2018年中考数学专题复习卷:二次函数(解析版)
2018年中考数学真题演练之二次函数专题(解析版)
2018年中考数学真题演练之二次函数专题(2019年备战中考)1.已知抛物线。
(1)证明:该抛物线与x轴总有两个不同的交点。
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C 三点都在圆P上。
①试判断:不论m取任何正数,圆P是否经过y轴上某个定点?若是,求出该定点的坐标,若不是,说明理由;②若点C关于直线的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为,圆P的半径记为,求的值。
2.如图,已知抛物线过点A 和B ,过点A作直线AC//x轴,交y轴与点C。
(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由。
3.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B 的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.4.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
动点M,N同时从A 点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t秒。
连接MN。
(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。
5.如图①,在平面直角坐标系中,抛物线经过点、两点,且与轴交于点.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于轴,并沿轴左右平移,直尺的左右两边所在的直线与抛物线相交于、两点(点在点的左侧),连接,在线段上方抛物线上有一动点,连接、.(Ⅰ)若点的横坐标为,求面积的最大值,并求此时点的坐标;(Ⅱ)直尺在平移过程中,面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.6.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF 折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.7.已知顶点为抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.8.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分;(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.9.如图,抛物线与坐标轴交点分别为,,,作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;(3)条件同,若与相似,求点P的坐标.10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?11.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.12.如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ 的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC 的值最大时,求点M的坐标.13.如图1,直线l:与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<),以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE·EF的最大值.14.在平面直角坐标系中,已知抛物线的顶点坐标为,且经过点.如图,直线与抛物线交于点两点,直线为.(1)求抛物线的解析式;(2)在上是否存在一点,使取得最小值?若存在,求出点的坐标;若不存在,请说明理由.(3)已知为平面内一定点,为抛物线上一动点,且点到直线的距离与点到点的距离总是相等,求定点的坐标.15.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)16.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.17.如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.18.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.19.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.20.如图,抛物线经过原点O(0,0),点A(1,1),点B(,0).(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.21.如图,抛物线y=ax2+bx﹣与x 轴交于A(1,0)、B(6,0)两点,D 是y 轴上一点,连接DA,延长DA 交抛物线于点E.(1)求此抛物线的解析式;(2)若E 点在第一象限,过点 E 作EF⊥x 轴于点F,△ADO 与△AEF 的面积比为= ,求出点E 的坐标;(3)若D 是y 轴上的动点,过D 点作与x 轴平行的直线交抛物线于M、N 两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D 的坐标;若不存在,请说明理由.22.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;(3)②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.23.综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为________;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)24.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q(1)【探究一】在旋转过程中,①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________②如图3,当时E P与EQ满足怎样的数量关系?,并说明理由.________③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为________,其中的取值范围是________(直接写出结论,不必证明)(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.25.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.26.已知直线分别交x轴、y轴于A、B两点,抛物线经过点A,和x 轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求面积的最大值;(3)如图2,经过点的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求的值.备注:抛物线顶点坐标公式27.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.28.如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断的形状,并说明理由.参考答案与解析1.【答案】(1)证明:当抛物线与x轴相交时,令y=0,得:x2+mx-m-4=0∴△=m2+4(2m+4)=m2+8m+16=(m+4)2∵m>0,∴(m+4)2>0,∴该抛物线与x轴总有两个不同的交点。
2018中考数学真题复习 二次函数中考真题大题系列加详解(PDF版)
二次函数中考真题系列1.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax2+bx+4 过点B,C 两点,且与x 轴的一个交点为D(﹣2,0),点P 是线段CB 上的动点,设CP=t(0<t<10).(1)请直接写出B、C 两点的坐标及抛物线的解析式;(2)过点P 作PE⊥BC,交抛物线于点E,连接BE,当t 为何值时,∠PBE 和Rt △OCD 中的一个角相等??(3)点Q 是x 轴上的动点,过点P 作PM∥BQ,交CQ 于点M,作PN∥CQ,交BQ 于点N,当四边形PMQN 为正方形时,求t 的值为.2.如图①,抛物线y=ax2+bx+3(a≠0)与x 轴交于点A(﹣1,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC 的面积与△OBC 的面积相等,若存在,请直接写出点M 的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.3.抛物线y=﹣x+3 与x 轴交于A、B 两点,与y 轴交于点C,连接BC.(1)如图1,求直线BC 的表达式;(2)如图1,点P 是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB 面积最大时,一动点Q 从点P 从出发,沿适当路径运动到y 轴上的某个点G 再沿适当路径运动到x 轴上的某个点H 处,最后到达线段BC 的中点F 处停止.求当△PCB 面积最大时,点P 的坐标及点Q 在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当△PCB 面积最大时,把抛物线y=﹣x+3 向右平移使它的图象经过点P,得到新抛物线y',在新抛物线y'上是否存在点E,使△ECB 的面积等于△PCB 的面积.若存在,请求出点E 的坐标;若不存在,请说明理由.4.如图,直线l:y=﹣x+1 与x 轴、y 轴分别交于点B、C,经过B、C 两点的抛物线y=x2+bx+c 与x 轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD∥x 轴交l 于点D,PE∥y 轴交l 于点E,求PD+PE 的最大值;(3)设F 为直线l 上的点,以A、B、P、F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.。
2018数学中考专题之二次函数解析式(含答案)
中考专题之二次函数的解析式二次函数是初中数学中考题的一个重要内容,而熟练地求出二次函数的解析式是解决其他二次函数问题的重要保证。
二次函数的定义:二次函数的解析式有三种基本形式:1、一般式:2y ax bx c(a 0)。
2、顶点式:2y=a(x —h) +k (a* 0),其中点(h, k)为顶点,对称轴为直线x=h。
3、交点式(两根式):y=a(x —x 1)(x —x2) (a^ 0),其中x 1, x 2是抛物线与x轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
常见题型:一、根据定义求值2例1、若y (m2 m)x m 2m 1是二次函数,则m= _______________________ 提醒:一定要注意二次项系数不为0。
二、开放性例2、经过点A (0, 3)的抛物线解析式为 ___________________________________提示:这种题目,最好设最简单的解析式y ax2三、平移型1 2 5 1 2例3:将y —x2 3x —的图象是由y — x2怎样平移得到的?2 2 2提示:这类平衡问题,由于平移时,抛物线上任何一点平移的方向距离都相同,所以解决这类问题一般观察特殊点(比如顶点) ,根据特殊点的平移情况来判断平移情况。
四、压轴题中求解析式举例例4、抛物线过过A(-2,0)、B (-3, 3)及原点0,求抛物线的解析式。
分析:此三点不是特殊点,所以用待定系数法直接代入即可。
解:设拋物銭的SS忻式対片品+加刃),T抛物曲A「2』)」B〈已“「o ( 0 J 0 )可得4a_2t+r=0* 9a—3b^c=3 *c=QJfE解得’ ft=2 reOL「•拋物我的解忻式为y-x£ + 2x ;2 1例5、已知y ax bx 1(a 0)过点A ( — ,0 )、B (2, 0),求函数解析式。
2018中考数学试题二次函数解答题试题汇编(含答案解析)
2018年全国各地中考数学试题《二次函数》解答题试题汇编(含答案解析)1.(2018•达州)如图,抛物线经过原点O(0,0),点A(1,1),点.(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.2.(2018•眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)3.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.4.(2018•抚顺)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?5.(2018•张家界)如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.6.(2018•资阳)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.7.(2018•葫芦岛)某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?8.(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.9.(2018•山西)综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.10.(2018•青岛)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.11.(2018•福建)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.12.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.13.(2018•襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y=,且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?14.(2018•荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)15.(2018•贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.16.(2018•盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.17.(2018•天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.18.(2018•邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM 为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN 的值;若不存在,请说明理由.19.(2018•济宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.20.(2018•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.21.(2018•温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.22.(2018•黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.24.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?26.(2018•娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B (3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.27.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.28.(2018•北京)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.29.(2018•淄博)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.30.(2018•兰州)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.31.(2018•绍兴)学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)P1(4,0),P2(0,0),P3(6,6);(2)P1(0,0),P2(4,0),P3(6,6).32.(2018•巴中)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE 是等腰三角形?33.(2018•绵阳)如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S=S△AOQ?若存在,求出点Q的坐标;△AOC若不存在,请说明理由.34.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?35.(2018•遵义)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C (0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.36.(2018•随州)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?37.(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x 轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.38.(2018•怀化)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.39.(2018•黄石)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.40.(2018•达州)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?41.(2018•遂宁)如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x 轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.42.(2018•岳池县三模)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.43.(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.44.(2018•宜宾)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.45.(2018•深圳)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.46.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.47.(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.48.(2018•无锡)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m >0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.49.(2018•青海)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B (3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.50.(2018•日照)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.51.(2018•湖北)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?52.(2018•郴州)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.53.(2018•东营)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B 两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.54.(2018•扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?。
2018年中考数学二次函数压轴题集锦(50道含解析)
1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx ﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;=S△AOQ?若存在,求出点Q的坐标;(3)抛物线上是否存在点Q,使得S△AOC若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C 作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD 的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据=S△ABN﹣S△BMN三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,。
二次函数几何方面的应用(解析版)数学2018全国中考真题-3
2018年数学全国中考真题二次函数几何方面的应用(试题一)解析版一、选择题1.(2018广西省桂林市,12,3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个一动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A 从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是( )A.14-≤b≤1 B.54-≤b≤1 C.94-≤b≤12D.94-≤b≤1【答案】B.【思路分析】.如下图(1),连接CN,延长NM,交y轴于点D,设AN=x,则AD=3-x,DB=1b+,证明△BDA∽△ANC,可得b=23523124x x x-+-=--+⎛⎫⎪⎝⎭≤54,从而得到b的取值范围.【解题过程】解:如下图(1),连接CN,延长NM,交y轴于点D,设AN=x,则AD=3-x,∵点B的坐标为(0,b),∴DB=1b+,∵N、C两点的坐标分别为(3,1),(3,0),∴NC=1,AN⊥NC,∴∠ACN+∠CAN =90°,∵AB⊥AC,∴∠BAD+∠CAN=90°,∴∠ACN=∠CAN,又∵∠BDA=∠CNA=90°,∴△BDA∽△ANC,∴AD BDCN AN=,即131bxx+-=,213b x x+=-+,解得b=23523124x x x-+-=--+⎛⎫⎪⎝⎭≤54,又∵当点A与点N重合时,点B与点D重合,(如下图(2)),此时b=1,∴54-≤b≤1.,故选B.【知识点】二次函数;相似三角形的性质和判定;动点问题二、填空题1.(2018吉林长春,14,3分)如图,在平面直角坐标系中,抛物线y=x2 + mx 交x轴的负半轴于点A. 点B是y轴正半轴上一点,点A关于点B的对称点A' 恰好落在抛物线上. 过点A' 作x轴的平行线交抛物线于另一点C.若点A' 的横坐标为1,则A'C 的长为 .(第14题)【答案】3【思路分析】如下图,A'C 与y 轴交于点D. 因为点A 与点A' 关于点B 对称,则AB=A'B ;又因A'C// x 轴,则ΔABO ≌ ΔA'BD ,AO=A'D. 点A' 的横坐标为1,即A'D=AO=1.所以点A 坐标为(-1,0),把点A (-1,0)代入函数解析式可求得m 值,进而可知A' 坐标,由A'C// x 轴,可求出点C 横坐标,即可求出A'C 的长.【解题过程】解:如图,A'C 与y 轴交于点D. ∵点A 与点A' 关于点B 对称 ∴AB=A'B 又A'C// x 轴∴∠A'DB =∠AOB =90°,∠DA'B =∠OAB ∴ΔABO ≌ ΔA'BD ∴AO=A'D∵点A' 的横坐标为1 ∴A'D=AO=1∴A 坐标为(-1,0)把(-1,0) 代入抛物线解析式y =x 2 + mx 得m=1 ∴抛物线解析式为y =x 2 + x ∴ A' 坐标为(1,2) 令y =2得,x 1 = -2 , x 2=1 ∴A'C =1-(-2)=3.【知识点】待定系数法求抛物线解析式,对称的性质,平行线的性质,三角形全等,直角坐标系中求线段长度2. (2018广西贵港,12,3分)如图,抛物线y =14(x +2)(x -8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D ,下列结论:①抛物线的对称轴是直线x =3;②⊙D 的面积是16π;③抛物线上存在点E ,使四边形ACED 为平行四边形;④直线CM 与⊙D 相切.其中正确结论的个数是 A .1 B .2 C .3 D .4【答案】B【解析】抛物线y =14(x+2)(x-8)与x轴交于A,B两点,可知A(-2,0),B(8,0)所以D(3,0),所以抛物线的对称轴是直线x=3,即①正确;由于⊙D的半径为5,所以它的面积为25π,所以②不正确;过C作CF∥AD,则F(6,0),此时CF=6>5=AD,因此在抛物线上不可能存在点E,使四边形ACED为平行四边形,故③错误;当x=0时,y=-4,所以C点的坐标为(0,-4),因此DC=42+32=5,即C在⊙D上,又M(3,-254),所以DM=254,CM=32+⎝⎛⎭⎫254-42=154所以DC2+CM2=62516=DM2,所以DC⊥CM,所以直线CM与⊙D相切,故④正确;综上,有两项正确,故选B.3.(2018江苏苏州,18,3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE 的中点.当点P在线段AB上移动时,点M,N之问的距离最短为(结果保留根号).【答案】23【解析】本题解答时要连接MP,PN,利用菱形的性质,得出△PMN为直角三角形,然后利用勾股定理,求出用PA的长来表示的MN的长,最后利用二次函数的性质求出MN的最小值.连接PM,PN,∵四边形APCD,PBFE是菱形,∴P A=PC,∵AM=MC,∴PM⊥AC,同理PN⊥BE.∴∠CPM+∠CPN=119022APC BPE∠+∠=゜,∵∠DAP=60゜,∴∠CAP==∠NPB=30゜,xyOACMBDE设AP =x ,则PB =8-x , ∴PM =12x ,PN)x -∴=∴当x =6时,MN有最小值,最小值为三、解答题1. (2018广西柳州市,26,10分)如图,抛物线y =ax 2+bx +c 与x 轴交于0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且OB =3OAOC ,∠OAC 的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线的一个动点,过点P 作PF ⊥x 轴垂足为F ,交直线AD 于点H. (1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH =HP 时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ +EQ 的最小值.【思路分析】(1)根据题意,先求出点B 、C 的坐标,运用待定系数求出抛物线的解析式; (2)用点m 表示出FH 和PF 的长,再由FH =HP 列关于m 的方程求解;FAP(3)连接AH ,以AH 为边构造相似三角形,将14AQ 转化为某一个固定点的线段,再由三点共线计算出14AQ +EQ 的最小值. 【解题过程】(1)∵OB =3OA =OC ,0),∴点B 、C 的坐标分别为(-,0),(-3,0).设抛物线的解析式为y =a (x +x ),代入点C 的坐标,得:-3=a ··(,解得:a =13.故该抛物线的解析式为y =13(x +)(x =13x 2x -3. ………………3分(2)在Rt △AOC 中,由tan ∠OAC =OCOA,∴∠OAC =60°.又∵AH 是∠FAC 的平分线,∴∠FAH =30°,则AF由点P 的横坐标为m ,则它的纵坐标为13m 2-3.∴AF m ,PF =3-13m 2.∴FH AF m ). ∵FH =HP ,则PF =2FH ,m )=13m 2-3.解得:m 舍去)或m故m ………………6分 (3)连接CH.∵AF =AC =,∠FAH =∠CAH ,AF =AF , ∴△AHF ≌△AHC(SAS), ∴FH =CH =2. 故⊙H 的半径为1.在HA 上截取HM =14,则AM =4-14=154. ∵HM HQ =14,HQ HA =14, ∴HM HQ =HQHA,且∠QHM =∠AHQ , ∴△QHM ∽△AHQ ,∴AQMQ=14,则14AQ=MQ,∴14AQ+QE=QM+QE. ………………9分∵点E、M是定点,故当点M、Q、E共线时,QM+QE的值最小,即最小值为线段ME的长.在Rt△AEM中,由勾股定理可知:ME………………10分2.(2018海南省,24,15分)如图12-1,抛物线32++=bxaxy交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图12-2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A,B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ,DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【思路分析】将A(﹣1,0)和点B(3,0)代入32++=bxaxy,求解关于a,b的二元一次方程组即可;(2)①分别求出点C、F的坐标,S四边形ACFD=S△CDF+S△CDA;②当∠ADQ=90°时,如图24-2,设PQ交CD于点G,则PQ⊥CD,G点坐标为(t,3),作DH⊥x轴于H,则H(2,0),在Rt∠DHA中,DH=AH=3,∠DGQ为等腰三角形,GQ =GD ,()t t t -=-++-23322,求得t 的值并验证;当∠AQD =90°时,过点D 作DK ⊥PQ 于点K ,易证得∠PQA ∽△KDQ , KQ PA KD PQ =,()323123222++--+=-++-t t t t t t ,求得t 的值并验证. 【解题过程】(1)将A (﹣1,0)和点B (3,0)代入32++=bx ax y 得,⎩⎨⎧=++=+-033903b a b a ,解得⎩⎨⎧=-=21b a ,∴该抛物线的解析式为322++-=x x y .(2)①连接CD ,∵()413222+--=++-=x x x y ,F (1,4),当x =0时,y =3,∠C (0,3)又D (2,3),∠CD ∥x 轴,且CD =2,S 四边形ACFD =S △CDF +S △CDA =21CD ·(A F y y -)=44221=⨯⨯. ②设P (t ,0),则Q (t ,322++-t t ).Ⅰ:若∠DAQ =90°,如图24-1,此时点Q 必在第四象限,所对应的点P 在AB 的延长线上,此种情况不符合题意,故舍去.Ⅱ:若∠ADQ =90°,如图24-2,设PQ 交CD 于点G ,则PQ ⊥CD ,G 点坐标为(t ,3),作DH ⊥x 轴于H ,则H(2,0),∴在Rt∠DHA 中,DH =AH =3,∠∠DAH =45°,又CD ∥x 轴,∠∠ADC =∠DAH =45°,∠∠QDG =∠ADQ﹣∠ADC =45°,∠∠DGQ 为等腰三角形,∴GQ =GD ,()t t t -=-++-23322,整理得:0232=+-t t ,解得:11=t ,22=t ,当t=2时,D 与Q 重合,故舍去.当t =1时,4322=++-t t ,∠Q (1,4). Ⅲ:若∠AQD =90°,如图24-3过点D 作DK ⊥PQ 于点K ,∠∠APQ =∠QKD =90°,∠∠DQK +∠PQA =90°,又∠DQK +∠KDQ =90°,∴∠PQA =∠KDQ ,∠∠PQA ∽△KDQ ,∴KQ PA KD PQ =,∴()323123222++--+=-++-t t t t t t ,∴()()()21213-+=-+--t t t t t t ,∵1-≠t ,2≠t (即Q 不与A 、D 重合),∴()tt 13=--,整理得:0132=+-t t ,解得2531+=t ,2532-=t ,经验证,1t 、2t 均符合题意,其中:321<<t ,符合图24-3的情况,212<<-t ,符合图24-4的情况. 当2531+=t 时,255322-=++-t t ;当2532-=t 时,255322+=++-t t , ∴Q (253+,255-)或(253-,255+). 综上所述,当∠AQD 为直角三角形时,点Q 坐标为:(1,4)或(253+,255-)或(253-,255+). 【知识点】二次函数综合题,二次函数图象上点的存在性,相似三角形的性质与判定3. (2018黑龙江省龙东地区,23,6分) 如图,抛物线y =x 2+bx +c 与y 轴交于点A (0,2),对称轴为直线x =-2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6. (1)求此抛物线的解析式;(2)点P 在x 轴上,直线CP 将△ABC 面积分成2:3的两部分,请直接写出P 点坐标.【思路分析】对于(1),根据点A 坐标可求c 的值,根据对称轴直线可求b 的值;对于(2),先确定点C 和点B 的坐标,计算出△ABC 的面积,再根据直线CP 分△ABC 面积之比确定点P 存在的可能性有两种,结合两种情况,分别确定点P 的位置即可. 【解题过程】解:(1)∵点A (0,2)在抛物线y =x 2+bx +c 上,∴c =2,∵抛物线对称轴为直线x =-2,∴221b-=-⨯,∴b =4,∴抛物线的解析式为y =x 2+4x +2. (2)点P 的坐标为(-5,0)或(-13,0),理由如下:∵抛物线对称轴为直线x =-2,BC ∥x 轴,且BC =6,∴点C 的横坐标为6÷2-2=1,把x =1代入y =x 2+4x +2得y =7,∴C (1,7),∴△ABC 中BC 边上的高为7-2=5,∴S △ABC =12×6×5=15.令y =7,得x 2+4x +2=7,解得x 1=1,x 2=-5,∴B (-5,7),∴AB=CP 交AB 于点Q ,∵直线CP 将△ABC 面积分成2:3的两部分,∴符合题意的点P 有两个,对应的点Q 也有两个.①当AQ 1:BQ 1=2:3时,作Q 1M 1⊥y 轴,Q 1N 1⊥BC ,则AQ 1=Q 1M 1=2,BQ 1=Q 1N 1=3,Q 1(-2,4),∵C (1,7),∴直线CQ 1的解析式为y =x +5,令y =0,则x =-5,∴P 1(-5,0); ②当BQ 2:AQ 2=2:3时,作Q 2M 2⊥y 轴,Q 2N 2⊥BC ,则AQ 2=Q 2M 2=3,BQ 2=,Q 2N 2=2,Q 2(-3,5),∵C (1,7),∴直线CQ 2的解析式为y =12x +132,令y =0,则x =-13,∴P 2(-13,0) 综上,点P 的坐标为(-5,0)或(-13,0).【知识点】待定系数法;二次函数的性质;一次函数的性质;三角形的面积公式;平行线分线段成比例25.4. (2018山东省东营市,25,12分) 如图,抛物线13()()y a x x =--(0a >)与x 轴交于A 、B 两P 的坐解得:x 1=1,x 2=3则A (1,0),B (3,0)于是OA =1,OB =3∵△OCA ∽△OBC ∴OC ∶OB =OA ∶OC ∴OC 2=OA •OB =3即OC =(2)因为C 是BM 的中点 ∴OC =BC 从而点C 的横坐标为23又OC =,点C 在x 轴下方∴C ),(2323-设直线BM 的解析式为y =kx +b , 因其过点B (3,0),C ),(2323-,则有⎪⎩⎪⎨⎧-=+=+.232303b k b k ,∴, ∴ 又点C 在抛物线上,代入抛物线解析式,P 作PQ x 轴交直线BM 于点Q , 则Q (x ,),PQ = 当△BCP 面积最大时,四边形ABPC 的面积最大33=k 333-=x y ),(2323-32333-x 33333322-+-x x )()(△2321321-+-=x PQ x PQ S BCP )(23321-+-=x x PQ PQ 43=∴当时,有最大值,四边形ABPC 的面积最大, 此时点P 的坐标为(3)点P 存在. 设点P 坐标为(x ,),过点P 作PQ x 轴交直线BM 于点Q , 则Q (x ,),PQ = 当△BCP 面积最大时,四边形ABPC 的面积最大∴当时,有最大值,四边形ABPC 的面积最大, 此时点P 的坐标为43943923 2-+-=x x 492=-=a b x BCP S △)385-,49(323383322+-x x 333-x 33333322-+-x x )()(△2321321-+-=x PQ x PQ S BCP )(23321-+-=x x PQ PQ 43=43943923 2-+-=x x 492=-=a b x BCP S △)385-,49(【知识点】一元二次方程与二次函数的关系,中点坐标公式,相似三角形性质,待定系数法求直线与抛物线的解5. (2018四川乐山,1,3) 在平面直角坐标系中,抛物线2y ax bx c =++交x 轴于A 、B 两点,交y 轴于点C(0,43-),OA =1,OB =4,直线l 过点A ,交y 轴于点D ,交抛物线于点E ,且满足tan ∠OAD =34. (1)求抛物线的解析式;(2)动点P 从点B 出发,沿x 轴正方向以每秒2个单位长度的速度向点A 运动,动点Q 从点A 出发,沿射线AE 以每秒1个单位长度的速度向点E 运动,当点P 运动到点A 时,点Q 也停止运动,设运动为t 秒. ①在P 、Q 的运动过程中,是否存在某一时刻t ,使得△ADC 与△PQA 相似,若存在,求出t 的值;若不存在,请说明理由;②在P 、Q 的运动过程中,是否存在某一时刻t ,使得△APQ 与△CAQ 的面积之和最大?若存在,求出t 的值;若不存在,请说明理由.【思路分析】本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A 、B 、C 三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠P AQ =∠ACD ,再根据题目中的要求使得△ADC 与△PQA 相似,进行分类讨论得到对应线段成xyQ PEDCBAOyxQMC BA O P(第25题答案图2)比例,列出关于t 的方程求解即可;②直接利用三角形的面积公式列出△APQ 与△CAQ 的面积之和与时间t 之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案. 【解题过程】解:(1)∵OA =1,OB =4,∴A (1,0),B (-4,0), -------------------- 1分 设所示抛物线的解析式为()()41y a x x =+-, ∵C (0,43-)在抛物线上, ∴()4413a -=⨯⨯-, 解得13a =, ∴抛物线的解析式为()()1413y x x =+-或21433y x x =+- ----------------------------- 3分 (2)存在t ,使得△ADC 与△PQA 相似,其理由如下: ①在Rt △AOC 中,OA =1,43OC =, 则3tan 4OA ACO OC ∠==, 又∵3tan 4OAD ∠=, ∴∠OAD =∠ACO , ------------------------------------------------------------------------------------- 4分 ∵直线l 的解析式为()314y x =- ,∴D (0,34-), 又∵C (0,43-), ∴CD =4373412-= 由AC 2=OC 2+OA 2,得53AC =. ---------------------------------------------------------------------- 5分 在△AQP 中,AP =AB -PB =5-2t ,AQ =t , 由∠P AQ =∠ACD ,要使△ADC 与△PQA 相似,只需AP CD AQ AC =或AP ACAQ CD=, ------------------------------------------------------------------- 6分 则有7521253t t -=或5523712t t -=, ----------------------------------------------------------------- 7分 解得110047t =,23534t =, ∵t 1<2.5,t 2<2.5, ∴存在10047t =或3534t =, 使得△APQ 与△PQA 相似 -------------------------------------- 9分 ②存在t ,使得△APQ 与△CAQ 的面积之和最大,其理由如下:作PF ⊥AQ 于点F ,CN ⊥AQ 于点N , 如图6所示,在△APF 中,()3sin 525PF AP PAF t =⋅∠=-, 在△AOD 中,由AD 2=OD 2+OA 2,得54AD =------------------------------------------------- 10分 在△ADC 中,由1122ADC S AD CN CD OA ∆=⋅=⋅, ∴717125154CD OA CN AD ⨯⋅=== ------------------------------------------------------------------- 11分∴()()11375222515APQ CAQS S AQ PF CN t t ∆∆⎡⎤+=+=-+⎢⎥⎣⎦231316959135t ⎛⎫=--+ ⎪⎝⎭ ∴当139t =时,△APQ 与△CAQ 的面积之和最大. ------------------------------------------- 12分图6【知识点】二次函数 ;勾股定理;三角形相似的判定与性质;三角形面积;待定系数法;转化思想;数形结合思想;分类讨论思想6.(2018甘肃省兰州市,28,12分)如图,抛物线42-+=bx ax y 经过A (-3,0),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式; (2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.【思路分析】(1)根据A ,B 两点的坐标利用待定系数法求解即可.(2)通过证明点B 到直线AC 的距离等于点B 到x 轴的距离即可证明结论.(3)分AM 为该直角边的斜边和BM 为该直角三角形的斜边两种情况,分别计算即可.【解题过程】(1)将A ,B 两点的坐标分别代入42-+=bx ax y ,得⎩⎨⎧-=-+=--,44525,0439b a b a 解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y . xyN F Q PED CBAOACBxyO第28题图(2)证明:设直线AB 的表达式为y =kx +b ′,则3'0,5'4,k b k b -+=⎧⎨+=-⎩解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k 故直线AB 的表达式为y =2321--x .设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-).易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489, 解得m =-9,故此时点M 的坐标为(25,-9).当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11). 【知识点】二次函数的图象和性质 角平分线的判定与性质 勾股定理 分类讨论7. (2018黑龙江省齐齐哈尔市,题号24,分值14)如图1所示,直线y=x+c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线y=-x ²+bx+c 经过点A ,C. (1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,求CE+OE 的最小值;(3)如图2所示,M 是线段OA 上的一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N.①若以C ,P ,N 为顶点的三角形与△APM 相似,则△CPN 的面积为_________;②若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.注:二次函数y=ax ²+bx+c (a ≠0)的顶点坐标为(24,24b ac b aa --)【思路分析】(1)根据一次函数求出c 的值,再将A (-4,0)和c 值代入抛物线解析式求得b 值,进而得出抛物线解析式;(2)先作对称确定最小值的情况,进而求出答案.(3)①根据直角与对顶角找出两种相似的情况,进而得出△CPN 的面积;②根据菱形的判定定理作出菱形,进而得出D 点坐标. 【解题过程】解:(1)将A (-4,0)代入y=x+c ,得c=4.将A (-4,0)和c=4代入y=-x²+bx+c,得b=-3. ∴抛物线的解析式为y=-x ²-3x+4.(2)如图所示,作点C 关于抛物线的对称轴直线l 的对称点C ’,连接OC 交直线l 于点E ,连接CE ,此时CE+OE 的值最小.∵抛物线额对称轴为x=332(1)2--=-⨯-,则C ’C=3,在Rt △C ’CO 中,由勾股定理,得OC ’22(')CC OC +∴CE+OE 的最小值为5.(3)①∵抛物线解析式为y=-x ²-3x+4,∴A (-4,0),B (1,0),C (0,4),△APM 为等腰直角三角形. 设M 为(a ,0),则N (a ,-a ²-3a+4),P(a ,a+4).当△AMP ∽△CNP 时,则AM MP CN NP=,得24434(4)a a a a a a ++=---+-+,解得a=-4(舍)或a=-3或a=0(舍). ∴CN=3,PN=3. ∴△CPN 的面积为12CN PN =92. 当△AMP∽△NCP时,则AM APNC NP=,得22222(4)34(4)(344)()a a a a a a a +=--+-+--+-+-,解得a=0(舍)或a=-2.∴.∴△CPN 的面积为12CN PC =4. 故答案为92或4.②存在. 1D (22-+,2),2D (22--,-2), 3D (-4,3),4D (12,32). 理由如下:当点P 是线段MN 的中点,则-a ²-3a+4=2(a+4), 解得a=-4(舍),或a=-1. ∴M (-1,0),P (-1,3),N (-1,6).设F(f ,f+4),过点M 作AC 的平行线,则此直线的解析式为 y=x+1.∵PM=3,当PM 为菱形的边时,作PF=PM ,过F 作FD 平行PM ,交AC 平行线于点D , ∴D (f ,f+1).∴3²=2(f+1)²,解得f=22-±.则1D 2D ). ∵PM=AM=3,∴当点F 与点A 重合时,过点F 在x 轴上方作DF ∥PM ,且DF=PM ,连接DP ,可得出四边形DPMF 为菱形.∴点D 的坐标为(-4,3).当PM 为菱形的对角线时,作PM 的垂直平分线,交直线AC 于点F ,作点F 关于PM 的对称点D ,连接MF,MD,PD,此时四边形DMFP 为菱形. ∴将32代入直线AC 的解析式可得,点F 的坐标为(-52,32). ∵直线PM 为x=-1, ∴点D 的坐标为(12,32).综上所述, 1D (22-+,2),2D (22--,-2), 3D (-4,3),4D (12,32).【知识点】待定系数法,二次函数图象的性质,两点之间线段最短,对称图形的性质,勾股定理.8. (2018湖北省江汉油田潜江天门仙桃市,26,12分)抛物线y =137322-+-x x 与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y =t (2524t <)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M ”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t =0时,若Q 是“M ”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.【思路分析】(1)点A ,B 的坐标可以令y =0,解一元二次方程求出,点D 的坐标利用公式可求;(2)点E 可能在边界上也可能在边界内,∴要分情况讨论;(3)点Q 可能在原抛物线上也可能在翻折下来的部分抛物线上,∴要分情况讨论.要证明点Q 在圆上,只需证明QA 与QB 垂直即可. 【解题过程】(1)令y =137322-+-x x =0,解得x 1=21,x 1=3.∴A (21,0),B (3,0).根据抛物线顶点公式可得D (47,2425). 3分 (2)如图①,作直线DE ,交x 轴于点M ,交BC 于点N . ∵直线BC 经过B (3,0),C (0,-1)两点, ∴直线BC 的解析式为:y =31x -1. 又∵抛物线对称轴DE 为:x =47, ∴点N 的坐标为(47,-125). 4分 讨论:①当点D 与点M 重合时,此时点E 落在x 轴上的点M 处,图①lE yA B O D C· ·图②第25题图O ACBxy· D x∴t =21DM =21×2425=4825. 5分 ②当点D 与点N 重合时,此时点E 落在BC 边上的点N 处. ∵DN =DM +MN =丨2425丨+丨-125丨=2435. ∴21DN =4835>MN . ∴t =21DN -MN =4835-125=165. ∴t 的取值范围是:165≤t ≤4825. 7分(3)存在以CQ 为直径的圆与x 轴相切于点P .如图②,设以CQ 为直径的⊙G 与x 轴相切于点P ,连接PC ,PG ,PQ . 并作QH ⊥x 轴于点H ,则GC =GP =GQ ,且GP ⊥x 轴. ∴OC ∥PG ∥HQ .∴OP =PH . ∵CQ 为直径,∴∠CPQ =90°. ∴∠OPC =∠HQP . ∵tan ∠OPC =OPOC ,tan ∠HQP =HQ HP.∴OPOC =HQ HP. 即OC ·HQ =OP ·HP . 9分 讨论:①当点Q 在抛物线y =137322-+-x x 上时, 依题意有x ≤21或x >3. 设点Q 的坐标为(x ,137322-+-x x ). 第25题答图①lE yA B O DC· ·x则OH =|x |,HQ =|137322-+-x x |,OP =PH =21|x |.∵OC =1,∴|137322-+-x x |=21|x |·21|x |,即|137322-+-x x |=41x 2.∵点Q 位于x 轴下方,∴137322-+-x x ≤0.∴137322-+-x x =-41x 2.解得x 1=534214+,x 2=534214-. 10分 ②当点Q 在抛物线y =137322+-x x 上时,依题意有21<x ≤3.同理可得:|137322+-x x |=41x 2.∵点Q 位于x 轴下方,∴137322+-x x =-41x 2.解得x 3=116,x 4=2. 11分 ∴满足条件的x 的值有x 1=534214+,x 2=534214-,x 3=116,x 4=2. ∵OP =21OH =21|x |, ∴符合条件的点P 的坐标有4个,即: P 1(5347+,0),P 2(5347-,0),P 3(113,0),P 4(1,0). 12分【知识点】二次函数压轴题,存在性问题第25题答图②O ACBxy· D PQG9.(湖北省咸宁市,24,12)如图,直线343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
2018年中考数学试卷精选汇编:二次函数(PDF版含解析)
【分析】分 h<2、2≤h≤5 和 h>5 三种情况考虑:当 h<2 时,根据二次函数的性质可得出关于 h 的一元 二次方程,解之即可得出结论;当 2≤h≤5 时,由此时函数的最大值为 0 与题意不符,可得出该情况不存 在;当 h>5 时,根据二次函数的性质可得出关于 h 的一元二次方程,解之即可得出结论.综上即可得出结 论. 【解答】解:当 h<2 时,有﹣(2﹣h)2=﹣1, 解得:h1=1,h2=3(舍去); 当 2≤h≤5 时,y=﹣(x﹣h)2 的最大值为 0,不符合题意; 当 h>5 时,有﹣(5﹣h)2=﹣1, 解得:h3=4(舍去),h4=6. 综上所述:h 的值为 1 或 6. 故选:B.
二次函数
一、选择题 1. (2018•山东枣庄•3 分)如图是二次函数 y=ax2+bx+c 图象的一部分,且过点 A(3,0),二次函数图象 的对称轴是直线 x=1,下列结论正确的是( )
A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0 【分析】根据抛物线与 x 轴有两个交点有 b2﹣4ac>0 可对 A 进行判断;由抛物线开口向上得 a>0,由抛物 线与 y 轴的交点在 x 轴下方得 c<0,则可对 B 进行判断;根据抛物线的对称轴是 x=1 对 C 选项进行判断; 根据抛物线的对称性得到抛物线与 x 轴的另一个交点为(﹣1,0),所以 a﹣b+c=0,则可对 D 选项进行判断. 【解答】解:∵抛物线与 x 轴有两个交点, ∴b2﹣4ac>0,即 b2>4ac,所以 A 选项错误; ∵抛物线开口向上, ∴a>0, ∵抛物线与 y 轴的交点在 x 轴下方, ∴c<0, ∴ac<0,所以 B 选项错误; ∵二次函数图象的对称轴是直线 x=1,
【点评】本题考查了二次函数的最值以及二次函数的性质,分 h<2、2≤h≤5 和 h>5 三种情况求出 h 值是 解题的关键.
2018年中考数学真题汇编 二次函数
中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】:B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】:B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】:D4.二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】:C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.【答案】:B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0) C. (-3,-5) D. (-3,-1)【答案】:B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m 【答案】:D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4 【答案】:B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】:A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】:D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】:B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B 作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】:B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】:增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
2018年中考数学二次函数压轴题集锦(50道含解析)
1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx ﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C 作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD 的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。
2018年中考数学真题汇编 二次函数
中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B.C.D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0) C. (-3,-5) D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是(). 乙 C.丙 D.丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C.D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
【精编】2018年中考数学真题汇编 二次函数
中考数学真题汇编:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B.B.C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B.C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6) B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t +1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B (﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
2018年中考全国部分省市全省统一命题数学试卷《二次函数》压轴题精编(解析版)
2018年中考全国部分省市全省统一命题数学试卷《二次函数》压轴题精编(解析版)二次函数综合题:(共17小题)1.(2018•上海)在平面直角坐标系xOy 中(如图).已知抛物线212y x bx c =-++经过点(1,0)A -和点5(0,)2B ,顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D按顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.2.(2018•河北)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=…交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =,M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.3.(2018•河南)如图,抛物线26y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线5y x =-经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.4.(2018•天津)在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22(y x mx m m=+-是常数),顶点为P .(Ⅰ)当抛物线经过点A 时,求顶点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ)无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式. 5.(2018•重庆A 卷)如图,在平面直角坐标系中,点A 在抛物线24y x x =-+上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(1,1). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当PBE ∆的面积最大时,求12PH HF FO ++的最小值;(3)在(2)中,12PH HF FO ++取得最小值时,将CFH ∆绕点C 顺时针旋转60︒后得到△CF H '',过点F '作CF '的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.6.(2018•重庆B 卷)抛物线2y x =-+x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点. (1)如图1,连接CD ,求线段CD 的长;(2)如图2,点P 是直线AC 上方抛物线上一点,PF x ⊥轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是11O B ,当12PE EC +的值最大时,求四边形11PO B C 周长的最小值,并求出对应的点1O 的坐标;(3)如图3,点H 是线段AB 的中点,连接CH ,将OBC ∆沿直线CH 翻折至△22O B C 的位置,再将△22O B C 绕点2B 旋转一周,在旋转过程中,点2O ,C 的对应点分别是点3O ,1C ,直线31O C 分别与直线AC ,x 轴交于点M ,N .那么,在△22O B C 的整个旋转过程中,是否存在恰当的位置,使AMN ∆是以MN 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段2O M 的长;若不存在,请说明理由.7.(2018•吉林)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β∠=,4560β︒︒剟,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n 关于m 的函数解析式及自变量m 的取值范围.8.(2018•吉林长春)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD y ⊥轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数211(0)2y x mx x =-++…的图象记为1G ,函数211(0)2y x mx x =---<的图象记为2G ,其中m 是常数,图象1G 、2G 合起来得到的图象记为G .设矩形ABCD 的周长为L . (1)当点A 的横坐标为1-时,求m 的值; (2)求L 与m 之间的函数关系式;(3)当2G 与矩形ABCD 恰好有两个公共点时,求L 的值;(4)设G 在42x -剟上最高点的纵坐标为0y ,当0392y 剟时,直接写出L 的取值范围.9.(2018•山西)综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.10.(2018•陕西)已知抛物线2:6L y x x =+-与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求ABC ∆的面积;(2)将抛物线L 向左或向右平移,得到抛物线L ',且L '与x 轴相交于A '、B '两点(点A '在点B '的左侧),并与y 轴相交于点C ',要使△A B C '''和ABC ∆的面积相等,求所有满11.(2018•海南)如图1,抛物线23y ax bx=++交x轴于点(1,0)B.A-和点(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点(2,3)D在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ x⊥轴交该抛物线于点Q,连接AQ、DQ,当AQD∆是直角三角形时,求出所有满足条件的点Q的坐标.12.(2018•江西)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线23=-+-经过点(1,0)y x bx-,则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线2(0)=++≠,以y轴上的点(0,)y ax bx c aM m为中心,作该抛物线关于点M对称的抛物线y',则我们又称抛物线y'为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线225y x x=--+关于点(0,)m的衍生抛物线为y',若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线22(0)=+-≠y ax ax b a①若抛物线y的衍生抛物线为22'=-+≠,两抛物线有两个交点,且恰好是2(0)y bx bx a b它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y 关于点2(0,1)k +的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;⋯;关于点2(0,)k n +的衍生抛物线为n y ,其顶点为(n A n ⋯为正整数).求1n n A A +的长(用含n 的式子表示).13.(2018•青海)如图,抛物线2y ax bx c =++与坐标轴交点分别为(1,0)A -,(3,0)B ,(0,2)C ,作直线BC .(1)求抛物线的解析式;(2)点P 为抛物线上第一象限内一动点,过点P 作PD x ⊥轴于点D ,设点P 的横坐标为(03)t t <<,求ABP ∆的面积S 与t 的函数关系式; (3)条件同(2),若ODP ∆与COB ∆相似,求点P 的坐标.14.(2018•新疆)如图,在平面直角坐标系中,抛物线222433y x x =--与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C . (1)求点A ,B ,C 的坐标;(2)点P 从A 点出发,在线段AB 上以每秒2个单位长度的速度向B 点运动,同时,点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t 秒,求运动时间t 为多少秒时,PBQ ∆的面积S 最大,并求出其最大面积;(3)在(2)的条件下,当PBQ ∆面积最大时,在BC 下方的抛物线上是否存在点M ,使BMC∆的面积是PBQ ∆面积的1.6倍?若存在,求点M 的坐标;若不存在,请说明理由.15.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现: ①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元). (1)用含x 的代数式分别表示1W ,2W ;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?16.(2018•福建A 卷)已知抛物线2y ax bx c =++过点(0,2)A .(1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点1(M x ,1)y ,2(N x ,2)y 都满足:当120x x <<时,1212()()0x x y y -->;当120x x <<时,1212()()0x x y y --<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC ∆有一个内角为60︒. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠. 17.(2018•福建B 卷)已知抛物线2y ax bx c =++过点(0,2)A ,且抛物线上任意不同两点1(M x ,1)y ,2(N x ,2)y 都满足:当120x x <<时,1212()()0x x y y -->;当120x x <<时,1212()()0x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒. (1)求抛物线的解析式;(2)若MN 与直线y =-平行,且M ,N 位于直线BC 的两侧,12y y >,解决以下问题:①求证:BC 平分MBN ∠;②求MBC ∆外心的纵坐标的取值范围.2018年中考全国部分省市全省统一命题数学试卷《二次函数》压轴题精编参考解析二次函数综合题:(共17小题)1.(2018•上海)在平面直角坐标系xOy 中(如图).已知抛物线212y x bx c =-++经过点(1,0)A -和点5(0,)2B ,顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D按顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【解】:(1)把(1,0)A -和点5(0,)2B 代入212y x bx c =-++得10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩, ∴抛物线解析式为215222y x x =-++;(2)219(2)22y x =--+,9(2,)2C ∴,抛物线的对称轴为直线2x =,如图,设CD t =,则9(2,)2D t -,线段DC 绕点D 按顺时针方向旋转90︒,点C 落在抛物线上的点P 处,90PDC ∴∠=︒,DP DC t ==,9(2,)2P t t ∴+-,把9(2,)2P t t +-代入215222y x x =-++得2159(2)2(2)222t t t -++++=-, 整理得220t t -=,解得10t =(舍去),22t =,∴线段CD 的长为2;(3)P 点坐标为5(4,)2,D 点坐标为5(2,)2, 抛物线平移,使其顶点9(2,)2C 移到原点O 的位置,∴抛物线向左平移2个单位,向下平移92个单位, 而P 点5(4,)2向左平移2个单位,向下平移92个单位得到点E ,E ∴点坐标为(2,2)-,设(0,)M m , 当0m >时,15(2)2822m ++=,解得72m =,此时M 点坐标为7(0,)2;当0m <时,15(2)2822m -++=,解得72m =-,此时M 点坐标为7(0,)2-; 综上所述,M 点的坐标为7(0,)2或7(0,)2-.2.(2018•河北)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=…交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =,M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.【解】:(1)由题意,点(1,18)A 带入ky x= 得:181k =18k ∴=设2h at =,把1t =,5h =代入5a ∴=25h t ∴=(2)5v =,1AB =51x t ∴=+25h t =,18OB =2518y t ∴=-+由51x t =+ 则1(1)5t x =-2211289(1)185555y x x x ∴=--+=-++当13y =时,2113(1)185x =--+ 解得6x =或4-1x …6x ∴=把6x =代入18y x=3y =∴运动员在与正下方滑道的竖直距离是13310-=(米)(3)把 1.8y =代入2518y t =-+得28125t =解得 1.8t =或 1.8-(负值舍去)10x ∴=∴甲坐标为(10,1.8)恰好落在滑道18y x=上 此时,乙的坐标为(1 1.8v +乙,1.8) 由题意:()1 1.815 1.8 4.5v +-+⨯>乙7.5v ∴>乙3.(2018•河南)如图,抛物线26y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线5y x =-经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.【解】:(1)当0x =时,55y x =-=-,则(0,5)C -, 当0y =时,50x -=,解得5x =,则(5,0)B ,把(5,0)B ,(0,5)C -代入26y ax x c =++得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩,∴抛物线解析式为265y x x =-+-;(2)①解方程2650x x -+-=得11x =,25x =,则(1,0)A ,(5,0)B ,(0,5)C -,OCB ∴∆为等腰直角三角形, 45OBC OCB ∴∠=∠=︒, AM BC⊥,AM B ∴∆为等腰直角三角形,4AM AB ∴=== 以点A ,M ,P ,Q 为顶点的四边形是平行四边形,//AM PQ ,PQ AM ∴==PQ BC ⊥,作PD x ⊥轴交直线BC 于D ,如图1,则45PDQ ∠=︒,4PD ∴==,设2(,65)P m m m -+-,则(,5)D m m -, 当P 点在直线BC 上方时,2265(5)54PD m m m m m =-+---=-+=,解得11m =,24m =,当P 点在直线BC 下方时,225(65)54PD m m m m m =---+-=-=,解得1m =,2m =, 综上所述,P 点的横坐标为4; ②作AN BC ⊥于N ,NH x ⊥轴于H ,作AC 的垂直平分线交BC 于1M ,交AC 于E ,如图2,11M A M C =, 11ACM CAM ∴∠=∠, 12AM B ACB ∴∠=∠,ANB∆为等腰直角三角形,2AH BH NH ∴===,(3,2)N ∴-,易得AC 的解析式为55y x =-,E 点坐标为1(2,5)2-, 设直线1EM 的解析式为15y x b =-+, 把1(2E ,5)2-代入得15102b -+=-,解得125b =-,∴直线1EM 的解析式为11255y x =--,解方程组511255y x y x =-⎧⎪⎨=--⎪⎩得136176x y ⎧=⎪⎪⎨⎪=-⎪⎩,则113(6M ,17)6-;作直线BC 上作点1M 关于N 点的对称点2M ,如图2,则212AM C AM B ACB ∠=∠=∠,设2(,5)M x x -,13632x +=, 236x ∴=, 223(6M ∴,7)6-, 综上所述,点M 的坐标为13(6,17)6-或23(6,7)6-.4.(2018•天津)在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22(y x mx m m=+-是常数),顶点为P .(Ⅰ)当抛物线经过点A 时,求顶点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ)无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式. 【解】:(Ⅰ)抛物线22y x mx m =+-经过点(1,0)A ,012m m ∴=+-,解得:1m =,∴抛物线解析式为22y x x =+-,22192()24y x x x =+-=+-,∴顶点P 的坐标为1(2-,9)4-;(Ⅱ)抛物线22y x mx m =+-的顶点P 的坐标为(2m-,28)4m m +-,由点(1,0)A 在x 轴的正半轴上,点P 在x 轴的下方,45AOP ∠=︒知点P 在第四象限, 如图1,过点P 作PQ x ⊥轴于点Q ,则45POQ OPQ ∠=∠=︒,可知PQ OQ =,即2842m m m+=-,解得:10m =,210m =-,当0m =时,点P 不在第四象限,舍去;10m ∴=-,∴抛物线的解析式为21020y x x =-+;(Ⅲ)由222(2)y x mx m x m x =+-=+-可知当2x =时,无论m 取何值时y 都等于4,∴点H 的坐标为(2,4),过点A 作AD AH ⊥,交射线HP 于点D ,分别过点D 、H 作x 轴的垂线,垂足分别为E 、G,则90DEA AGH ∠=∠=︒,90DAH ∠=︒,45AHD ∠=︒, 45ADH ∴∠=︒,AH AD ∴=,90DAE HAG AHG HAG ∠+∠=∠+∠=︒, DAE AHG∴∠=∠,ADE HAG ∴∆≅∆,1DE AG ∴==、4AE HG ==,则点D 的坐标为(3,1)-或(5,1)-;①当点D 的坐标为(3,1)-时,可得直线DH 的解析式为31455y x =+, 点(2m P -,28)4m m +-在直线31455y x =+上,28314()4525m m m +∴-=⨯-+,解得:14m =-、2145m =-,当4m =-时,点P 与点H 重合,不符合题意,145m ∴=-; ②当点D 的坐标为(5,1)-时,可得直线DH 的解析式为52233y x =-+, 点(2m P -,28)4m m +-在直线52233y x =-+上,28522()4323m m m +∴-=-⨯-+, 解得:14m =-(舍),2223m =-,综上,145m =-或223m =-, 则抛物线的解析式为2142855y x x =-+或2224433y x x =-+. 5.(2018•重庆A 卷)如图,在平面直角坐标系中,点A 在抛物线24y x x =-+上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(1,1). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当PBE ∆的面积最大时,求12PH HF FO ++的最小值;(3)在(2)中,12PH HF FO ++取得最小值时,将CFH ∆绕点C 顺时针旋转60︒后得到△CF H '',过点F '作CF '的垂线与直线AB 交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使以点D ,Q ,R ,S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.【解】:(1)由题意(1,3)A ,(3,3)B ,2AB ∴=.(2)如图1中,设2(,4)P m m m -+,作//PN y 轴J 交BE 于N . 直线BE 的解析式为y x =,(,)N m m ∴,2212(3)32PEB S m m m m ∆∴=⨯⨯-+=-+,∴当32m =时,PEB ∆的面积最大,此时3(2P ,15)4,3(2H ,3),153344PH ∴=-=, 作直线OG 交AB 于G ,使得30COG ∠=︒,作HK OG ⊥于K 交OC 于F ,12FK OF =,12PH HF FO PH FH FK PH HK ∴++=++=+,此时PH HF OF ++的值最小,1122HG OC OG HK =, 33)32HK ⨯∴==+,PH HF OF ∴++的最小值为94+.(3)如图2中,由题意32CH =,CF =,12QF '=,1CQ =,(1,3)Q ∴-,(2,4)D ,DQ①当DQ 为菱形的边时,1(1,3S -,2(1,3S -, ②当DQ 为对角线时,可得3(1,8)S -, ③当DR 为对角线时,可得4(5,3)S综上所述,满足条件的点S 坐标为(1,3-或(1,3-或(1,8)-或(5,3).6.(2018•重庆B 卷)抛物线2y x =-+x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C ,点D 是该抛物线的顶点. (1)如图1,连接CD ,求线段CD 的长;(2)如图2,点P 是直线AC 上方抛物线上一点,PF x ⊥轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是11O B ,当12PE EC +的值最大时,求四边形11PO B C 周长的最小值,并求出对应的点1O 的坐标;(3)如图3,点H 是线段AB 的中点,连接CH ,将OBC ∆沿直线CH 翻折至△22O B C 的位置,再将△22O B C 绕点2B 旋转一周,在旋转过程中,点2O ,C 的对应点分别是点3O ,1C ,直线31O C 分别与直线AC ,x 轴交于点M ,N .那么,在△22O B C 的整个旋转过程中,是否存在恰当的位置,使AMN ∆是以MN 为腰的等腰三角形?若存在,请直接写出所有符合条件的线段2O M 的长;若不存在,请说明理由.【解】:(1)如图1,过点D 作DK y ⊥轴于K ,当0x =时,y =C ∴,22y x =++(D ∴,DK ∴CK =-CD ∴(4分)(2)在2y x =+0y =,则20,解得:1x =-,2x =(A ∴-,0),B 0), (0,6)C ,易得直线AC 的解析式为:y x =+设(E x +,2(,P x x -+,2PF x ∴=-EF =Rt ACO ∆中,AO =OC =AC ∴=30CAO ∴∠=︒,2AE EF ∴==+211(()22PE EC x AC AE ∴+=-+-,212=++,2=-,2x =+,(5分)∴当12PE EC +的值最大时,x =-(P -,(6分)PC ∴=,11O B OB ==∴要使四边形11PO B C 周长的最小,即11PO B C +的值最小,如图2,将点P 1(P ,连接11P B ,则111PO PB =,再作点1P 关于x 轴的对称点2(P ,则1121PB P B =,11211PO B C P B B C ∴+=+,∴连接2P C 与x 轴的交点即为使11PO B C +的值最小时的点1B ,1(B ∴,0),将1B 1O ,此时112PO B C P C +==,对应的点1O 的坐标为(0),(7分)∴四边形11PO B C (8分)(3)2O M (12分) 理由是:如图3,H 是AB 的中点,OH ∴= 6OC =CH BC ∴==30HCO BCO ∴∠=∠=︒, 60ACO ∠=︒,∴将CO 沿CH 对折后落在直线AC 上,即2O 在AC 上, 230B CA CAB ∴∠=∠=︒,2//B C AB ∴,2(B ∴-,①如图4,AN MN=,22330MAN AMN O B O ∴∠=∠=︒=∠,由旋转得:2122330CB C O B O ∠=∠=︒,221B C B C =,212175B CC B C C ∴∠=∠=︒,过1C 作12C E B C ⊥于E ,221B C B C ==∴122C E B O ,2B E 22232175O MB B MO B CC ∠=∠=︒=∠, 22190B O M C EC ∠=∠=︒,∴△1C EC ≅△22B O M ,222O M CE B C B E ∴==-=②如图5,AM MN=,此时M 与C 重合,22O M O C =③如图6,AM MN=,2212B C B C B H ===,即N 和H 、1C 重合, 230CAO AHM MHO ∴∠=∠=∠=︒,2213O M AO ∴== ④如图7,AN MN=,过1C 作1C E AC ⊥于E ,30NMA NAM ∴∠=∠=︒,312330O C B O MA ∠=︒=∠,121222290C B O AO B ∴∠=∠=︒, 190C EC ∠=︒,∴四边形122C EO B 是矩形,212EO C B ∴==122C E B O =EM ∴=22O M EO EM ∴=+=,综上所述,2O M 7.(2018•吉林)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 (1,4)- ,OE = 3 ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β∠=,4560β︒︒剟,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n 关于m 的函数解析式及自变量m 的取值范围.【解】:(1)当1a =-时,抛物线的解析式为223y x x =--+,∴顶点(1,4)D -,(0,3)C , ∴直线CD 的解析式为3y x =-+,3OE ∴=,故答案为(1,4)-,3.(2)结论:OE 的长与a 值无关. 理由:223y ax ax a =+-,(0,3)C a ∴-,(1,4)D a --,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,(3,0)E ∴,3OE ∴=,OE ∴的长与a 值无关.(3)当45β=︒时,3OC OE ==,33a ∴-=, 1a ∴=-,当60β=︒时,在Rt OCE ∆中,OC ==3a ∴-=,a ∴=4560β∴︒︒剟,a 的取值范围为1a -.(4)如图,作PM ⊥对称轴于M ,PN AB ⊥于N .PD PE =,90PMD PNE ∠=∠=︒,90DPE MPN ∠=∠=︒,DPM EPN ∴∠=∠, DPM EPN ∴∆≅∆, PM PN ∴=,DM EN =, (1,4)D a --,(3,0)E ,43EN n m ∴=+=-, 1n m ∴=--,当顶点D 在x 轴上时,(1,2)P -,此时m 的值1, 抛物线的顶点在第二象限,1m ∴<.1(1)n m m ∴=--<.8.(2018•吉林长春)如图,在平面直角坐标系中,矩形ABCD 的对称中心为坐标原点O ,AD y ⊥轴于点E (点A 在点D 的左侧),经过E 、D 两点的函数211(0)2y x mx x =-++…的图象记为1G ,函数211(0)2y x mx x =---<的图象记为2G ,其中m 是常数,图象1G 、2G 合起来得到的图象记为G .设矩形ABCD 的周长为L . (1)当点A 的横坐标为1-时,求m 的值; (2)求L 与m 之间的函数关系式;(3)当2G 与矩形ABCD 恰好有两个公共点时,求L 的值;(4)设G 在42x -剟上最高点的纵坐标为0y ,当0392y 剟时,直接写出L 的取值范围.【解】:(1)由题意(0,1)E ,(1,1)A -,(1,1)D 把(1,1)D 代入2112y x mx =-++中,得到1112m =-++,12m ∴=.(2)抛物线1G 的对称轴1mx m =-=-, 2AE ED m ∴==,矩形ABCD 的对称中心为坐标原点O ,4AD BC m ∴==,2AB CD ==, 84L m ∴=+.(3)当2G 与矩形ABCD 恰好有两个公共点,∴抛物线2G 的顶点21(,1)2M m m --在线段AE 上,∴21112m -=, 2m ∴=或2-(舍弃),82420L ∴=⨯+=.(4)1G 的顶点21(,1)2m m +,1G 中(2,21)m -,2G 顶点21(,1)2m m --,2G 中(4,49)m --. ①当2m …,最高点是抛物线1G 的顶点21(,1)2N m m +时, 若213122m +=,解得1m =或1-(舍弃), 若21192m +=时,4m =或4-(舍弃), 又2m …,观察图象可知满足条件的m 的值为12m 剟,②24m <…时,当(2,21)m -是最高点时,23219212112m m m ⎧-⎪⎪⎨⎪->-⎪⎩剟,解得24m <…,③当4m >时,349924921m m m ⎧-⎪⎨⎪->-⎩剟, 解得942m <…, 综上所述,912m剟, 1240L ∴剟.9.(2018•山西)综合与探究如图,抛物线211433y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q ,过点P 作//PE AC 交x 轴于点E ,交BC 于点F .(1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由; (3)请用含m 的代数式表示线段QF 的长,并求出m 为何值时QF 有最大值.【解】:(1)当0y =,2114033x x --=,解得13x =-,24x =,(3,0)A ∴-,(4,0)B ,当0x =,2114433y x x =--=-,(0,4)C ∴-;(2)5AC ,易得直线BC 的解析式为4y x =-, 设(Q m ,4)(04)m m -<<,当CQ CA =时,222(44)5m m +-+=,解得1m =2m =,此时Q 点坐标为4)-; 当AQ AC =时,222(3)(4)5m m ++-=,解得11m =,20m =(舍去),此时Q 点坐标为(1,3)-; 当QA QC =时,2222(3)(4)(44)m m m m ++-=+-+,解得252m =(舍去),综上所述,满足条件的Q 点坐标为4)-或(1,3)-; (3)解:过点F 作FG PQ ⊥于点G ,如图,则//FG x 轴.由(4,0)B ,(0,4)C -得OBC ∆为等腰直角三角形45OBC QFG ∴∠=∠=FQG ∴∆为等腰直角三角形,FG QG ∴==, //PE AC ,//PG CO ,FPG ACO∴∠=∠,90FGP AOC ∠=∠=︒, ~FGP AOC ∴∆∆.∴FG PG OA CO =,即34FG PG=,44233PG FG FQ ∴===,PQ PG GQ ∴=+==,FQ ∴=, 设(P m ,2114)(04)33m m m --<<,则(,4)Q m m -,2211144(4)3333PQ m m m m m ∴=----=-+,2214)2)33FQ m m m ∴=-+=-+20-<, QF ∴有最大值.∴当2m =时,QF 有最大值.10.(2018•陕西)已知抛物线2:6L y x x =+-与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求ABC ∆的面积;(2)将抛物线L 向左或向右平移,得到抛物线L ',且L '与x 轴相交于A '、B '两点(点A '在点B '的左侧),并与y 轴相交于点C ',要使△A B C '''和ABC ∆的面积相等,求所有满足条件的抛物线的函数表达式.【解】:(1)当0y =时,260x x +-=,解得13x =-,22x =,(3,0)A ∴-,(2,0)B ,当0x =时,266y x x =+-=-,(0,6)C ∴-,ABC∴∆的面积11(23)61522AB OC ==⨯+⨯=; (2)抛物线L 向左或向右平移,得到抛物线L ',5A B AB ∴''==,△A B C '''和ABC ∆的面积相等,6OC OC ∴'==,即(0,6)C '-或(0,6),设抛物线L '的解析式为26y x bx =+-或26y x bx =++ 设(,0)A m '、(,0)B n ',当m 、n 为方程260x bx +-=的两根,m n b ∴+=-,6mn =-,||5n m -=,2()25n m ∴-=, 2()425m n mn ∴+-=,24(6)25b ∴-⨯-=,解得1b =或1-,∴抛物线L '的解析式为26y x x =--.当m 、n 为方程260x bx ++=的两根,m n b ∴+=-,6mn =,||5n m -=,2()25n m ∴-=, 2()425m n mn ∴+-=,24625b ∴-⨯=,解得7b =或7-,∴抛物线L '的解析式为276y x x =++或276y x x =-+.综上所述,抛物线L '的解析式为26y x x =--或276y x x =++或276y x x =-+. 11.(2018•海南)如图1,抛物线23y ax bx =++交x 轴于点(1,0)A -和点(3,0)B . (1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点(2,3)D 在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A 、B 重合),过点P 作PQ x ⊥轴交该抛物线于点Q ,连接AQ 、DQ ,当AQD ∆是直角三角形时,求出所有满足条件的点Q 的坐标.【解】:(1)由题意可得309330a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩,∴抛物线解析式为223y x x =-++;(2)①2223(1)4y x x x =-++=--+,(1,4)F ∴, (0,3)C ,(2,3)D ,2CD ∴=,且//CD x 轴,(1,0)A -,()1123243422ACD FCD ACFD S S S ∆∆∴=+=⨯⨯+⨯⨯-=四边形;②点P 在线段AB 上,DAQ ∴∠不可能为直角,∴当AQD ∆为直角三角形时,有90ADQ ∠=︒或90AQD ∠=︒,i .当90ADQ ∠=︒时,则DQ AD ⊥,(1,0)A -,(2,3)D ,∴直线AD 解析式为1y x =+, ∴可设直线DQ 解析式为y x b =-+',把(2,3)D 代入可求得5b '=,∴直线DQ 解析式为5y x =-+,联立直线DQ 和抛物线解析式可得2523y x y x x =-+⎧⎨=-++⎩,解得14x y =⎧⎨=⎩或23x y =⎧⎨=⎩, (1,4)Q ∴;ii .当90AQD ∠=︒时,设2(,23)Q t t t -++,设直线AQ 的解析式为11y k x b =+, 把A 、Q 坐标代入可得1121123k b tk b t t -+=⎧⎨+=-++⎩,解得1(3)k t =--, 设直线DQ 解析式为22y k x b =+,同理可求得2k t =-,AQ DQ ⊥,121k k ∴=-,即(3)1t t -=-,解得t =,当t =223t t -++=,当t时,223t t -++=, Q ∴点坐标为或; 综上可知Q 点坐标为(1,4)或或. 12.(2018•江西)小贤与小杰在探究某类二次函数问题时,经历了如下过程: 求解体验:(1)已知抛物线23y x bx =-+-经过点(1,0)-,则b = 4- ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线表达式是 .抽象感悟:我们定义:对于抛物线2(0)y ax bx c a =++≠,以y 轴上的点(0,)M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围. 问题解决:(3)已知抛物线22(0)y ax ax b a =+-≠①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a 、b 的值及衍生中心的坐标;②若抛物线y 关于点2(0,1)k +的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;⋯;关于点2(0,)k n +的衍生抛物线为n y ,其顶点为(n A n ⋯为正整数).求1n n A A +的长(用含n 的式子表示).【解】:求解体验:(1)抛物线23y x bx =-+-经过点(1,0)-,130b ∴---=, 4b ∴=-,∴抛物线解析式为2243(2)1y x x x =---=-++, ∴抛物线的顶点坐标为(2,1)-,∴抛物线的顶点坐标(2,1)-关于(0,1)的对称点为(2,1),即:新抛物线的顶点坐标为(2,1), 令原抛物线的0x =,3y ∴=-,(0,3)∴-关于点(0,1)的对称点坐标为(0,5),设新抛物线的解析式为2(2)1y a x =-+, 点(0,5)在新抛物线上,25(02)1a ∴=-+,1a ∴=,∴新抛物线解析式为22(2)145y x x x =-+=-+,故答案为4-,(2,1)-,245y x x =-+;抽象感悟:(2)抛物线2225(1)6y x x x =--+=-++①,∴抛物线的顶点坐标为(1,6)-,抛物线上取点(0,5),∴点(1,6)-和(0,5)关于点(0,)m 的对称点为(1,26)m -和(0,25)m -,设衍生抛物线为2(1)26y a x m '=-+-,2526m a m ∴-=+-,1a ∴=,∴衍生抛物线为22(1)26225y x m x x m '=-+-=-+-②,联立①②得,2222525x x m x x -+-=--+, 整理得,22102x m =-, 这两条抛物线有交点,1020m ∴-…, 5m ∴…;问题解决:(3)①抛物线222(1)y ax ax b a x a b =+-=+--,∴此抛物线的顶点坐标为(1,)a b ---,抛物线y 的衍生抛物线为22222(1)y bx bx a b x a b '=-+=-+-,∴此函数的顶点坐标为2(1,)a b -,两个抛物线有两个交点,且恰好是它们的顶点,∴2222b b a a ba ab a b⎧++=--⎨+-=-⎩, 0a ∴=(舍)或3a =, 3b ∴=-,∴抛物线y 的顶点坐标为(1,0)-,抛物线y 的衍生抛物线的顶点坐标为(1,12), ∴衍生中心的坐标为(0,6);②抛物线22y ax ax b =+-的顶点坐标为(1,)a b ---, 点(1,)a b ---关于点2(0,)k n +的对称点为2(1,22)a b k n +++,∴抛物线n y 的顶点坐标n A 为2(1,22)a b k n +++,同理:1(1n A +,222(1))a b k n ++++22122(1)(22)42n n A A a b k n a b k n n +∴=++++-+++=+.13.(2018•青海)如图,抛物线2y ax bx c =++与坐标轴交点分别为(1,0)A -,(3,0)B ,(0,2)C ,作直线BC .(1)求抛物线的解析式;(2)点P 为抛物线上第一象限内一动点,过点P 作PD x ⊥轴于点D ,设点P 的横坐标为(03)t t <<,求ABP ∆的面积S 与t 的函数关系式; (3)条件同(2),若ODP ∆与COB ∆相似,求点P 的坐标.【解】:(1)把(1,0)A -,(3,0)B ,(0,2)C 代入2y ax bx c =++得:09302a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:23a =-,43b =,2c =,∴抛物线的解析式为224233y x x =-++.(2)设点P 的坐标为224(,2)33t t t -++.(1,0)A -,(3,0)B ,4AB ∴=.221124484(2)4(03)223333S AB PD t t t t t ∴==⨯⨯-++=-++<<; (3)当ODP COB ∆∆∽时,OD DP OC OB=即22423323t tt -++=, 整理得:24120t t +-=, 解得:t =或t =.OD t ∴==,32DP OD == ∴点P 的坐标为. 当ODP BOC ∆∆∽,则OD DP BO OC=,即22423332tt t -++=, 整理得230t t--=, 解得:t =或t =.OD t ∴==,23DP OD ==,∴点P 的坐标为.综上所述点P 的坐标为或. 14.(2018•新疆)如图,在平面直角坐标系中,抛物线222433y x x =--与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C . (1)求点A ,B ,C 的坐标;(2)点P 从A 点出发,在线段AB 上以每秒2个单位长度的速度向B 点运动,同时,点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t 秒,求运动时间t 为多少秒时,PBQ ∆的面积S 最大,并求出其最大面积;(3)在(2)的条件下,当PBQ ∆面积最大时,在BC 下方的抛物线上是否存在点M ,使BMC∆的面积是PBQ ∆面积的1.6倍?若存在,求点M 的坐标;若不存在,请说明理由.【解】:(1)当0x =时,2224433y x x =--=-,∴点C 的坐标为(0,4)-;当0y =时,有2224033x x --=, 解得:12x =-,23x =,∴点A 的坐标为(2,0)-,点B 的坐标为(3,0).(2)设直线BC 的解析式为(0)y kx b k =+≠,将(3,0)B 、(0,4)C -代入y kx b =+,304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的解析式为443y x =-. 过点Q 作//QE y 轴,交x 轴于点E ,如图1所示,当运动时间为t 秒时,点P 的坐标为(22,0)t -,点Q 的坐标为3(35t -,4)5t -,3(22)52PB t t ∴=--=-,45QE t =,22144552()25544PBQ S PB QE t t t ∆∴==-+=--+.405-<, ∴当54t =时,PBQ ∆的面积取最大值,最大值为54. (3)当PBQ ∆面积最大时,54t =,此时点P 的坐标为1(2,0),点Q 的坐标为9(4,1)-.假设存在,设点M 的坐标为222(,4)33m m m --,则点F 的坐标为4(,4)3m m -,2242224(4)23333MF m m m m m ∴=----=-+,2132BMC S MF OB m m ∆∴==-+.BMC ∆的面积是PBQ ∆面积的1.6倍,253 1.64m m ∴-+=⨯,即2320m m -+=,解得:11m =,22m =.03m <<,∴在BC 下方的抛物线上存在点M ,使BMC ∆的面积是PBQ ∆面积的1.6倍,点M 的坐标为(1,4)-或8(2,)3-.15.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现: ①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元). (1)用含x 的代数式分别表示1W ,2W ;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?【解】:(1)设培植的盆景比第一期增加x 盆, 则第二期盆景有(50)x +盆,花卉有(50)x -盆, 所以21(50)(1602)2608000W x x x x =+-=-++,。
2018年中考数学专题复习卷:二次函数(含解析)
二次函数一、选择题1.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1B. 1C. -1D. 02.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.把抛物线y=- 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. y=-(x-1)2-3B. y=-(x+1)2-3C. y=-(x-1)2+3D. y=-(x+1)2+34.已知抛物线(,,为常数,)经过点. ,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.,正确结论的个数为()A. 0B. 1C. 2D. 35.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2D. -1或26.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.7.已知二次函数( 为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A. 3或6B. 1或6C. 1或3D. 4或68.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是()A.4 B.6 C.8 D.109.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 2.76米B. 6.76米C. 6米D. 7米10.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A. t>-5B. -5<t<3C. 3<t≤4D. -5<t≤411.如图,已知二次函数图象与x轴交于A,B两点,对称轴为直线x=2,下列结论:①abc>0;②4a+b=0;③若点A坐标为(−1,0),则线段AB=5;④若点M(x1, y1)、N(x2, y2)在该函数图象上,且满足0<x1<1,2<x2<3,则y1<y2其中正确结论的序号为()A. ①,②B. ②,③C. ③,④D. ②,④12.如图,在中,,,,动点从点开始沿向点以以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()A. B. C.D.二、填空题13.抛物线y=2(x+2) +4的顶点坐标为________.14.将二次函数的图像向上平移3个单位长度,得到的图像所对应的函数表达式是________.15.已知二次函数,当时,函数值的最小值为,则的值是________.16.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若p、q(P是关于x的方程2-(x-a)(x-b)=0的两根且a则请用“<”来表示a、b、P、q的大小是________17.如图,抛物线与直线的两个交点坐标分别为,,则方程的解是________.18.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m >0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为________.19.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为________cm.20.如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为________.三、解答题21.已知:二次函数y=ax 2+bx+c(a≠0)的图象如图所示.请你根据图象提供的信息,求出这条抛物线的表达式.22.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.(Ⅰ)求P与x的函数关系式;(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?23.如图,平面直角坐标系xOy中,抛物线y=a(x+1)(x-9)经过A,B两点,四边形OABC矩形,已知点A坐标为(0,6)。
2018年中考全国部分省市全省统一命题数学试卷《二次函数》压轴题精编(解析版)
两点(点 A 在点 B 左侧),与 y 轴交于点 C . ( 1)求点 A , B , C 的坐标; ( 2)点 P 从 A 点出发,在线段 AB 上以每秒 2 个单位长度的速度向 B 点运动,同时,点
Q 从 B 点出发,在线段 BC 上以每秒 1 个单位长度的速度向 C 点运动,当其中一个点 到达终点时,另一个点也停止运动.设运动时间为 t 秒,求运动时间 t 为多少秒时,
C1 ,直线 O3C1 分别与直线 AC , x 轴交于点 M , N .那么,在 △ O2 B2C 的整个旋转过
程中,是否存在恰当的位置,使 AMN 是以 MN 为腰的等腰三角形?若存在,请直接 写出所有符合条件的线段 O2 M 的长;若不存在,请说明理由.
7.(2018?吉林)如图,在平面直角坐标系中,抛物线 y ax2 2ax 3a(a 0) 与 x 轴相
PBQ 的面积 S 最大,并求出其最大面积; ( 3)在(2)的条件下,当 PBQ 面积最大时,在 BC 下方的抛物线上是否存在点 M ,使
BMC 的面积是 PBQ 面积的 1.6 倍?若存在,求点 M 的坐标;若不存在,请说明理 由.
15.(2018?安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各 50 盆.售后统 计,盆景的平均每盆利润是 160 元,花卉的平均每盆利润是 19 元.调研发现:
( 3)若运动员甲、乙同时从 A 处飞出,速度分别是 5 米 / 秒、 v乙 米 / 秒.当甲距 x 轴 1.8 米,且乙位于甲右侧超过 4.5 米的位置时,直接写出 t 的值及 v乙 的范围.
3.(2018?河南)如图,抛物线 y ax2 6x c 交 x 轴于 A , B 两点,交 y 轴于点 C .直线
2.(2018?河北)如图是轮滑场地的截面示意图,平台 AB 距 x 轴(水平) 18 米,与 y 轴 交于点 B ,与滑道 y k ( x…1) 交于点 A ,且 AB 1 米.运动员(看成点)在 BA 方向获
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学专题复习卷: 二次函数
一、选择题
1.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()
A. 1或-1
B. 1
C. -1
D. 0
2.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.把抛物线y=- 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()
A. y=-(x-1)2-3
B. y=-(x+1)2-3
C. y=-(x-1)2+3
D. y=-(x+1)2+3
4.已知抛物线(,,为常数,)经过点. ,,其对称轴在
轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③
.,正确结论的个数为()
A. 0
B. 1
C. 2
D. 3
5.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()
A. -1
B. 2
C. 0或2
D. -1或2
6.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()
A. B. C. D.
7.
已知二次函数 ( 为常数),当自变量的值满足时,与其对应的函数值的最
大值为-1,则的值为( )
A. 3或6
B. 1或6
C. 1或3
D. 4或6
8.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是()
A.4 B.6 C.8 D.10
9.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()
A. 2.76米
B. 6.76米
C. 6米
D. 7米
10.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()
A. t>-5
B. -5<t<3
C. 3<t≤4
D. -5<t≤4
11.如图,已知二次函数图象与x轴交于A,B两点,对称轴为直线x=2,下列结论:
①abc>0;②4a+b=0;③若点A坐标为(−1,0),则线段AB=5;④若点M(x1,y1)、N(x2,y2)在该函数图象上,且满足0<x1<1,2<x2<3,则y1<y2其中正确结论的序号为()
A. ①,②
B. ②,③
C. ③,④
D. ②,④
12.如图,在中,,,,动点从点开始沿向点以以
的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,
两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()
A. B. C. D.
二、填空题
13.抛物线y=2(x+2) +4的顶点坐标为________.
14.将二次函数的图像向上平移3个单位长度,得到的图像所对应的函数表达式是________.
15.
已知二次函数,当时,函数值的最小值为,则的值
是________.
16.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若p、q(P是关于x的方程2-(x-a)(x-b)=0的两根且a则请用“<”来表示a、b、P、q的大小是________
17.如图,抛物线与直线的两个交点坐标分别为,,则方程
的解是________.
18.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为________.
19.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为________cm.。