角形内角和定理进行判断即可.【详解】相等的角不一定是对顶角,故∠是假命题;两条平行线被第三条直线所截,同位角相等,故∠是假命题;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故∠是假命题;易知∠是真命题.故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.C【分析】根据锐角、钝角、直角、平角的定义、平行线的判定定理和不等式的传递性逐一判断即可.【详解】∠若∠1=30°,∠2=20°,则∠1+∠2=50°,所以两个锐角之和不一定是钝角,故∠不是真命题;∠直角小于平角,故∠是真命题;∠同位角相等,两直线平行,故∠是真命题;∠内错角互补,两直线不一定平行,故∠不是真命题;∠如果a<b,b<c,那么a<c,故∠是真命题.共有3个真命题故选C.【点睛】此题考查的是真假命题的判断,掌握锐角、钝角、直角、平角的定义、平行线的判定定理和不等式的传递性是解决此题的关键.16.B【分析】根据平行线的性质、实数与数轴、三角形的外角性质、关于x 轴对称的点的坐标特征判断即可.【详解】解:∠实数与数轴上的点是一一对应的,故此选项是真命题,符合题意; ∠三角形的一个外角大于任何一个与它不相邻的内角,故此选项是假命题,不符合题意; ∠平面内点A (-1,2)与点B (-1,-2)关于x 轴对称,故此选项是真命题,符合题意; ∠两条平行线被第三条直线所截,同位角相等,故此选项是假命题,不符合题意; 故选:B .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,解题的关键是要熟悉课本中的性质定理.17.B【分析】根据平面直角坐标系,无理数以及直角三角形的判定,对选项逐个判定即可.【详解】解:∠在ABC 中,::3:4:5A B C ∠∠∠=,可设3A x ∠=︒,则4B x ∠=︒,5C x ∠=︒,由180A B C ∠+∠+∠=︒可得()345180x x x ++︒=︒解得15x =,即45A ∠=︒,=60B ∠︒,75C ∠=︒,ABC 不是直角三角形,∠错误,为假命题;π,227,3.140.301001…中,无理数为π,0.301001…,个数为3,∠正确,为真命题;∠0m <,0m ->,则点()5P m -,在第一象限,∠错误,为假命题; ∠由()()2a b c a b c ab +-++=可得()222a b c ab +-= 即222+=a b c则该三角形是直角三角形,∠正确,为真命题;真命题的个数为2,故选:B【点睛】此题考查了判断命题的真假,涉及了平面直角坐标系的性质,无理数的分类以及直角三角形的判定,解题的关键是熟练掌握相关基础知识.18.D【分析】根据逆命题的概念、因式分解、中心对称图形的概念、分式方程的解法判断即可.【详解】解:A 、命题“若a +b >0,则a >0”的逆命题为“若a >0,则a +b >0”,说法正确,不符合题意;B 、∠ABC 的三边长a ,b ,c 满足a 2+bc =b 2+ac ,则a 2-b 2+bc -ac =0,整理得:(a -b )(a +b -c )=0,∠a =b ,∠∠ABC 是等腰三角形,本说法正确,不符合题意;C 、平行四边形是中心对称图形,两条对角线的交点是它的对称中心,说法正确,不符合题意;D 、6122ax x x-=--, 方程两边同乘x -2,得6-x +2+ax =0,解得,x =81a-, 当x =2,即a =-3时,方程有增根,本说法错误,符合题意;故选:D .【点睛】本题考查的是真假命题的判断,掌握逆命题的概念、因式分解、中心对称图形的概念、分式方程的解法是解题的关键.19.C【分析】根据有理数的乘方法则、有理数的大小比较法则即可解答.【详解】解:A 选项,2232>,则32>,满足“若22a b >,则a b >”,不是反例; B 选项,2223<,且23<,满足“若22a b >,则a b >”,不是反例;C 选项,()2232->,且32-<,不满足“若22a b >,则a b >”,是反例;D 选项,223(2)>-,且32>-,满足不满足“22a b >”,不是反例;故选:C .【点睛】考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例,难度不大.20.对角线相等的梯形是等腰梯形【详解】考点:命题与定理;等腰梯形的性质.分析:先写成如果…那么…的形式,再把题设和结论交换即可.解答:如果一个梯形是等腰梯形,那么它的对角线相等.∠命题“等腰梯形的对角线相等”的逆命题是“对角线相等的梯形是等腰梯形”.故答案为对角线相等的梯形是等腰梯形.点评:本题考查了命题与定理以及等腰梯形的性质,找出命题的题设和结论是解题的关键.21.是假命题【分析】根据平行线的性质进行判断即可.【详解】解:根据平行线的性质知:两直线平行,同位角相等,故原命题错误,是假命题,故答案为:是假命题.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质.22.如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形【分析】命题都能写成“如果…,那么…”的形式,如果后面是题设,那么后面是结论,题设和结论互换后就是原命题的逆命题.【详解】解:根据逆命题的定义得:命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题是:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.故答案为:如果a、b、c是一个三角形的三条边,并且a2+b2=c2,那么这个三角形是直角三角形.【点睛】本题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.23.如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半【分析】由题意将命题的条件改成如果的内容,将命题的结论改为那么的内容进行分析即可.【详解】解:将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.故答案为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.【点睛】本题主要考查命题与定理,理解“如果…那么…”的意义并找到命题的条件和结论是解题的关键.24.三个内角都大于60度【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】反证法证明命题“三角形中至多有两个角不大于60°”时,首先应假设这个三角形中每一个内角都大于60°【点睛】本题考查的是反证法的应用,反证法的一般步骤是:∠假设命题的结论不成立;∠从这个假设出发,经过推理论证,得出矛盾;∠由矛盾判定假设不正确,从而肯定原命题的结论正确.25.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行.【分析】命题写成“如果…那么…”的形式,“如果”后接的部分是题设,那么后接的部分是结论.【详解】解:命题“两条直线被第三条直线所截且同位角相等,这两条直线平行.”,题设是“两条直线被第三条直线所截且同位角相等”,结论是“这两条直线平行”,所以改为“如果…那么…”的形式为:如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行.故答案为:如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行.【点睛】本题考查的是命题的含义,命题有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.掌握以上知识是解题的关键.26.假【详解】解:如果a2>b2,则a>b”的逆命题是:如果a>b,则a2>b2,假设a=1,b=-2,此时a>b,但a2<b2,即此命题为假命题.故答案为:假.27.如果m是有理数,那么它是自然数;【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】解:命题:“如果m是自然数,那么它是有理数”的逆命题为“如果m是有理数,那么它是自然数”.故答案为“如果m是有理数,那么它是自然数”.【点睛】此题考查命题与定理,解题关键在于掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.28.12∠=∠或相等对顶角相等如果两个角相等,那么这两个角是对顶角(或相等的两个角是对顶角)【分析】∠根据对顶角的性质进行判断即可;∠对顶角相等;∠根据互逆命题的定义进行解答即可.【详解】解:∠图中1∠是对顶角,∠与2∠12∠=∠,对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角.故答案为:∠1=∠2或相等;对顶角相等;如果两个角相等,那么这两个角是对顶角(或相等的两个角是对顶角).【点睛】本题主要考查了对顶角的定义和性质,解题的关键是熟练掌握对顶角的定义,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角.29.如果a2=b2,那么|a|=|b|真【分析】把一个命题的条件和结论互换就得到它的逆命题,再判断命题的真假即可.【详解】解:根据题意得:命题“如果|a|=|b|,那么a2=b2”的条件是如果|a|=|b|,结论是a2=b2”,故逆命题是如果a2=b2,那么|a|=|b|,该命题是真命题.故答案为:如果a2=b2,那么|a|=|b|;真.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.30.3。
2023年中考数学(人教版)总复习训练:命题与证明
2023年中考数学(人教版)总复习训练:命题与证明选择题1. (2022七下·合阳期末)下列命题中,是真命题的是( )A.同旁内角互补B.只有正数才有算术平方根C.垂线段最短D.平行于同一条直线的两直线垂直2. (2021八上·长安期末)下列语句中是命题的是( )A.延长线段AB到CB.锐角都相等吗C.过点0作直线a//bD.垂线段最短3. (2021八上·莲湖期末)下列命题中,是真命题的是( )A.﹣1的算术平方根是1B.5是25的一个平方根C.(﹣4)2的平方根是4D.64的立方根是±44. (2021八上·岐山期末)下列命题中,是假命题的是( )A.对顶角相等B.同旁内角互补,两直线平行C.两点之间线段最短D.内错角相等5. (2021八上·蚌埠期末)下列命题是真命题的是( )A.如果a+b=0,那么a=b=0B.如果ab<0,那么a<0,b>0C.如果|a|=|b|,那么a=bD.如果直线a∥b,b∥c,那么直线a∥c6. (2022八上·青田期中)下列语句是命题的是( )A.作直线AB的垂线B.在线段AB上取点CC.垂线段最短吗?D.同旁内角互补7. (2022七下·华州期末)下列句子是命题的是( )A.画两条相等的线段.B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OA.D.两直线平行,内错角相等.8. (2022独家原创)下列句子中,是命题的是( )A.风景如画的黄山B.同旁内角互补C.作∠ABC的平分线D.你喜欢街舞吗?9. (2022七下·龙口期末)下列命题是假命题的是( )A.等角的余角相等B.两直线平行,内错角相等C.同旁内角互补,两直线平行D.三角形的外角大于任何一个内角10. (2020七下·厦门期末)下列命题是真命题的是( )A.内错角相等B.三角形的内角和等于180°C.相等的角是对顶角D.如果一个数是无限小数,那么这个数是无理数11. (2022八上·瑞安月考)下列选项中,能说明命题“若a≤1,则a2≤1”是假命题的反例是( )A.a=2B.a=1C.a=-1D.a=-212. (2021•北碚区校级模拟)下列命题是假命题的是( )A.一组对边平行且相等的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.顺次连接矩形的各边中点,所形成的四边形是菱形D.顺次连接菱形的各边中点,所形成的四边形是正方形13. (2020九上·宁化月考)下列命题中,真命题是( )A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相垂直的四边形是菱形14. (2022七下·无棣期末)下列命题正确的是( )A.在同一平面内,已知a,b,c三条直线,若a||b,b⊥c则a⊥cB.两条直线被第三条直线所截,同旁内角互补C.若两个角相等,则这两个角是对顶角D.过一点有且只有一条直线与已知直线平行15. (2022七下·龙岩期末)下列四个命题中真命题的个数是( )①两直线平行,同旁内角相等②点P(-2,-3)到x轴的距离是2③立方根等于本身的数是0和1④若关于x的一元一次不等式组无解,则m的取值范围是m≤1A.0个B.1个C.2个D.3个16. (2022七下·太和期末)下列命题中,假命题是( )A.对顶角相等.B.在同一平面内,若a||b,b||c,则a||c.C.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.D.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.17. (2021七下·大兴期中)下列命题:①直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,真命题有( )A.3个B.2个C.1个D.0个18. (2021八上·凤阳期末)对于命题“如果a2>b2,那么a>b”,下面四组关于a,b 的值中,能说明这个命题是假命题的是( )A.a=2,b=-1B.a=-1,b=2C.a=2,b=1D.a=-2,b=119. (2022·济宁模拟)下列命题中真命题的个数是( )①在函数(m为常数)中,当x1<x2时,y1>y2②相等的圆心角所对的弧相等;③三角形的内心到三边的距离相等;④顺次连接矩形各边中点得到的四边形是菱形;⑤对于任意实数m,关于x的方程x2+(m+3)x+m+2=0有两个不相等的实数根.A.2B.3C.4D.520. (2022·庆云模拟)下列命题中,假命题的是( )A.顺次连接对角线垂直的四边形的四边中点所成的图形是矩形B.各边对应成比例的两个多边形相似C.反比例函数的图象既是轴对称图形,也是中心对称图形D.已知二次函数y=x2-1当x<0时,y随x的增大而减小21. (2021安徽淮南期末)判定命题“如果0<n<1,那么n2-1>0”是假命题,只需举出一个反例,反例中n的值可以是( )A.-2B.-C.D.222. (2022七下·东港期末)下列四个命题:①过直线外一点有且只有一条直线与这条直线平行;②相等的角是对顶角;③垂直于同一条直线的两条直线互相平行;④在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形,其中,真命题的个数是( )A.1B.2C.3D.423. (2022七下·五莲期末)以下命题:(1)如果两条直线都和同一条直线垂直,那么这两条直线平行:(2)的算术平方根是4;(3)过一点有且只有一条直线与已知直线平行;(4)如果m>n,那么-2m>-2n;(5)两个无理数的和可以是有理数.其中真命题的个数有( )A.1个B.2个C.3个D.4个24. (2022七下·宁津期末)以下命题:①内错角相等;②两个锐角的和是钝角;③若a||b,b||c,则a||c;④垂线段最短;⑤经过直线外一点,有且只有一条直线与这条直线平行.其中真命题的个数是( )A.1个B.2个C.3个D.4个。
中考模拟精选命题与证明含答案
命题与证明一、选择题(本大题共15小题)1.把命题“如果x=x,那么√x =√x”作为原命题,对原命题和它的逆命题的真假性的判断,下列说法正确的是()A. 原命题和逆命题都是真命题B. 原命题和逆命题都是假命题C. 原命题是真命题,逆命题是假命题D. 原命题是假命题,逆命题是真命题2.用反证法证明命题:如果xx⊥xx,xx⊥xx,那么xx//x,证明的第一个步骤是()A. 假设xx//xxB. 假设xx//xxC. 假设CD和EF不平行D. 假设AB和EF不平行3.下列命题正确的是()A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分4.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内5.下列命题中,假命题的是()A. 直角三角形斜边上的高等于斜边的一半B. 圆既是轴对称图形,又是中心对称图形C. 一组邻边相等的矩形是正方形D. 菱形对角线互相垂直平分6.有下列四个命题,其中正确的是()A. 平分弦的直径垂直于弦B. 三点确定一个圆C. 三角形的内心到三角形三个顶点的距离相等D. 相等的弧所对的圆心角相等7.在下列命题中,正确的是()A. 邻边之比相等的两个平行四边形一定相似B. 有一个角是70∘两个等腰三角形一定相似C. 两个直角三角形一定相似D. 有一个角是60∘的两个菱形一定相似8.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁9.下列命题,其中是真命题的为()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形10.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A. 3B. 2C. 1D. 011.下列命题正确的是()A. 对角线互相垂直平分且相等的四边形是正方形B. 对角线相等的四边形是矩形C. 一组对边相等,另一组对边平行的四边形是平行四边形D. 对角线互相垂直的四边形是菱形12.下列四个命题中,真命题的是()A. 相等的圆心角所对的弧相等B. 同旁内角互补C. 平行四边形是轴对称图形D. 全等三角形对应边上的高相等13.已知下列命题:x若x3>x3,则x2>x2;x若点x(x1,x1)和点x(x2,x2)在二次函数x=x2−2x−1的图象上,且满足1<x2<1,则x1>x2>−2;x在同一平面内,a,b,c是直线,且x//x,x⊥x,则x//x;x周长相等的所有等腰直角三角形全等.其中真命题的个数是()A. 4个B. 3个C. 2个D. 1个14.下列命题是假命题的是()A. 正五边形的内角和为540∘B. 矩形的对角线相等C. 对角线互相垂直的四边形是菱形D. 圆内接四边形的对角互补15.下列命题中,x13个人中至少有2人的生日是同一个月是必然事件;x一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;x因为任何数的平方都是正数,所以任何数的平方根都是正数;x在平面上任意画一个三角形,其内角和一定是180∘,正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题)16.如图,图中二次函数解析式为x=xx2+xx+x(x≠0)则下列命题中正确的有______(填序号)xxxx>0;xx2<4xx;x4x−2x+>0;x2x+x>x.17.用一组a,b,c的值说明命题“若x<x,则xx<xx”是错误的,这组值可以是x=______,x=______,x=______.18.在平面直角坐标系中,对于任意两点x(x1,x1)x(x2,x2),规定运算:(1)x⊕x=(x1+x2,x1+x2);(2)x⊙x=x1x2+x1x2;(3)当x1=x2且x1=x2时,x=x.有下列四个命题:x若有x(1,2),(2,−1),则x⊕x=(3,1),x⊙x=0;x若有x⊕x=x⊕x,则x=x;x若有x⊙x=x⊙x,则x=x;x(x⊕x)⊕x=x⊕(x⊕x)对任意点A、B、C均成立.其中正确的命题为______(只填序号)19.命题“同位角相等”的逆命题是______.20.为了从2019枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1−2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1−1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2019号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是______.三、解答题(本大题共2小题)21.小敏通过学习,知道了“在直角三角形中,30∘的锐角所对的直角边等于斜边的一半”,她猜想这个命题的逆命题为“在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30∘”.为了证明这个命题的正确性,她画出了如图所示的图形.她又结合图形把这个命题理解为“在直角三角形ABC中,xxxx=90∘,直角边BC的长等于斜边AB长的一半时,BC所对的锐角x 的度数等于30∘”.请你根据小敏的图形和理解,补全已知和求证,并完成证明.第1页/共2页已知:在xx△xxx中,xxxx=90∘,______.求证:______.小敏把自己的猜想与数学小组的同学们进行了交流,经过充分交流、研讨,得出了以下两种想法:想法一:取AB中点D,连结CD,利用直角三角形斜边中线的性质使问题得到解决;想法二:沿AC翻折△xxx,得△xxx,构造特殊的三角形,使问题得到解决.请选择其中一种想法,帮助小敏完成解答过程.22.如图,将xxxxx=xx;xxxxx=xxxx;xxx2=xx⋅xx;x xxxx =xxxx;x xxxx=xxxx中的一个作为条件,另一个作为结论,组成一个真命题.(1)条件是______,结论是______;(注:填序号)(2)写出你的证明过程.1. D2. C3. D4. D5. A6. D7. D8. B9. D10. D11. A12. D13. C14. C15. B16. xxx17. 1;2;−118. xxx19. 相等的角是同位角20. 102421. xx=12xx;xx=30∘22. x;xx。
中考模拟精选命题与证明含答案
命题与证明一、选择题〔本大题共15小题〕1. 把命题“如果x=y ,那么√x=√y〞作为原命题 ,对原命题和它的逆命题的真假性的判断 ,以下说法正确的选项是()A. 原命题和逆命题都是真命题B. 原命题和逆命题都是假命题C. 原命题是真命题 ,逆命题是假命题D. 原命题是假命题 ,逆命题是真命题2. 用反证法证明命题:如果AB⊥CD ,AB⊥EF ,那么CD//EF ,证明的第一个步骤是()A. 假设CD//EFB. 假设AB//EFC. 假设CD和EF不平行D. 假设AB和EF不平行3. 以下命题正确的选项是()A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分4. 用反证法证明时 ,假设结论“点在圆外〞不成立 ,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内5. 以下命题中 ,假命题的是()A. 直角三角形斜边上的高等于斜边的一半B. 圆既是轴对称图形 ,又是中心对称图形C. 一组邻边相等的矩形是正方形D. 菱形对角线互相垂直平分6. 有以下四个命题 ,其中正确的选项是()A. 平分弦的直径垂直于弦B. 三点确定一个圆C. 三角形的内心到三角形三个顶点的距离相等D. 相等的弧所对的圆心角相等7. 在以下命题中 ,正确的选项是()A. 邻边之比相等的两个平行四边形一定相似B. 有一个角是70∘两个等腰三角形一定相似C. 两个直角三角形一定相似D. 有一个角是60∘的两个菱形一定相似8. 某届世界杯的小组比赛规那么:四个球队进行单循环比赛(每两队赛一场) ,胜一场得3分 ,平一场得1分 ,负一场得0分 ,某小组比赛结束后 ,甲、乙、丙、丁四队分别获得第一、二、三、四名 ,各队的总得分恰好是四个连续奇数 ,那么与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁9. 以下命题 ,其中是真命题的为()A. 一组对边平行 ,另一组对边相等的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形10. 甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场) ,结果甲胜了丁 ,并且甲、乙、丙胜的场数相同 ,那么丁胜的场数是()A. 3B. 2C. 1D. 011. 以下命题正确的选项是()A. 对角线互相垂直平分且相等的四边形是正方形B. 对角线相等的四边形是矩形C. 一组对边相等 ,另一组对边平行的四边形是平行四边形D. 对角线互相垂直的四边形是菱形12. 以下四个命题中 ,真命题的是()A. 相等的圆心角所对的弧相等B. 同旁内角互补C. 平行四边形是轴对称图形D. 全等三角形对应边上的高相等13. 以下命题:①假设a3>b3 ,那么a2>b2;②假设点A(x1,y1)和点B(x2,y2)在二次函数y=x2−2x−1的图象上 ,且满足1/ 3x1<x2<1 ,那么y1>y2>−2;③在同一平面内 ,a ,b ,c是直线 ,且a//b ,b⊥c ,那么a//c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A. 4个B. 3个C. 2个D. 1个14. 以下命题是假命题的是()A. 正五边形的内角和为540∘B. 矩形的对角线相等C. 对角线互相垂直的四边形是菱形D. 圆内接四边形的对角互补15. 以下命题中 ,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运发动投篮命中概率为0.7 ,他投篮10次 ,一定会命中7次;③因为任何数的平方都是正数 ,所以任何数的平方根都是正数;④在平面上任意画一个三角形 ,其内角和一定是180∘ ,正确的个数是()A. 1B. 2C. 3D. 4二、填空题〔本大题共5小题〕16. 如图 ,图中二次函数解析式为y=ax2+bx+c(a≠0)那么以下命题中正确的有______(填序号)①abc>0;②b2<4ac;③4a−2b+c>0;④2a+b>c.17. 用一组a ,b ,c的值说明命题“假设a<b ,那么ac<bc〞是错误的 ,这组值可以是a=______ ,b=______ ,c=______.18. 在平面直角坐标系中 ,对于任意两点A(x1,y1)B(x2,y2) ,规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当x1=x2且y1=y2时 ,A=B.有以下四个命题:①假设有A(1,2) ,B(2,−1) ,那么A⊕B=(3,1) ,A⊙B=0;②假设有A⊕B=B⊕C ,那么A=C;③假设有A⊙B=B⊙C ,那么A=C;④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立.其中正确的命题为______(只填序号)19. 命题“同位角相等〞的逆命题是______.20. 为了从2019枚外形相同的金蛋中找出唯一的有奖金蛋 ,检查员将这些金蛋按1−2018的顺序进行标号.第一次先取出编号为单数的金蛋 ,发现其中没有有奖金蛋 ,他将剩下的金蛋在原来的位置上又按1−1009编了号(即原来的2号变为1号 ,原来的4号变为2号……原来的2019号变为1009号) ,又从中取出新的编号为单数的金蛋进行检验 ,仍没有发现有奖金蛋……如此下去 ,检查到最后一枚金蛋才是有奖金蛋 ,问这枚有奖金蛋最初的编号是______.三、解答题〔本大题共2小题〕21. 小敏通过学习 ,知道了“在直角三角形中 ,30∘的锐角所对的直角边等于斜边的一半〞 ,她猜想这个命题的逆命题为“在直角三角形中 ,如果有一条直角边等于斜边的一半 ,那么这条直角边所对的锐角等于30∘〞.为了证明这个命题的正确性 ,她画出了如下列图的图形.她又结合图形把这个命题理解为“在直角三角形ABC中 ,∠ACB=90∘ ,直角边BC的长等于斜边AB长的一半时 ,BC所对的锐角∠A的度数等于30∘〞.请你根据小敏的图形和理解 ,补全和求证 ,并完成证明.:在Rt△ABC中 ,∠ACB=90∘ ,______.求证:______.小敏把自己的猜想与数学小组的同学们进行了交流 ,经过充分交流、研讨 ,得出了以下两种想法:想法一:取AB中点D,连结CD,利用直角三角形斜边中线的性质使问题得到解决;想法二:沿AC翻折△ABC ,得△ADC ,构造特殊的三角形 ,使问题得到解决.请选择其中一种想法 ,帮助小敏完成解答过程.22. 如图 ,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD⋅BC;④CAAD=AB DB ;⑤BCBA=DAAC中的一个作为条件 ,另一个作为结论 ,组成一个真命题.(1)条件是______ ,结论是______;(注:填序号)(2)写出你的证明过程.1. D2. C3. D4. D5. A6. D7. D8. B9. D10. D11. A12. D13. C14. C15. B16. ①③④17. 1;2;−118. ①②④19. 相等的角是同位角20. 102421. BC=12AB;∠A=30∘22. ①;③④3/ 3。
中考数学专项练习命题与证明(含解析)
中考数学专项练习命题与证明(含解析)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March中考数学专项练习命题与证明(含解析)【一】单项选择题1.以下命题中正确的选项是〔〕A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分且相等的四边形是正方形D. 一组对边相等,另一组对边平行的四边形是平行四边形2.以下四个命题:⑴数据5、2、﹣3、0的极差是8;⑵方差越大,说明数据就越稳定;⑶不在同一直线上的三点确定一个圆;⑷在半径为5的⊙O中,弦AB∥CD,且AB=6,CD=8,那么AB与CD之间距离为7其中真命题的个数为〔〕A. 4个B. 3个C. 2个D. 1个3.以下定理中,没有逆定理的是〔〕①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A. 1个B. 2个C. 3个D. 4个4.以下命题中,是假命题的是〔〕A. 平方根等于本身的数是B. 如果a,b都是无理数,那么a+b也一定是无理数C. 坐标平面内的点与有序实数对一一对应 D. 与6 可以合并同类项5.以下命题中,是真命题的是〔〕A. 有理数都是有限小数B. 同旁内角互补C. 函数y= 自变量x的取值范围是x≥3D. 假设甲、乙两组数据中各有20个数据,平均数= ,方差S 甲2=1.25,S乙2=0.96,那么说明乙组数据比甲组数据稳定6.下面说法正确的选项是( )A. 定理一定是命题B. 定理一定有逆定理C. 命题一定是定理 D. 逆命题一定正确7.以下命题是真命题的是〔〕A. 不相交的两条直线叫做平行线 B. 经过直线外一点,有且只有一条直线与直线平行C. 两直线平行,同旁内角相等 D. 两条直线被第三条直线所截,同位角相等8.以下命题为真命题的是〔〕A. 假设a2=b2 ,那么a=bB. 等角的补角相等C. n边形的外角和为〔n﹣2〕•180° D. 假设x甲= x乙, S2甲>S2乙,那么甲数据更稳定【二】填空题9.指出以下命题的条件和结论,并改写成〝如果…,那么…〞的形式.〔1〕两直线平行,内错角相等;〔2〕三角形内角和等于180°.10.〝同位角相等〞的逆命题是________.11.请把命题〝对顶角相等。
中考数学专题复习训练:命题与证明
中考复习训练命题与证明一、选择题1、下列命题中,原命题与逆命题不同时成立的是( )A。
等腰三角形的两个底角相等 B、直角三角形的两个锐角互余C、对顶角相等 D。
线段垂直平分线上的点到线段两端点的距离相等2。
用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A、 a不垂直于c B。
a,b都不垂直于c C。
a⊥b D、 a与b相交3。
说明“若a是实数,则a2〉0"是假命题,能够举的反例是()A、a=﹣1 B。
a=1 C。
a=0 D。
a=24、下列命题的逆命题正确的是( )A、两条直线平行,内错角相等B、若两个实数相等,则它们的绝对值相等ﻫC。
全等三角形的对应角相等 D。
若两个实数相等,则它们的平方也相等5。
要说明命题:“一组对边平行且对角线相等的四边形是矩形”是假命题,能够举的反例是()A、等腰梯形 B、矩形 C。
菱形 D、直角梯形6。
下列命题是真命题的有( ) ①对顶角相等ﻫ②两直线平行,内错角相等③点到直线的距离是点到直线的垂线段④过一点有且只有一条直线与已知直线垂直、A、 1个 B、 2个 C、3个 D、 4个7、在取石头游戏中,总共有18颗在一起,现有两人在一起做游戏,确定每人一次只能取1﹣4颗,谁先取到最后一颗为胜、问先手先取()颗必胜、A、1 B。
2 C、 3 D、 48、下列命题中,假命题的是( )A。
四边形的外角和等于内角和 B、所有的矩形都相似ﻫC。
对角线相等的菱形是正方形 D。
对角线互相垂直的平行四边形是菱形9、用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”应先假设:在一个三角形中( )A、至多有一个内角大于或等于60°B、至多有一个内角大于60°ﻫC。
每一个内角小于或等于60° D、每一个内角大于60°10、下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程x2﹣3x﹣4=0的根是x1=4,x2=﹣1;③依次连结任意四边形各边中点所得的四边形是平行四边形;④一元一次不等式2x+5≤11的整数解有3个;ﻫ⑤某班演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题与证明
1、如图,在Rt ABC △中,90BAC ∠=,3AB =,4AC =,将ABC △沿直线BC 向
右平移 2.5个单位得到DEF △,连结AD AE ,,则下列结论:①AD BE
∥,②A B E D E F ∠=∠,③ED AC ⊥,④ADE △为等腰三角形,正确..
的有 A .1个 B .2个 C .3个 D .4个
答案:D
2、如图,在矩形ABCD 中,有一个菱形BFDE (点E 、F 分别在线段AB 、CD 上),记它们的面积 分别为ABCD S 和BFDE S . 现给出下列命题:
①若
22
ABCD BFDE S S +=
,则tan EDF ∠=;②若2
·DE BD EF =,则DF =2AD . 那么,下面判断正确的是( )
A .①是真命题,②是真命题
B .①是真命题,②是假命题
C .①是假命题,②是真命题
D .①假真命题,②假真命题
答案:A
3、数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是 2 ”,这种说明问题的方式体现的数学思想方法叫做( )
A .代入法
B .换元法
C .数形结合
D .分类讨论 答案: C
4.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有 ( )
A .1个
B .2个
C . 3个
D .4个
第10题图
答案:B
二、解答题
1、已知二次函数25y x kx k =-+-.
⑴求证:无论k 取何实数,此二次函数的图像与x 轴都有两个交点; ⑵若此二次函数图像的对称轴为1x =,求它的解析式;
答案(1)证明:令y =0, 则
052
=-+-k kx x , ∵△=
)5(42
--k k =2042
+-k k
=16)2(2
+-k
∵
2
)2(-k ≥0, ∴
16)2(2
+-k >0
∴无论k 取何实数,此二次函数的图像与x 轴都有两个交点. -------------4分 (2).∵对称轴为x =12
2==--
k
k , ∴k =2 ∴解析式为322
--=x x y ---------7分
:
2、(本题满分10分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.
(1)如图1,损矩形ABCD ,∠ABC =∠ADC =90°,则该损矩形的直径是线段 . (2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:“尺规作图”不
要求写作法,但要保留作图痕迹.
(3)如图2,,△ABC 中,∠ABC =90°,以AC 为一边向形外作菱形ACEF ,D 为菱形ACEF 的中心,连结BD ,当BD 平分∠ABC 时,判断四边形ACEF 为何种特殊的四边形?请说明理由.若此时AB =3,BD
=BC 的长.
答案:(1)该损矩形的直径是线段AC ……1分
(2)取AC 中点O ,以O 为圆心、
1
2
AC 为半径作圆……3分 E
F
D
A
(3)正方形
理由:构造⊙O ,使点A 、B 、C 、D 都在圆上 ∵∠ABC =90°且BD 平分∠ABC ∴∠1=∠CBD =∠ABD =45° 又∵菱形ACEF
∴AE 平分∠CAF ∴∠CAF =90° ∴菱形ACEF 是正方形……7分 过点A 作AG ⊥BD 于G BC =5……10分
3、在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°
<θ<180°),得到△A ′B ′C .
(1)如图(1),当AB ∥CB ′时,设A ′B ′与CB 相交于点D .
证明:△A ′CD 是等边三角形;
(2)如图(2),连接A ′A 、B ′B ,设△ACA ′ 和△BCB ′ 的面积分别为S △ACA ′ 和S △BCB ′.求证:S △ACA ′ :S △BCB ′ =1:3;
图 1
A
θ A ′
B ′
B
C
A
B
C
D
图
1
答案:(1)∵AB ∥CB ′,∴∠B =∠BC B ′=30°,∴∠A ′CD =60°, 又∵∠A ′=60°,∴∠A ′CD =∠A ′=∠A ′DC =60°, ∴△A ′CD 是等边三角形;…………4分 (2)∵AC =A ′C ,BC =B ′C ,∴ C
B'C
A'=BC AC 又∵∠ACA ′=∠BCB ′,
∴△ACA ′∽△BCB ′,…………6分 ∵
3
3
30t =
= an BC AC 相似比为3:1, ∴S △ACA ′ :S △BCB ′ =1:3;…………8分
解2:选择结论② …………1分
证法1:∵BC ∥EF
∴∠ABC =∠E …………3分 ∵∠A+∠C+∠ABC =180°,∠EDF+∠F+∠E =180°,∠C =∠F
∴∠A =∠EDF …………7分 ∴ AC ∥DF …………8分
证法2:与解法1同,证△ABC ≌△DEF …………6分 ∴∠A =∠EDF …………7分
∴ AC ∥DF
A ′
B ′
B
C
图2
A
θ。