【典型题】七年级数学下期中一模试卷(附答案) (2)

合集下载

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)

【必考题】七年级数学下期中第一次模拟试题附答案 (2)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15° 3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( ) A .(2,1) B .(﹣2,﹣1) C .(﹣2,1) D .(2,﹣1)4.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 5.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80° 6.下列生活中的运动,属于平移的是( ) A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子 7.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 8.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个 B .3个C .4个D .5个 9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 12.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.14.命题“对顶角相等”的逆命题是_______.15.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).16.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.18.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.19.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.20.知a ,b 为两个连续的整数,且5a b <<,则ba =______.三、解答题21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:(1)计算:{}{}3,11,2+;(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.解:(1){}{}3,11,2+______;(2)答:______;(3)加法算式:______.22.解方程组:2783810x y x y -=⎧⎨-=⎩23.解方程组:23238x y x y -=⎧⎨-=⎩24.解方程组:x 4y 1216x y -=-⎧⎨+=⎩. 25.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P 在x 轴上,即y=0,可得出a 的值,从而得出点P 的坐标.【详解】∵点P (3a ,a+2)在x 轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P 的坐标为(-6,0).故选C .【点睛】此题考查平面直角坐标系中点的坐标,明确点在x 轴上时纵坐标为0是解题的关键.2.B解析:B【解析】【分析】根据平移的性质得出AC ∥BE ,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.3.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A、两边都乘2再加3,不等号的方向不变,故A正确;B、两边都减,b不等号的方向不变,故B错误;C、两边都乘以3-,不等号的方向改变,故C错误;D、两边都除以3-,不等号的方向改变,故D错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.C解析:C【解析】【分析】在图中过E作出BA平行线EF,根据平行线性质即可推出∠AEF及∠DEF度数,两者相加即可.【详解】过E 作出BA 平行线EF ,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∠ABC=180°-∠BCD =180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】 本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.6.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.7.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.11.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.二、填空题13.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.14.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.15.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.16.-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算 解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值,即可确定出所求.【详解】解:根据题中的新定义得:35154728a b a b +=⎧⎨+=⎩, 解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.17.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a 的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm 的正方形ABCD 先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.20.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】<<,∵a,b为两个连续的整数,且a b∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.三、解答题21.(1){4,3};(2)B,图见解析;(3){0,0}.【解析】【分析】(1)根据平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}计算;(2)根据题意画出图形、结合图形解答;(3)根据平移量的定义、加法法则表示即可.【详解】(1){}{}3,11,2+={3+1,1+2}={4,3},(2)如图.最后的位置仍是点B ,(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【点睛】本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.22.6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)2783810x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x= 56, 把x= 56代入①得:106-7y=8, 解得:y= 45-, 则方程组的解为6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.72x y =⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)23238x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x=7, 把x=-1代入①得:7-2y=3,解得:y=2,则方程组的解为72x y =⎧⎨=⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.72x y =⎧⎨=⎩【解析】【分析】利用代入法解二元一次方程组.【详解】x 4y 1216x y -=-⎧⎨+=⎩①② 由①得:x=4y-1 ③将③代入②,得:2(4y-1)+y=16,解得:y=2,将y=2代入③,得:x=7.故原方程组的解为72x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握代入法及加减消元法是解题的关键.25.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。

2021-2022年七年级数学下期中一模试卷(附答案)(2)

2021-2022年七年级数学下期中一模试卷(附答案)(2)

一、选择题1.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)2.圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量3.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.4.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 5.一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的()A.北偏东30°B.北偏东60°C.南偏西30°D.南偏西60°6.下面的语句,不正确的是()A.对顶角相等B.相等的角是对顶角C.两直线平行,内错角相等D.在同一平面内,经过一点,有且只有一条直线与已知直线垂直7.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°8.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 9.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 10.下列运算正确的是( ) A .()23636a = B .()()22356a a a a --=-+C .842x x x ÷=D .326326x x x ⋅= 11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x -或4814x 12.下面运算正确的是( ) A .22752a b a -= B .842x x x ÷=C .()222a b a b -=-D .()3226628x y x y =二、填空题13.在函数121y x =--中,自变量x 的取值范围是________ . 14.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需________分钟到达终点B .15.若一个角的余角是它的补角的16,则这个角的度数为______________. 16.如图,AB ∥CD ,∠β=130°,则∠α=_______°.17.如图,一环湖公路的AB 段为东西方向,经过四次拐弯后,又变成了东西方向的FE 段,则B C D E ∠+∠+∠+∠的度数是______.18.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.19.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).20.若代数式21x mx ++是完全平方式,则m 的值为______.三、解答题21.如图,已知在Rt ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,点D 在斜边AB 上,将ABC 沿着过点D 的一条直线翻折,使点B 落在射线BC 上的点B '处,连接DB '并延长,交射线AC 于E .(1)当点B '与点C 重合时,求BD 的长.(2)当点E 在 AC 的延长线上时,设BD 为x ,CE 为y , 求y 关于x 函数关系式,并写出定义域.(3)连接AB ',当AB D '是直角三角形时,请直接写出BD 的长.22.已知y=-x 2+(a-1)x+2a-3,当x=-1时,y=0,(1)求a 的值;(2)当x=1时,求y 的值.23.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.25.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭; (3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成的另外三边总长应恰好为24米”,结合BC 边的长为x 米,AB 边的长为y 米,可得BC +2AB=24,即x +2y=24,即y=-x +12.因为菜园的一边是足够长的墙,所以0<x<24.故选B .2.B解析:B【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.3.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.4.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.5.C解析:C【分析】根据方向角的表示方法,可得答案.【详解】解:设此船位于海面上的C 处,灯塔位于D 处,射线CA 、DB 的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC ∥BD ,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C .【点睛】本题考查了方向角,理解题意画出图形是解题的关键.6.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.7.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 8.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,故选:C .【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.9.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.10.B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.11.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有5种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2, 添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 12.D解析:D【分析】利用合并同类项、同底数幂的除法、完全平方公式以及积的乘方的知识,即可求得答案.【详解】A 、27a b 和25a 不是同类项,不能合并,该选项错误;B 、844x x x ÷=,该选项错误;C 、()2222a b a ab b -=-+,该选项错误;D 、()3226628x y x y =,该选项正确;故选:D .【点睛】本题考查了合并同类项、同底数幂的除法、完全平方公式以及积的乘方等知识.熟练掌握运算法则是解题的关键. 二、填空题13.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于等于0可知x ﹣2≥0;分母不等于0可知:x ﹣2≠1则可以求出自变量x 的取值范围【详解】根据题意得:即解得:x≥2且x≠3故答案解析:x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知x ﹣2≥0;分母不等于0,可知:x ﹣2≠1,则可以求出自变量x 的取值范围.【详解】根据题意得:2010x -≥⎧⎪≠,即2021x x -≥⎧⎨-≠⎩,解得:x ≥2且x ≠3. 故答案为:x ≥2且x ≠3.【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.【解析】【分析】根据路程与时间的关系可得甲乙的速度根据相遇前甲行驶的路程除以乙行驶的速度可得乙到达A站需要的时间根据相遇前乙行驶的路程除以甲行驶的速度可得甲到达B站需要的时间再根据有理数的减法可得答解析:【解析】【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B 站需要的时间,再根据有理数的减法,可得答案.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43千米/分钟,相遇后乙到达A站还需(16×16)÷43=2分钟,相遇后甲到达B站还需(10×43)÷16=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B,故答案为:78.【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.15.72°【分析】设这个角的度数为x根据题意列方程求解即可【详解】设这个角的度数为x根据题意得:解得x=故答案为:【点睛】此题考查余角补角的定义及计算掌握角的余角及补角的表示方法列出方程解答问题是解题的解析:72°【分析】设这个角的度数为x,根据题意列方程190(180)6x x︒-=︒-,求解即可.【详解】设这个角的度数为x,根据题意得:190(180)6x x︒-=︒-,解得x=72︒,故答案为:72︒.【点睛】此题考查余角、补角的定义及计算,掌握角的余角及补角的表示方法,列出方程解答问题是解题的关键.16.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∠ =∠1,∴α∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义.17.540°【分析】分别过点CD作AB的平行线CGDH进而利用同旁内角互补可得∠B+∠BCD+∠CDE+∠E的大小【详解】解:如图根据题意可知:AB∥EF 分别过点CD作AB的平行线CGDH所以AB∥CG解析:540°【分析】分别过点C,D作AB的平行线CG,DH,进而利用同旁内角互补可得∠B+∠BCD+∠CDE +∠E的大小.【详解】解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为:540°.【点睛】考查了平行线的性质,解题的关键是作辅助线,利用平行线的性质计算角的大小.18.2【分析】先运用多项式的乘法法则计算再合并同类项因积中不含x的一次项所以让一次项的系数等于0得a的等式再求解【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a∵积中不含x的一次项∴2-a=解析:2【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(2x-a)(x+1)=2x2+(2-a)x-a,∵积中不含x的一次项,∴2-a=0,∴a=2,故答案为:2.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.19.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD的长为m则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD的长为m,分别求出S1,S2,再代入S2-S1计算即可求解.【详解】解:设长方形ABCD的长为m,则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16a2×=4a2.故答案为:4a2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.20.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题21.(1)BD=1;(2)1(01)y x x =-+<<;(3)23或43. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半,解得AC 的长,再根据勾股定理解得BC 的长,根据折叠的性质可得DB DB '=,结合三角形外角性质可得60ADB '∠=︒,当点B '与点C 重合时,可证明△ADC 是等边三角形,最后由等边三角形的性质解题即可;(2)过D 作DH BC ⊥于H ,在Rt BDH △中,设BD x =,由含30°角的直角三角形性质解得则,BH x BB '==,在Rt B EC '△中,设EC y =,B C '=,最后由BC BB B C ''=+解题即可;(3)设DH a =,先证明60ADB '∠=︒,当AB D '是直角三角形时,再分类讨论①当90AB D '∠=︒时或②当90B AD '∠=︒时,分别利用含30°角的直角三角形性质和勾股定理解得a 的值即可解题.【详解】解:(1)在Rt △ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,112AC AB ∴==,根据勾股定理得,BC =, ∵由折叠知,DB DB '=,30B BB D '∴∠=∠=︒,60ADB B BB D ''∴∠=∠+∠=︒,当点B '与点C 重合时,DC=DB ,60A ADC ∠=∠=︒,∴△ADC 是等边三角形,∴AD= AC=1,∴BD=AB-AD=1;(2)如图1,过D 作DH BC ⊥于H ,在Rt BDH △中,设,30BD x B =∠=︒,则3,32BH x BB x '==, 在Rt B EC '△中,设,30EC y EB C '=∠=,则3B C y '=, 333BC BB B C x y ''∴=+=+=,1(01)y x x ∴=-+<<;(3)设DH a =,在Rt BDH △中,2,3BD a BH a ==,2,223DB BD a BB BH a ''====,由(1)知,60ADB '∠=︒,AB D '△是直角三角形,∴①当90AB D '∠=︒时,如图2,在Rt AB D '△中,9030B AD ADB ''∠=︒-∠=︒,24,323AD B D a AB B D a '''∴====,在Rt ACB '△中,323B C BC BB a ''=-=,根据勾股定理得,222AB B C AC ''=+,即22(23)323)1a a =+,解得13a =, 223BD a ∴==; ②当90B AD '∠=︒时,如图3,同①的方法得,43BD =, 综上所述,当AB D '是直角三角形时,满足条件的23BD =或43 【点睛】本题考查含30°角的直角三角形、三角形的外角、一次函数、勾股定理、等边三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)a=3;(2)4【解析】试题分析:(1)把x =-1,y =0代入函数解析式解方程即可得出a 的值; (2)把a 的值代入y =-x 2+(a -1)x +2a -3,得出函数解析式,再把x =1代入即可求出y 的值.试题解:(1)由y =-x 2+(a -1)x +2a -3,当x =-1时,y =0,得-1-(a -1)+2a -3=0,解得a =3;(2)由(1)知y =-x 2+2x +3,当x =1时,y =-1+2+3=4.点睛:本题考查了函数值,利用待定系数法是求函数解析式的关键,又利用了自变量与函数值的对应关系.23.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒∴ABE ∠的补角的度数为18048132︒-︒=︒答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.24.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则. 26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。

2021-2022年七年级数学下期中一模试卷(含答案)(2)

2021-2022年七年级数学下期中一模试卷(含答案)(2)

一、选择题1.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m3的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:S•h=200,则S关于h的函数图象大致是()A.B.C.D.2.如图,已知正方形ABCD、正方形CEFG的边长分别为8和4,且点D,C,E在同一条直线上,动点M从点E向点F移动,连接DM.若ME=x,则阴影部分的面积y与x之间的关系式为()A.y=6x B.y=12x C.y=6x-80 D.y=80-6x3.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.4.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C .D .5.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .7 6.如果∠l 与∠2互补,∠2为锐角,则下列表示∠2余角的式子是( ) A .90°-∠1 B .∠1 - 90° C .∠1 + 90° D .180°-∠1 7.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧,交OA '于'C ;(4)以C '为圆心,OC 为半径作弧,交前面的弧于D ;(5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角.以上作法中,错误的一步是( )A .()2B .()3C .()4D .()58.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°9.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+ 10.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a cb d=ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ). A .2B .3C .4D .6 11.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- 12.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24二、填空题13.某种树木的分枝生长规律如下表所示,则预计到第6年时,树木的分枝数为__. 年份分枝数 第1年1 第2年1 第3年2 第4年3 第5年 514.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.15.一个角是它的补角的五分之一,则这个角的余角是______度. 16.在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.17.如图,若a //b ,则图中x 的度数是______________度.18.若294x kx ++是一个完全平方式,则k 的值为_____. 19.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 20.计算:32(2)a b -=________. 三、解答题21.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?22.如图,圆柱的高是4cm ,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm 3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V 与底面半径r 的关系式;(3)当圆柱的底面半径由2cm 变化到8cm 时,圆柱的体积由多少cm 3变化到多少cm 3.23.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒24.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.25.(1)23235ab a b ab (2)23233x x x x 26.先化简,再求值.(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,其中 1.5x =-,2y =. (2)已知2830a a --=,求(1)(3)(5)(7)a a a a --+--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先利用已知得出S 与h 的函数关系式,进而利用h 的取值范围得出函数图象.【详解】解:∵S•h=200,∴S 关于h 的函数关系式为:S=200h,故此函数图象大致是:反比例函数图象,即双曲线,故选C .【点睛】本题考查函数图象,得出S 与h 的函数关系式是解题关键. 2.D解析:D【解析】∵S 阴影=S 正方形ABCD +S 正方形CEFG -S 三角形DEM ,∴y=82+42-()1842x ⨯+=80-6x , 故选D. 3.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.4.C解析:C【解析】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.5.B解析:B【分析】先根据CD∥EF得出∠CGE=∠GCD,再由CG∥AF得出∠CGE=∠AFE,根据AB∥CD∥EF可得出∠AFE=∠DHF=∠AHC=∠BAH,由此可得出结论.【详解】解:∵CD∥EF,∴∠CGE=∠GCD,∠AFE=∠DHF.∵CG∥AF,∴∠CGE=∠AFE.∵AB∥CD,∴∠BAH=∠DHF,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH.故选:B.【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等.6.B解析:B【分析】首先根据补角的定义可得∠2=180°-∠1,再根据余角定义可得∠2余角的式子是90°-∠2,再进行等量代换即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,∴∠2=180°-∠1,∴∠2余角的式子是,90°-∠2=90°-(180°-∠1)=∠1-90°,故选:B.【点睛】本题主要考查了补角和余角,关键是掌握余角和补角的定义.7.C解析:C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以C'为圆心,CD为半径作弧,交前面的弧于D';【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.8.B解析:B【分析】过C 作CM ∥直线l 1,求出CM ∥直线l 1∥直线l 2,根据平行线的性质得出∠1=∠MCB =25°,∠2=∠ACM ,即可求出答案.【详解】过C 作CM ∥直线l 1,∵直线l 1∥l 2,∴CM ∥直线l 1∥直线l 2,∵∠ACB =60°,∠1=25°,∴∠1=∠MCB =25°,∴∠2=∠ACM =∠ACB -∠MCB =60°-25°=35°,故选:B .【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.9.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.10.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 11.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键. 12.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S大正方形=a2,S△②=12(a﹣b)b=12ab﹣12b2,S△①=12a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=12a2﹣12ab+12b2,=12[(a+b)2﹣3ab],=12(100﹣54)=23,故选:C.【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.二、填空题13.8【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和【详解】根据所给的具体数据发现:从第三个数据开始每一个数据是前面两个数据的和则第6年的时候是3+5=8个故答案为8【点睛】本题考查解析:8【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和.【详解】根据所给的具体数据发现:从第三个数据开始,每一个数据是前面两个数据的和,则第6年的时候是3+5=8个.故答案为8.【点睛】本题考查了图形的变化类问题,仔细观察树枝的分叉的个数后找到规律是解题的关键.14.-40【详解】试题分析:当y=x时解得x=-40故答案为-40考点:求代数式的值解析:-40【详解】试题分析:当y=x时,9325x x=+,解得x=-40.故答案为-40考点:求代数式的值.15.60【分析】设这个角为x 补角为(180°-x )再由这个角是补角的五分之一可得出方程求出x 的值即可得到答案【详解】解:设这个角为x 补角为(180°-x )则解得:x=30°则这个角为30°所以它的余角=解析:60【分析】设这个角为x ,补角为(180°-x ),再由这个角是补角的五分之一,可得出方程,求出x 的值即可得到答案.【详解】解:设这个角为x ,补角为(180°-x ),则 1(180)5x x =︒- , 解得:x=30°,则这个角为30°.所以,它的余角=90°-30°=60°故答案为:60.【点睛】本题考查了余角和补角的知识,关键是掌握互余的两角之和为90°,互补的两角之和为180°.16.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE 的度数【详解】解:如图1:∵OE ⊥CD ∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB 的度数,再根据角的和差求出∠BOE 的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.17.72【分析】根据平角的定义可求再根据平行线的性质即可求解【详解】解:如图过两平行线中间角的顶点作的平行线由平行线的性质可得解得故答案为:72【点睛】考查了平行线的性质关键是熟悉两直线平行内错角相等的 解析:72【分析】根据平角的定义可求160∠=︒,再根据平行线的性质即可求解.【详解】解:如图,过两平行线中间角的顶点作a 的平行线,118012060∠=︒-︒=︒,由平行线的性质可得48603030x +︒=︒+︒+︒,解得72x =︒.故答案为:72.【点睛】考查了平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.18.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 19.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 20.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.三、解答题21.(1)1小时;(2)返回速度快,70千米/时.【解析】【分析】(1)根据函数图象通过是信息可知,4.5-3.5=1,由此得出货车在乙地卸货停留的时间;(2)比较货车往返所需的时间,即可得出货车往返速度的大小关系,根据路程除以时间即可求得速度.【详解】解:(1)∵4.5-3.5=1(小时),∴货车在乙地卸货停留了1小时.(2)∵7.5-4.5=3<3.5,∴货车返回速度快.∵210÷3=70(千米/时),∴返回速度是70千米/时.故答案为:(1)1小时;(2)返回速度快,70千米/时.【点睛】本题主要考查了函数图象,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.解决问题的关键是从函数图象中获取关键的信息.22.(1)半径r 体积V ;(2)V =4πr 2;(3) 圆柱的体积由16πcm 3变化到256πcm 3.【解析】【分析】(1)根据函数间两变量的变化关系,可得答案;(2)根据圆柱的体积公式,可得函数解析式;(3)根据自变量与函数值的关系,可得答案.【详解】解:(1)在这个变化过程中,自变量是r ,因变量是V.(2)圆柱的体积V 与底面半径r 的关系式是V=4πr 2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm 3变化到256πcm 3.故答案为:(1)r ,V ;(2)V=4πr 2;(3)16π,256π.【点睛】本题考查了函数关系式,利用圆柱的体积公式得出函数关系式是解题关键.23.见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键.24.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键25.(1)10615a b ;(2)23221x x -- 【分析】 (1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.26.(1)43344193x y x y -,36;(2)()22838a a -+,44 【分析】(1)先算积的乘方同时计算中括号内的单项式乘以多项式,合并同类项,再算单项式乘以多项式,赋值,计算即可;(2)先利用多项式乘以多项式法则展开,合并同类项,再整理,将条件整体代入求值即可.【详解】解:(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭, 2222221=2229x y x y xy x y xy ⎡⎤⋅-+-⎣⎦, 22221=439x y x y xy ⎡⎤⋅-⎣⎦, 43344193x y x y =-, 把 1.5x =-,2y =, 原式()()433441-1.52-1.5293=⨯-⨯⨯⨯,43344313-2-29232⎛⎫⎛⎫=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⨯⨯, 4811278+1691638=⨯⨯⨯⨯, 36=;(2)(1)(3)(5)(7)a a a a --+--, 22431235a a a a =-++-+,221638a a =-+,()22838a a =-+,∵2830a a --=,∴283a a -=,原式233844=⨯+=.【点睛】本题考查整式乘除乘方混合运算化简求值问题,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序是解题关键.。

2021-2022年七年级数学下期中一模试题及答案(2)

2021-2022年七年级数学下期中一模试题及答案(2)

一、选择题1.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.2.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.673.在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm4.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y如下表:长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…下列用长度x表示售价y的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x5.下列语句中正确的是()A.直线AB和直线BA是两条不同的直线B.连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小6.下列说法正确的有( ) ①绝对值等于本身的数是正数. ②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离. ④若AC =BC ,则点C 就是线段AB 的中点. ⑤不相交的两条直线是平行线 A .1个B .2个C .3个D .4个7.如图,CB 平分∠ACD ,∠2=∠3,若∠4=60°,则∠5的度数是( )A .60°B .30°C .20°D .40°8.如图所示,如果 AB ∥ CD ,则∠α、∠β、∠γ之间的关系为( )A .∠α+∠β+∠γ=180°B .∠α-∠β+∠γ=180°C .∠α+∠β-∠γ=180°D .∠α-∠β-∠γ=180°[ 9.下列计算正确的是( ) A .32a a a -= B .623a a a ÷=C .624a a a -=D .32a a a ÷=10.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .2511.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 912.若53x =,52y =,则235-=x y ( ) A .34B .1C .23D .98二、填空题13.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势 年 份 2006 2007 2008 … 入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.14.圆柱的高是10 cm ,圆柱底面圆的半径为r cm ,圆柱的侧面展开图的面积Scm 2.圆柱侧面展开图的面积s 与圆柱底面半径r 之间的关系式是___.15.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.16.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.17.如图,若a //b ,则图中x 的度数是______________度.18.计算:()322()ab ab ÷-=________.19.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.20.已知29x mx ++是完全平方式,则m =_________.三、解答题21.观察下图,回答问题. (1)反映了哪两个变量之间的关系? (2)点A ,B 分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?22.如图,在Rt △ABC 中,已知∠C=90°,边AC=4cm ,BC=5cm ,点P 为CB 边上一点,当动点P 沿CB 从点C 向点B 运动时,△APC 的面积发生了变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP 长为x cm ,△APC 的面积为y cm ,则y 与x 的关系可表示为_____; (3)当点P 从点D (D 为BC 的中点)运动到点B 时,则△APC 的面积从____cm 2变到_____cm 2.23.如图,直线CD 经过AOB ∠的顶点O ,OE 平分AOB ∠,OF 平分BOD ∠.(1)若COE ∠=4DOE ∠,求DOE ∠的度数.(2)若BOD ∠=13AOB ∠,且AOB EOF ∠+∠=160︒,求BOD ∠和EOF ∠的度数.24.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD , OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.25.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 26.化简:(1)()34322223x y x y z x y -÷; (2)2(4)3(1)(3)x x x x -+-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据每段中路程s 随时间t 的变化情况即可作出判断. 【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s 岁t 的增大而减小,因而B 、D 错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s 随t 的变化要慢,因而图象要平缓,故A 正确,C 错误. 故选A . 【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.2.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解. 【详解】输入8,输出数就是82+1=64+1=65; 故选C . 【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.3.B解析:B 【解析】 【分析】根据自变量、因变量的含义,以及弹簧的长度与所挂物体质量之间的关系逐一判断即可. 【详解】x 与y 都是变量且存在一一对应关系,所以 y 是x 的函数,且x 是自变量,A 选项不符合题意;弹簧不挂重物时长度为20cm ,B 选项符合题意;20.5-20=0.5,21-20.5=0.5,21.5-21=0.5,22-21.5=0.5,22.5-22=0.5,所以物体质量每增加1 kg ,弹簧长度y 增加0.5 cm ,C 选项不符合题意;()22.50.57523.5+⨯-=,当所挂物体质量为7 kg 时,弹簧长度为23.5 cm ,D 选项不符合题意;正确答案选B. 【点睛】本题考察自变量因变量的定义及函数的实际应用问题.4.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.D解析:D 【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解. 【详解】A 、直线AB 和直线BA 是一条直线,原来的说法是错误的,不符合题意; B 、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D、一个角的余角比这个角的补角小是正确的,符合题意;故选:D.【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.6.B解析:B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点睛】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.7.B解析:B【分析】证出∠AB∥CD,由平行线的性质得∠4=∠ACD=∠1+∠2=60°,∠5=∠2,由角平分线定义得∠1=∠2=30°,即可得出答案.【详解】∵∠2=∠3,∴AB∥CD,∴∠4=∠ACD=∠1+∠2=60°,∠5=∠2,∵CB平分∠ACD,∴∠1=∠2=30°,∴∠5=∠2=30°;故选:B.【点睛】本题考查了平行线的判定与性质以及角平分线定义;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.8.C解析:C【分析】过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.【详解】解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β-∠γ=180°,故选:C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.9.D解析:D【分析】根据合并同类项法则和同底数幂的除法分别计算,再判断即可.【详解】解:A.等式左边不是同类项不能合并,故计算错误,不符合题意;B. 624÷=,故原选项计算错误,不符合题意;a a aC. 等式左边不是同类项不能合并,故计算错误,不符合题意;D. 32÷=,故计算正确,符合题意.a a a故选:D.【点睛】本题考查合并同类项和同底数幂的除法.熟记运算公式是解题关键.10.A解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.11.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.12.D解析:D 【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算. 【详解】解:()()23232323955555328x yx y x y -=÷=÷=÷=. 故选:D . 【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.二、填空题13.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y 与x 是一次函数关系设y=kx+b 再取两组数据代入得到二元一次方程组求出kb即可得到答案;(2)根据不超过1000人列出不等式解析:年份 入学儿童人数 2014 【分析】(1)根据题意,每一年的递减人数相等判断出y 与x 是一次函数关系,设y=kx+b ,再取两组数据代入得到二元一次方程组,求出k 、b 即可得到答案; (2)根据不超过1000人列出不等式,然后求解即可得到答案. 【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量, 故答案为:年份 ;入学儿童人数; (2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000, 解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人. 故答案为: 2014. 【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.14.s=20πr 【解析】【分析】圆柱的侧面展开图是长方形首先计算出圆周的底面周长在根据长方形的面积=长×宽可得圆柱侧面展开图的面积s 与圆柱底面半径r 之间的关系式【详解】圆柱底圆的半径为rcm 则周长为2π解析:s=20πr 【解析】 【分析】圆柱的侧面展开图是长方形,首先计算出圆周的底面周长,在根据长方形的面积=长×宽可得圆柱侧面展开图的面积s 与圆柱底面半径r 之间的关系式. 【详解】圆柱底圆的半径为rcm ,则周长为2πrcm , ∵圆柱的高是10cm ,∴圆柱侧面展开图的面积s 与圆柱底面半径r 之间的关系式是:s=2πr×10=20πr , 故答案为:s=20πr . 【点睛】考查了列函数关系式,关键是掌握圆周的侧面展开图的形状是矩形.15.16【分析】根据角平分线的定义可求∠BCF的度数再根据角平分线的定义可求∠BCD和∠DCF的度数再根据平行线的性质可求∠CDF的度数【详解】解:∵∠BCA=64°CE平分∠ACB∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.16.20【分析】由已知珠江流域某江段江水流向经过BCD三点拐弯后与原来相同得AB∥DE过点C作CF∥AB则CF∥DE由平行线的性质可得∠BCF+∠ABC=180°所以能求出∠BCF继而求出∠DCF又由C解析:20【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C 作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【详解】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.17.72【分析】根据平角的定义可求再根据平行线的性质即可求解【详解】解:如图过两平行线中间角的顶点作的平行线由平行线的性质可得解得故答案为:72【点睛】考查了平行线的性质关键是熟悉两直线平行内错角相等的解析:72【分析】∠=︒,再根据平行线的性质即可求解.根据平角的定义可求160【详解】解:如图,过两平行线中间角的顶点作a的平行线,∠=︒-︒=︒,118012060x+︒=︒+︒+︒,由平行线的性质可得48603030x=︒.解得72故答案为:72.【点睛】考查了平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.18.【分析】先进行积的乘方然后进行整式除法运算即可【详解】原式故答案为:【点睛】本题考查了积的乘方单项式除单项式解答本题的关键是熟练掌握运算法则解析:4ab【分析】先进行积的乘方,然后进行整式除法运算即可.【详解】原式362232624--=÷==a b a b a b ab故答案为:4ab【点睛】本题考查了积的乘方,单项式除单项式,解答本题的关键是熟练掌握运算法则. 19.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣解析:30【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案.【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b ) =12(a 2﹣b 2) =12×60 =30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.20.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.三、解答题21.(1)反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.22.(1) 自变量是CP的长,因变量是△APC的面积;(2) y=2x;(3)5,10【解析】【分析】(1)根据函数自变量和因变量的概念解答即可;(2)根据三角形的面积公式列出关系式;(3)计算出CD的长度,求出相应的面积,求差得到答案.【详解】(1)自变量是CP的长,因变量是△APC的面积;(2)y=12×4×x=2x所以y与x的关系可表示为y=2x;(3)当x=52时,y=5;当x=5时,y=10,所以△APC的面积从5cm2变到10cm2.【点睛】考查的是函数关系式、自变量和因变量、求函数值的知识,属于基础题,学生认真阅读题意即可作答.23.(1)=36DOE ∠︒;(2)=40BOD ∠︒,=40EOF ∠︒【分析】(1)设DOE x ∠=,由题意易得4COE x ∠=,然后根据∠COE+∠EOD=180°可求解; (2)由题13BOD AOB =∠∠,则设3AOB y ∠=,则有BOD y ∠=,进而可得1122BOF DOF BOD y ∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=,然后可得EOF DOE DOF y ∠=∠+∠=,最后根据角的和差关系可求解.【详解】解:(1)设DOE x ∠=,4COE DOE ∠=∠,4COE x ∴∠=,∵∠COE+∠EOD=180°,即4180x x +=︒,解得36x =︒∴∠DOE=36°;(2)由题13BOD AOB =∠∠,则设3AOB y ∠=,BOD y ∴∠= OF 平分BOD ∠,OE 平分AOB ∠1122BOF DOF BOD y ∴∠=∠=∠=,1322AOE BOE AOB y ∠=∠=∠=, 12DOE BOE BOD y ∴∠=∠-∠=, EOF DOE DOF y ∴∠=∠+∠=∵160AOB EOF ∠+∠=︒,即3160y y +=︒,解得40y =︒,∴40BOD ∠=︒,40EOF ∠=︒.【点睛】本题主要考查角平分线的定义、补角及角的和差关系,熟练掌握角平分线的定义、补角及角的和差关系是解题的关键.24.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x ,利用角平分线的∠BOE=x ;由∠BOC 比∠DOE 大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x =180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO ⊥CD ,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x ,∵OE 平分∠BOD ,∴∠DOE=∠EOB=1BOD 2∠=x , ∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x =180°,解得:x=35°,∴∠BOD=2×35°=70°, ∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO ⊥CD ,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.25.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.26.(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷ 223xy xz =-. (2)原式()2228323x x x x =-++- 2228369x x x x =-++- 2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。

2021-2022年七年级数学下期中一模试题含答案(2)

2021-2022年七年级数学下期中一模试题含答案(2)

一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积2.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.3.如图,在梯形ABCD中,AD∥BC,∠ABC=60º,AB=DC=2,AD=1,R、P分别是BC、CD 边上的动点(点R、B不重合,点P、C不重合),E、F分别是AP、RP的中点,设BR=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.4.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A .①②B .①③C .②③D .①②③ 5.下列四个说法中,正确的是( ) A .相等的角是对顶角B .平移不改变图形的形状和大小,但改变直线的方向C .两条直线被第三条直线所截,内错角相等D .两直线相交形成的四个角相等,则这两条直线互相垂直6.如图,已知AB ∥CD ,EF ⊥CD ,若∠1=126°,则∠2的度数为( )A .26°B .36°C .54°D .64°7.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90°8.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .609.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①()()2a b m n ++;②()()2a m n b m n +++; ③()()22m a b n a b +++;④22am an bm bn +++,你认为其中正确的有( )A .①②B .③④C .①②③D .①②③④10.将多项式241x +加上一个单项式后,使它能成为一个完全平方式,下列添加单项式错误的是( ) A .2x B .4x C .4x - D .44x 11.如果4a 2﹣ka +1是完全平方式,那么k 的值是( ) A .﹣4B .±4C .4D .±812.下列计算中,正.确.的是( ) A .632a a a ÷=B .32622a a a ⋅=C .222()a b a b -=-D .222()ab a b -=二、填空题13.如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.14.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的关系如下表: 所售豆子数量/千克 0 0.5 1 1.5 2 2.5 3 3.5 4 总售价/元12345678(1)上表反映的变量是____________,________是因变量,______随____________的变化而变化;(2)若出售2.5千克豆子,则总售价应为________元;(3)根据你的预测,出售________千克豆子,可得总售价12元.15.若∠A 的余角与∠A 的补角的度数和比平角的13多110︒,则∠A =____________. 16.如图,将三角板的直角顶点落在直尺的一边上,若134∠=︒,则2∠的度数为_______.17.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.18.已知4222112x x +-⋅=,则x =________ 19.计算:20162015(8)0.125-⨯=______. 20.若103a =,102b =,则210a b -=______.三、解答题21.已知函数y=中,当x=a 时的函数值为1,试求a 的值.22.在数轴上,若点A,B 表示的数分别为3和x,则A,B 之间的距离y 与x 之间的关系式为3y x =-.(1)当x 的值为-5时,求y 的值; (2)根据关系式,完成下表: x -1123456y23.如图,//AB CD ,直线EF 分别交AB ,CD 于E 、F 两点,且EG 平分BEF ∠,172∠=︒,求2∠的度数.24.如图,点O 为直线AB 上一点,将一直角三角板OMN 的直角顶点放在点O 处.射线OC 平分∠MOB .(1)如图1,若∠AOM =30°,求∠CON 的度数;(2)将图1中的直角三角板OMN 绕顶点O 顺时针旋转至图2的位置,一边OM 在射线OB 上方,另一边ON 在直线AB 的下方.①探究∠AOM 和∠CON 之间的数量关系,并说明理由; ②当∠AOC =3∠BON 时,求∠AOM 的度数.25.先化简,再求值:21(2)(2)(32)()2x y x y x y x ⎡⎤-+--+-+÷-⎣⎦,其中1x =,1=2y . 26.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量. 故选B .2.A解析:A 【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.3.C解析:C 【解析】 试题过点A 作AG ⊥BC ,垂足为G ,∵∠ABC=60°,AB=2, ∴AG=sin ∠33 BG=cos ∠ABC•AB=12×2=1, ∵BR=x , ∴GR=|x −1|,∴AR 2=AG 2+GR 2=3)2+(1-x )2=4+x 2-2x , ∵E 、F 分别是AP 、RP 的中点,∴EF=12AR , ∴EF 2=14AR 2,∴y 2=14(4+x 2-2x )∵y >0,∴21-2+42x x ∵当x=3时,y=72, ∴从图象可知A 、B 、D 不符合题意,C 符合, 故选C .【点睛】此题考查了动点问题的函数图象,解题的关键是根据余弦定理和中位线定理得出y 与x 的函数关系,是一道综合题.4.C解析:C【解析】试题分析:看图,可知当X 为0时函数不是最大值;当0<x <2时,函数的y 随x 的增大而减小,故②正确;如图可知在0<x 0<1,当x=x 0时,函数值为0. 解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x <2时,函数对应的点函数对应的点越向右越向下,即y 随x 的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.5.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.6.B解析:B【分析】根据补角性质,可知∠1的补角是54°,利用平行线中角的性质,可以得知∠CEM=54°,然后利用角的和与差,得知∠1=90°与54°的差.【详解】如图所示:∠AOM=180°-∠1=180°-126°=54°,∵AB∥CD∴∠AOM=∠CEM=54°,∴∠1=90°-∠CEM=90°-54°=36°.故选B.【点睛】考查角度的求解,学生熟练掌握角度的和与差,补角的性质以及平行线中角的性质,本题解题关键是平行线中角的性质.7.B解析:B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.8.B解析:B【分析】根据内错角相等,两直线平行,得AB∥CE,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB∥CE所以∠B=∠3=30故选B【点睛】熟练运用平行线的判定和性质.9.D解析:D【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,【详解】解:表示该长方形面积的多项式①(2a+b)(m+n)正确;②2a(m+n)+b(m+n)正确;③m(2a+b)+n(2a+b)正确;④2am+2an+bm+bn正确.故选:D.【点睛】此题主要考查了多项式乘以多项式的应用,关键是正确掌握图形的面积表示方法.10.A解析:A【分析】根据完全平方公式即可求出答案.【详解】解:A.4x2+2x+1,不是完全平方式,故此选项符合题意;B.4x2+4x+1=(2x+1)2,是完全平方式,故此选项不符合题意;C.4x2-4x+1=(2x-1)2,是完全平方式,故此选项不符合题意;D.4x4+4x2+1=(2x2+1)2,是完全平方式,故此选项不符合题意;故选:A.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.11.B解析:B【分析】根据完全平方式的特点解答即可.【详解】解:因为4a2﹣ka+1是完全平方式,所以﹣ka=±2×2a×1,所以k=±4.故选:B.【点睛】本题考查了完全平方式的知识,属于常考题型,熟练掌握完全平方式的特点是解题的关键.12.D解析:D【分析】分别根据幂的乘方法则、完全平方公式、同底数幂的乘法及除法法则进行逐一解答. 【详解】A 、636-33=a a a a ÷=,原选项计算错误,故不符合题意;B 、323+52=222a a a a ⋅=,原选项计算错误,故不符合题意;C 、222()2a b a ab b -=-+,原选项计算错误,故不符合题意;D 、222()ab a b -=,计算正确,符合题意. 故选:D . 【点睛】本题考查的是同底数幂的乘法与除法,合并同类项及幂的乘方法则,熟知以上知识是解答此题的关键.二、填空题13.15℃【解析】【分析】由于图象是表示的是时间与体温的关系而在10-14时图象是一条线段根据已知条件可以求出这条线段的函数解析式然后利用解析式即可求出这位病人中午12时的体温【详解】∵图象在10-14解析:15℃. 【解析】 【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温. 【详解】∵图象在10-14时图象是一条线段, ∴设这条线段的函数解析式为y=kx+b , 而线段经过(10,38.3)、(14,38.0), ∴,∴k=-,b=39.05, ∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃. 【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.14.所售豆子数量和总售价总售价总售价所售豆子数量56【分析】根据表中数据售价与所售数量成正比例关系售价=所售豆子的数量×单价【详解】(1)表反映的变量是所售豆子数量和售价售价是因变量售价随所售豆子数量的解析:所售豆子数量和总售价总售价总售价所售豆子数量 5 6【分析】根据表中数据,售价与所售数量成正比例关系.售价=所售豆子的数量×单价.【详解】(1)表反映的变量是所售豆子数量和售价,售价是因变量,售价随所售豆子数量的变化而变化的;(2)5;(3)根据题意设解析式为y=kx,则0.5k=1,解得k=2,∴y=2x,当y=12时2x=12,解得x=6.故答案为所售豆子数量和总售价;总售价;总售价;所售豆子数量;5;6.【点睛】函数的意义是本题考查的重点.明确变量及变量之间的关系是解好本题的关键.15.50°【分析】设∠A=x根据余角补角及平角的定义列方程求出x的值即可得答案【详解】设∠A=x∴∠A的余角为90°-x补角为180°-x∵∠的余角与∠的补角的度数和比平角的多∴(90°-x)+(180解析:50°【分析】设∠A=x,根据余角、补角及平角的定义列方程求出x的值即可得答案.【详解】设∠A=x,∴∠A的余角为90°-x,补角为180°-x,∵∠A的余角与∠A的补角的度数和比平角的1多110 ,3∴(90°-x)+(180°-x)=1×180°+110°,3解得:x=50°,故答案为:50°【点睛】本题考查余角与补角,解答此类题一般根据一个角的余角和补角列出代数式和方程(组)求解.熟记互为余角的两个角的和为90°,互为补角的两个角的和为180°是解题关键.16.56°【分析】根据平行线的性质求解即可【详解】解:如下图由图可知∵∴故答案为:56°【点睛】本题考查的知识点是平行线的性质属于基础题目比较容易掌握解析:56°【分析】根据平行线的性质求解即可.【详解】解:如下图,由图可知,1390∠+∠=︒,23∠∠=,∵134∠=︒∴23903456∠=∠=︒-︒=︒故答案为:56°.【点睛】本题考查的知识点是平行线的性质,属于基础题目,比较容易掌握.17.AD <AB <BC 【分析】根据垂线段的性质即可得到结论【详解】解:∵在三角形ABC 中∠BAC=90°AD ⊥BC 于点D ∴AD <AB <BC 故答案为:AD <AB <BC【点睛】本题考查了垂线段熟练掌握垂线段最解析:AD <AB <BC .【分析】根据垂线段的性质即可得到结论.【详解】解:∵在三角形ABC 中,∠BAC=90°,AD ⊥BC 于点D ,∴AD <AB <BC ,故答案为:AD <AB <BC .【点睛】本题考查了垂线段,熟练掌握垂线段最短是解题的关键.18.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 19.8【分析】原式变形后利用积的乘方运算法则计算即可求出值【详解】【点睛】本题考查了幂的乘方与积的乘方熟练掌握运算法则是解本题的关键 解析:8【分析】原式变形后,利用积的乘方运算法则计算即可求出值.【详解】20162015(8)0.125-⨯20152015880.125=⨯⨯20158(80.125)=⨯⨯81=⨯8=.【点睛】本题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.20.【分析】根据同底数幂的除法和幂的乘方得出代入求出即可【详解】∵10a=310b=2∴=102a÷10b==32÷2=故答案为【点睛】本题考查同底数幂的除法和幂的乘方的应用关键是得出关于10a 和10b 解析:92【分析】根据同底数幂的除法和幂的乘方得出()21010a b ÷,代入求出即可. 【详解】∵10a =3,10b =2,∴210a b -=102a ÷10 b=()21010a b ÷ =32÷2 =92. 故答案为92. 【点睛】 本题考查同底数幂的除法和幂的乘方的应用,关键是得出关于10a 和10b 的式子,用了整体代入思想.三、解答题21.a=3【分析】根据函数值与自变量的关系是一一对应的,代入函数值,可得自变量的值.【详解】解:函数y=中,当x=a时的函数值为1,=1,两边都乘以(a+2)得2a﹣1=a+2解得a=3.【点睛】本题考查函数值,代入函数值可得相应自变量的值.22.(1) 8.(2)4 3 2 1 0 1 2 3【解析】试题分析:(1)把x=-5代入y=|x-3|进行计算即可得;(2)根据y=|x-3|把相应的x值代入进行计算即可得.试题(1)当x的值为-5时,y=53--=8;(2)填表如下:x-10123456y43210123 23.54°【分析】根据平行线的性质,求得∠BEF的度数,继而根据角平分线的定义以及平行线的性质,即可得出∠2的度数.【详解】∵AB//CD,∴∠1+∠BEF=180°,∵∠1=72°,∴∠BEF=180°-72°=108°,∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108°=54°,又∵AB∥CD,∴∠BEG=∠2,∴∠2=54°.考查了平行线的性质以及角平分线的定义,解题关键是运用:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)15°;(2)①∠AOM=2∠CON,理由见解析;②144°【分析】(1)先根据角平分线的性质求出∠BOC的度数,再根据∠CON=∠MON-12∠BOM即可求出答案;(2)①先设∠AOM=α,根据角平分线的性质及直角三角形的性质即可得出结论;②用α的代数式表示∠BON和∠AOC,再根据∠AOC=3∠BON即可求解.【详解】解:(1)∵∠AOM=30°∴∠BOM=180°-∠AOM=150°,又∠MON是直角,OC平分∠BOM,∴∠CON=∠MON-∠MOC=90°-12×150°=15°;(2)设∠AOM=α,则∠BOM=180°-α,①∠AOM=2∠CON,理由如下:∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°-α)=90°-12a,∵∠MON=90°,∴∠CON=∠MON-∠MOC=90°-(90°-12α)=12α,∴∠AOM=2∠CON,②由①知∠BON=∠MON-∠BOM=90°-(180°-α)=α-90°,∠AOC=∠AOM+∠MOC=α+90°-12α=90°+12α,∵∠AOC=3∠BON,∴90°+12α=3(α-90°),解得α=144°,∴∠AOM=144°.【点睛】本题主要考查的是余角与补角,角的计算、角平分线的定义的运用,正确的理解题意是解题的关键.解题时注意方程思想的运用.25.-20x+24y,-8.【分析】原式中括号中利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=22(2)(2)(32)()x y x y x y x⎡⎤--+++-+-⎣⎦ =()2222249124()x y x xy y x -+-+-=()221012()x xy x --=2420y x -当1x =,12y =时, 原式=12420182⨯-⨯=- 故答案为-20x+24y ,-8.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.26.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.。

2021-2022年七年级数学下期中一模试卷及答案(2)

2021-2022年七年级数学下期中一模试卷及答案(2)

一、选择题1.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y 与运动的时间x之间关系的图象大致是()A.B.C.D.3.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.4.某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了1,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解5析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0 C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤5005.如果∠l与∠2互补,∠2为锐角,则下列表示∠2余角的式子是()A.90°-∠1 B.∠1 - 90°C.∠1 + 90°D.180°-∠16.已知a∥b,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B,直角顶点C分别落在直线a,b上,若∠1 15°,则∠2的度数是()A .15°B .22.5°C .30°D .45° 7.如图,计划把河水引到水池A 中,可以先引AB CD ⊥,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .以上说法都不对 8.如图,直线AB ∥CD ,AP 平分∠BAC ,CP ⊥AP 于点P ,若∠1=50°,则∠2的度数为( )A .30°B .40°C .50°D .60° 9.下列运算正确的是( ) A .a 6÷a 3=a 2B .(a 2)3=a 5C .(﹣2a 2)3=﹣8a 6D .(2a +1)2=4a 2+2a +1 10.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( )A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米 11.下列运算正确的是( ) A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1 12.如果4a 2﹣ka +1是完全平方式,那么k 的值是( )A .﹣4B .±4C .4D .±8 二、填空题13.函数3x +中自变量x 的取值范围是________. 14.根据如图所示的计算程序计算变量y 的对应值,若输入变量x 的值为﹣12,则输出的结果为_____15.已知α∠的余角是354520'''︒,则α∠补角的度数是_______.16.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.17.如图所示,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为__________;18.若()()21x a x -+的积中不含x 的一次项,则a 的值为______.19.已知a m =2,a n =12,则a n -m =____.20.计算(7+1)(7﹣1)的结果等于_____.三、解答题21.某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图,根据图象回答:(1)该市自来水收费时,若使用不足5吨,则每吨收费多少元?超过5吨部分每吨收费多少元?(2)若某户居民每月用水3.5吨,应交水费多少元?若某月交水费17元,该户居民用水多少吨?22.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?23.如图,180,AEM CDN EC ︒∠+∠=平分AEF ∠.若62EFC ︒∠=,求C ∠的度数.根据提示将解题过程补充完整.解:180CDM CDN ︒∠+∠=(平角的意义),180AEM CDN ︒∠+∠=(已知), AEM CDM ∴∠=∠//AB CD ∴(___________________)AEF ∴∠+(________)180︒=(两直线平行,同旁内角互补)62EFC ︒∠=,118AEF ︒∴∠= EC 平分AEF ∠,59AEC ︒∴∠=(_________)//AB CD ,59C AEC ︒∴∠=∠=(___________________)24.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ;(2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.25.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积:________________;(2)观察图2,你能写出下列三个式子:2()m n +,2()m n -,mn 之间的等量关系吗?(3)根据(2)中的等量关系,已知:21a a -=求:2a a+的值. 26.如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)图②中阴影部分的正方形的边长是__________;(2)用两种不同的方法表示②中阴影部分的面积:方法1:____________________;方法2:____________________(3)观察图②,请你写出式子()2a b +、()2a b -、ab 之间的等量关系:__________; (4)根据(3)中的等量关系解决如下问题:若7m n -=-,5mn =,则()2m n +的值为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.2.B解析:B【解析】周长y与运动的时间x之间成正比关系,故选B点睛:函数图象是典型的数形结合,图象应用信息广泛,通过看图象获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题能力、解决问题能力.用图象解决问题时,要理清图象的含义即会识图.3.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。

2021-2022年七年级数学下期中一模试题(带答案)(2)

2021-2022年七年级数学下期中一模试题(带答案)(2)

一、选择题1.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( ) A .物体B .速度C .时间D .空气2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系 3.函数y=5xx -中,自变量x 的取值范围为( ) A .x >5B .x≠5C .x≠0D .x≠0或x≠54.如图是某市一天的气温T(℃)随时间t(时)变化的图象,那么这天的( )A .最高气温是10 ℃,最低气温是2 ℃B .最高气温是6 ℃,最低气温是2 ℃C .最高气温是6 ℃,最低气温是-2 ℃D .最高气温是10 ℃,最低气温是-2 ℃5.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( ) A .4 cmB .5 cmC .小于2 cmD .不大于2 cm6.如图,平面内直线////a b c ,点,,A B C 分别在直线,,a b c 上,BD 平分ABC ∠,并且满足a β∠>∠,则,,a βγ∠∠∠关系正确的是( )A . 2a βγ∠=∠+∠B .22a βγ∠=∠-∠C .a βγ∠=∠+∠D . 2a βγ∠=∠-∠7.如图,直线AB ,CD 相交于点O ,下列条件中:①∠AOD =90° ;②∠AOD =∠AOC ;③∠AOC+∠BOC =180°;④∠AOC+∠BOD =180°,能说明AB ⊥CD 的有( )A .1个B .2个C .3个D .4个8.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠9.已知4,6m n x x ==,则2-m n x 的值为( ) A .9B .34C .83D .4310.下列各式正确的是( ) A .6212121x x x x --⋅== B .62331x xx x--÷==C .()332322x xyx y y--== D .13223y x x y -⎛⎫= ⎪⎝⎭11.下列计算正确的是( ) A .2232a a -= B .236a a a ⋅=C .()326a a =D .()22224a b a b -=- 12.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=-二、填空题13.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.14.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y 与x 的关系如下图,从图像中可以看出:(1)当x 越来越大时,y 越来越________; (2)这个三角形的面积等于________cm 2;-(3)可以想像:当x 非常大非常大时,y 一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y 总是_______零(填“大于”、“小于”、“大于或等于”之一).15.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 16.如图,直线AB 、CD 相交于点O ,OMAB ⊥于点O ,若42MOD ∠=,则COB ∠=__________度.17.如图,这是购物车的侧面示意图,扶手AB 与车底CD 平行,1100,250∠=︒∠=︒,则3∠的度数是_________.18.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________.20.设23P x xy =-,239Q xy y =-,若P Q =,则xy的值为__________. 三、解答题21.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少? (2)一天中小明体温T (单位:℃)的范围是多少. (3)哪段时间小明的体温在上升,哪段时间体温在下降. (4)请你说一说小明一天中体温的变化情况.22.观察图形,回答问题:(1)设图形的周长为L ,梯形的个数为n ,试写出L 与n 的关系式; (2)当n =11时,图形的周长是多少?23.小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知//AB CD ,则∠AEC=∠BAE +∠DCE 成立吗?请说明理由; (2)如图2,已知//AB CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠FAD=60°,∠ABC=40°,求∠BED 的度数;(3)将图2中的点B 移到点A 的右侧,得到图3,其他条件不变,若∠FAD=α°,∠ABC=β°,请你求出∠BED 的度数(用含α,β的式子表示).24.如图,点E 在直线DF 上,点B 在直线AC 上,若AGB EHF ∠=∠,C D ∠=∠.试说明:A F ∠=∠.请同学们补充下面的解答过程,并填空(填写理由或数学式).解:∵AGB DGF ∠=∠(______),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(______), ∴______∥_____(______), ∴D ∠=_____(______). ∵D C ∠=∠(已知), ∴______C =∠(______), ∴//DF AC (______), ∴A F ∠=∠(______).25.已知2,3x y a a ==,求23x y a +的值 26.(1)23235ab a b ab (2)23233x xxx【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据函数的定义解答. 【详解】解:因为速度随时间的变化而变化, 故时间是自变量,速度是因变量, 即速度是时间的函数. 故选C . 【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x 和y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数.2.B解析:B 【分析】根据图象信息可知,是s 随t 的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案. 【详解】解:题中给的图象变化情况为先是s 随t 的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.B解析:B【解析】【分析】根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】根据题意得:x-5≠0,解得:x≠5.故选B.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.D解析:D【解析】试题横轴表示时间,纵轴表示温度.温度最高应找到函数图象的最高点所对应的x值与y值:为12时,10℃,;温度最低应找到函数图象的最低点所对应的x值与y值:为4时,-2℃.D正确.故选D.5.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC 不垂直直线m 时,点P 到直线m 的距离小于PC 的长,即点P 到直线m 的距离小于2cm ,综上所述:点P 到直线m 的距离不大于2cm , 故选D . 【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.6.A解析:A 【分析】由平行线的性质可得∠ABC=a β∠+∠,然后根据1=2ABC βγ∠+∠∠求解即可. 【详解】 解:∵////a b c , ∴∠ABE=∠α,∠CBE=∠β, ∴∠ABC=a β∠+∠, ∵BD 平分ABC ∠, ∴∠CBD 1=2ABC ∠, ∴()1=2βγαβ∠+∠∠+∠, ∴2a βγ∠=∠+∠.故选A . 【点睛】本题考查了角平分线的定义,以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.7.C解析:C 【分析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可. 【详解】解:①∠AOD=90°,可以得出AB ⊥CD ;②∵∠AOD =∠AOC ,∠AOC+∠AOD=180°, ∴∠AOD=90°, ∴AB ⊥CD :③∠AOC+∠BOC =180°,不能得到AB ⊥CD ; ④∵∠AOC+∠BOD=180°,∠AOC=∠BOD , ∴∠AOC=90°, ∴AB ⊥CD ;故能说明AB ⊥CD 的有①②④共3个. 故选:C . 【点睛】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90°.8.D解析:D 【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项. 【详解】 解:∵a ∥b , ∴∠2=∠4,∠1=∠4, ∵∠4+∠5=180°, ∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A 、B 、C 答案正确,只有选项D 答案错误; 故选:D . 【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.9.C解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m nx x ==,2-m n x =2m n x x ÷=2()m nx x ÷,∴原式=246=83; 故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.10.D解析:D 【分析】根据整数指数幂的运算法则计算,然后判断即可. 【详解】解:A 、624x x x -⋅=,错误; B 、628x x x -÷=,错误; C 、()332366x xyx yy--==,错误; D 、1332223y y x x x y ---⎛⎫== ⎪⎝⎭,正确;故选:D . 【点睛】本题考查了整数指数幂的运算,解题关键是按照整数指数幂的运算法则进行计算,会进行负指数的运算.11.C解析:C 【分析】依次利用合并同类项法则、同底数幂的乘法、幂的乘方、完全平方公式知识点计算,依次判断即可. 【详解】A. 22232a a a -=,故此项错误;B. 235a a a ⋅=,故此项错误;C. ()326aa =,故此项正确;D. ()222244a b a ab b -=-+,故此项错误; 故选C 【点睛】本题考查合并同类项法则、同底数幂的乘法、幂的乘方、完全平方公式,解答本题的关键是明确它们各自的计算方法.12.A解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可. 【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A . 【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.二、填空题13.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间 温度 【解析】 【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化. 【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度. 故答案为时间、温度. 【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.14.(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果【详解】(1)当x 越来越大时y 越来越小;(2)这个三角形的面积等于xy=2cm2;(3)无论x 多么的大y 总是大于解析:(1)小;(2)2;(3)大于 【分析】根据三角形的面积公式及函数图象的特征即可得到结果. 【详解】(1)当x 越来越大时,y 越来越小;(2)这个三角形的面积等于12xy=2cm2;(3)无论x多么的大,y总是大于零.考点:本题考查的是三角形的面积公式,函数的图象【点睛】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题. 15.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键. 16.132【分析】先根据垂直定义得到∠AOM=90°求出∠AOD 的度数然后根据对顶角的性质求解即可【详解】∵∴∠AOM=90°∵∴∠AOD=90+42=132°∴∠AOD=132°故答案为:132【点睛 解析:132【分析】先根据垂直定义得到∠AOM=90°,求出∠AOD 的度数,然后根据对顶角的性质求解即可.【详解】∵OM AB ⊥,∴∠AOM=90°,∵42MOD ∠=,∴∠AOD=90+42=132°,∴COB ∠=∠AOD=132°.故答案为:132.【点睛】本题考查了垂直的定义,对顶角的性质,熟练掌握对顶角相等是解答本题的关键. 17.【分析】先根据平行线的性质可得再根据角的和差即可得【详解】扶手与车底平行又解得故答案为:【点睛】本题考查了平行线的性质角的和差熟练掌握平行线的性质是解题关键解析:50︒【分析】先根据平行线的性质可得1100ADC ∠=∠=︒,再根据角的和差即可得.【详解】扶手AB 与车底CD 平行,1100∠=︒,1100ADC ∴∠=∠=︒,又,02253ADC ∠+∠∠∠==︒,350010∴+∠=︒︒,解得350∠=︒,故答案为:50︒.【点睛】本题考查了平行线的性质、角的和差,熟练掌握平行线的性质是解题关键.18.17【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n )+(n-k )=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t ,n-k=t-7,∴(m+n )+(n-k )=3-t+t-7,即m+2n-k=-4,∴(m+2n-k )2=(-4)2,∴m 2+4n 2+k 2+4mn-2mk-4nk=16,∴m 2+4n 2+k 2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可.【详解】(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.22.(1)L=3n+2;(2)35.【解析】试题分析:(1)由图可知,每增加一个梯形,就增加一个上下底的和,据此可得规律; (2)将数值代入解析式即可.试题(1)根据图,分析可得梯形的个数增加1,周长L 增加3.故L 与n 的关系式L =5+(n -1)×3=3n +2;(2)当n =11时,L =3×11+2=35.点睛:主要考查了函数的解析式的求法,首先审清题意,发现变量间的关系,再列出关系式或通过计算得到关系式,需注意结合实际意义,关注自变量的取值范围.23.(1)成立,理由见解析;(2)50︒;(3)1118022βα-+. 【分析】(1)根据平行线的性质即可得到结论;(2)先过点E 作EH ∥AB ,根据平行线的性质和角平分线的定义,即可得到结论; (3)过E 作EG ∥AB ,根据平行线的性质和角平分线的定义,即可得到结论.【详解】解:(1)如图1中,作EF//AB ,则有EF//CD ,∴∠1=∠BAE ,∠2=∠DCE ,∴∠AEC=∠1+∠2=∠BAE+∠DCE .(2)如图2,过点E 作EH ∥AB ,∵AB//CD ,∠FAD=60°,∴∠FAD=∠ADC=60°,∵DE 平分∠ADC ,∠ADC=60°,∴∠EDC=12∠ADC=30°, ∵BE 平分∠ABC ,∠ABC=40°, ∴∠ABE=12∠ABC=20°, 由(1)的结论,得203050BED ABE EDC ∠=∠+∠=︒+=︒︒.(3)如图3,过点E 作//EG AB .∵BE 平分ABC ∠,DE 平分ADC ∠,ABC β∠=︒,FAD ADC α∠=∠=︒ ∴1122ABE ABC β∠=∠=︒,1122CDE ADC α∠=∠=︒ ∵//AB CD ,////AB CD EG ∴11801802BEG ABE β∠=-∠=-,12CDE DEG α∠=∠=1118022BED BEG DEG βα∠=∠+∠=-+ 【点睛】本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.24.对顶角相等;等量代换;DB ;EC ;同位角相等,两直线平行;FEC ∠;两直线平行,同位角相等;D ∠;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行的性质和判定的相关知识进行解答即可.【详解】解:∵AGB DGF ∠=∠(对顶角相等),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(等量代换),∴DB EC (同位角相等,两直线平行),∴D FEC ∠=∠(两直线平行,同位角相等).∵D C ∠=∠(已知),∴FEC C ∠=∠(等量代换),∴DF AC (内错角相等,两直线平行),∴A F ∠=∠(两直线平行,内错角相等).【点睛】本题主要考查了平行的性质和判定,灵活应用平行的性质定理、判定定理是解答本题的关键.25.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.(1)10615a b ;(2)23221x x -- 【分析】(1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x 23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.。

2021-2022年七年级数学下期中第一次模拟试题附答案(2)

2021-2022年七年级数学下期中第一次模拟试题附答案(2)

一、选择题1.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低2.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x3.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D4.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A.B.C.D.5.在同一平面内,a 、b 、c 是直线,下列说法正确的是( ) A .若a ∥b ,b ∥c 则 a ∥c B .若a ⊥b ,b ⊥c ,则a ⊥c C .若a ∥b ,b ⊥c ,则a ∥cD .若a ∥b ,b ∥c ,则a ⊥c6.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠ 7.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( ) A .18B .126C .18或126D .以上都不对8.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°, 则∠2的度数为( )A .55°B .60°C .65°D .75°9.下列计算正确的是( ) A .236236x x x ⋅=B .330x x ÷=C .()33326xy x y =D .()32nn n x x x ÷=10.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④B .①③④C .①②D .①③11.下列计算正确的是( ) A .()222x y x y +=+ B .()32626m m =C .()2224x x -=- D .()()2111x x x +-=-12.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .32二、填空题13.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y (℃)与上升高度x (米)之间的关系式为_____________. 14.圆周长C 与圆的半径r 之间的关系为C=2πr ,其中常量是______.15.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.16.已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.17.如图,已知直线12l l ,130∠=︒,则23∠+∠=_________.18.计算:248(21)(21)(21)(21)1+++++=___________. 19.已知3927x y ÷=,则20202y x +-的值为_________.20.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________.三、解答题21.如图,已知在Rt ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,点D 在斜边AB 上,将ABC 沿着过点D 的一条直线翻折,使点B 落在射线BC 上的点B '处,连接DB '并延长,交射线AC 于E .(1)当点B '与点C 重合时,求BD 的长.(2)当点E 在 AC 的延长线上时,设BD 为x ,CE 为y , 求y 关于x 函数关系式,并写出定义域.(3)连接AB ',当AB D '是直角三角形时,请直接写出BD 的长.22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)23.如图,直线AB ,CD 相交于点O ,OF CD ⊥,OE 平分BOC ∠.(1)若65BOE ∠=︒,求DOE ∠的度数;(2)若:2:3BOD BOE ∠∠=,求AOF ∠的度数. 24.(1)解方程:3157146y y ---=; (2)若一个角的余角比这个角的补角的一半还少24°,求这个角的度数.25.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).26.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________; ③请应用上述性质计算:201920182017(0.125)24-⨯⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据图象分析判断即可. 【详解】由图象可得:星期二的平均气温最高,故A 正确; 星期四到星期日天气逐渐转暖,故B 正确;这一周最高气温与最低气温相差12-4=8℃,故C 错误; 星期四的平均气温最低,故D 正确; 故选C . 【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.2.A解析:A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,∴y=x+60.故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.3.A解析:A【解析】由题意可知,符合实际情况的是A选项中的图象,而选项B、C、D中的图象都与实际情况不符.故选A.4.C解析:C【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0,故选C.【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.5.A解析:A【分析】根据线段垂直平分线上的定义,平行公理以及平行线的性质对各选项分析判断后利用排除法求解.【详解】解:A.在同一平面内,若a∥b,b∥c,则a∥c正确,故本选项正确;B.在同一平面内,若a⊥b,b⊥c,则a∥c,故本选项错误;C.在同一平面内,若a∥b,b⊥c,则a⊥c,故本选项错误;D.在同一平面内,若a∥b,b∥c,则a∥c,故本选项错误.故选:A.6.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a∥b,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A、B、C答案正确,只有选项D答案错误;故选:D.【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.7.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.8.C解析:C 【分析】先根据角的和差可得365∠=︒,再根据平行线的性质即可得. 【详解】如图,由题意得:12//,490l l ∠=︒13180490∴∠+∠=︒-∠=︒125∠=︒∵390165∴∠=︒-∠=︒又12//l l2365∴∠=∠=︒故选:C .【点睛】本题考查了角的和差、平行线的性质等知识点,理解题意,掌握平行线的性质是解题关键.9.D解析:D 【分析】根据单项式乘以单项式、同底数幂的除法、积的乘方与幂的乘方运算法则分别计算可得. 【详解】解:A 、235236x x x ⋅=,此选项计算错误,故不符合题意; B 、331x x ÷=,此选项计算错误,故不符合题意; C 、()33328xy x y =,此选项计算错误,故不符合题意; D 、()3232nn n n n x x x x x ÷=÷=,此选项计算正确,符合题意;故选:D . 【点睛】本题主要考查幂的运算,解题的关键是掌握单项式乘以单项式、同底数幂的除法、积的乘方与幂的乘方的运算法则.10.D解析:D【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.11.D解析:D 【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可. 【详解】A. ()2222x y x xy y +=++,故原选项错误; B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误; D. ()()2111x x x +-=-,故选项正确.故选:D . 【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.12.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32.故选:D.【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.二、填空题13.y=23-0007x【解析】【分析】每升高l00m降低07℃则每上升1m降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式【详解】每升高l00m降低07℃则每上升1m降低0007℃解析:【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为:y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.14.2π【解析】根据常量的定义易得2π解析:2π【解析】根据常量的定义,易得2π.15.16【分析】根据角平分线的定义可求∠BCF的度数再根据角平分线的定义可求∠BCD和∠DCF的度数再根据平行线的性质可求∠CDF的度数【详解】解:∵∠BCA=64°CE平分∠ACB∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.17.【分析】过∠2的顶点作AB∥可由得出AB∥根据平行线的性质即可解答【详解】如图;过∠2的顶点作AB∥∴∠DAB=又∵∴AB∥∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=故答案为解析:210 .【分析】过∠2的顶点作AB ∥1l ,可由12l l 得出AB ∥2l ,根据平行线的性质即可解答. 【详解】如图; 过∠2的顶点作AB ∥1l∴∠DAB=130∠=︒又∵12l l∴AB ∥2l∴∠BAC+∠3=180°∴∠2+∠3=∠DAB+∠BAC+∠3=210︒故答案为210︒【点睛】本题考查的是平行线的性质及平行公理的推论,掌握平行线的性质定理及平行公理的推论是解答关键.18.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.19.【分析】把化成同底数幂的除法算式得出的值然后整体代入算式即可求解【详解】∵∴∴故答案为:2017【点睛】此题考查了同底数幂的除法的逆运算然后用到整体代入的思想求解要熟练同底数幂的除法的法则是解题的关键 解析:【分析】把3927x y ÷=化成同底数幂的除法算式232333=3x y x y -÷=得出2x y -的值,然后整体代入算式即可求解.【详解】∵23933x y x y ÷=÷23x y -=33=∴23x y -=,∴202022020(2)y x x y +-=--20203=-2017=.故答案为:2017.【点睛】此题考查了同底数幂的除法的逆运算,然后用到整体代入的思想求解.要熟练同底数幂的除法的法则是解题的关键.20.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴==38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.三、解答题21.(1)BD=1;(2)1(01)y x x =-+<<;(3)23或43. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半,解得AC 的长,再根据勾股定理解得BC 的长,根据折叠的性质可得DB DB '=,结合三角形外角性质可得60ADB '∠=︒,当点B '与点C 重合时,可证明△ADC 是等边三角形,最后由等边三角形的性质解题即可;(2)过D 作DH BC ⊥于H ,在Rt BDH △中,设BD x =,由含30°角的直角三角形性质解得则3,32BH x BB x '==,在Rt B EC '△中,设EC y =,3B C y '=,最后由BC BB B C ''=+解题即可;(3)设DH a =,先证明60ADB '∠=︒,当AB D '是直角三角形时,再分类讨论①当90AB D '∠=︒时或②当90B AD '∠=︒时,分别利用含30°角的直角三角形性质和勾股定理解得a 的值即可解题.【详解】解:(1)在Rt △ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,112AC AB ∴==,根据勾股定理得,3BC =, ∵由折叠知,DB DB '=,30B BB D '∴∠=∠=︒,60ADB B BB D ''∴∠=∠+∠=︒,当点B '与点C 重合时,DC=DB ,60A ADC ∠=∠=︒,∴△ADC 是等边三角形,∴AD= AC=1,∴BD=AB-AD=1;(2)如图1,过D 作DH BC ⊥于H ,在Rt BDH △中,设,30BD x B =∠=︒,则3,3BH BB x '==, 在Rt B EC '△中,设,30EC y EB C '=∠=,则3B C '=, 333BC BB B C x y ''∴=+=+=,1(01)y x x ∴=-+<<;(3)设DH a =,在Rt BDH △中,2,3BD a BH a ==,2,223DB BD a BB BH a ''====,由(1)知,60ADB '∠=︒,AB D '△是直角三角形,∴①当90AB D '∠=︒时,如图2,在Rt AB D '△中,9030B AD ADB ''∠=︒-∠=︒,24,323AD B D a AB B D a '''∴====,在Rt ACB '△中,323B C BC BB a ''=-=-,根据勾股定理得,222AB B C AC ''=+,即22(23)(323)1a a =-+,解得13a =, 223BD a ∴==; ②当90B AD '∠=︒时,如图3,同①的方法得,43BD =, 综上所述,当AB D '是直角三角形时,满足条件的23BD =或43【点睛】本题考查含30°角的直角三角形、三角形的外角、一次函数、勾股定理、等边三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.①2月份每千克销售价是3.5元;② 7月份每千克销售价是0.5元;③ 1月到7月的销售价逐月下降;④ 7月到12月的销售价逐月上升.(答案不唯一,合理均可)【分析】分析得出图象是蔬菜的销售价与月份之间的关系:2月、7月的售价可以根据图中虚线直接得出,同时可以得出售价相差多少;根据图象的上升趋势和下降趋势可以分析哪些月份售价上升、哪些月份售价下降;根据图象的最低点和最高点可以得出售价最高和最低;根据图象的对称性可以得出哪些月份售价相同.【详解】观察图象可得:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同 (答案不唯一,合理的答案均可)【点睛】本题考查根据图象与变量之间的关系,掌握图象与变量之间的关系是解题关键. 23.(1)115°;(2)45°【分析】(1)根据角平分线的定义求出∠EOC 的度数,根据邻补角的性质求出∠DOE 的度数即可; (2)根据题意设BOD x ∠=°,则32COE BOE x ∠=∠=°,然后根据180COE BOE BOD ∠+∠+∠=︒计算即可得出BOD ∠,从而利用对顶角及余角的概念求解即可.【详解】(1)∵OE 平分BOC ∠,65BOE ∠=︒,∴65EOC BOE ∠=∠=︒,∴18065115DOE ∠=︒-︒=︒.(2)∵:2:3BOD BOE ∠∠=,设BOD x ∠=°,则32COE BOE x ∠=∠=° , ∵180COE BOE BOD ∠+∠+∠=︒, ∴3318022x x x ++=, ∴45x =. ∵OF CD ⊥,BOD AOC ∠=∠,∴90COF ∠=︒,∴904545AOF ∠=︒-︒=︒.【点睛】本题考查与角平分线相关的计算,以及列一元一次方程求解角度问题,理解角平分线的定义并根据题意运用方程思想求解是解题的关键.24.(1)y=-1;(2)这个角的度数是48︒【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1解方程;(2))设这个角的度数为x ,根据题意列方程190(180)242x x ︒-=︒--︒,求解即可. 【详解】解:(1)3157146y y ---= 去分母得:3(3y-1)-12=2(5y-7)去括号得:9y-3-12=10y-14移项得:9y-10y=-14+3+12合并同类项得:-y=1系数化为1得:y=-1;(2)设这个角的度数为x , 由题意得:190(180)242x x ︒-=︒--︒, 解得:x=48︒,∴这个角的度数是48︒.【点睛】此题考查解一元一次方程,一元一次方程的应用,正确掌握解一元一次方程的步骤、余角补角的定义是解题的关键.25.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.26.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.。

2021-2022年七年级数学下期中第一次模拟试题(及答案)(2)

2021-2022年七年级数学下期中第一次模拟试题(及答案)(2)

一、选择题1.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数2.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C.D.3.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低4.如图,已知正方形ABCD、正方形CEFG的边长分别为8和4,且点D,C,E在同一条直线上,动点M从点E向点F移动,连接DM.若ME=x,则阴影部分的面积y与x之间的关系式为()A .y=6xB .y=12xC .y=6x-80D .y=80-6x 5.已知A ∠与B 互补,B 与C ∠互余,若120A ∠=︒,则C ∠的度数是( ) A .70︒ B .60︒ C .30 D .20︒ 6.一个角的余角比这个角的一半大15°,则这个角的度数为( ) A .70°B .60°C .50°D .35°7.下面四个图形中,∠1与∠2是对顶角的是( ) A .B .C .D .8.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西439.下列运算正确的是( ) A .325a a a =B .()325x x = C .824x x x ÷=D .()326a ba b =10.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④B .②④C .①③D .①④11.有下列计算:①236a a a ⋅=;②33(2)6x x -=-;③0(11)-=;④122-=-;⑤426a a a -÷=.其中正确的个数为( ) A .4B .3C .2D .112.下列运算正确的是( ) A .428a a a ⋅= B .()23624aa =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.根据图中的程序,当输入x =2时,输出的结果y =_______.14.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x (岁) x≤60 60<x <80x≥80 “老人系数”6020x - 1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.15.已知n (3n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于..........同一个点.....如图,当3n =时,共有2个交点;当4n =时,共有5个交点;当5n =时,共有9个交点;…依此规律,当图中有n 条直线时,共有交点________个.16.若3240A '∠=︒,则A ∠的补角的度数为_________.17.如图,直线a ∥b ,直线a 、b 被直线c 所截,若∠2=60°,则∠1的度数为_____.18.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1002,1012,1022,…,1992,2002,若1002S =,用含S 的式子表示这组数据的和是__________.19.已知a +b =5,且ab =3,则a 3+b 3=_____. 20.已知8m x =,6n x =,则2m n x +的值为______.三、解答题21.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么? (3)爷爷每天散步多长时间? (4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度. 22.下图表示购买某种商品的个数与付款数之间的关系 (1)根据图形完成下列表格 购买商品个数(个) 2 4 6 7 付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.23.如图1,∠AOB=∠COD=90°.(1)若∠BOC=2∠AOC,求∠BOC的大小;(2)试探究∠BOC与∠DOA之间的数量关系;(3)若把图1中∠AOB绕点O转动到图2的位置,试说明(2)中∠BOC与∠DOA之间的数量关系还成立吗?24.已知点直线BC及直线外一点A(如图),按要求完成下列问题:(1)画出射线CA、线段AB.过C点画CD⊥AB,垂足为点D;(2)比较线段CD和线段CA的大小,并说明理由;(3)在以上的图中,互余的角为____________,互补的角为____________.(各写出一对即可)25.先化简,再求值:(2x+y)2﹣(y﹣2x)2,其中11,34x y==-.26.计算:(1)-12020+16×2-3×|-3-1|(2)(-a2)3·(-a3)2÷a4【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.2.B解析:B【分析】根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),结合解析式可得出图象:故选:B.【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.3.C解析:C【解析】根据图象分析判断即可. 【详解】由图象可得:星期二的平均气温最高,故A 正确; 星期四到星期日天气逐渐转暖,故B 正确;这一周最高气温与最低气温相差12-4=8℃,故C 错误; 星期四的平均气温最低,故D 正确; 故选C . 【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.4.D解析:D 【解析】∵S 阴影=S 正方形ABCD +S 正方形CEFG -S 三角形DEM , ∴y=82+42-()1842x ⨯+=80-6x , 故选D.5.C解析:C 【分析】先根据互补角的定义可得60B ∠=︒,再根据互余角的定义即可得. 【详解】A ∠与B 互补,且120A ∠=︒, 18060B A ∴∠=︒-∠=︒, 又B ∠与C ∠互余, 9030C B ∴∠=︒-∠=︒, 故选:C . 【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键.6.C解析:C 【分析】设这个角的度数为x ,则它的余角为90x ︒-,根据题意列方程求解即可. 【详解】解:设这个角的度数为x ,则它的余角为90x ︒-,190152x x ∴︒--=︒, 解得:50x =︒, 故选:C .本题考查余角的概念,掌握利用一元一次方程解决余角问题是解题的关键.7.D解析:D【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D选项是对顶角,故选:D.【点睛】考核知识点:对顶角.理解定义是关键.8.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°-∠ABC-∠ABE=47°,∴C地在B地的北偏西47°的方向上.故选:A.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.9.A解析:A【分析】根据幂的运算性质判断即可;【详解】325,故A正确;a a a()326=,故B错误;x x826÷=,故C错误;x x x()3263=,故D错误;a b a b故答案选A.【点睛】本题主要考查了幂的运算性质,准确分析判断是解题的关键.10.C解析:C【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A,B的较短边长,将其相加可得出阴影A的较短边和阴影B的较短边之和为(2x+5-y)cm,说法②错误;③由阴影A,B的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+15),结合x为定值可得出说法③正确;④由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法④错误.【详解】解:①∵大长方形的长为ycm,小长方形的宽为5cm,∴小长方形的长为y-3×5=(y-15)cm,说法①正确;②∵大长方形的宽为xcm,小长方形的长为(y-15)cm,小长方形的宽为5cm,∴阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,∴阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法②错误;③∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),∴阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),∴若x为定值,则阴影A和阴影B的周长之和为定值,说法③正确;④∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,∴阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法④错误.综上所述,正确的说法有①③.故选:C.【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.11.C解析:C 【分析】按照幂的运算法则,仔细计算判断即可. 【详解】∵23235a a a a +⋅==, ∴①错误;∵3333(2)(2)8x x x -=-=-, ∴②错误; ∵0(11)-=, ∴③正确,∵1122-=, ∴④错误,∵424(26)a a a a ---÷==, ∴⑤正确. 故选C. 【点睛】本题考查了幂的计算,熟练掌握幂的运算法则,灵活进行相应的计算是解题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.3【解析】解:当输入x=2时因为x>1所以y=﹣x+5=﹣2+5=3故答案为3 解析:3【解析】解:当输入x=2时,因为x>1,所以y=﹣x+5=﹣2+5=3.故答案为3.14.72【分析】根据所给的函数关系式所对应的自变量的取值范围发现:当y=06时在60<x<80之间所以将y的值代入对应的函数解析式即可求得函数的值【详解】解:设人的年龄为x岁∵老人系数为06∴由表得60解析:72【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x<80之间,所以将y的值代入对应的函数解析式即可求得函数的值.【详解】解:设人的年龄为x岁,∵“老人系数”为0.6,∴由表得60<x<80,即6020x-=0.6,解得,x=72,故“老人系数”为0.6的人的年龄是72岁.故答案为:7215.【分析】首先通过观察图形找到交点个数与直线条数之间的规律然后列出n条直线时交点个数关于n的代数式即可【详解】∵当n=3时每增加一条直线交点的个数就增加n−1即:当n=3时共有2个交点;当n=4时共有解析:222n n--【分析】首先通过观察图形,找到交点个数与直线条数之间的规律,然后列出n 条直线时,交点个数关于n的代数式即可.【详解】∵当n=3时,每增加一条直线,交点的个数就增加n−1.即:当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…,∴n 条直线共有交点2+3+4+…+(n−1)=222n n -- 个. 故答案为:222n n --. 【点睛】本题考查了相交线.解题的关键是,仔细观察图形,发现规律.16.【分析】根据互补两角之和为180°解答即可【详解】解:∵该角度数为32°40′∴它的补角的度数=180°-32°40′=147°20′故答案为:【点睛】本题考查了补角的知识解答本题的关键在于熟练掌握解析:14720'︒【分析】根据互补两角之和为180°,解答即可.【详解】解:∵该角度数为32°40′,∴它的补角的度数=180°-32°40′=147°20′.故答案为:14720'︒.【点睛】本题考查了补角的知识,解答本题的关键在于熟练掌握互补两角之和为180°. 17.120°【分析】根据平行线的性质解答即可【详解】解:∵a ∥b ∠2=60°∴∠1=180°﹣60°=120°故答案为:120°【点睛】本题考查了平行线的性质解题的关键是掌握两直线平行同旁内角互补的知识点解析:120°【分析】根据平行线的性质解答即可.【详解】解:∵a ∥b ,∠2=60°,∴∠1=180°﹣60°=120°.故答案为:120°.【点睛】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补的知识点. 18.【分析】根据已知条件和2100=S 将按一定规律排列的一组数:210021012102…21992200求和即可用含S 的式子表示这组数据的和【详解】解:∵2100=S ∴2100+2101+2102+…解析:22S S -【分析】根据已知条件和2100=S ,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S 的式子表示这组数据的和.解:∵2100=S ,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S (1+2+22+…+299+2100)=S (1+2100-2+2100)=S (2S-1)=2S 2-S .故答案为:2S 2-S .【点睛】本题考查了规律型-数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.19.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可.【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=,∴2222()353316a b ab a b ab +-=+-=-⨯=,∴3322()()51680a b a b a ab b +=+-+=⨯=故答案为:80.【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.20.384【分析】利用同底数幂相乘的逆运算得到将数值代入计算即可【详解】∵∴=384故答案为:384【点睛】此题考查同底数幂相乘的逆运算正确将多项式变形为是解题的关键解析:384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键.三、解答题21.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可; (3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案; (4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.22.(1)4;8;12;14;(2)付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y =kx ,代入x 与y 的值即可解得k 为2,及关系式为y =2x .【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为:4;8;12;14;(2)设付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =kx , 根据题意得:4=2k ,解得k =2,∴付款数y (元)与购买这种商品的个数x (个)之间的关系式为y =2x .本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.23.(1)60°;(2)∠BOC与∠DOA互补;(3)仍然成立,理由见详解【分析】(1)根据条件可得:∠AOB=3∠AOC,求出∠AOC的度数,进而即可求解;(2)推出∠DOA+∠BOC=180°,即可得到结论;(3)推出∠DOA+∠BOC=180°即可得到结论.【详解】(1)∵∠AOB=90°,∠BOC=2∠AOC,∠AOB=∠BOC+∠AOC,∴∠AOB=3∠AOC,∴∠AOC=30°,∴∠BOC=2∠AOC=60°;(2)∵∠AOB=∠COD=90°,∠DOC=∠BOC+∠BOD,∠DOA=∠DOB+∠AOB,∴∠DOA+∠BOC=∠DOB+∠AOB+∠BOC=∠COD+∠AOB=90°+90°=180°,∴∠BOC与∠DOA互补;(3)仍然成立,理由如下:∵∠DOA+∠BOC=360°-∠AOB-∠DOC=360°-90°-90°=180°,∴∠BOC与∠DOA互补.【点睛】本题主要考查角的和,差,倍,分以及补角的定义,掌握角的的和,差,倍,分关系,是解题的关键.24.(1)见解析;(2)CD CA,垂线段最短;(3)∠DBC和∠BCD(或∠DAC和∠ACD);∠BDC与∠ADC【分析】(1)根据几何语言画出对应的几何图形;(2)根据垂线段最短比较线段大小;(3)根据余角和补角的定义求解.【详解】解:(1)如图,射线CA、线段AB、线段CD即为所求;(2)∵CD⊥AB,∴根据垂线段最短,可得:CD<CA(3)∵CD⊥AB,∴∠DBC+∠BCD=90°,∠DAC+∠ACD=90°,∠BDC+∠ADC=180°.故答案为:∠DBC和∠BCD(或∠DAC和∠ACD);∠BDC与∠ADC.本题考查垂线段最短以及余角补角的定义,掌握相关定义正确作图是解题关键.25.8xy,2 3 -【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y)2﹣(y﹣2x)2,=4x2+4xy+y2﹣(y2+4x2﹣4xy),=4x2+4xy+y2﹣y2﹣4x2+4xy,=8xy,当11,34x y==-时,原式=8×13×(14-),=﹣23.【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键.26.(1)7;(2)-a8【分析】(1)先计算乘方,负指数与绝对值,再计算乘法,最后计算加减即可;(2)先计算幂的乘方,再计算同底数幂的乘除法.【详解】解:(1)-12020+16×2-3×|-3-1|,=-1+16×18×4,=-1+8,=7;(2)(-a2)3·(-a3)2÷a4,=-a6•a6÷a4,=-a6+6-4,=-a8.【点睛】本题考查有理数的混合运算与整式的幂指数混合运算,掌握乘方运算法则,负指数运算法则,幂的乘方法则,同底数幂的乘除运算法则,注意底数与符号的关系.。

2021-2022年七年级数学下期中第一次模拟试卷附答案(2)

2021-2022年七年级数学下期中第一次模拟试卷附答案(2)

一、选择题1.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =- 2.圆的面积公式S=πr 2中的变量是( )A .S,πB .S,π ,rC .S,rD .πr 2 3.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (m 2)与工作时间t (h )的函数关系的图象如图,则休息后园林队每小时绿化面积为( )A .100m 2B .80m 2C .50m 2D .40m 24.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误..的是( )A .骑车的同学比步行的同学晚出发30分钟B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时.5.按语句画图:点P 在直线a 上,也在直线b 上,但不在直线c 上,直线a ,b ,c 两两相交正确的是( )A .B.C.D.6.如图,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD= ( )A.110°B.115°C.125°D.130°7.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.北偏西47B.南偏东47C.北偏东43D.南偏西438.如图,在△ABC中,∠ABC=60°,点C在直线b上,若直线a∥b,∠2=26°,则∠1的度数为()A .26°B .28°C .34°D .36°9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①()()2a b m n ++;②()()2a m n b m n +++; ③()()22m a b n a b +++;④22am an bm bn +++,你认为其中正确的有( )A .①②B .③④C .①②③D .①②③④10.下列计算正确的是( )A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4 11.下列运算正确的是( )A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=12.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.14.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.15.若3240A '∠=︒,则A ∠的补角的度数为_________.16.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.17.如图,//AB CD ,点E 在CB 的延长线上,若60ABE ∠=︒,则ECD ∠的度数为__________.18.若221231ax bx x x ++-+与的积不含x 的一次项和二次项,则a+b=______________.19.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 20.计算:20162015(8)0.125-⨯=______.三、解答题21.已知,如图,在直角三角形ABC 中,∠ABC =90°,AC =10,BC =6,AB =8.P 是线段AC 上的一个动点,当点P 从点C 向点A 运动时,运动到点A 停止,设PC =x ,△ABP 的面积为y .求y 与x 之间的关系式.22.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;②当t 等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.23.如图,直线AB 与CD 相交于点O ,30AOC ∠=︒,射线OE 从OC 开始绕点O 按顺时针方向旋转到OB .(1)当OE AB ⊥时,求EOD ∠的度数.(2)当OE 平分COB ∠时,求EOD ∠的度数.24.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ;(2)过点P 作PD ⊥AB 于点D ;(3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.25.已知2,3x y a a ==,求23x y a +的值26.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.2.C解析:C【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可【详解】解:在圆的面积计算公式S=πr 2中,变量为S ,r .故选C .【点睛】本题考查变量和常量,圆的面积S 随半径r 的变化而变化,所以S ,r 都是变量,其中r 是自变量,S 是因变量.3.D解析:D【解析】由纵坐标看出:休息前绿化面积是50平方米,休息后绿化面积是170−50=120(平方米), 所以120÷3=40(平方米/时)故选:D.4.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确;故选B5.A解析:A【分析】根据相交线的概念、点与直线的位置关系进行判断即可.【详解】解:A.符合条件,B.不符合点P不在直线c上;C.不符合点P在直线a上;D.不符合直线a、b、c两两相交;故选:A.【点睛】本题考查的是相交线、点与直线的位置关系,正确理解题意、认识图形是解题的关键.6.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选:C.【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.7.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°-∠ABC-∠ABE=47°,∴C地在B地的北偏西47°的方向上.故选:A.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.8.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C .【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.9.D解析:D【分析】根据图中长方形的面积可表示为总长×总宽,也可表示成各矩形的面积和,【详解】解:表示该长方形面积的多项式①(2a+b )(m+n )正确;②2a (m+n )+b (m+n )正确;③m (2a+b )+n (2a+b )正确;④2am+2an+bm+bn 正确.故选:D .【点睛】此题主要考查了多项式乘以多项式的应用,关键是正确掌握图形的面积表示方法. 10.C解析:C【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;故选:C .【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键. 11.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.12.B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.15℃【解析】【分析】由于图象是表示的是时间与体温的关系而在10-14时图象是一条线段根据已知条件可以求出这条线段的函数解析式然后利用解析式即可求出这位病人中午12时的体温【详解】∵图象在10-14解析:15℃.【解析】【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【详解】∵图象在10-14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b ,而线段经过(10,38.3)、(14,38.0),∴,∴k=-,b=39.05,∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.14.(1)甲(2)8【分析】根据图象中的特殊点读出总路程和时间判断运动类型并利用速度公式计算和判断运动的快慢【详解】(1)在通过路程相同的情况下甲所用时间短速度快所以甲先到达终点;(2)乙的速度:v乙=解析:(1)甲 (2)8【分析】根据图象中的特殊点,读出总路程和时间,判断运动类型并利用速度公式计算和判断运动的快慢.【详解】(1)在通过路程相同的情况下,甲所用时间短,速度快,所以甲先到达终点;(2)乙的速度:v乙=100=12.5S mS乙乙=8m/s.故答案为(1)甲;(3)乙的速度是8m/s.【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题的关键.15.【分析】根据互补两角之和为180°解答即可【详解】解:∵该角度数为32°40′∴它的补角的度数=180°-32°40′=147°20′故答案为:【点睛】本题考查了补角的知识解答本题的关键在于熟练掌握解析:14720'︒【分析】根据互补两角之和为180°,解答即可.【详解】解:∵该角度数为32°40′,∴它的补角的度数=180°-32°40′=147°20′.故答案为:14720'︒.【点睛】本题考查了补角的知识,解答本题的关键在于熟练掌握互补两角之和为180°.16.35°【分析】先根据垂直的定义和角的和差求出∠BOD的度数再根据对顶角相等的性质解答即可【详解】解:∵∴∠BOM=90°∵∴∠BOD=90°-55°=35°∴∠AOC=∠BOD=35°故答案为:35解析:35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数,再根据对顶角相等的性质解答即可.【详解】解:∵OM AB ⊥,∴∠BOM =90°,∵55DOM ∠=︒,∴∠BOD =90°-55°=35°,∴∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了垂直的定义、对顶角的性质和角的和差计算,属于基础题目,熟练掌握基本知识是解题的关键.17.120°【分析】由∠ABE=60°根据邻补角的定义即可求得∠ABC 的度数又由AB ∥CD 根据两直线平行内错角相等即可求得∠ECD 的度数【详解】解:∵∠ABE=60°∴∠ABC=180°-∠ABE=18解析:120°.【分析】由∠ABE=60°,根据邻补角的定义,即可求得∠ABC 的度数,又由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠ECD 的度数.【详解】解:∵∠ABE=60°,∴∠ABC=180°-∠ABE=180°-60°=120°,∵AB ∥CD ,∴∠ECD=∠ABC=120°.故答案为:120°.【点睛】此题考查了平行线的性质.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用.18.10【分析】根据多项式乘多项式的法则展开在根据题意列出关于ab 的方程进而即可求解【详解】=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1∵和的积不含x 的一次项和二次项∴a-3解析:10【分析】根据多项式乘多项式的法则展开,在根据题意,列出关于a ,b 的方程,进而即可求解.【详解】22(1)(231)ax bx x x ++⋅-+=2ax 4-3ax 3+ax 2+2bx 3-3bx 2+bx+2x 2-3x+1∵21ax bx ++和2231x x -+的积不含x 的一次项和二次项,∴a-3b+2=0且b-3=0,∴a=7且b=3,∴a+b=10,故答案是:10.【点睛】本题主要考查多项式乘多项式的法则,根据多项式不含x 的一次项和二次项,列出方程,是解题的关键.19.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】 本题考查幂的运算,解题的关键是掌握幂的运算法则.20.8【分析】原式变形后利用积的乘方运算法则计算即可求出值【详解】【点睛】本题考查了幂的乘方与积的乘方熟练掌握运算法则是解本题的关键 解析:8【分析】原式变形后,利用积的乘方运算法则计算即可求出值.【详解】20162015(8)0.125-⨯20152015880.125=⨯⨯20158(80.125)=⨯⨯81=⨯【点睛】本题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.三、解答题21.y =﹣125x +24. 【分析】 过点B 作BD ⊥AC 于D ,则BD 为AC 边上的高.根据△ABC 的面积不变即可求出BD ;根据三角形的面积公式得出S △ABP =12AP •BD ,代入数值,即可求出y 与x 之间的关系式. 【详解】如图,过点B 作BD ⊥AC 于D .∵S △ABC =12AC •BD =12AB •BC , ∴BD =8624105AB BC AC ⋅⨯==; ∵AC =10,PC =x ,∴AP =AC ﹣PC =10﹣x ,∴S △ABP =12AP •BD =12×(10﹣x )×245=﹣125x +24, ∴y 与x 之间的关系式为:y =﹣125x +24. 【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD 的值是解题的关键.22.(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3②由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t 2,得: 10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ∴当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,∵(40-10)÷(7-5)=15,∴他在这段时间内每小时生产零件15个. 故答案为:(1) ①甲,甲,3小时;②3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.23.(1)120°;(2)105°【分析】(1)根据垂直,得出90BOE ∠=︒,再根据对顶角的性质得出30BOD ∠=︒,相加即可;(2)根据角平分线,求出∠BOE 即可.【详解】解:(1)∵OE AB ⊥,∴90BOE ∠=︒.∵30AOC ∠=︒,∴30BOD ∠=︒,∴9030120EOD BOE BOD ∠=∠+∠=︒+︒=︒.(2)∵30AOC ∠=︒,∴150COB ∠=︒.∵OE 平分COB ∠,∴111507522BOE COB ∠=∠==︒⨯︒. ∵30BOD ∠=︒, ∴7530105EOD BOE BOD ∠=∠+∠=︒+︒=︒.【点睛】本题考查了垂线的性质,角平分线的性质,对顶角的性质,解题关键是熟练运用这些性质进行推理和计算.24.(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)PD .【详解】试题分析:(1)、用量角器量出∠APB 的度数,然后求出一半的度数得出答案;(2)、根据垂线的作法得出答案;(3)、用刻度尺量出AB 的长度,然后找出中点,从而得出答案;(4)、点到直线的距离是指点到直线垂线段的长度.试题(1)、如图所示;(2)、如图所示;(3)、如图所示;(4)、PD .25.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.。

初一数学下期中一模试题带答案

初一数学下期中一模试题带答案

一、选择题1.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 2.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .23.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上4.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)- 5.下列各式计算正确的是( ) A 31-B 38= ±2 C 4= ±2 D .9 664 )A .8B .±8C .22D .22± 7.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×2014 8.下列实数中,属于无理数的是( )A .3.14B .227C 4D .π9.下列哪个图形是由图1平移得到的( )A .B .C .D .10.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于()A .56°B .36°C .44°D .46°11.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .312.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题13.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 14.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __15.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少? (2)设x ,y 是有理数,且x ,y 满足等式2x 2y 2y 1742++=-,求x-y 的值. 16.求出x 的值:()23227x +=17.比较大小:|5|-________25-.(填“>”“=”或“<”)18.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.19.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.20.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.三、解答题21.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标.22.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.23.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.25.如图,在A 、B 两处之间要修一条笔直的公路,从A 地测得公路走向是北偏东46︒,公司要求A 、B 两地同时开工,并保证若干天后公路准确接通.(1)B地修公路的走向应该是;(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44︒,试求A到公路BC的距离?26.如图,在所给网格图(每个小格均为边长是1的正方形)中完成下列各题:(1)△ABC经过平移后得到△A1B1C1,请描述这个平移过程;(2)过点C画AB的平行线CD;(3)求出△ABC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】P a b解:设(),P在第二象限,∴<>a b0,0b=P到x轴距离为3,则3a=-P到y轴距离为4,则4()∴-P4,3故选C【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2.C解析:C【分析】判断出点P的横坐标与纵坐标互为相反数,然后根据互为相反数的两个数的和等于0列式求解即可.【详解】解:∵点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,∴3a+5+(-6a-2)=0,解得a=1,此时,3a+5=8,-6a-2=-8,符合.故选:C.【点睛】本题考查了点的坐标,熟记第四象限内到两坐标轴的距离相等的点的横坐标与纵坐标互为相反数是解题的关键.3.B解析:B【解析】分析:首先根据勾股定理得出公园A到超市B的距离为500m,再计算出∠AOC的度数,进而得到∠AOD的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A到超市B的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠A OC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.4.A解析:A【分析】直接利用关于x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.5.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.6.C解析:C【分析】【详解】,8的算术平方根是,.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.7.A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯,∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.8.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.10.D解析:D依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B【详解】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).二、填空题13.【分析】根据二四象限角平分线上的点的横纵坐标互为相反数可得解方程求得a的值即可【详解】∵点P ()在第二四象限的角平分线上∴解得故答案为【点睛】本题考查了二四象限角平分线上的点的坐标的特征熟知二四象限 解析:13- 【分析】 根据二四象限角平分线上的点的横纵坐标互为相反数可得12a 2a 033+++=,解方程求得a的值即可.【详解】∵点P (1a 3+,22a 3+)在第二,四象限的角平分线上, ∴ 12a 2a+033++=, 解得13a =-. 故答案为13-.【点睛】本题考查了二四象限角平分线上的点的坐标的特征,熟知二四象限角平分线上的点的横纵坐标互为相反数是解决问题的关键. 14.1【分析】先根据点坐标关于y 轴对称的变换规律求出ab 的值再代入计算有理数的乘方即可得【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数纵坐标不变则因此故答案为:1【点睛】本题考查了点坐标关于y 轴 解析:1【分析】先根据点坐标关于y 轴对称的变换规律求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标变为相反数,纵坐标不变,则5,4b a =-=,因此()()()2020202020204511a b =+=--=, 故答案为:1. 【点睛】本题考查了点坐标关于y轴对称的变换规律、有理数的乘方,熟练掌握点坐标关于y轴对称的变换规律是解题关键.15.(1)x=−13;(2)(2)x-y的值为9或-1【分析】(1)将错就错把x=2代入计算求出a的值即可确定出正确的解;(2)根据题意可以求得xy的值从而可以求得x−y的值【详解】(1)把x=2代入2解析:(1)x=−13;(2)(2)x-y的值为9或-1.【分析】(1)将错就错把x=2代入计算求出a的值,即可确定出正确的解;(2)根据题意可以求得x、y的值,从而可以求得x−y的值.【详解】(1)把x=2代入2(2x−1)=3(x+a)−3中得:6=6+3a−3,解得:a=1,代入方程得:2x1x13 32-+=-,去分母得:4x−2=3x+3−18,解得:x=−13;(2)∵x、y 是有理数,且 x,y 满足等式2x2y17++=-∴22174x yy⎧+=⎨=-⎩,解得,54xy=⎧⎨=-⎩或54xy=-⎧⎨=-⎩,∴当x=5,y=−4时,x−y=5−(−4)=9,当x=−5,y=−4时,原式=−5−(−4)=−1.故x-y的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数.16.x=1或x=﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x=1或x=﹣5【点睛】本题主要考查的是解析:x=1或x=﹣5【分析】依据平方根的性质可得到x+2的值,然后解关于x的一元一次方程即可.【详解】解:∵3(x+2)2=27,∴(x+2)2=9,∴x+2=±3,解得:x=1或x=﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.17.>【分析】先求出=5=-5再比较即可【详解】因为=5=-55>-5所以>故答案为:>【点睛】考核知识点:实数大小比较求出绝对值和算术平方根是关键 解析:>【分析】先求出|5|-=5,,再比较即可.【详解】因为|5|-=5,,5>-5,所以|5|->故答案为:>.【点睛】考核知识点:实数大小比较.求出绝对值和算术平方根是关键.18.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A 与∠B 的两边分别平行,可得∠A 与∠B 相等或互补.19.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.20.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.三、解答题21.(1)3922x <<;(2)(-4,-2);(3)(0,0)或(0,10). 【分析】(1)根据第三象限点横纵坐标都小于0,列不等式求解即可;(2)根据点到坐标轴的距离等于其横纵坐标的绝对值列等式,再利用第三象限点的特征去绝对值符号即可求解;(3)设P 点为(0,y ),以AP 距离为底,M 到y 轴的距离为高,列方程即可求解.【详解】解:(1)∵点()29,32M x x --在第三象限,∴290320x x -<-<,, 解得3922x << ; (2)∵点M 到y 轴的距离是到x 轴的2倍, 即29232x x -=⨯-,∵点()29,32M x x --在第三象限,∴()92223x x -=⨯-, 解得52x =, ∴M 点坐标(-4,-2);(3)∵P 在y 轴上,点()0,5A点,M (-4,-2),设P 点坐标为(0,y ), ∴154=102AMP S y =⨯-⨯-△ 解得0y =或10y =, ∴P 点坐标为(0,0)或(0,10).【点睛】本题主要考查直角坐标系、已知点所在象限求参数、点到坐标轴的距离等.已知点的坐标可以求出点到x 轴、y 轴的距离,应注意取相应坐标的绝对值.各象限内点的坐标符号:第一象限内点的横、纵坐标皆为正数,即(+,+);第二象限内点的横坐标为负数,纵坐标为正数,即(-,+);第三象限内点的横、纵坐标皆为负数,即(-,-);第四象限内点的横坐标为正数,纵坐标为负数,即(+,-).22.(1)图见解析;(2)右,6,下,1;(3)5.5,过程见解析.【分析】(1)根据B 到对应点B '的平移方式确定'A 和'C 的位置,然后顺次连接即可; (2)根据平移的性质结合图形解答即可;(3)利用△A′B′C′所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)△A′B′C′如图所示;(2)此次平移可以看作将△ABC 向右平移6个单位长度,再向下平移1个单位长度,得△A′B′C′,故答案为:右,6,下,1;(3)△A′B′C′的面积=11153132325 5.5222.【点睛】本题考查了坐标与图形变换—平移,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.24.(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键. 25.(1)B 地所修公路的走向是南偏西46︒;(2)12km【分析】(1)根据平行线的性质的性质可得到结论;(2)求得∠ABC=90°即可得到结论.【详解】(1)由两地南北方向平行,根据内错角相等,可知B 地所修公路的走向是南偏西46︒.故答案为:南偏西46︒.(2)180180464490ABC ABG EBC ∠=︒-∠-∠=︒-︒-︒=︒,AB BC ∴⊥,A ∴地到公路BC 的距离是12AB =千米.【点睛】此题考查了方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.(1)△ABC 向下平移4个单位,向左平移5个单位得到△A 1B 1C 1;(2)见解析;(3)5.【分析】(1)根据平移变换的性质解决问题即可;(2)利用数形结合的思想解决问题即可;(3)利用分割法求解即可.【详解】解:(1)△ABC 向下平移4个单位,向左平移5个单位得到△A 1B 1C 1;(2)如图,直线CD 即为所求;(3)S △ABC =4×4﹣12×3×4﹣12×1×2﹣12×2×4=16﹣6﹣1﹣4=5. 【点睛】 本题考查作图−应用与设计,平行线的判定和性质,三角形的面积,坐标与图形的平移等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

2021-2022年七年级数学下期中第一次模拟试题带答案(2)

2021-2022年七年级数学下期中第一次模拟试题带答案(2)
A. B. C. D.
5.在同一平面内,两条直线的位置关系可能是()
A.相交或垂直B.垂直或平行
C.平行或相交D.相交或垂直或平行
6.如图,直线 ,被直线 、 所截,并且 , ,则 等于()
A.56°B.36°C.44°D.46°
7.下列四个说法中,正确的是()
A.相等的角是对顶角
B.平移不改变图形的形状和大小,但改变直线的方向
一、选择题
1.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量 (升)与行驶时间 (小时)之间的函数关系的图象是()
A. B.
C. D.
2.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:
排数(x)
1
2
3
4

座位数(y)
50
53
56
59

有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )
17.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______.
18.如果ac=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3.若(3,5)=a,(3,6)=b,(3,m)=2a-b,则m=________.
A. B. C. D.
10.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007毫米2,0.0000007这个数用科学记数法表示为()
A. B. C. D.
11.若 是完全平方式,则 的值是()

【典型题】七年级数学下期中一模试题(附答案) (2)

【典型题】七年级数学下期中一模试题(附答案) (2)

【典型题】七年级数学下期中一模试题(附答案) (2)一、选择题 1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2) 3.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30°B .︒40C .50︒D .60︒4.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为 A .8374x y x y +=⎧⎨+=⎩ B .8374y x y x -=-⎧⎨-=-⎩ C .8374x y x y -=⎧⎨-=-⎩ D .8374x y x y +=⎧⎨-=⎩5.若x y <,则下列不等式中成立的是( )A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 6.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④7.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=8.如图,如果AB ∥CD ,那么下面说法错误的是( )A.∠3=∠7B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8 9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°10.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().A.x+1B.x2+1C.1x+D.21x+11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个12.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1B.2C.3D.4二、填空题13.如图,已知AM//CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180︒,∠BFC=3∠DBE,则∠EBC的度数为______.14.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.如图, 直线AB CD 、相交于点O , OE AB ⊥于点O , OF 平分AOE ∠,11530'∠=︒,则下列结论:①245︒∠=; ②13∠=∠; ③AOD ∠与1∠互为补角; ④1∠的余角等于7530'︒,其中正确的是___________(填序号)16.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.17.在平面直角坐标系中,点(-5,-8)是由一个点沿x 轴向左平移3个单位长度得到的,则这个点的坐标为_______.18.如图,直线a ,b 相交,若∠1与∠2互余,则∠3=_____.19.将点P 向下平移3个单位,向左平移2个单位后得到点Q (3,-1),则点P 坐标为______.20.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.三、解答题21.如图,在ABC V 中,CD AB ⊥于点,D F 是BC 上任意一点,于FE AB ⊥点,E 且12∠=∠.证明:B ADG ∠=∠.证明:,CD AB FE AB ⊥⊥Q (已知)90CDE FFB ∴∠=∠=︒( ) //CD EF ∴( )12∠=∠Q (已知)1BCD ∴∠=∠( )//DG ∴( )( )B ADG ∴∠=∠( )22.为弘扬中华传统文化,某校组织八年级8000名学生参加汉字听写大赛.为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的频数分布表:分数段50.5~60.5 60.5~70.5 70.5~80.5 80.5~90.5 90.5~100.5 频数16 30 50 m 24 所占百分比 8% 15% 25% 40% %n请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为___ _,表中m =_ ,n = _; (2)补全如图所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?23.解二元一次方程组:(1)23532 x yx y+=⎧⎨-=-⎩(2)25 411 x yx y-=⎧⎨+=⎩24.解方程组215233x yx y+=⎧⎪⎨-=⎪⎩①②25.解方程组(1)231324x yx y+=⎧⎨-=-⎩(2)3(1)4(1)1223x yx y--+=-⎧⎪⎨+=-⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键. 2.C解析:C【解析】【分析】根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.【详解】∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P的坐标为(-6,0).故选C.【点睛】此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.3.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.4.C解析:C【解析】【分析】设有x人,物品价值y钱,根据题意相等关系:(1)8×人数-3=物品价值;(2)7×人数+4=物品价值,据此可列方程组.【详解】解:设有x人,物品价格为y钱,根据题意:8374x y x y -=⎧⎨-=-⎩故选C .【点睛】此题主要考查列方程组解应用题,找出题目中的等量关系,列出相应的方程组是解题的关键.5.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 6.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D .【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.7.D解析:D【解析】【分析】把3{2x y =-=-,代入1{2ax cy cx by +=-=,即可得到关于,,a b c 的方程组,从而得到结果. 【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.8.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.9.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.10.D解析:D【解析】一个自然数的算术平方根是x,则这个自然数是2,x则它后面一个数的算术平方根是21x+.11.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.二、填空题13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105°【解析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥Q ,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥Q ,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF Q 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒Q ,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.14.4【解析】【分析】设购买x 个A 品牌足球y 个B 品牌足球根据总价=单价×数量即可得出关于xy 的二元一次方程结合xy 均为正整数即可得出各进货方案此题得解【详解】解:设购买x 个A 品牌足球y 个B 品牌足球依题意 解析:4【解析】【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.①②③【解析】【分析】根据角平分线的性质可判断①根据对顶角关系可判断②根据互补的定义可判断③根据余角的定义可判断④【详解】∵OE⊥AB∴∠AOE=90°∵OF 平分∠AOE∴∠2=∠EOF=45°①正解析:①②③【解析】【分析】根据角平分线的性质可判断①,根据对顶角关系可判断②,根据互补的定义可判断③,根据余角的定义可判断④.【详解】∵OE ⊥AB ,∴∠AOE=90°∵OF 平分∠AOE ,∴∠2=∠EOF=45°,①正确;∵∠1与∠3互为对顶角,∴∠1=∠3,②正确;∵∠AOD+∠1=180°,∴AOD ∠与1∠互为补角,③正确;∵11530'∠=︒,∴∠1的补角为901530'=7430'︒-︒︒,④错误故答案为:①②③【点睛】本题考查垂直、角平分线、补角、对顶角的基本定义和性质,注意紧紧把握定义来判断. 16.70°【解析】【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°解析:70°.【解析】【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 17.(-2-8)【解析】【分析】点A 向左平移3个单位得到点B(-5-8)则点B 向右移动3个单位得到点A 【详解】根据分析点B(-5-8)向右移动3个单位得到点A 向右平移3个单位则横坐标+3故A(-2-8)解析:(-2,-8)【解析】【分析】点A 向左平移3个单位得到点B(-5,-8),则点B 向右移动3个单位得到点A .【详解】根据分析,点B(-5,-8)向右移动3个单位得到点A向右平移3个单位,则横坐标“+3”故A(-2,-8)故答案为:(-2,-8)【点睛】本题考查平移时坐标点的变化规律,注意,向左右平移,是横坐标的变化,向上下平移,是纵坐标的变化.18.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13解析:135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键. 19.(52)【解析】【分析】设点P的坐标为(xy)然后根据向左平移横坐标减向下平移纵坐标减列式进行计算即可得解【详解】设点P的坐标为(xy)根据题意x-2=3y-3=-1解得x=5y=2则点P的坐标为(解析:(5,2)【解析】【分析】设点P的坐标为(x,y),然后根据向左平移,横坐标减,向下平移,纵坐标减,列式进行计算即可得解.【详解】设点P的坐标为(x,y),根据题意,x-2=3,y-3=-1,解得x=5,y=2,则点P的坐标为(5,2).故答案是:(5,2).【点睛】考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20.【解析】【分析】设代入原式化简即可得出结果【详解】原式故答案为:【点睛】本题考查了整式的混合运算设将式子进行合理变形是解题的关键解析:1 2020【解析】【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 三、解答题21.详见解析【解析】【分析】由FE 与CD 都与AB 垂直得到EF 平行于CD ,利用两直线平行同位角相等得到2BCD ∠=∠,根据12∠=∠,等量代换得到1BCD ∠=∠,利用内错角相等两直线平行得到DG 与BC 平行,利用两直线平行同位角相等得到B ADG ∠=∠.【详解】解:CD AB ⊥Q ,FE AB ⊥(已知)90BEF BDC ∴∠=∠=︒(垂直定义)// CD EF ∴(同位角相等,两直线平行)12∠=∠Q (已知)1BCD ∴∠=∠(等量代换)//DG BC ∴(内错角相等,两直线平行)B ADG ∴∠=∠(两直线平行,同位角相等).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)200、80、12;(2)见详解(3)该校八年级学生中汉字听写能力优秀的约有4160人.【解析】【分析】(1)根据第一组的频数是16,频率是0.08,即可求得总数,即样本容量;(2)根据(1)的计算结果即可作出直方图;(3)利用总数8000乘以优秀的所占的频率即可.【详解】解:(1)样本容量是:16÷0.08=200; 样本中成绩的中位数落在第四组;m=200×0.40=80,%n=24200=0.12,则n=12 故答案为:200、80、12; (2)补全频数分布直方图,如下:(3)8000×(0.4+0.12)=4160(人).答:该校八年级学生中汉字听写能力优秀的约有4160人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)11x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩ 【解析】【分析】(1)利用加减消元法,先消去y ,解出x ,再代入原式解出y 即可;(2)先将411x y +=两边同时乘2,得8222x y +=与25x y -=相加,消去y ,解出x ,再代入原式解出y 即可.【详解】解:(1)23532x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,将1x =代入①得:1y =,所以方程组的解为:11x y =⎧⎨=⎩, 故答案为:11x y =⎧⎨=⎩; (2)25411x y x y -=⎧⎨+=⎩①②, ②×2得:8222x y +=③, ①+③得:927x =,解得:3x =,将3x =代入①中解得:1y =-,所以方程组的解为:31x y =⎧⎨=-⎩, 故答案为:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法,此题运用加减消元法.24.11x y =⎧⎨=⎩【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:265x y x y +=⎧⎨-=⎩①②, ①+②得:77x =,解得:1x =,把1x =代入②,得1y =,则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.(1)23x y =⎧⎨=⎩;(2)23x y =-⎧⎨=-⎩【解析】【分析】(1)①-②×2后即可消去x ,解一元一次方程求得y ,再将y 的值代入②中即可求得x 的值;(2)对原方程组整理,用②-①即可消去x ,解一元一次方程求得y ,再将y 的值代入②中即可求得x 的值.【详解】解:(1)231324x y x y +=⎧⎨-=-⎩①② ②×2得:248x y ③-=-, ①-③得:721y =,解得3y =,将3y =代入②中得64x -=-,解得2x =,故该方程组的解为23x y =⎧⎨=⎩; (2)原方程组整理为:3463212x y x y -=⎧⎨+=-⎩①②, ②-①得:618y =-,解得3y =-,将3y =-代入②中得3612x -=-,解得2x =-,故该方程组的解为23x y =-⎧⎨=-⎩. 【点睛】本题考查解二元一次方程组.掌握解二元一次方程组的两种方法(加减消元法和代入消元法),并能灵活运用是解决此题的关键.。

【典型题】七年级数学下期中一模试卷(含答案) (2)

【典型题】七年级数学下期中一模试卷(含答案) (2)

【典型题】七年级数学下期中一模试卷(含答案) (2)一、选择题1.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是()3,1-,那个这个点的坐标是( )A .()1,3-B .()3,1--C .()3,1-D .()3,1 2.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <3.如图所示的是天安门周围的景点分布示意图.若以正东、正北方向为x 轴、y 轴的正方向建立坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标为( )A .(1,0)B .(2,0)C .(1,-2)D .(1,-1)4.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .2 5.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE6.下列命题是真命题的有( )个①对顶角相等,邻补角互补 ②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0B.1C.2D.37.已知237351x yx y-=-⎧⎨+=-⎩的解21xy=-⎧⎨=⎩,则2(2)3(-1)73(2)5(-1)1x yx y+-=-⎧⎨++=-⎩的解为()A.-42xy=⎧⎨=⎩B.5xy=-⎧⎨=⎩C.5xy=⎧⎨=⎩D.41xy=-⎧⎨=⎩8.若a<b<0,则在ab<1、1 a>b1、ab>0、ba>1、-a>-b中正确的有()A.2个B.3个C.4个D.5个9.如图,在Rt ABC△中,90,BAC︒∠=3,AB cm=4AC cm=,把ABCV沿着直线BC的方向平移2.5cm后得到DEFV,连接AE,AD,有以下结论:①//AC DF;②//AD BE;③ 2.5CF cm=;④DE AC⊥.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°11.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm 12.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm二、填空题13.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:对于二元一次方程组24326x yx y+=⎧⎨+=⎩L LL L①②(1)方法一:由①,得24y x=-L L③把 ③ 代入 ②,得________________.(2)方法二:3⨯①,得3612x y +=L L ④ -④②,得________________.(3)方法三:()1⨯-① ,得 24x y --=-L L ⑤+⑤②,得________________.(4)方法四:由 ②,得 ()226x x y ++=L L ⑥把 ① 代入⑥,得________________.14.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.15.若α∠与β∠的两边分别平行,且()210x α∠=+︒,()320x β=-︒∠,则α∠的度数为__________.16.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________.17.10的整数部分是_____.18.若规定[]a 表示不超过a 的最大整数,例[]4.34=,[]2.13-=-,若[]M a a =-,则M 的取值范围________19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.20.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.三、解答题21.如图,三角形ABO 中,A (﹣2,﹣3)、B (2,﹣1),三角形A ′B ′O ′是三角形ABO 平移之后得到的图形,并且O 的对应点O ′的坐标为(4,3).(1)求三角形ABO的面积;(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为.22.在平面直角坐标系中,△ABC的三个顶点的位置如图所示.现将△ABC平移,使得点A移至图中的点A'的位置.(1)平移后所得△A'B'C'的顶点B'的坐标为,C'的坐标为;(2)平移过程中△ABC扫过的面积为;(3)将直线AB以每秒1个单位长度的速度向右平移,则平移秒时该直线恰好经过点C'.23.2018年5月12日是我国第十个全国防灾减灾日,也是汶川地震十周年.为了弘扬防灾减灾文化,普及防灾减灾知识和技能,郑州W中学通过学校安全教育平台号召全校学生进行学习,并对学生学习成果进行了随机抽取,现对部分学生成绩(x为整数,满分100分)进行统计.绘制了如图尚不完整的统计图表:调查结果统计表组别分数段频数A50≤x<60aB60≤x<7080C70≤x<80100D80≤x<90150E90≤x<100120合计b根据以上信息解答下列问题:(1)填空:a=,b=;(2)扇形统计图中,m的值为,“D”所对应的圆心角的度数是度;(3)本次调查测试成绩的中位数落在组内;(4)若参加学习的同学共有2000人,请你估计成绩在90分及以上的同学大约有多少人?24.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活___________万棵.②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?25.解方程组:(1)45()2()1 x yx y x y+=⎧⎨--+=-⎩(2)2()()1 3412 3()2()3x y x yx y x y-+⎧-=-⎪⎨⎪+--=⎩【参考答案】***试卷处理标记,请不要删除1.C解析:C【解析】【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【详解】1-1)故选:C.【点睛】此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.2.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D解析:D【解析】【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),可得:原点是天安门,所以可得博物馆的点的坐标是(1,-1)故选D.此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.4.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.5.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.6.B解析:B【解析】【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【解析】【分析】将x+2与y-1看做一个整体,根据已知方程组的解求出x与y的值即可.【详解】根据题意得:2=21=1xy+-⎧⎨-⎩,解得:=4=2xy-⎧⎨⎩.故选:A.【点睛】此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.D解析:D【解析】【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DEDE AC∴⊥,故④正确.综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC ⊥l 时,PC 是点P 到直线l 的距离,即点P 到直线l 的距离2cm ,当PC 不垂直直线l 时,点P 到直线l 的距离小于PC 的长,即点P 到直线l 的距离小于2cm ,综上所述:点P 到直线l 的距离不大于2cm ,故选:D .【点睛】考查了点到直线的距离,利用了垂线段最短的性质.12.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.二、填空题13.【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程【详解】解:(1)方法一:由①得③把③代入②得;(2)方法二:①×3得④④-②得;(3)方法三:①×(﹣1)得⑤⑤+ 解析:346x x +-= 46y = 22x = 246x +=【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程.【详解】解:24326x y x y +=⎧⎨+=⎩①②, (1)方法一:由①,得24y x =-③,把③代入②,得346x x +-=;(2)方法二:①×3,得3612x y +=④ ④-②,得46y =;(3)方法三:①×(﹣1),得24x y --=-⑤⑤+②,得22x =;(4)方法四:由②,得()226x x y ++=⑥,把①代入⑥,得246x +=.故答案为:(1)346x x +-=;(2)46y =;(3)22x =;(4)246x +=.【点睛】此题考查运用加减消元和代入消元解二元一次方程组的方法,实际上是运用等式的性质来进行消元.14.95°【解析】如图作EF∥AB 则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本解析:95°【解析】如图,作EF ∥AB ,则EF ∥CD ,∴∠ABE +∠BEF =180°,∵∠ABE =120°,∴∠BEF =60°,∵∠DCE =∠FEC =35°,∴∠BEC =∠BEF +∠FEC =95°. 故答案为95°. 点睛:本题关键在于构造平行线,再利用平行线的性质解题.15.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x 然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×解析:70°或86°.【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x ,然后求解即可.【详解】∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x−20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x−20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为70°或86°.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.16.±2【解析】【分析】首先估计出a的值进而得出M的值再得出N的值再利用平方根的定义得出答案【详解】解:∵M是满足不等式-的所有整数a的和∴M =-1+0+1+2=2∵N是满足不等式x≤的最大整数∴N=2解析:±2【解析】【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤22的最大整数,∴N=2,∴M+N2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.17.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数18.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键解析:01M ≤<【解析】【分析】根据题意列出不等式组,解不等式组即可.【详解】解:由题意可知[]1a a a -<≤ ∴[]1a a a -≤-<-∴[]01a a ≤-<,即01M ≤< 故答案为:01M ≤<.【点睛】本题考查了解一元一次不等式组,根据题意得出不等式组是解题的关键.19.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π 圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.20.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个 解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.三、解答题21.(1)4;(2)图见解析,点A′(2,0) 、点B′(6,2);(3)点P′的坐标为(x+4,y+3).【解析】分析:()1用矩形的面积减去3个直角三角形的面积即可.()2根据点O'的坐标,找出平移规律,画出图形,即可写出,A B''的坐标.()3根据()2中的平移规律解答即可.详解:()111134231224 4.222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯= V()2O的对应点O′的坐标为()4,3.可知向右平移4个单位长度,向上平移3个单位长度.如图所示:点A′(2,0) 、点B′(6,2);()3点P'的坐标为()43.x y++,点睛:考查坐标与图形,平移.弄清楚题目的意思,根据题目给的对应点坐标,找出平移的规律即可.22.(1)(5,3),(8,4);(2)232;(3)5【解析】【分析】(1)根据网格结构找出点B、C的对应点B′、C'的位置,顺次连接之后,根据平面直角坐标系写出点B′,C'的坐标;(2)结合图形可知所求为线段AB扫过的图形为平行四边形ABB A''加上三角形A B C'''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题.【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图, ∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=Y , 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=V , ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意, 此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)50、500;(2)30、108;(3)D (4)480人【解析】【分析】(1)由B 组频数及其所占百分比可得总人数b 的值,再根据各分组人数之和等于总人数可得a 的值;(2)用D 组人数除以总人数可得m 的值,用360°乘以D 组人数所占百分比; (3)根据中位数的定义求解可得;(4)利用样本估计总体思想求解可得.【详解】(1)∵被调查的总人数b=80÷16%=500人, ∴a=500﹣(80+100+150+120)=50,故答案为:50、500;(2)m%=150500×100%=30%,即m=30, “D”所对应的圆心角的度数是360°×150500=108°, 故答案为:30、108; (3)本次调查测试成绩的中位数是第250、251个数据的平均数,而这2个数据均落在D 组,∴本次调查测试成绩的中位数落在D 组,故答案为:D .(4)估计成绩在90分及以上的同学大约有2000×24%=480人. 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(1)0.9附近,0.9;(2)①4.5,15万棵.【解析】【分析】(1)由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9;(2)①5×成活率即为所求的成活的树苗棵树;②利用成活率求得需要树苗棵树,减去已移植树苗数即为所求的树苗的棵树.【详解】(1)0.9 0.9(2)①4.5估计该地区已经移植的这种树苗能成活5×0.9=4.5(万棵).②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.25.(1)27101310x y ⎧=⎪⎪⎨⎪=⎪⎩,(2)7949x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)将x+y=4整体代入第②个式子,得出x -y=75,再与第①个式子加减消元可求得; (2)设x+y=m ,x -y=n ,先算m 、n 的一元二次方程,然后再求解x 、y 的值.【详解】(1)45()2()1x y x y x y +=⎧⎨--+=-⎩①②将①代入②得:5(x-y)-8=-1,化简得:x-y=75③①+③得:2x=275,解得:x=2710将x=2710代入①得:y=1310∴27101310 xy⎧=⎪⎪⎨⎪=⎪⎩(2)2()()134123()2()3x y x yx y x y-+⎧-=-⎪⎨⎪+--=⎩①②①×12得:8(x-y)-3(x+y)=-1令x+y=m,x-y=n则831 323n mm n-=-⎧⎨-=⎩③④③+④得:6n=2,解得:n=1 3将n=13代入③得:m=119∴11913 x yx y⎧+=⎪⎪⎨⎪-=⎪⎩再利用加减消元法,解得:7949 xy⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查解一元二次方程组,常见的消元方法为:代入消元法和加减消元法,特殊情况,如本题还可用整体消元法.。

【典型题】七年级数学下期中一模试卷(含答案)

【典型题】七年级数学下期中一模试卷(含答案)

【典型题】七年级数学下期中一模试卷(含答案)一、选择题1.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( )A .()23-,B .()23,C .()32,-D .()32--,2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°3.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°5.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3 B .3<m <4 C .4<m <5D .5<m <6 6.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行7.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面8.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC V 沿着直线BC 的方向平移2.5cm 后得到DEF V ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A.1个B.2个C.3个D.4个9.把一张50元的人民币换成10元或5元的人民币,共有()A.4种换法B.5种换法C.6种换法D.7种换法10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°11.已知关于x的不等式组321123x xx a--⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a的取值范围为()A.12a<≤B.12a<<C.12a≤<D.12a≤≤12.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知关于x的不等式组()5231138222x xx x a⎧+>-⎪⎨≤-+⎪⎩有四个整数解,则实数a的取值范围为______.14.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。

【典型题】七年级数学下期中一模试题(附答案)

【典型题】七年级数学下期中一模试题(附答案)

【典型题】七年级数学下期中一模试题(附答案)一、选择题1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°3.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .4.如图所示的是天安门周围的景点分布示意图.若以正东、正北方向为x 轴、y 轴的正方向建立坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标为( )A .(1,0)B .(2,0)C .(1,-2)D .(1,-1)5.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线6.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )7.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm8.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个9.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,410.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC V 沿着直线BC 的方向平移2.5cm 后得到DEF V ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个11.下列运算正确的是( ) A .42=±B .222()-=-C .382-=-D .|2|2--= 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )二、填空题13.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.14.如果∠A 与∠B 的两边分别平行,∠A 比∠B 的3倍少36°,则∠A 的度数是________.15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.若x <0,则323x x +等于____________.17.如果点(,2)x x 到x 轴的距离为4,则这点的坐标是( , _____ ).18.已知:m 、n 为两个连续的整数,且m <11<n ,则mn =_____.19.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.20.在整数20200520中,数字“0”出现的频率是_________. 三、解答题21.如图,在ABC V 中,CD AB ⊥于点,D F 是BC 上任意一点,于FE AB ⊥点,E 且12∠=∠.证明:B ADG ∠=∠.证明:,CD AB FE AB ⊥⊥Q (已知)90CDE FFB ∴∠=∠=︒( )//CD EF ∴( )12∠=∠Q (已知)1BCD ∴∠=∠( )//DG ∴( )( )B ADG ∴∠=∠( )22.解不等式(组):(1)解不等式5132x x -+>-,并把它的解集表示在数轴上; (2)解不等式组:253(2)1210.35x x x +≥+⎧⎪-⎨+>⎪⎩,23.z是64的方根,求x y z-+的平方根24.“保护环境,人人有责”,为了更好的治理好金水河,郑州市污水处理厂决定购买A、B两型号污水处理设备共10台,其信息如下表:(1)设购买A设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x之间的函数关系式;(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案更省钱,需要多少资金?25.解方程组:278 3810x yx y-=⎧⎨-=⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.4.D解析:D【解析】【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),可得:原点是天安门,所以可得博物馆的点的坐标是(1,-1)故选D.【点睛】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.5.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.6.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.7.A解析:A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A.【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm当作3个纸杯的高度,把14cm当作8个纸杯的高度.8.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB,∴DG∥BC,∴∠CDG=∠BCD,∴∠CDG=∠BFE,∴乙正确;③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;④如果连接GF,则只有GF⊥EF时丁的结论才成立;∴丙错误,丁错误;故选:C.【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.9.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.D解析:D【解析】【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.11.C解析:C【解析】【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;22=-,故选项C正确;--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2 2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B -36°或∠A=∠B∠A=3∠B -36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B -36解析:18°或126°【解析】【分析】根据题意可知,∠A+∠B=180°,∠A=3∠B-36°,或∠A=∠B ,∠A=3∠B-36°,将其组成方程组即可求得.【详解】根据题意得:当∠A+∠B=180°,∠A=3∠B-36°,解得:∠A=126°;当∠A=∠B ,∠A=3∠B-36°,解得:∠A=18°;∴∠A=18°或∠A=126°.故答案为18°或126°.【点睛】本题考查了平行线的性质,如果两角的两边分别平行,则这两个角相等或互补,本题还考查了方程组的解法.15.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) -【解析】【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4 ∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.16.0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案【详解】解:∵x<0∴故答案为:0【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数开方的结果必须是非负数;立方根的符解析:0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.17.(24)或(-2-4)【解析】【分析】根据平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值得出|2x|=4解方程求出x的值进而得到这点的坐标【详解】∵点到x轴的距离为4∴解得x=±2∴这个点解析:(2,4)或(-2,-4).【解析】【分析】根据平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值得出|2x|=4,解方程求出x的值,进而得到这点的坐标.【详解】x x到x轴的距离为4,∵点(,2)x=,∴24解得x=±2.∴这个点的坐标为:(2,4)或(-2,-4).故答案为:(2,4)或(-2,-4).【点睛】本题考查了点的坐标,绝对值的定义,掌握平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值是解题的关键.18.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值.19.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.20.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12. 故答案为:12. 【点睛】此题主要考查了频率的求法,正确把握定义是解题关键. 三、解答题21.详见解析【解析】【分析】由FE 与CD 都与AB 垂直得到EF 平行于CD ,利用两直线平行同位角相等得到2BCD ∠=∠,根据12∠=∠,等量代换得到1BCD ∠=∠,利用内错角相等两直线平行得到DG 与BC 平行,利用两直线平行同位角相等得到B ADG ∠=∠.【详解】解:CD AB ⊥Q ,FE AB ⊥(已知)90BEF BDC ∴∠=∠=︒(垂直定义)// CD EF ∴(同位角相等,两直线平行)12∠=∠Q (已知)1BCD ∴∠=∠(等量代换)//DG BC ∴(内错角相等,两直线平行)B ADG ∴∠=∠(两直线平行,同位角相等).【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132x x -+>- 去分母,得5226x x -+>-移项,得2652x x ->-+-合并同类项,得3x ->-.两边都除以-1,得3x <.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2) 12135x xx+≥+⎧⎪-⎨+>⎪⎩化解为:23655(12)30x xx-≥-⎧⎨-+>⎩,即:145xx≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.23.±5【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】1x+2y-1x+2y-,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8所以,x y z-+=-1-2+8=5,所以,x y z-+的平方根是±5【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.24.(1)2100W x=+;202000y x=+(2)见解析【解析】【分析】(1)根据所需资金共为W 万元=购买A 型设备x 台的资金+购买B 型设备(10-x)台的资金,可列出W 与x 的关系式;根据每月处理污水总量为=每月A 型设备处理污水量+每月B 型设备处理污水量可列出y 与x 的关系式;(2)根据购买设备的资金不超过106万元,月处理污水量不低于2040吨,列不等式组,求出方程组的整数解,分别计算各方案的资金,比较即可得答案.【详解】(1)购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨, 则W 与x 的函数关系式:()1210102100W x x x =+-=+;y 与x 的函数关系式:()22020010202000y x x x =+-=+.(2)由(1)可知:21001062020002040x x +≤⎧⎨+≥⎩, 解得:32x x ≤⎧⎨≥⎩, ∵x 为整数,∴2x =或3,当2x =时,104w =(万元);当3x =时,106w =(万元).∴购买方案有2种:方案一:A 型设备2台,B 型设备8台;方案二:A 型设备2台,B 型设备8台;购买A 型设备2台,B 型设备8台最省钱,需要104万元.【点睛】本题考查一次函数的应用及一元一次不等式组的应用,正确得出等量关系和不等关系是解题关键.25.6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:(1)2783810x y x y -=⎧⎨-=⎩①②, ②×2-①×3得:x= 56, 把x= 56代入①得:106-7y=8,解得:y=45 -,则方程组的解为6545 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

【典型题】初一数学下期中一模试卷(附答案) (2)

【典型题】初一数学下期中一模试卷(附答案) (2)

【典型题】初一数学下期中一模试卷(附答案) (2)一、选择题 1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上D .y 轴上 3.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3B .5C .7D .9 4.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( ) A .(2,1) B .(﹣2,﹣1) C .(﹣2,1) D .(2,﹣1)5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)6.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .27.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个 B .3个C .4个D .5个 8.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块9.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-10.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--=11.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125° 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题13.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若∆PAB 的面积为18,则m ,n 满足的数量关系式为________.14.若一个数的平方等于5,则这个数等于_____.15.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.16.如图,直线a 平移后得到直线b ,∠1=60°,∠B =130°,则∠2=________°.17.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________. 18.如图,将周长为20个单位的ABC V 沿边BC 向右平移4个单位得到DEF V ,则四边形ABFD 的周长为__________.19.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.20.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 三、解答题21.计算:(1)()()232018311216642⎛⎫-+-⨯+-⨯ ⎪⎝⎭ (2)535323-+-+-22.我们规定以下三种变换:(1)()(),,f a b a b =-.如:()()1,31,3f =-; (2)()(),,g a b b a =.如:()()1,33,1g =;(3)()(),,h a b a b =--.如:()()1,31,3h =--.按照以上变换有:()()()()2,33,23,2f g f -=-=,求()()5,3f h -的值.23.如图,AD//BC ,∠A=∠C .求证:AB//DC .24.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.25.解方程组215233x y x y +=⎧⎪⎨-=⎪⎩①②【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,<,∴1.52<<,∴34故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【解析】【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A(m,n)满足mn=0,∴m=0或n=0,∴点A在x轴或y轴上.即点在坐标轴上.故选:B.【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.3.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.4.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.5.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.6.C解析:C【解析】-+=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选x x y10C.7.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.8.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.9.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.10.C解析:C【解析】【分析】分别计算四个选项,找到正确选项即可.【详解】 A. 42=,故选项A 错误;B. 2(2)42-==,故选项B 错误;C. 3338(2)=2-=--,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.11.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a ∥b ,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C .【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.12.D解析:D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°.故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.【解析】【分析】连接OP 将PAB 的面积分割成三个小三角形根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP 如图:∵A(20)B (03)∴OA=2OB=3∵∠AOB=90°∴∵点P解析:3230m n +=-【解析】【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=V , ∵点P (m ,n )为第三象限内一点,m <0,n <0∴, 11y 222OAP P S OA n n ∴=⋅=⨯⋅=-V , 1133222OBP P S OB x m m =⋅=⨯⋅=-V , 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=V V V V , 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.14.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质 解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.15.-11【解析】【分析】利用题中的新定义化简椅子等式求出a与b的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a与b的值,即可确定出所求.【详解】解:根据题中的新定义得:3515 4728 a ba b+=⎧⎨+=⎩,解得:3524ab=-⎧⎨=⎩,所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.【点睛】本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70 解析:【解析】【分析】【详解】解:过B作BD∥a,∵直线a平移后得到直线b,∴a∥b,∴BD∥b,∴∠4=∠2,∠3=∠1=60°,∴∠2=∠ABC-∠3=70°,故答案为:70.17.(答案不唯一)【解析】【分析】由写出方程组即可【详解】解:∵二元一次方程组的解为∴即所求方程组为:故答案为:(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做 解析:64x y x y +=⎧⎨-=⎩(答案不唯一) 【解析】【分析】由516+=,514-=写出方程组即可.【详解】解:∵二元一次方程组的解为51x y =⎧⎨=⎩, ∴6x y +=,4x y -=, 即所求方程组为:64x y x y +=⎧⎨-=⎩, 故答案为:64x y x y +=⎧⎨-=⎩.(答案不唯一) 【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做方程的解. 18.28【解析】【分析】首先根据题意得出AB+BC+AC=20再利用平移的性质得出AD=CF=4AC=BD 由此得出AB+BC+DF=20据此进一步求取该四边形的周长即可【详解】∵△ABC 的周长为20∴A解析:28【解析】【分析】首先根据题意得出AB +BC +AC=20,再利用平移的性质得出AD=CF=4,AC=BD ,由此得出AB +BC +DF=20,据此进一步求取该四边形的周长即可.【详解】∵△ABC 的周长为20,∴AB +BC +AC=20,又∵△ABC 向右平移4个单位长度后可得△DEF ,∴AD=CF=4,AC=DF ,∴AB +BC +DF=20,∴四边形ABFE 的周长=AB +BC +CF +DF +AD=28,故答案为:28.【点睛】本题主要考查了平移的性质,熟练掌握相关概念是解题关键.19.25【解析】【分析】【详解】∵正数m 的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a=2,∴2a+1=2×2+1=5,∴m=5²=25.故答案为2, 25.20.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.三、解答题21.(1)-34;(2)3【解析】【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可;(2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(5,3)【解析】【分析】根据f 、g 、h 的变换方法解答即可.【详解】f (h (5,-3))=f (-5,3)=(5,3).【点睛】此题考查点的坐标,理解新定义的运算方法是解题的关键.23.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.24.﹣5x 2﹣4xy +18,6.【解析】【分析】将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.【详解】原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy=﹣5x 2﹣4xy +18,当x =2,y =﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.25.11x y =⎧⎨=⎩【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:265x y x y +=⎧⎨-=⎩①②, ①+②得:77x =,解得:1x =,把1x =代入②,得1y =,则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

【典型题】初一数学下期中一模试卷(含答案)

【典型题】初一数学下期中一模试卷(含答案)

【典型题】初一数学下期中一模试卷(含答案)一、选择题1.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( )A .()23-,B .()23,C .()32,-D .()32--,2.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .3.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55ab >D .-3a >-3b4.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2)5.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( ) A .形状不变,大小扩大到原来的a 倍 B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度 6.设42-的整数部分为a ,小整数部分为b ,则1a b-的值为( ) A .2-B .2C .212+D .212-7.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)8.已知4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <69.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°11.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为() A .()8,3--B .()4,2C .()0,1D .()1,812.如图,AB ∥CD ,EF 平分∠GED ,∠1=50°,则∠2=( )A .50°B .60°C .65°D .70°二、填空题13.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.14.如图, 直线AB CD 、相交于点O , OE AB ⊥于点O , OF 平分AOE ∠,11530'∠=︒,则下列结论:①245︒∠=; ②13∠=∠; ③AOD ∠与1∠互为补角; ④1∠的余角等于7530'︒,其中正确的是___________(填序号)15.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________. 16.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠2=_____度.17.若α∠与β∠的两边分别平行,且()210x α∠=+︒,()320x β=-︒∠,则α∠的度数为__________. 18.下列说法: ①()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 19.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____. 20.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .三、解答题21.在2020年83岁的钟南山奋战在抗击疫情的最前线,成为全国人民最敬佩的硬核男神,他有强健的身体,这都是得益于几十年如一日的坚持锻炼.在本次疫情中打败新冠肺炎还需要自身免疫力,同学们都应该加强身体锻炼,为了了解同学们在线上教学中体育锻炼的情况,在返校后某初中对600名初一学生进行了体育测试,其中对仰卧起坐成绩进行了整理,绘制成如下不完整的统计图:根据统计图,回答下列问题. (1)请将条形统计图补充完整;(2)扇形统计图中,b =_____,得8分所对应扇形的圆心角度数为_____; (3)若本校共有3000名初一学生,请估算体育测试成绩为10分的人数. 22.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值.23.求不等式()()922312m m ---≥-的所有正整数解. 24.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.25.先填空,再完成证明,证明:平行于同一条直线的两条直线平行, 已知:如图,直线a 、b 、c 中,求证:_______________. 证明:【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据点A 在x 轴的下方,y 轴的右侧,可知点A 在第四象限,根据到x 轴的距离是3,到y 轴的距离是2,可确定出点A 的横坐标为2,纵坐标为-3,据此即可得. 【详解】∵点A 在x 轴的下方,y 轴的右侧, ∴点A 的横坐标为正,纵坐标为负, ∵到x 轴的距离是3,到y 轴的距离是2, ∴点A 的横坐标为2,纵坐标为-3, 故选A. 【点睛】本题考查了点的坐标,熟知点到x 轴的距离是点的纵坐标的绝对值,到y 轴的距离是横坐标的绝对值是解题的关键.2.A解析:A 【解析】试题解析:∵x+1≥2, ∴x ≥1. 故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.3.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.4.B解析:B【解析】试题解析:已知点M (2,-3), 则点M 关于原点对称的点的坐标是(-2,3), 故选B .5.C解析:C 【解析】 【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比,图案向左平移了a 个单位长度,并且向下平移了a 个单位长度. 故选:C . 【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.D解析:D 【解析】 【分析】 【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=2-∴1222122a b +-==-=-. 故选D . 【点睛】本题考查估算无理数的大小.7.D解析:D 【解析】 【分析】根据同位角的定义,对每个图进行判断即可. 【详解】(1)图中∠1和∠2是同位角;故本项符合题意; (2)图中∠1和∠2是同位角;故本项符合题意; (3)图中∠1和∠2不是同位角;故本项不符合题意; (4)图中∠1和∠2不是同位角;故本项不符合题意; (5)图中∠1和∠2是同位角;故本项符合题意. 图中是同位角的是(1)、(2)、(5). 故选D . 【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.8.B解析:B【解析】【分析】直接化简二次根式,得出3的取值范围,进而得出答案.【详解】∵m=4+3=2+3,1<3<2,∴3<m<4,故选B.【点睛】此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.11.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.12.C解析:C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.二、填空题13.54°【解析】【分析】设∠BOD=x ∠BOE=2x ;根据题意列出方程2x+2x+x=180°得出x=36°求出∠AOC=∠BOD=36°即可求出∠AOF=90°-36°=54°【详解】解:设∠BOD解析:54° 【解析】 【分析】设∠BOD=x ,∠BOE=2x ;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°. 【详解】解:设∠BOD=x ,∠BOE=2x , ∵OE 平分∠BOC , ∴∠COE=∠EOB=2x , 则2x+2x+x=180°, 解得:x=36°, ∴∠BOD=36°, ∴∠AOC=∠BOD=36°, ∵OF ⊥CD ,∴∠AOF=90°-∠AOC=90°-36°=54°; 故答案为:54°. 【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.14.①②③【解析】【分析】根据角平分线的性质可判断①根据对顶角关系可判断②根据互补的定义可判断③根据余角的定义可判断④【详解】∵OE⊥AB∴∠AOE=90°∵OF 平分∠AOE∴∠2=∠EOF=45°①正解析:①②③ 【解析】 【分析】根据角平分线的性质可判断①,根据对顶角关系可判断②,根据互补的定义可判断③,根据余角的定义可判断④. 【详解】∵OE ⊥AB ,∴∠AOE=90°∵OF 平分∠AOE ,∴∠2=∠EOF=45°,①正确; ∵∠1与∠3互为对顶角,∴∠1=∠3,②正确; ∵∠AOD+∠1=180°,∴AOD ∠与1∠互为补角,③正确; ∵11530'∠=︒,∴∠1的补角为901530'=7430'︒-︒︒,④错误故答案为:①②③【点睛】本题考查垂直、角平分线、补角、对顶角的基本定义和性质,注意紧紧把握定义来判断.15.;【解析】分析:将x看作已知数求出y即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x看作已知数求出y解析:335x -;【解析】分析: 将x看作已知数求出y即可.详解:方程3x+5y-3=0,解得:y=335x -.故答案为33 5x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.16.32°【解析】∵AB//CD∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=∠EFD=32°∵AB//CD∴∠2=∠GFB=32°点睛:本题主要考查平行线的性质角平分线的定义熟记平行线的性质是解析:32°【解析】∵AB//CD,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=32°,∵AB//CD,∴∠2=∠GFB=32°.点睛:本题主要考查平行线的性质、角平分线的定义,熟记平行线的性质是解题的关键. 17.70°或86°【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x然后求解即可【详解】∵∠α与∠β的两边分别平行∴①∠α=∠β∴(2x+10)°=(3x−20)°解得x=30∠α=(2×解析:70°或86°.【解析】【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.【详解】∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x−20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x−20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为70°或86°.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.18.2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定解析:2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a +1+4a −13=0,解得a =2,∴2a +1=2×2+1=5, ∴m =5²=25. 故答案为2, 25.20.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110° 三、解答题21.(1)图见详解;(2)60,36°;(3)1800.【解析】【分析】(1)根据题意用总人数减去其它的人数求出10分的女生人数,从而补全统计图;(2)根据题意用10分的人数除以总人数求出b 的值;用得8分的人数所占的百分比乘以360°即可得出答案;(3)根据题意用成绩为10分人数除以600再乘以本校共有3000名初一学生,即可得出体育测试成绩为10分的人数.【详解】解:(1)10分的女生人数有600-20-10-40-20-80-70-180=180(人),补图如下:(2)10分所占的百分比是:100%60%360600⨯=,则b=60, 得8分所对应扇形的圆心角度数为:402033606060+︒⨯=︒. 故答案为:60,36°. (3)根据题意得:18018030001800600+⨯=(人). 即体育测试成绩为10分的人数为10人.【点睛】 本题考查的是条形统计图的综合运用.注意掌握读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.23.72m ≤,正整数解123m =、、 【解析】【分析】 去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+3 92≥-移项,得2m-3m ≥4-3-92, 合并同类项,得-m ≥-72, 系数化为1得72m ≤, 则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.24.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键.25.见解析【解析】【分析】写出已知,求证,利用平行线的判定定理证明即可.【详解】已知:如图,直线a、b、c中,//b a,//c a.求证://b c.证明:作直线a、b、c的截线DF,交点分别为D、E、F,∵//b a,∴12∠=∠.又∵//c a,∴13∠=∠. ∴23∠∠=. ∴//b c .【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。

【必考题】七年级数学下期中第一次模拟试题带答案 (2)

【必考题】七年级数学下期中第一次模拟试题带答案 (2)

【必考题】七年级数学下期中第一次模拟试题带答案 (2)一、选择题1.如图,已知∠1=∠2,其中能判定AB∥CD的是()A.B.C.D.2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°3.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°4.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD 一定大于∠BFE.”丁说:“如果连接 GF,则 GF∥AB.”他们四人中,正确的是()A.0 个B.1 个C.2 个D.3 个5.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角6.不等式组324 32 3x xx+⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是()A.B.C.D.7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°9.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C (2,5),则点B(-4,-1)的对应点D的坐标为()A.()8,3--B.()4,2C.()0,1D.()1,810.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1211.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3 12.把等宽的一张长方形纸片折叠,得到如图所示的图象,若170∠=︒,则a 的度数为( )A .50°B .55°C .60°D .70°二、填空题13.若3a ++(b-2)2=0,则a b =______.14.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠2=_____度.15.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.16.若x +1是125的立方根,则x 的平方根是_________.17.比较大小:23- _____________ 32-.18.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.19.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.20.9的算术平方根是________.三、解答题21.在平面直角坐标系中,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使得点A 移至图中的点A'的位置.(1)平移后所得△A 'B 'C '的顶点B '的坐标为 ,C '的坐标为 ;(2)平移过程中△ABC 扫过的面积为 ;(3)将直线AB 以每秒1个单位长度的速度向右平移,则平移 秒时该直线恰好经过点C '.22.下列不等式组313112123x x x x +<-⎧⎪++⎨≤+⎪⎩,把解集在数轴上表示出来,且求出其整数解. 23.△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--、C (1,4)-,将其平移后得到111A B C ∆,若A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-.(1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________;1B 坐标是___________;(3)此次平移也可看作111A B C ∆向____平移了______个单位长度,再向_____平移了____个单位长度得到△ABC .24.解方程组:x 4y 1216x y -=-⎧⎨+=⎩. 25.已知关于 x 的不等式组 32112x x x +>⎧⎪⎨≤⎪⎩ (1)求该不等式组的解集;(2)若 a ,b 都是该不等式组的正整数解,且 a b >,求 22a b - 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C 、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D 、∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行).故选D .【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.A解析:A【解析】Q .故选A.∠︒∴∠︒∴∠∠︒1=1303=502=23=1003.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.4.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB ,∴甲正确;②∵∠AGD=∠ACB ,∴DG ∥BC ,∴∠CDG=∠BCD ,∴∠CDG=∠BFE ,∴乙正确;③DG 不一定平行于BC ,所以∠AGD 不一定大于∠BFE ;④如果连接GF ,则只有GF ⊥EF 时丁的结论才成立;∴丙错误,丁错误;故选:C .【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.5.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.6.A解析:A【解析】【分析】【详解】324{32? 3x x x <+-≥①②, 由①,得x <4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A .7.A解析:A【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB ∥CD ,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B .点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.B解析:B【解析】【分析】先根据矩形对边平行得出∠1=∠CDE=70°,再由折叠的性质可以得出答案.【详解】解:如图,∵AB∥CD,∠1=70°,∴∠1=∠CDE=70°,由折叠性质知∠α= (180°-∠CDE) 2==55°,故选:B.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.二、填空题13.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.32°【解析】∵AB//CD∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=∠EFD=32°∵AB//CD∴∠2=∠GFB=32°点睛:本题主要考查平行线的性质角平分线的定义熟记平行线的性质是解析:32°【解析】∵AB//CD,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=32°,∵AB//CD,∴∠2=∠GFB=32°.点睛:本题主要考查平行线的性质、角平分线的定义,熟记平行线的性质是解题的关键. 15.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了解析:(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.16.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.17.>【解析】分析:先比较他们的绝对值根据两个负数绝对值大的反而小即可得出结论详解:即故答案为点睛:考查实数的大小比较两个负数绝对值大的反而小解析:>【解析】分析:先比较他们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.-=--=-详解:2312,3218,<Q1218,∴->-1218,>即2332,故答案为.>点睛:考查实数的大小比较,两个负数,绝对值大的反而小,18.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm的正方形ABCD先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.19.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.20.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.三、解答题21.(1)(5,3),(8,4);(2)232;(3)5【解析】【分析】(1)根据网格结构找出点B、C的对应点B′、C'的位置,顺次连接之后,根据平面直角坐标系写出点B′,C'的坐标;(2)结合图形可知所求为线段AB 扫过的图形为平行四边形ABB A ''加上三角形A B C '''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题.【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图, ∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=Y , 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=V , ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意, 此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.不等式组的解集为-5≤x <-2;整数解为:-5,-4,-3,数轴表示见解析.【解析】【分析】分别求出两个不等式的解集,再找出两个解集的公共部分即可得不等式组的解集,根据解集画出数轴并找出整数解即可答案.【详解】313112123x x x x ①②+<-⎧⎪⎨++≤+⎪⎩解不等式①得:x <-2,解不等式②得:x≥-5,∴不等式组得解集为-5≤x <-2,数轴表示如下:不等式组的整数解为:-5,-4,-3,【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,正确得出各不等式的解集是解题关键.23.(1)答案见解析;(2)()1104A B ,, ()11-,;(3)下;3;左;2. 【解析】【分析】(1)直接根据点的坐标作图即可;(2)根据C 点坐标的变化规律可得横坐标+2,纵坐标+3,再把点A 、B 对应点的坐标横坐标+2,纵坐标+3计算即可;(3)根据(2)中的平移情况写出平移规律.【详解】解:(1)如图所示,(2)()1104A B ,, ()11-, (3)此次平移也可看作111A B C ∆向下平移了3个单位长度,再向左平移了2个单位长度得到△ABC故答案为:下;3;左;2.【点睛】本题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.24.72x y =⎧⎨=⎩【解析】【分析】利用代入法解二元一次方程组.【详解】x 4y 1216x y -=-⎧⎨+=⎩①② 由①得:x=4y-1 ③将③代入②,得:2(4y-1)+y=16,解得:y=2,将y=2代入③,得:x=7.故原方程组的解为72x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握代入法及加减消元法是解题的关键.25.(1)12x -<≤;(2)3【解析】【分析】(1)分别求出两个不等式的解集,再求出其公共解集即可;(2)根据(1)中解集及a ,b 取值条件确定a ,b 的值,再进行代值计算即可.【详解】解:(1)32112x x x +>⎧⎪⎨≤⎪⎩①②, 由①得:1x >-,由②得:2x ≤,所以不等式组的解集为:12x -<≤,故答案为:12x -<≤;(2)由(1)知,不等式的解集为12x -<≤,∵a ,b 都是该不等式组的正整数解,且a b >,∴21a b =⎧⎨=⎩, ∴2222213a b =--=,故答案为:3.【点睛】本题考查解一元一次不等式组及根据不等式组解集取正整数解,熟练掌握解不等式组的方法及正整数的定义是解题关键.。

【典型题】七年级数学下期中一模试题(含答案) (2)

【典型题】七年级数学下期中一模试题(含答案) (2)

【典型题】七年级数学下期中一模试题(含答案) (2)一、选择题1.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .2.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是()3,1-,那个这个点的坐标是( ) A .()1,3- B .()3,1-- C .()3,1- D .()3,1 3.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩4.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C .255=±D .2是4的平方根5.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.请你观察、思考下列计算过程:因为112=12112111:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A .111111B .1111111C .11111111D .1111111118.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块9.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.810.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 12.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 二、填空题13.若一个数的平方等于5,则这个数等于_____.14.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x k 1x+b 的解集为______.15.不等式2(1-x )-4<0的解集是____________16.若3a ++(b-2)2=0,则a b =______.17.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____18.10的整数部分是_____.19.9的算术平方根是________.20.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.三、解答题21.A ,B 两种型号的空调,已知购进3台A 型号空调和5台B 型号空调共用14500元;购进4台A 型号空调和10台B 型号空调共用25000元.(1)求A ,B 两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A 种型号的空调多少台?22.如图,点A B ,的坐标分别为()()2,00,1,,将线段AB 直接平移到MN ,使点A 移至点M 的位置,点B 移至点N 的位置,设平移过程中线段AB 扫过的面积为S ,(1)如图1,若点N 的坐标是()3,1,则点M 的坐标为_____________,请画出平移后的线段MN ;(2)如图2,若点M 的坐标是()3,1,请画出平移后的线段MN ,则S 的值为_____________;(3)若 2.5S =,且点M 在坐标轴上,请直接写出所有满足条件的M 点的坐标.23.下列不等式组313 112123x xx x+<-⎧⎪++⎨≤+⎪⎩,把解集在数轴上表示出来,且求出其整数解.24.如图,是小明同学在课堂上画的一个图形,AB∥CD,他要想得出∠1=∠2,那么还需要添加一个什么样的条件?25.探索与应用.先填写下表,通过观察后再回答问题:a…0.00010.01110010000…a…0.01x1y100…(1)表格中x=;y=;(2)从表格中探究a a10≈3.161000≈;②已知 3.24a=180,则a=;(3312 2.289≈3b0.2289=,则b=.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.2.C解析:C【解析】【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a <1时,纵坐标是互为相反数;据此可做出判断.【详解】1-1)故选:C .【点睛】此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a 的关系即可.3.D解析:D【解析】试题解析:∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .4.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.【详解】A 、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B 、1的立方根是1,错误;C 5=,错误;D 、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.5.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.D解析:D【解析】分析:被开方数是从1到n 再到1(n≥1的连续自然数),算术平方根就等于几个1. 12112321=111…,…, 12345678987654321.故选D .点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.8.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.9.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.10.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.14.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.15.x>-1【解析】【分析】先将不等式左边去括号进行整理再利用不等式的基本性质将两边不等式同时加2再除以-2不等号的方向改变【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-解析:x>-1【解析】【分析】先将不等式左边去括号进行整理,再利用不等式的基本性质,将两边不等式同时加2再除以-2,不等号的方向改变.【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-1.故答案为:x>-1.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.16.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b=(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m的一元一次不等式组求解即可【详解】解:∵点P(m﹣3m ﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本解析:3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m的一元一次不等式组,求解即可.【详解】解:∵点P(m﹣3,m﹣5)在第四象限,∴3050 mm->⎧⎨-<⎩解得:3<m<5.故答案为3<m<5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.18.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数19.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.20.【解析】【分析】设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元建立方程组整体求解即可【详解】解:设购一件甲商品需要x 元一件乙商品需要y 元一件丙商品需要z 元由题意得把这两个方程相加得5x+ 解析:【解析】【分析】设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.【详解】解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得 32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.【点睛】本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解.三、解答题21.(1)A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)10台【解析】【分析】(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题目意思列二元一次方程组求解即可得到答案;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意列不等式求解再取取整数的最大值即可得到答案;【详解】解:(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题意,可列方程组为351450*********.x y x y +=⎧⎨+=⎩, 解得:20001700.x y =⎧⎨=⎩, 答:A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意,可列不等式为20001700(30)54000m m +-≤解不等式,得10m ≤∵m 取最大正整数,∴m=10.答:最多能购进A 种型号的空调10台【点睛】本题主要考查了二元一次方程与一元一次不等式的应用,等根据题目意思列出正确的式子求解是解题的关键.22.(1)()5,0,画图见详解;(2)3,画图见详解;(3)()0.5,0-或(4.5,0)或()0,0.25-或(0,2.25)【解析】【分析】(1)根据坐标系内点B 到点N 的移动规律,即可得出点M 的坐标;(2)根据点的平移规律先找出点N 的坐标,再计算四边形面积即可;(3)分点M 在x 轴和y 轴上两种情况分析即可.【详解】解:(1)点M 的坐标为()5,0,∵N 的坐标为()3,1,即B 向右平移3个单位,∴A 向右平移3个单位得到M 的坐标为()5,0;故答案为:()5,0;(2)∵点M 的坐标是()3,1,即A 先向右平移1个单位,再向上平移1个单位, ∴点B 先向右平移1个单位,再向上平移1个单位得到点N 的坐标为()1,2, ∴S 即为四边形ABNM 的面积,如下图, ∴111313322BNM ABM ABNM S S S =+=⨯⨯+⨯⨯=V V 四边形 故答案为:3;(3)当点M 在x 轴上时,设点(),0M m ,则21 2.5S AM OB m =⋅=-⨯=,解得:0.5m =-或 4.5m =,此时,点M 的坐标为()0.5,0-或(4.5,0);当点M 在y 轴上时,设点M (0,)d ,则12212 2.52ABM S S d ==⨯⨯-⨯=V , 解得:0.25d =-或 2.25d =, 此时,点M 的坐标为()0,0.25-或(0,2.25);综上所述,所有满足条件的M 点的坐标为()0.5,0-或(4.5,0)或()0,0.25-或(0,2.25).【点睛】本题考查的知识点是坐标与图形变化-平移,掌握平移变化与坐标变化之间的关系是解此题的关键.23.不等式组的解集为-5≤x<-2;整数解为:-5,-4,-3,数轴表示见解析.【解析】【分析】分别求出两个不等式的解集,再找出两个解集的公共部分即可得不等式组的解集,根据解集画出数轴并找出整数解即可答案.【详解】3131121 23x xx x①②+<-⎧⎪⎨++≤+⎪⎩解不等式①得:x<-2,解不等式②得:x≥-5,∴不等式组得解集为-5≤x<-2,数轴表示如下:不等式组的整数解为:-5,-4,-3,【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,正确得出各不等式的解集是解题关键.24.可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可)【解析】【分析】若添加AE、CF分别平分∠BAC和∠ACD,根据角平分线的定义和平行线的性质即可证出结论;若添加∠E=∠F,根据平行线的性质及判定即可证出结论;若添加AE∥CF,根据平行线的性质及判定即可证出结论.【详解】解:若添加AE、CF分别平分∠BAC和∠ACD∴∠1=12∠BAC,∠2=12∠ACD∵AB∥CD∴∠BAC=∠ACD ∴∠1=∠2;若添加∠E=∠F ∴AE∥CF∴∠EAC=∠FCA ∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2若添加AE∥CF∴∠EAC=∠FCA∵AB∥CD∴∠BAC=∠ACD∴∠BAC-∠EAC =∠ACD-∠FCA∴∠1=∠2综上:可添加AE、CF分别平分∠BAC和∠ACD或∠E=∠F或AE∥CF(任选其一即可).【点睛】此题考查的是平行线的性质及判定的应用,掌握平行线的判定及性质是解决此题的关键.25.(1)0.1,10;(2)31.6,32400;(3)0.012.【解析】【分析】(1)由表格得出规律,求出x与y的值即可;(2)根据算术平方根的被开方数扩大100倍,算术平方根扩大10倍,可得答案;(3)根据立方根的被开方数缩小1000倍,立方根缩小10倍,可得答案.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(2,,②Q,∴a=32400,故答案为:31.6,32400;(4 2.289,∴b=0.012,故答案为:0.012.【点睛】考查了算术平方根和立方根,注意被开方数扩大100(1000)倍,算术平方根(立方根)扩大10倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:
【解析】
【分析】
利用无理数的估算,先取出m、n的值,然后代入计算,即可得到答案.
【详解】
解:∵ ,
∴ ,பைடு நூலகம்
∵m、n为两个连续的整数,
∴ , ,
∴ ;
故答案为: .
【点睛】
本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m、n的值.
18.135°【解析】【分析】由∠1与∠2互余且∠1=∠2可求出∠1=∠2=45°进而根据补角的性质可求出∠3的度数【详解】解:∵∠1与∠2互余∠1=∠2∴∠1=∠2=45°∴∠3=180°﹣45°=13
16.若关于x的不等式组 的整数解共有4个,则m的取值范围是__________.
17.已知:m、n为两个连续的整数,且m< <n,则 =_____.
18.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.
19.在整数20200520中,数字“0”出现的频率是_________.
20.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.
16.6<m≤7【解析】由x-m<07-2x≥1得到3≤x<m则4个整数解就是3456所以m的取值范围为6<m≤7故答案为6<m≤7【点睛】本题考查了一元一次不等式组的整数解利用数轴就能直观的理解题意列出
解析:6<m≤7.
【解析】
由x-m<0,7-2x≥1得到3≤x<m,则4个整数解就是3,4,5,6,
(1)如图1,若点 的坐标是 ,则点 的坐标为_____________,请画出平移后的线段 ;
(2)如图2,若点 的坐标是 ,请画出平移后的线段 ,则 的值为_____________;
(3)若 ,且点 在坐标轴上,请直接写出所有满足条件的 点的坐标.
23.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.
7.若 ,则下列不等式中成立的是()
A. B.
C. D.
8.若a<b<0,则在ab<1、 > 、ab>0、 >1、-a>-b中正确的有()
A.2个B.3个C.4个D.5个
9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.
【详解】
∵点A(m,n)满足mn=0,
∴m=0或n=0,
∴点A在x轴或y轴上.即点在坐标轴上.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.
A. B. C. D.
10.如果a>b,那么下列各式中正确的是( )
A.a﹣2<b﹣2B. C.﹣2a<﹣2bD.﹣a>﹣b
11.如图,如果AB∥CD,那么下面说法错误的是()
A.∠3=∠7B.∠2=∠6C.∠3+∠4+∠5+∠6=180°D.∠4=∠8
12.把等宽的一张长方形纸片折叠,得到如图所示的图象,若 ,则a的度数为()
选项B中,不符合三线八角,构不成平行;
选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;
选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.
【详解】
解:A、错误,因为∠C=∠D,所以AC∥DE;
B、错误,不符合三线八角构不成平行;
【分析】
根据题意利用不等符号进行连接即可得出答案.
【详解】
解:由题意可得:3m-n<10
故答案为:3m-n<10.
【点睛】
本题考查不等式的书写.
15.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(
A.50°B.55°C.60°D.70°
二、填空题
13.平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为________.
14.m的3倍与n的差小于10,用不等式表示为______________.
15.已知△ABC中,AB=AC,求证:∠B<90°.用反证法证明,第一步是假设_________.
【点睛】
本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.
4.D
解析:D
【解析】
【分析】
【详解】
解:∵1<2<4,∴1< <2,
∴﹣2< <﹣1,∴2< <3,
∴a=2,b= , ,
∴ .
故选D.
【点睛】
本题考查估算无理数的大小.
5.D
解析:D
【解析】
【分析】
选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;
解析:∠B≥90°
【解析】
【分析】
熟记反证法的步骤,直接填空即可.
【详解】
解:用反证法证明:第一步是:假设∠B≥90°.
故答案是:∠B≥90°.
【点睛】
考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
【典型题】七年级数学下期中一模试卷(附答案) (2)
一、选择题
1.点 满足 ,则点A在()
A.原点B.坐标轴上C. 轴上D. 轴上
2.如图所示,点P到直线l的距离是( )
A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度
3.解方程组 得x等于( )
A.18B.11C.10D.9
故选C.
11.D
解析:D
【解析】
【分析】
【详解】
根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;
根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.
而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,
故选D.
12.B
解析:B
【解析】
【分析】
先根据矩形对边平行得出∠1=∠CDE=70°,再由折叠的性质可以得出答案.
4.设 的整数部分为a,小整数部分为b,则 的值为()
A. B. C. D.
5.如图所示,已知直线BF、CD相交于点O, ,下面判定两条直线平行正确的是()
A.当 时,AB//CDB.当 时,BC//DEC.当 时,CD//EFD.当 时,BF//DE
6.已知m= ,则以下对m的估算正确的( )
A.2<m<3B.3<m<4C.4<m<5D.5<m<6
【详解】
解:如图,
∵AB∥CD,∠1=70°,
∴∠1=∠CDE=70°,
由折叠性质知∠α= (180°-∠CDE) 2==55°,
故选:B.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.
二、填空题
13.【解析】【分析】连接OP将PAB的面积分割成三个小三角形根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP如图:∵A(20)B(03)∴OA=2OB=3∵∠AOB=90°∴∵点P
解析:135°.
【解析】
【分析】
由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.
【详解】
解:∵∠1与∠2互余,∠1=∠2,
∴∠1=∠2=45°,
∴∠3=180°﹣45°=135°,
故答案为135°.
【点睛】
本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.
C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;
D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.
故选:D.
【点睛】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
6.B
解析:B
19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键
三、解答题
21.某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?
22.如图,点 的坐标分别为 ,将线段 直接平移到 ,使点 移至点 的位置,点 移至点 的位置,设平移过程中线段 扫过的面积为 ,
-a>-b,故⑤正确,
故选B.
【点睛】
此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.
9.A
解析:A
【解析】
【分析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
相关文档
最新文档