精选初中数学中考模拟考试题库(标准答案)
2024年山东省聊城市中考数学模拟考试试题(含答案)
2024年山东省初中学业水平模拟考试数学试题(总分120分考试时间120分钟)2024.05注意事项:1.答卷前务必将你的姓名、座号和准考证号按要求填写在试卷和答题卡上的相应位置。
2.本试题不分I、II卷,所有答案都写在答题卡上,不要直接在本试卷上答题。
3.必须用0.5毫米黑色签字笔书写在对应的答题卡区域,不得超出规定范围。
一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.的相反数是()A.B.C.D.2.以下山东省各场馆的Logo中属于轴对称图形的是()A.山东博物馆B.山东省图书馆C.山东省科技馆D.山东美术馆3.在《九章算术》中,将底面为直角三角形的直三棱柱叫堑堵.如图是一堑堵,其俯视图为()A.B.C.D.4.下列等式一定成立的是()A.B.C.D.5.“五一”假期,山东省文旅市场火爆,全省接待国内游客约4871.2万人次.数据“4871.2万”用科学记数法表示为()A.B.C.D.6.山东博物馆在2024年5月份举办“走近考古”展览,为公众揭开考古学神秘面纱.现小张同学参观博物馆,343434-4343-11a ab b+=+2a abb b=33a ab b=a a cb b c+=+80.4871210⨯84.871210⨯74.871210⨯44871.210⨯由于参观人数较多,准备从3楼展厅的“走进考古”展览、“山东龙——穿越白垩纪”展览、“考古成果”展览、“非洲野生动物大迁徙”展览4个中随机选择2个进行参观,则正好选择“走进考古”展览和“山东龙——穿越白垩纪”展览的概率是()A. B . C . D .7.请根据学习函数的经验,自主尝试探究表达式为的函数图像与性质,下列说法正确的是()A .图像与y 轴的交点是(0,) B .图像与x 轴有一个交点C .当时, D .y 随x 的增大而减小8.如图,在中,点C 为上的点,.若,且AC 是的内接正n 边形的一边,则n 的值为()A .8B .9C .10D .129.如图,在中,,CD 是中线,过点A 作CD 的垂线,分别交BC 、CD 于点E 、F .若,,则CD 的长为()A .39 B . C .D .19.510.如图,在底面积为,高为20cm 的长方体水槽内放入一个底面积为的圆柱形烧杯,以恒定不变的速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不变,则水槽中水面上升的高度h 与注水时间t 之间的函数图像可能为()16122391623y x =-230x <0y <O AB 2BC AC =120ACB ∠=︒O Rt ABC △90ACB ∠=︒2tan 3CAE ∠=26AE =280cm 216cmA .B .C .D .二、填空题:本题共6小题,每小题3分,共18分.11在实数范围内有意义,则x 的取值范围为________.12.因式分解:________.13.分式方程的解为________.14.如图,在菱形ABCD 中,,,垂足为E .若,则菱形ABCD 的周长为________.15.在测量某物体的重量时,得到如下数据:,,…,.当关于x 的函数取得最小值时,相应的x 值表示该物体重量的估计值.若,,…,的和为24,则该物体重量的估计值为________.16.如图是从原点开始的通道宽度为1的回形图,,反比例函数与该回形图的交点依次记为、、、……,则的坐标为________.24ab a -=213242x x+=--4sin 5B =AE BC ⊥2CE =1a 2a 8a 222128()()()y x a x a x a =-+-++- 1a 2a 8a 1OA =1y x=1B 2B 3B 2024B三、解答题:本题共8小题,共72分.解答应写出文字说明、证明过程演算步骤.17.(本小题满分8分)(1)计算:2)解不等式组:18.(本小题满分8分)山东大樱桃以“北方春果第一枝”而闻名,品种丰富.某水果店计划购进其中的“美早”与“黄水晶”两个品种的樱桃,已知2箱“美早”樱桃的进价与3箱“黄水晶”樱桃的进价之和为280元,且每箱“美早”樱桃的进价比每箱“黄水晶”樱桃的进价贵10元.(1)求每箱“美早”樱桃的进价与每箱“黄水晶”樱桃的进价分别是多少元?(2)水果店欲购进“美早”与“黄水晶”樱桃共50箱,在进货总价不超过3000元的情况下,最多可购进“美早”樱桃多少箱?19.(本小题满分8分)为增进学生对数学文化的了解,某校开展了两次数学文化知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下图是将这20名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标绘制而成.(1)学生甲第一次活动成绩是70分,则该生第二次活动成绩是________分,两次活动的平均成绩为________分;两次活动成绩均达到或高于90分的学生有________个;这20名学生的第一次活动成绩的中位数为________分;(2)请在下图中画一条直线,使得该直线上方的点表示两次活动的平均成绩高于80分.(3)假设全校有1200名学生参加活动,估计两次活动平均成绩不低于80分的学生人数.21()2sin 602-+︒+764,23.x x x x +>⎧⎨-≤⎩20.(本小题满分8分)如图,在中,D 是BC 延长线上一点,且,过点C 作且,连接DE .(1)利用直尺、圆规作出满足条件的点E ,并连接DE (不写作法,保留作图痕迹)(2)证明:.21.(本小题满分9分)如图,为了测量河对岸A 、B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得点A ,B 均在点C 的北偏东方向上,沿正东方向行走105米至观测点D ,测得点A 在点D 的正北方向,点B 在点D 的北偏西方向上.求A 、B 两点间的距离.同学甲:在纸上利用“比例尺”画出相应的图,并测得纸上CD 长度约为21cm ,AB 长度约为20cm ,再求出实际A 、B 两点间的距离.同学乙:通过计算器得到数据:,,,再结合三角函数知识求出A 、B 两点间的距离.请按照同学甲、乙的方法分别计算出A 、B 两点间的距离.22.(本小题满分9分)在平面直角坐标系xOy 中,二次函数()的图像上有两点A (,)、B (,),它的对称轴为直线.ABC △CD AB =CE AB ∥CE BC =A D ∠=∠37︒45︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈2y ax bx =+0a <1x 1y 2x 2y x t =(1)当该二次函数图像过点(6,0)时.①求t 的值;②当,轴,且到x 轴距离为2,求a 的值;(2)当时,若对于任意,都有成立,直接写出t 的取值范围.23.(本小题满分10分)【实践探究】如图1,在矩形ABCD 中,,,交AB 于点E,则的值是________;【变式探究】如图2,在平行四边形ABCD 中,,,,交AB 于点E ,求的值;【灵活应用】如图3,在矩形ABCD 中,,点E ,F 分别在AD ,BC 上,以EF 为折痕,将四边形ABFE 翻折,使得AB 的对应边恰好经过点D ,交CD 于点I ,过点D 作交AB 于点P .若,且与的面积比为,求的值.24.(本小题满分12分)定义:平面直角坐标系xOy 中,点P (a ,b ),点Q (c ,d ),若,,其中k 为常数,且,则称点Q 是点P 的“k 级变换点”.例如,点(,7)是点(2,3)的“级变换点”.(1)点(1,1)的“3级变换点”是点________;(2)设点Q (p ,q )是点P (1,1)的“k 级变换点”.①M (p ,m )为反比例函数的图像上,当时,判断m ,q 的大小关系:________;②点A 的坐标为(,2),若,求点Q 的坐标;(3)若以(n ,0)为圆心,1为半径的圆上恰有两个点,这两个点的“1级变换点”都在直线上,求n 的取值范围.2024年山东省初中学业水平模拟考试212x x -=AB x ∥101x <<122x x +=120y y >8AB =6BC =DE AC ⊥DE AC90DBC ∠=︒8BD =6BC =DE AC ⊥DE AC8AD =A B ''B F 'DP EF ⊥4A D '=ADP △BPF △16:24DP EF1c ka =+1d kb =-+0k ≠3-2-4y x=0p >3-45QAO ∠=︒5y x =-+数学试题参考答案一、选择题:本题共10小题,每小题3分,共30分.1.B 2.A 3.C 4.B 5.C 6.A 7.C 8.B 9.D 10.B二、填空题:本题共6小题,每小题3分,共18分.11. 12. 13.14.20 15.3 16.(,507)三、解答题:本题共8小题,共72分.17.(1)解:原式(2)解:由①得,;由②得,;∴.18.解:(1)设每箱“美早”樱桃的进价是x 元,每箱“黄水晶”樱桃的进价是y 元,解得答:每箱“美早”樱桃的进价是62元,每箱“黄水晶”樱桃的进价是52元.(2)设购进a 箱“美早”樱桃,则,解得.答:最多可购进“美早”樱桃40箱.19.(1)75,72.5;5;80;(2)如图所示;2x ≤(2)(2)a b b +-52x =150742=++4=+76423x x x x +>⎧⎨-≤⎩①②2x >-3x ≤23x -<≤10,23280,x y x y -=⎧⎨+=⎩62,52.x y =⎧⎨=⎩62(50)523000a a +-⨯≤40a ≤(3)(人),答:估计两次活动平均成绩不低于80分的学生人数有660人.20.(1)如图即为所求.(方法不唯一)(2)证明:∵,∴.在和中,∴,∴.21.同学甲:,则.答:实际A 、B 两点间的距离为100m .同学乙:作,垂足为M .由题意,,,∴,.∴设,,∴,.∴.∴.11120066020⨯=AB CE ∥ABC ECD ∠=∠ABC △DCE △,,,AB DC B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩ABC DCE ≌△△A D ∠=∠2120105AB=100AB =BM CD ⊥37CBM ∠=︒45BDM ∠=︒37CAD ∠=︒tan 0.75CM CBM BM ∠=≈tan 1DM DBM BM∠==3CM k =4BM k =5CB k ==4DM BM k ==347105CD k k k =+==15k =∴.在中,,∴.∴.答:A 、B 两点间的距离为100m .22.(1)①;②时,∵,轴,且到x 轴距离为2,∴A (2,2),B (4,2).∴,解得答:a 的值为.(2)或.23.【实践探究】;【变式探究】作于M ,交AB 的延长线于N ,∴.∵,∴.∴.∴.∴.即.由题意得,,,.∴,.75CB =Rt ACD △sin 0.6CD CAD AC∠=≈1750.6CD AC ==17575100AB =-=0632t +==3t =212x x -=AB x ∥32422b a a b ⎧-=⎪⎨⎪+=⎩1,43.2a b ⎧=-⎪⎪⎨⎪=⎪⎩14-0t ≤1t ≥34DM AB ⊥CN AB ⊥90EDM DEM ∠+∠=︒AC DE ⊥90CAN DEM ∠+∠=︒EDM CAN ∠=∠cos cos EDM CAN ∠=∠DM AN DE AC =DE DM AC AN=10CD AB ===63cos cos 105CBN BCD ∠=∠==84sin sin 105CBN BCD ∠=∠==424655CN =⨯=36810655AN AB BN =+=+⨯=∴.【灵活应用】过点E 作,垂足为Q ,∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.易得,.∴设,,.∴.∴.∴.∴,解得,(舍).∴.由,得.(另解)延长FE 、BA 交于点M ,,则,即.246568175DE AC ==EQ BC ⊥4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AEP B DI '△∽△AEP CFI △∽△3B D k BP '==4B I k '=5DI k =43542CI k k k =+-=-33(42)342CF k k =-⨯=-3852BF CF k =-=+133(5)2422k k ⨯+=12k =2163k =-4310EQ AB k ==+=ADP QEF ∽△△84105DP AD EF EQ ===ADP EMP ∠=∠tan tan ADP EMP ∠=∠AP AE BF AD AM BM ==∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.∵,∴.∴,.设,则.∴.解得,(舍).∴.由,得.24.(1)(4,)(2)①②由题意得,所以点Q 在直线上.设点A 绕坐标原点O 按顺时针方向旋转至点M ,连结AM ,交直线于点Q ,作轴于H ,轴于K .在和中,∴,∴M (2,3).∴:.4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AP AE BF AD AM BM==438BF AM BM==6AM =2BM BF =BP x =641022x x BF +++==1102422x x +⨯=16x =216x =-4610EQ AB ==+=ADP QEF △∽△84105DP AD EF EQ ===2-m q>1,1p k q k =+⎧⎨=-+⎩2y x =-+90︒2y x =-+AH x ⊥MK x ⊥AHO △OKM △,,,AO OM AOH OMK AHO OKM =⎧⎪∠=∠⎨⎪∠=∠⎩AHO OKM ≌△△AM l 11355y x =+联立,得Q (,).(3)若A (,),B (,),则它们的一级变换点(,),(,),∵该两点在上,∴,,即A ,B 两点在上,由直线与圆的位置关系可得,当时,圆与直线相切,∴当时,圆与直线有2个公共点,∴2y x =-+12-521x 1y 2x 2y A '11x +11y -+B '21x +21y -+5y x =-+11115y x -+=--+22115y x -+=--+3y x =-3n =3y x =-33n <<+3y x =-33n -<<。
精选初中数学中考完整题库(标准答案)
2019年初中数学中考复习试题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.如图1,已知ABC∆周长为1,连结ABC∆三边的中点构成第二个三角形,再连结第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为-------------------------------()(A)12002(B)12003(C)200212(D)2003122.函数y=-12(x+1)2+2的顶点坐标是------------------------------------------------()(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)3.若12,x x是方程22630x x-+=的两个根,则1211x x+的值为---------------------------( )(A)2(B)2-(C)12图1(D)9 24.二次函数y=ax2+bx+c的图象如图所示,下列结论错误..的是【▲】A.ab<0B.ac<0C.当x<2时,y随x增大而增大;当x>2时,y随x增大而减小D.二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根5.下列图形中既是中心对称图形又是轴对称图形的是【▲】A B C D第II卷(非选择题)请点击修改第II卷的文字说明二、填空题6.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是_____________________________(只需填写一个你认为适合的条件).7.如图,从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,已,则这个圆形纸板的半径为▲.8.计算下列各式(1)n b b b ⋅-⋅-23)( (2) n n 212)3(3)3(-⋅+-+9.已知函数y= ax 2+bx+c 的一些对应值如下:判断方程ax 2+bx+c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是_________________ 10. 图8是二次函数122-+-=a x ax y 的图象,则a 的值是____________.11. 抛物线的图像与x 轴交于(x 1,0)(x 2,0)两点,且0< x 1<1,1< x 2<2,且与y 轴交于点(0,-2)。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)
2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
初中中考数学考试全真模拟试题卷六(附答案)
初中毕业生学业(升学)模拟考试数学试题卷(全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡和试题卷规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用黑色墨水笔或黑色签字笔将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题(本大题共12小题,每小题4分,共48.0分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目答案标号涂黑、涂满)1. 有一块正方体水晶砖,它的体积为99cm 3,则它的棱长大约在( )A. 3cm ~4cm 之间B. 4cm ~5cm 之间C. 5cm ~6cm 之间D. 9cm ~10cm 之间2. 甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x −甲,x −乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A. x −甲=x −乙,s 甲2>s 乙2B. x −甲=x −乙,s 甲2<s 乙2 C. x −甲>x −乙,s 甲2>s 乙2 D. x −甲<x −乙,s 甲2<s 乙23. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠AOD =120°,AC =6,则图中长度为3的线段有( )A. 2条B. 4条C. 5条D. 6条4.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.如图,△ABC是⊙O的内接三角形,且AB=AC,∠ABC=56°,⊙O的直径CD交AB于点E,则∠AED的度数为()A. 99°B. 100°C. 101°D. 102°6.下列选项中的整数,与√26最接近的是()A. 3B. 4C. 5D. 67.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68.如图,CE平分∠BCD且CE⊥BD于点E,∠DAB=∠ABD,AC=24,△BCD的周长为34,则BD的长为()A. 10B. 12C. 14D. 169.如果a2+2a−1=0,那么代数式(a−4a )·a2a−2的值是()A. 1B. 12C. √2D. 210.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.12√3 B. 13√3C. 14√3 D. 15√311.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<−1时,y随x的增大而增大.其中结论正确的个数为()A.3B. 4C. 5D. 612.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、PO和OA,则△AOP面积的最大值为()A. 4B. 215C. 358D. 174二、填空题(本大题共4小题,共16.0分)13.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有______人进公园,买40张门票反而合算.14.已知关于x的分式方程xx−1−2=k1−x的解为正数,则k的取值范围为_________.15.如图,在▱ABCD中,对角线AC,BD相交于点O.若DO=1.5cm,AB=5cm,BC=4cm,则▱ABCD的面积为cm2.16.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是______.三、解答题(本大题共8小题,共86.0分。
最新中考数学全真模拟考试试卷(含答案)
初中毕业升学模拟考试试卷数学(本试题满分150分,考试时间120分钟)注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2、答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3、答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4、所有题目必须在答题卡上作答,在试卷上答题无效。
一、选择题(本大题共10小题,共40.0分)1.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离2.如图,点O是△ABC内一点,∠A=80∘,∠1=15∘,∠2=40∘,则∠BOC等于()A. 95∘B. 120∘C. 135∘D. 无法确定3.如图,已知a//b,将直角三角形如图放置,若∠2=50°,则∠1为()A. 120°B. 130°C. 140°D. 150°4.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A. 13B. 17C. 13或17D. 13或105. 在同一直角坐标系中,对于函数:①y =−x −1,②y =x +1,③y =−x +1,④y =−2(x +1)的图象,下列说法正确的是( )A. 通过点(−1,0)的是①和③B. 交点在y 轴上的是②和④C. 相互平行的是①和③D. 关于x 轴对称的是②和③6. 周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(m)与他所用的时间t(min)之间的函数关系如图所示,下列说法中正确的是( )A. 小涛家离报亭的距离是900mB. 小涛从家去报亭的平均速度是60m/minC. 小涛从报亭返回家中的平均速度是80m/minD. 小涛在报亭看报用了15min7. 如图,D ,E 分别是△ABC 的边AB 、BC 上的点,DE//AC ,若S △BDE :S △CDE =1:2,则S △DOE :S △AEC 的值为( )A. 16 B. 19 C. 112 D. 1168. 已知{3x +2y =kx −y =4k +3,如果x 与y 互为相反数,那么( )A. k =0B. k =−34C. k =−32D. k =349. 将抛物线y =2x 2向下平移1个单位,得到的抛物线是( )A. y =2(x +1)2B. y =2(x −1)2C. y =2x 2+1D. y =2x 2−110. 如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x −k)2+ℎ.已知球与O 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m.高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A. 球不会过网B. 球会过球网但不会出界C. 球会过球网并会出界D. 无法确定二、填空题(本大题共10小题,共30.0分)11.如图所示,用火柴棒按如下方式搭三角形:照这样的规律搭下去,搭n个这样的三角形需要根火柴棒.12.按一定规律排列的一列数依次为:−a22,a55,−a810,a1117,…(a≠0),按此规律排列下去,这列数中的第n个数是______.(n为正整数)13.已知a,b满足a+b=3,ab=2,则a2+b2=.14.如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是______cm.15.如图,在△ABC中,∠B=38°,∠C=40°,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,则∠DAE=______ .16.函数y=√2−xx+2中,自变量x的取值范围是______.17. 一次函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =4的解为 .18. 已知a 、b 、c 是△ABC 的三边长,且a 、b 、c 满足b 2=(c +a)(c −a),若5b −4c =0,则sinA +sinB 的值为______.19. 甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S 甲2______S 乙2(填>或<)20. 如图,∠ACB =60∘,半径为1 cm 的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离是________ cm .三、解答题(本大题共6小题,共80.0分) 21. (12分)(1)计算:123160tan 45sin 231-⎪⎭⎫⎝⎛--︒+︒+--(2)已知√x +8=3,(4x +3y )3=−8,求√x +y 3的值.22.(12分)如图,用两个边长为15√2cm的小正方形拼成一个大的正方形.①求大正方形的边长?②若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3且面积为720cm2.若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由?23.(12分)已知:如图,在等边△ABC中,D为边BC上一点,E是△ABC外一点,且CE//AB,∠ADE=60°.求证:CE+CD=AB.24.(14分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占15%,口才占20%,笔试成绩中专业水平占40%,创新能力占25%,那么你认为该公司应该录取谁?25.(14分)如图,直线AB与直线OA交于点A(3,3),点B的坐标为(9,0),(1)直线OA的解析式为______________,直线AB的解析式为______________;(2)设点P(x,0)在线段OB上运动(不与O、B两点重合),过点P作与x轴垂直的直线l,设△AOB位于直线l左侧的部分面积为S,请直接写出S关于x的函数关系式;(3)在(2)的前提下,当S=9时,一动点M在平面内自点C(2,0)出发,先到达直线2OA上的一点Q,再到达直线l上的一点R,最后又运动到点C,请你画出点M运动的最短路径,并求出使点M运动的总路径最短的点Q和点R的坐标.26.(16分)如图,抛物线y=−(x−1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD//x轴交抛物线另一点D,连结AC,DE//AC交边CB于点E.(1)求A,B两点的坐标;(2)求△CDE与△BAC的面积之比.答案1.B2.C3.C4.B5.C6.D7.C8.C9.D10.C11.2n+112.(−1)n⋅a3n−1n2+113.514.1415.24°16.x≤2且x≠−217.x=318.7519.>20.√321.(1)解:原式=√3+√2×√2+√3−(−3)−2√32=√3+1+√3+3−2√3=4.(2)解:∵√x+8=3,∴x+8=9.∴x=1.∵(−2)3=−8, ∴4x +3y =−2. ∴y =−2.∴√x +y 3=√1+(−2)3=−1.22.解:①大正方形的面积=(15√2)2+(15√2)2=900大正方形的边长=√900=30cm ; ②设长方形纸片的长为4xcm ,宽为3xcm , 则4x ⋅3x =720, 解得:x =√60, 4x =√16×60>30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm 2.23.证明:在AC 上截取CM =CD ,∵△ABC 是等边三角形, ∴∠ACB =60°, ∴△CDM 是等边三角形,∴MD =CD =CM ,∠CMD =∠CDM =60°, ∴∠AMD =120°, ∵∠ADE =60°, ∴∠ADE =∠MDC , ∴∠ADM =∠EDC , ∵直线CE//AB , ∴∠ACE =∠BAC =60°, ∴∠DCE =120°=∠AMD , 在△ADM 和△EDC 中,∴△ADM≌△EDC(ASA),∴AM=EC,∴CA=CM+AM=CD+CE;即CD+CE=CA.CD+CE=AB.24.解:(1)甲的平均成绩为x=86×4+90×6+96×5+92×54+6+5+5=91.2(分),乙的平均成绩为x=92×4+88×6+95×5+93×54+6+5+5=91.8(分),∴应该录取乙;(2)甲的平均成绩为x=86×15%+90×20%+96×40%+92×25%=92.3(分),乙的平均成绩为x=92×15%+88×20%+95×40%+93×25%=92.65(分),∴应该录取乙.25.解:(1)y=x;y=−12x+92;(2)设直线l于直线AB交于点H,设点P(x,0), ①当0<x≤3时,点H(x,x),S=12×OP×PH=12·x·x=12x2; ②当3<x<9时,点H(x,−12x+92),S=S△AOB−S△PBH=12·9·3−12·(9−x)(−12x+92)=−14x2+92x−274;综上,S ={12x 2(0<x ⩽3)−14x 2+92x −274(3<x <9); (3)∵S =92,当0<x ≤3时,12x 2=92,解得x =3(负值舍去),符合题意;当3<x <9时,−14x 2+92x −274=92,解得x =3或x =15,不符合题意, 综上可得直线l 经过点A ,直线OA 是一三象限角平分线,作点C 关于直线OA 的对称轴C′,则C′在y 轴上,作点C 关于直线l 的对称轴C″,连接C′C″交OA 于点Q 交直线l 于点R ,则此时路径最短,点Q 、R 为所求,点M 运动的路径为:OQ +QR +CR ,其最小值为:QC′+QR +RC″=C′C″, OC =OC′=2,故点C′(0,2),同理点C″(4,0);设直线C′C 的解析式为y =ax +b ,将点C′C″的坐标代入得:{b =24a +b =0, 解得{b =2a =−12,则直线C′C′的表达式为:y =−12x +2,当x =3时,y =12,故点R(3,12),联立y =−12x +2和y =x 得{y =xy =−12x +2, 解得{x =43y =43, 则点Q(43,43). 26.解:(1)∵令y =0,则−(x −1)2+4=0,解得x 1=−1,x 2=3,∴A(−1,0),B(3,0);(2)∵CD//AB ,DE//AC ,∴△CDE∽△BAC.∵当y=3时,x1=0,x2=2,∴CD=2.∵AB=4,∴CDAB =12,∴S△CDES△BAC =(12)2=14.。
2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)+答案解析
2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,最小的数是()A. B. C.1 D.02.在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A. B. C. D.3.下列运算不正确的是()A. B. C. D.4.如图,平面镜MN放置在水平地面CD上,墙面于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上.若,则的度数为()A.B.C.D.5.下列调查中,调查方式选择合理的是()A.为了解全国青少年儿童的睡眠时间,统计人员采用普查的方式B.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式C.为了解乘客是否携带危险物品,高铁站工作人员对部分乘客进行抽查D.为保证神舟十七号载人飞船顺利发射,对所有零件进行了全面检查6.我们在学习许多代数公式时,可以用几何图形来推理验证,观察下列图形,可以推出公式的是图()A. B.C. D.7.某次射击训练中,甲、乙、丙、丁四名运动员10次射击成绩的平均数单位:环与方差如表所示.根据表中数据,这四人中成绩好且发挥稳定的是()甲乙丙丁9899A.甲B.乙C.丙D.丁8.如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径,点A ,B 是圆上的两点,,则的长为()A. B. C. D.9.若关于x 的一元二次方程的一个实数根为2024,则方程一定有实数根()A.2024B.C.D.10.如图,O 是坐标原点,点B 位于第一象限,轴于点D ,,,C 为OB 的中点,连接CD ,过点B 作交x 轴于点若反比例函数的图象经过OB的中点C,与线段AB交于点E,则AE的长为()A.B.C.D.二、填空题:本题共8小题,每小题3分,共24分。
11.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为将用科学记数法表示为______.12.当时,代数式______.13.如图是我国清代康熙年间的八角青花碗,其轮廓是一个正八边形,正八边形的每一个内角是______.14.在如图所示的方格纸上建立适当的平面直角坐标系,若点B的坐标为,点C的坐标为,则点A的坐标为______.15.如图,在中,弦半径OA于点D,连接若,,则BC的长是______16.将9枚黑棋子和6枚白棋子装入一个不透明的空盒子里,这些棋子除了颜色外无其他差别.从盒子中随机取出一枚棋子,则取出的棋子是黑子的概率是______.17.如图,湖中有一个小岛A,一艘轮船由西向东航行,它在B处测得小岛A在北偏东方向上,航行20海里到达C处,这时测得小岛A在北偏东方向上,则小岛A到航线BC的距离为______海里.18.如图,在▱ABCD中,BD为对角线,分别以点A,B为圆心,以大于的长为半径画弧,两弧相交于点M,N,作直线MN交AD于点E,交AB于点若,,,则BD的长为______.三、解答题:本题共8小题,共66分。
中考数学综合模拟测试题(附答案解析)
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,
精选最新初中数学中考考试题库(标准答案)
2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -3.三角形三边长分别是6、8、10,那么它最长边上的高为 ( ) (A )6 (B )4.8 (C )2.4 (D )8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题4.如图:DE 是△ABC 的中位线,∠ABC 的平分线交DE 于点F. 求证:AF ⊥BF5. 图8是二次函数122-+-=a x ax y 的图象,则a 的值是____________.6. 一条抛物线的对称轴是x=1且与x轴有惟一的公共点,并且开口方向向下,则这条抛物线的解析式是____________________(任写一个)7. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________8.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.图 8A9. 如右图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E , △BCE 的周长等于18 cm ,则AC 的长等于 。
最新版精编初中数学中考考核题库完整版(标准答案)
2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.关于x 的一元二次方程a 2x -5x +a 2+a =0的一个根是0,则a 的值是--------------------( )(A )0 (B )1 (C )-1 (D )0,或-13.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是----------------------------------------------------------------------------------------------------------------------------------------( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠0 4.D 是ABC ∆的边AB 上的一点,过D 点作DE //BC 交AC 于E 。
已知AD :DB =2:3,则BCED ADE S S 四边形:∆= ( ) (A )2:3 (B )4:9 (C )4:5 (D )4:21第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;(2)以B 点为位似中心,将△ABC 放大到2倍。
6.已知: 2228162n n ⨯⨯=,求n 的值7. 抛物线3)2(2+-=x y 的对称轴是_______________________8. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________A9.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.10.已知:在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连结EC 、FC . 求证:EC =FC .11.如图,AB ⊥BE ,BC ⊥BD ,AB=BE ,BC=BD,求证:AD=CE12.25的相反数是 ▲ ,9的平方根是 ▲ ,计算:24(2)3x x -⋅= ▲ ,23--= ▲ .13.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 。
初中数学中考模拟数学提优专题:《正方形的判定与性质》(含答案).docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,等腰直角三角形ABC分别沿着某条直线对称得到图形b,c,d.若上述对称关系保持不变,平移△ABC,使得四个图形能够围成一个不重叠且无缝隙的正方形,此时点B的坐标和正方形的边长为()A. B.(1,﹣1),2C. D.试题2:如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()评卷人得分A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形试题3:如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC =90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A.②③ B.②④ C.②③④ D.①③④试题4:如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34C.36 D.40试题5:如图,八边形ABCDEFGH中,AB=CD=EF=GH=1,BC=DE=FG=HA=,∠A=∠B=∠C=∠D=∠E=∠F=∠H=135°,则这个八边形的面积等于()A.7 B.8C.9 D.14试题6:直角梯形ABCD中,∠A=∠D=90°,DC<AB,AB=AD=12,E是边AD上的一点,恰好使CE=10,并且∠CBE=45°,则AE的长是()A.2或8 B.4或6 C.5 D.3或7试题7:正方形四边中点的连线围成的四边形(最准确的说法)一定是()A.矩形 B.菱形 C.正方形 D.平行四边形试题8:如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25C.26 D.36试题9:如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2C.4 D.8试题10:如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形试题11:.如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是()A.矩形 B.菱形C.正方形 D.无法判断试题12:已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是()A.12 B.13C.14 D.15试题13:在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=10,点E在AB上,BE=6且∠DCE=45°,则DE的长为.试题14:小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得正方形的对角线AC=40cm,则图1中对角线AC的长为cm.试题15:如图,在四边形ABCD中,AB=BC,AB∥CD,AD∥BC,∠ABC=90°.点E、F分别在边AB、AD上,CE与BF相交于点G,BE=AF.线段BG的垂直平分线交BE于点H,且∠EHG=54°.若∠EGH=m o,则m=.试题16:如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,∠EDF是直角,AE=CF,则多边形ABCFDE的面积是.试题17:现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是(填写图形的形状)(如图),它的一边长是.试题18:如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR=.试题19:四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DE FG,连接CG(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.试题20:如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.试题1答案:D解:根据图形可知,AB=1,BC=1,∴移动后,点B的横坐标与纵坐标的长度都是,又点B移动后位于第四象限,∴此时点B的坐标为(,﹣).正方形的边长为试题2答案:B解:A、∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC得中位线,∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,正确.B、若AD平分∠A,如图,延长AD到M,使DM=AD,连接CM,由于BD=CD,DM=AD,∠ADB=∠CDM,(SAS)∴△ABD≌△MCD∴CM=AB,又∵∠DAB=∠CA D,∠DAB=∠CMD,∴∠CMD=∠CAD,∴CA=CM=AB,因AD平分∠A∴AD⊥BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,因为∠A不一定是直角∴不能判定四边形AEDF是正方形;C、若AD⊥BC,则△ABD≌△ACD;AB=AC,AE=AF,结合(1)四边形AEDF是菱形,正确;D、若∠A=90°,则四边形AEDF是矩形,正确.故选:B.试题3答案:C解:根据已知条件不能推出OA=OD,∴①错误;∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正确;∵∠BAC=90°,∠AED=∠AFD=90°,∴四边形AEDF是矩形,∵AE=AF,∴四边形AEDF是正方形,∴③正确;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正确;∴②③④正确,故选:C.试题4答案:B解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.试题5答案:A解:如图,延长AB、DC交于M点,延长CD、FE交于N点,延长EF、HG交于P点,延长GH、BA交于Q点,则MNPQ是矩形,∵∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,∴△BCM、△DEN、△FGP、△AHQ均为等腰直角三角形.这个八边形的面积等于=矩形面积﹣4个小三角形的面积=3×3﹣4×1×1÷2=7.故选:A.试题6答案:B.解:如图,过点B作BF⊥CD交DC的延长线于F,∵∠A=∠D=90°,AB=AD,∴四边形ABFD是正方形,把△ABE绕点B顺时针旋转90°得到△BFG,则AE=FG,BE=BG,∠ABE=∠FBG,∵∠CBE=45°,∴∠CBG=∠CBF+∠FBG=∠CBF+∠ABE=90°﹣∠CBE=90°﹣45°=45°,∴∠CBE=∠CBG,在△CBE和△CBG中,,∴△CBE≌△CBG(SAS),∴CE=CG,∴AE+CF=FG+CF=CG=CE,设AE=x,则DE=12﹣x,CF=10﹣x,∴CD=12﹣(10﹣x)=x+2,在Rt△CDE中,CD2+DE2=CE2,即(x+2)2+(12﹣x)2=102,整理得,x2﹣10x+24=0,解得x1=4,x2=6,所以AE的长是4或6.故选:B.试题7答案:C解:连接AC、BD,交于O,∵正方形ABCD,∴AC=BD,AC⊥BD,∵E是AD的中点,H是CD的中点,F是AB的中点,G是BC的中点,∴EH∥AC,FG∥AC,EF∥BD,GH∥BD,EF=BD,EH=AC,∴EF=EH,EF⊥EH,四边形EFGH是平行四边形,∴平行四边形EFGH是正方形.故选:C.试题8答案:B解:设小正方形的边长为a,大正方形的边长为b,由这三张纸片盖住的总面积是24平方厘米,可得ab+a(b﹣a)=24 ①,由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b﹣a)2=a2﹣3,②将①②联立解方程组可得:a=4,b=5,∴大正方形的边长为5,∴面积是25.试题9答案:C解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.试题10答案:B解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.试题11答案:B证明:∵MN垂直平分AC,∴AO=CO,∠AOM=90°,又∵AD∥BC,∴∠MAC=∠NCA,在△AOPM和△CON中,,∴△AOPM≌△CON,∴OM=ON,∴AC和MN互相垂直平分,∴四边形ANCM是菱形;故选:B.试题12答案:C.解:作CF⊥AB于点F,设最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E,∵DE∥AB,∴=,即=,解得:DE=,而整数部分是4,∴最下边一排是4个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.则=,解得GH=,而整数部分是3,∴第二排是3个正方形;同理:第三排是:3个;第四排是2个,第五排是1个,第六排是1个,则正方形的个数是:4+3+3+2+1+1=14.故选:C.试题13答案:8.5.解:如图,∵AD∥BC(BC>AD),∠B=90°,∴∠A=90°,过点C作CG⊥AD,交AD的延长线于点G,∵AB=BC=10,∴四边形ABCG是正方形,∴∠BCG=90°,BC=CG,∵∠DCE=45°,∴∠DCG+∠BCE=45°,延长AB到BH使BH=DG,在△CDG与△CHB中,,∴△CDG≌△CHB(SAS),∴CH=CD,∠BCH=∠GCD,∴∠DCE=∠HCE,∵CE=CE,∴△CEH≌△CED(SAS),∴DE=EH=BE+DG,在过点C作CG⊥AD,交AD的延长线于点G,∵DE=DG+BE,设DG=x,则AD=10﹣x,DE=x+6,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(10﹣x)2+42=(x+6)2,解得x=2.5.∴DE=2.5+6=8.5.试题14答案:20,解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=40°,∴AB=BC=20,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=20,试题15答案:63.解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴∠A=∠CBE=90°,∵BC=AB,BE=AF,∴△BCE≌△ABF(SAS),∴∠ABF=∠BCE,∵∠ABF+∠CBF=90°,∴∠CBF+∠BCE=90°,∴∠BGC=∠EGB=90°,∵点H在线段BG的垂直平分线上,∴HB=HG,∴∠HGB=∠HBG,∵∠EHG=∠HBG+∠HGB=54°,∴∠HGB=∠HBG=27°,∴∠EGH=90°﹣27°=63°,∴m=63,试题16答案:57.75.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:试题17答案:正方形, cm.:如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,∴△ABC为直角边长为8cm的等腰直角三角形,∴AB=AC=8,∴阴影正方形的边长=AB=8 cm.故答案为:试题18答案:(1)证明:作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=A G,AD=AG,∴AB=AD,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=BG,同理:Rt△ADF≌Rt△AGF(HL),∴DF=GF,∴BE+DF=GE+GF=EF,设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,整理得:xy+6(x+y)=36,∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=6,∴GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,解得:a=3,即HR=3;故答案为:3.试题19答案:(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=4,∵EC=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=2;(3)①如图3,当DE与AD的夹角为40°时,∠DEC=45°+40°=85°,∵∠DEF=90°,∴∠CEF=5°,∵∠ECF=45°,∴∠EFC=130°,②如图4,当D E与DC的夹角为40°时,∵∠DEF=∠DCF=90°,∴∠EFC=∠DEC=40°,综上所述,∠EFC=130°或40°.试题20答案:(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。
最新版精选初中数学中考测试题库(标准答案)
2019年初中数学中考复习试题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.选择题:若关于x的方程2x+(k2-1) x+k+1=0的两根互为相反数,则k的值为--------()(A)1,或-1 (B)1 (C)-1 (D)02.函数y=-12(x+1)2+2的顶点坐标是------------------------------------------------()(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)3.若12,x x是方程22630x x-+=的两个根,则1211x x+的值为---------------------------( )(A)2(B)2-(C)12(D)924.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例 B.成正比例C.y与2z成正比例 D.y与2z成反比例5.下列图形中既是中心对称图形又是轴对称图形的是【▲】A B C D6.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6107-⨯ B .6107.0-⨯ C .7107-⨯ D .81070-⨯第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.如图,四边形ABCD 是⊙O 的内接矩形,AB=2,BC=4,E 是BC 的中点,AE 的延长线交⊙O 于点F ,则EF 的长是_________。
8.21)(a an --= ;212216-+⨯⨯m m = ;23)()(a b b a -⨯-= ;54)1()1(x x --= 。
9.(1)x 28=,则=x ;x248=⨯,则=x ;x 39273=⨯⨯,则=x ;10.计算下列各式(1)n b b b ⋅-⋅-23)( (2) n n 212)3(3)3(-⋅+-+11. 抛物线3)2(2+-=x y 的对称轴是_______________________ 12.m x mx y +++=)14(412的图象与x 轴相交于点A 、B 两点. (1)求证:不论m 为何值该抛物线总经过点(-4,0); (2)若B (x 0,0)且-4<x 0<0,试确定m 的取值范围;(3)在(2)的条件下,如果这个二次函数的图象与一次函数949+-=x y 的图象相交于点C ,且∠BAC 的余弦值为 54,求这个二次函数的解析式.13.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________14.如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 ▲ .ABCOED15. 已知:如图9,在ΔABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是ΔABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E 。
精选初中数学中考测试题库(含答案)
精选初中数学中考测试题库(含答案)精选初中数学中考测试题库(含答案)同学们,数学是我们初中生活中非常重要的一门学科,也是中考中必考的科目之一。
为了帮助大家更好地备战中考,我为大家准备了精选初中数学中考测试题库,并提供了答案。
希望这些题目能够帮助大家巩固知识,提高解题能力。
祝愿大家在中考中取得优异成绩!一、选择题1. 下列哪个数是分数 2/3 的两倍?A) 1/2 B) 1 1/4 C) 1 2/3 D) 2 1/22. 如果 a + b = 10,且 a^2 + b^2 = 34,那么 ab 的值等于多少?A) 11 B) 10 C) 9 D) 83. 有一个面积为 64 平方米的正方形花坛,若要在这个花坛内铺设宽度为 1 米的小石子边行道,需要多少条石子边行道?A) 8 B) 16 C) 32 D) 644. 一根长为15 厘米的绳子剪成两段,其中一段比另一段长7 厘米。
较短一段的长度是多少厘米?A) 7 B) 8 C) 9 D) 10二、填空题1. 若对任意正数 a,b,都有 a ÷ b + b ÷ a = 2,那么 a 的值为______,b 的值为______。
2. 若 x-2y = 5,3x+y = 10,则 x 的值为______,y 的值为______。
3. 甲、乙两班学生的平均身高都是 160 厘米,但甲班身高的标准差为 5 厘米,乙班身高的标准差为 8 厘米。
根据这些信息,我们可以推断甲班和乙班学生身高的分布情况是(填写正确选项):A) 甲班的学生身高更集中,乙班的学生身高更分散;B) 甲班和乙班的学生身高都很集中;C) 甲班和乙班的学生身高都很分散;D) 无法判断。
三、解答题1. 一辆以每小时 60 公里的速度行驶的列车从 A 站开往 B 站,经过两小时后,又以每小时 90 公里的速度行驶到达 B 站。
求 A、B 两站之间的距离。
2. 某书店原价出售一本书,72 元。
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。
(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。
湖南省衡阳市衡阳县2024年中考模拟数学试题(含答案)
衡阳县2024年初中学业水平模拟考试试卷数学(试题卷)温馨提示:1.本试卷包括试题卷和答题卡。
考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效。
考生在答题卡上按答题卡中注意事项的要求答题。
2.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号。
3.考试结束后,将本试题卷和答题卡一并交回。
4.本试卷满分120分,考试时间120分钟。
本试卷共三道大题,26个小题。
如有缺页,考生须声明。
亲爱的同学,请你沉着应考,细心审题,揣摩题意,应用技巧,准确作答。
祝你成功!一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将你认为正确的选项填涂到答题卡上)1,下列四个数中,最小的数是A.2-B.1-C.0D.π2,下列运算中正确的是A.32a a a -=B.3412a a a ⋅=C.623a a a ÷=D.236()a a -=-3.下列图形中,是中心对称图形的是A B C D4.太阳直径大约是1392000千米,相当于地球直径的109倍,数据1392000用科学记数法表示为A.70.139210⨯B.61.39210⨯C.4139.210⨯D.3139210⨯5.下列长度的三条线段,能组成三角形的是A.1,3,4B.2,2,7C.4,5,7D.3,3,66.下列说法正确的是A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.为了直观地介绍某款牛奶各营养成分的百分比,最适合使用的统计图是条形统计图C.一个抽奖活动中,中奖概率为120,表示抽奖20次必有1次中奖D.“投掷一枚质地均匀的硬币一次,结果正面朝上”为必然事件7.在平面直角坐标系中,将点()2,1向下平移3个单位长度,所得点的坐标是A.()1,1-B.()5,1C.()2,4D.()2,2-8.将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,123∠=︒,则2∠的度数是A.23°B.53°C.60°D.67°9.我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步?设宽为x 步,根据题意列方程正确的是A.()2212864x x ++= B.()2212864x x ++=C.()12864x x -= D.()12864x x +=10.如图,AB 是半O 的直径,点C 在半O 上,5cm AB =,4cm AC =.D 是 BC 上的一个动点,连接AD ,过点C 作CE AD ⊥于点E ,连接BE .在点D 移动的过程中,BE 的最小值为A.1132 C.221 D.3二、填空题(本大题共8个小题,每小题3分,共24分;请将答案填在答题卡的答案栏内)11.因式分解:3x x -=______.12.分式方程422x x=-的解是______.13.某校评选先进班集体,从“学习”“卫生”“纪律”“活动参与”四个方面综合考核打分,各项满分均为100分,所占比例如下表:项目学习卫生纪律活动参与所占比例40%30%20%10%某班这四项得分依次为83,82,73,80,则该班四项综合得分为______分.14.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x ⊥轴,AC y ⊥轴,垂足分别为B ,C ,矩形ABOC 的面积为4,则k =______.15.如果一个多边形每一个外角都是60°,那么这个多边形的边数为____________.16.如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分,如果C 是O 中弦AB 的中点,CD 经过圆心O 交O 于点D ,并且4m AB =,6m CD =,则O 的半径长为______m.17.如图,在ABC △中,90C ∠=︒,AC BC =.以点A 为圆心,以任意长为半径作弧,分别交AB ,AC 于D ,E 点;分别以点D ,E 为圆心,以大于12DE 长为半径作弧,在BAC ∠内两弧相交于点P ;作射线AP 交BC 于点F ,过点F 作FG AB ⊥,垂足为G .若8cm AB =,则BFG △的周长等于______cm .18.如图,直线11y k x =与直线22y k x b =+交于点()1,2A ,当12y y <时,x 的取值范围是______.三、解答题(本大题共8个小题,第19-25题每题8分,第26题10分,共66分;解答应写出必要的文字说明、演算步骤或证明过程)19.计算:()101342sin 605π-⎛⎫--︒+ ⎪⎝⎭.。
初中中考数学全真模拟试题卷七(带答案)
初中毕业生学业(升学)模拟考试数学考生注意:1.一律用黑色笔或2B铅笔将答案填写或填涂在答题卡指定位置内。
2.本试卷满分150分,考试用时120分钟。
一、选择题(本大题共10小题,共40.0分)1.下列表达错误的是()A. 比a的2倍大1的数是2a+1B. a的相反数与b的和是−a+bC. 比a的平方小1的数是a2−1D. a的2倍与b的差的3倍是2a−3b2.如图,AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A. 132°B. 128°C. 122°D. 112°3.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,且他们的方差如下表所示:选手甲乙丙丁方差 1.560.60 2.500.40则在这四个选手中,成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁4.如图,正方形ABCD的边长为4,点A的坐标为(−1,1),AB平行于x轴,则点C的坐标为()A. (3,1)B. (−1,1)C. (3,5)D. (−1,5)5.在平面直角坐标系中,点A是双曲线y1=k1x(x>0)上任意一点,连接AO,过点O作AO的垂线与双曲线y2=k2x (x<0)交于点B,连接AB,已知AOBO=2,则k1k2=()A. 4B. −4C. 2D. −26.如图,在正方形ABCD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD扫过的面积为()A. π4B. π2C. πD. 2π7.若点(a,y1)、(a+1,y2)在直线y=kx+2上,且y1>y2,则该直线所经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限8.如图,在Rt△ABC中,∠ACB=90°,∠A=35°,以C为旋转中心,将∠ABC旋转到△A′B′C的位置,点B在斜边A′B′上,则∠BDC为()A. 70°B. 90°C. 100°D. 105°9.如图,已知矩形ABCD,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=()A. 52B. √102C. 2D. 3√2210.如图1,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A. 25B. 20C. 12D. 8√3二、填空题(本大题共10小题,共30.0分)11.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)⋅(1−i)=______.12.如图,AB//CD,AD平分∠BAC,且∠D=72°,则∠C的度数为______.13.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有8条,那么该多边形的边数是______.14.二次根式√2−x在实数范围内有意义,x的取值范围是______.+(2x−1)0有意义的x的取值范围是______.15.使函数y=1√x+316.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是______.17.如图,在△ABC中,BD,BE将∠ABC分成三个相等的角,CD,CE将∠ACB分成三个相等的角.若∠A=105°,则∠D等于______度.18.如图,三角形ABC的周长为22cm,现将三角形ABC沿AB方向平移2cm至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C的周长是______.19.点P(2a−1,a+2)在x轴上,则点P的坐标为______.20.若小球在如图所示的地面上自由滚动,并随即停留在某块方砖上,那么它最终停留在黑色区域的概率是______.三、解答题(本大题共6小题,共80.0分)3−√(−2)2+(−√5)221.(12分)(1)计算√−27(2)求x的值:3(x−1)2−27=022.(12分)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(ℎ)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(ℎ)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满倍.求单独打开甲进水口游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43注满游泳池需多少小时?23.(14分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状,并说明理由.24.(12分)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:x2+2x+4√x2+2x−5=0.【提示】可以用“换元法”解方程.解:设√x2+2x=t(t≥0),则有x2+2x=t2,原方程可化为:t2+4t−5=0,【续解】25.(14分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为______.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?26.(16分)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;(2)若sinC=1,BD=8,求EF的长.3答案1.D2.C3.D4.C5.B6.B7.B8.D9.B10.C11.212.36°13.1114.x≤215.x>−3且x≠1.216.2317.13018.26cm19.(−5,0)20.3821.解:(1)原式=−3−2+5=0;(2)(x−1)2=9,则x−1=±3,∴x=−2或x=4.22.解:(1)设y与t的函数解析式为y=kt+b,{b =1002k +b =380, 解得,{k =140b =100,即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380−100)÷2=140(m 3/ℎ);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/ℎ, ∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/ℎ), 480÷60=8(ℎ),即单独打开甲进水口注满游泳池需8h .23.解:(1)如图△A 1B 1C 1即为所求.(2)如图△A 2B 2C 2即为所求.(3)以O ,A 1,B 为顶点的三角形是等腰直角三角形.理由:∵OB =√12+42=√17,OA 1=√12+42=√17,BA 1=√32+52=√34,∴OB =OA 1,OB 2+OA 12=AA 12, ∴∠BAA 1=90°,∴△BAA 1是等腰直角三角形.24.解:t 2+4t −5=0,(t +5)(t −1)=0, t +5=0或t −1=0,∴t 1=−5,t 2=1,当t =−5时,√x 2+2x =−5,此方程无解;当t =1时,√x 2+2x =1,则x 2+2x =1,配方得(x +1)2=2,解得x 1=−1+√2,x 2=−1−√2;经检验,原方程的解为x 1=−1+√2,x 2=−1−√2.25.解:(1)当100≤x ≤300时,设y 与x 的函数关系式为:y =kx +b ,根据题意得出:{100k +b =100300k +b =80, 解得:{k =−110b =110, ∴y 与x 的函数关系式为:y =−110x +110, (2)当x =200时,y =−20+110=90, ∴90×200=18000(元),答:某零售商一次性批发A 品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x ≤300时,w =(−110x +110−71)x =−110x 2+39x =−110(x −195)2+3802.5,∵批发件数x 为10的正整数倍,∴当x =190或200时,w 有最大值是:−110(200−195)2+3802.5=3800; ②当300<x ≤400时,w =(80−71)x =9x , 当x =400时,w 有最大值是:9×400=3600,∴一次性批发A 品牌服装x(100≤x ≤400)件时,x 为190元或200元时,w 最大,最大值是3800元.26.解:(1)连接OD ,∵AB 为⊙O 的直径, ∴∠ADB =90°,∴AD⊥BD,∵OF⊥AD,∴OF//BD,∴∠AOF=∠B,∵CD是⊙O的切线,D为切点,∴∠CDO=90°,∴∠CDA+∠ADO=∠ADO+∠BDO=90°,∴∠CDA=∠BDO,∵OD=OB,∴∠ODB=∠B,∴∠AOF=∠ADC;(2)∵OF//BD,AO=OB,∴OE是△ABD的中位线,∴AE=DE,OE=12BD=12×8=4,∵sinC=ODOC =13,∴设OD=x,OC=3x,∴OB=x,∴CB=4x,∵OF//BD,∴△COF∽△CBD,∴OCBC =OFBD,∴3x4x =OF8,∴OF=6,∴EF=OF−OE=6−4=2.。
初中数学 河北省邯郸市育华中学中考模拟数学模拟考试题考试卷及答案(四)
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:计算的结果是()A.B.C.D.试题2:如图1,等于()A.B.C.D.试题3:如果点在第四象限,那么m的取值范围是().A. B. C. D.试题4:下列运算中,正确的是()A.B.C.D.试题5:一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限试题6:如图,在梯形中,,对角线、相交于点,若,,则的值为()A. B. C. D.试题7:甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是,,=1.6.导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.甲或乙团试题8:一个小球被抛出后,距离地面的高度(米)和飞行时间(秒)满足下面函数关系式:,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米试题9:如图3,在中,分别在上,将沿折叠,使点落在点处,若为的中点,则折痕的长为()A.B.2 C.3 D.4试题10:如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.B. C. D.试题11:如图,中,,,,则的面积是()A.B.12 C.14 D.21试题12:如图,在中,=90°,=10,若以点为圆心,长为半径的圆恰好经过的中点,则的长等于()A. B.5 C. D.6试题13:反比例函数y=的图象在每个象限内,y随x的增大而增大,则k的取值范围是________试题14:这四个数中,最大的数是.试题15:如图,在梯形中,,.若,,则这个梯形的面积是__________.试题16:如图,直线y1=kx+b与直线y2=mx交于点P(1,2),则不等式mx>kx+b解集是______________.试题17:如图,四边形ABCD是菱形, O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 ________试题18:魏县鸭梨是我省的特产,经过加工后出售,单价可能提高20%,但重量会减少10%。
(完整版)最新精选初中数学中考完整题库(含答案)
2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.选择题:若关于x 的方程2x +(k 2-1) x +k +1=0的两根互为相反数,则k 的值为--------( )(A )1,或-1 (B )1 (C )-1 (D )0 2.如果双曲线y=kx过点A(3,-2),那么下列各点在双曲线上的是( ) A .(2,3) B . (6,1) C . (-1,-6) D .(-3,2)3.三角形三边长分别是6、8、10,那么它最短边上的高为---------------------------------( )(A )6 (B )4.5 (C )2.4 (D )84.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于 ( ) (A )3- (B )5 (C )53-或 (D )53-或5.多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是【 ▲ 】7.如图:DE 是△ABC 的中位线,∠ABC 的平分线交DE 于点F. 求证:AF ⊥BF8.471010⨯= ;52x x ⋅=9.已知11tan tan -=-αα,则2cos sin sin 2++ααα=_________.10.已知不等式20x ax b -+<的解是2 3.x <<则+a b =__________。
11. △ABC 是等腰直角三角形,BC 是斜边,将△ABP绕点A 逆时针旋转后,能与△ACP ′重合。
如果AP=3,那么PP ′的长等于__________。
12. 如图,在△ABC 中,AB=AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F.现有下列结论:(1)DE=DF ;(2)BD=CD ;(3)AD 上任意一点到AB 、AC 的距离相等;(4)AD 上任意一点到BC 两端点的距离相等,其中正确结论的个数有________个A .第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人填题AD E FABCP ′PF E A ABD C13.已知:在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连结EC 、FC . 求证:EC =FC .14.如图,从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,,则这个圆形纸板的半径为 ▲ .15.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;(2)以B 点为位似中心,将△ABC 放大到2倍。
2024年云南省昆明市五华区九年级中考模拟数学试题(含答案)
2023-2024学年下学期学业质量监测九年级数学试题卷(全卷三个大题,共27个小题,共6页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,将答题卡交回,试题卷自己收好,以便讲评。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作分.如果小明的成绩记作分,那么他得了( )A.95分B.90分C.85分D.75分2.苏步青是中国著名的数学家,被誉为“数学之王”,为纪念其贡献,国际上将一颗距地球约218000000千米的小行星命名为“苏步青星”.将218000000用科学记数法表示为的形式(其中,是正整数),则的值为( )A.6B.7C.8D.93.用高和底面圆的直径相等的4个圆柱体组成如图所示的立体图形,它的俯视图是()A. B. C. D.4.下列计算正确的是( )A. B. C. D.5.能使下列某个式子有意义,这个式子是( )6.数学活动课上,李老师给出一组按一定规律排列的数:2,,8,,32,…,第个数是( )A. B. C. D.7.卷云纹是我国独特的传统装饰纹样,古代玉璧上的卷云纹纹饰优雅,寓意美好.下列四个选项中,是轴对称图形但不是中心对称图形的是()10+5-10n a ⨯110a ≤<n n 633a a a÷=222()a b a b -=-()32639aa -=-235a a a+=3x =4-16-n 2n2n-()12nn-⨯()112n n+-⨯A. B. C. D.8.如图,已知直线,点,分别在直线,上,以点为圆心,长为半径画弧,交直线于点,连接.若,则的度数为( )A. B. C. D.9.2024年4月23日,第三届全民阅读大会在昆明开幕,以“共建书香社会,共享现代文明”为主题,持续深化全民阅读活动,进一步涵育爱读书、读好书、善读书的社会风尚.经统计,某班学生每天的阅读时间(单位:分钟)如下表:阅读时间/分钟5060708090人数5151065该班学生每天阅读时间的众数和中位数分别是( )A.60,60B.70,65C.60,7070,7510.如图,一个地铁站入口的双翼闸机的双翼展开时,双翼边缘的端点P 与Q 之间的距离为,双翼的边缘,且与闸机侧立面的夹角,闸机的通道宽度为( )A. B.C. D.11.如图是根据甲、乙两名同学五次数学测试成绩绘制的折线统计图.比较甲、乙两名同学的成绩,下列说法正确的是()A.甲同学成绩的平均分高,方差大B.甲同学成绩的平均分高,方差小C.乙同学成绩的平均分高,方差大D.乙同学成绩的平均分高,方差小12.如图,是的外接圆,是的直径.若,则的度数是()12//l l C A 1l 2l C CA 1l B AB 140BCA =︒∠1∠15︒20︒25︒30︒4cm 64cm PC QD ==30ACP BDQ ∠=∠=︒64cm 68cm 76cm 88cmO ABC △CD O 54BCD ∠=︒A ∠A. B. C. D.13.已知,估计c 的值所在的范围是( )A. B. C. D.14.如图,,是的两条中线,连接后.若,则阴影部分的面积是()A.2B.4C.6D.815.如图,一个棱长为15的正方体木块,从它的八个顶点处依次截去棱长分别为1,2,3,4,5,6,7,8的小正方体,最后得到的几何体的表面积是()A. B.C.或 D.或二、填空题(本大题共4小题,每小题2分,共8分)16.分解因式:______.17.如图,一个正边形被树叶遮掩了一部分,若直线a ,b 所夹锐角为,则的值是______.18.下表是几组y 与x 的对应值,则y 关于x 的函数解析式为______.x …123…y…34.59…19.如图,吊灯外罩呈圆锥形,它的底面周长为,高为,则该吊灯外罩的侧面积是______.36︒33︒30︒27︒4c =-34c <<45c <<56c <<67c <<AD CE ABC △ED 16ABC S =△2615⨯222(151)(152)(158)-+-++- 2615⨯2261527⨯-⨯2615⨯2261528⨯-⨯22x y xy y -+=n 36︒n 3-2-1-9- 4.5-3-24cm π16cm 2cm(结果保留)三、解答题(本大题共8小题,共62分)20.(本小题满分7分)计算:.21.(本小题满分6分)如图,,,.求证:.22.(本小题满分6分)某校开设智能机器人编程的活动课,购买了,两种型号的机器人模型.型机器人模型单价比型机器人模型单价多200元,用2800元购买型机器人模型和用2000元购买型机器人模型的数量相同.型、型机器人模型的单价分别是多少元?23.(本小题满分7分)每年4月至5月,昆明的蓝花楹陆续盛开.一条条平日里不起眼的街道在披上了蓝紫色的轻纱后摇身一变,成了大家纷纷前往打卡的“网红”路.游客小迅从住宿的地出发,要先经地再到“网红”路地游览.如图,从地到地共有三条路线,长度分别为,,,从地到地共有两条路线,长度分别为,.(1)小迅从地到地所走路线长为的概率为______;(2)请用列表法或画树状图法中的一种方法,求小迅从地经地再到地所走路线总长度为的概率.24.(本小题满分8分)为调动实习员工工作的积极性,某公司出台了两种工资方案,实习员工任选其中一种方案与公司签订合同.方案一:月工资y (单位:元)与生产的产品数量x (单位:件)的函数关系如图所示;方案二:每生产一件产品可得25元.π101(3)4565π-⎛⎫--︒+-- ⎪⎝⎭90DAE CAB ∠=∠=︒AD AE =AB AC =ABD ACE ≅△△A B A B A B A B A B C A B 3km 2km 3km B C 3km 2km A B 3km A B C 5km(1)选择了工资方案一的实习员工甲,第一个月生产了60件产品,他该月得到的工资是多少元?(2)某月实习员工乙发现,他选择方案一比选择方案二月工资多450元,求乙该月生产产品的数量.25.(本小题满分8分)如图,在菱形中,对角线,交于点,过点作于点,延长到点,使得,连接.(1)求证:四边形AEFD 是矩形;(2)连接,若,,求的长.26.(本小题满分8分)如图,内接于,过点作射线,使得,与的延长线交于点P ,D 是的中点,与交于点.(1)判断直线与的位置关系,并证明你的结论;(2)若,求证:.27.(本小题满分12分)如果一个点的横、纵坐标均为常数,那么我们把这样的点称为确定的点,简称定点.比如点就是一个定点.对于一次函数(是常数,,)由于,当即时,无论为何值,一定等于3,我们就说直线一定经过定点.设抛物线(是常数,)经过的定点为点,顶点为点.(1)抛物线经过的定点的坐标是______.(2)是否存在实数,使顶点在轴上?若存在,求出的值;若不存在,请说明理由;(3)当时,在的图象上存在点,使得这个点到点、点的距离的和最短.求的取值ABCD AC BD O A AE BC ⊥E BC F CF BE =DF OE 6AB =2CE =OE ABC △O C CP ACP B ∠=∠CP BA BC PD AC E PC O PC mPA =2CE m AE =(1,2)3y kx k =-+k 0k ≠3(1)3y kx k k x =-+=-+10x -=1x =k y 3y kx k =-+(1,3)2(22)2y mx m x m =+-+-m 0m ≠D P D m P x m 12m =-3y kx =+Q P D k范围.五华区2023-2024学年初中学业质量监测九年级数学参考答案及评分标准一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.D 2.C 3.B 4.A5.A6.D7.D8.B9.C10.B11.C12.A 13.A 14.B 15.C二、填空题(本大题共4小题,每小题2分,共8分)16.17.518. 19.三、解答题(本大题共8小题,共62分)20.(本小题满分7分)解:原式21.(本小题满分6分)证明:,,即.在和中,,.22.(本小题满分6分)解:(1)设A 型机器人模型单价是x 元,则B 型机器人模型单价是()元.根据题意:,解这个方程,得:,经检验,是原方程的解且符合实际,型编程机器人模型单价:元,答:A 型编程机器人模型单价是700元,B 型编程机器人模型单价是500元.23.(本小题满分7分)解:(1)由题意得,小迅从A 地到B 地所走路线长为的概率为.故答案为:.(2)根据题意列表如下:21()y x -9y x=-240π1356=-+-13156=-++-2=-90CAB DAE ∠=∠=︒ CAB CAD DAE CAD ∴∠+∠=∠+∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠∠⎨⎪=⎩=()ABD ACE SAS ∴≅△△200x -28002000200x x =-700x =700x =B ∴200500x -=3km 2323B 到CA 到B 3233(3,3)(2,3)(3,3)2(3,2)(2,2)(3,2)共有6种等可能的结果,其中小迅从A 地经B 地再到C 地所走路线总长度为的结果有:(3,2),(2,3),(3,2),共3种.(小迅从A 地经B 地再到C 地所走路线总长度为).24.(本小题满分8分)解:(1)方案一中,当时,设月工资y (元)与生产产品x (件)的关系式为,将图象上的,代入,得,解得:,方案一中,当时,y 与x 的关系式为;当时,元.即他该月得到的工资为1800元.(2)①当时,设方案一中y 与x 的关系式为,则解得,与的关系式为根据题意得:,解得:(不符合题意,舍去)②当时,根据题意得:,解得:,实习员工乙该月生产产品的数量为70件.25.(本小题满分8分)(1)证明:四边形是菱形,且,,,即,,,四边形是平行四边形,,,四边形是矩形;5km P ∴5km 3162==30x ≥(0)y kx b k +≠=()30,600A ()50,1400y kx b =+30600501400k b k b +=⎧⎨+=⎩40600k b =⎧⎨=-⎩∴30x ≥40600y x =-60x =24006001800y =-=030x ≤≤111()0y k x b k =+≠11130030600b k b =⎧⎨+=⎩1110300k b =⎧⎨=⎩y ∴x 10300y x =+1030025450x x +-=10x =-30x ≥4060025450x x --=70x =∴ ABCD //AD BC ∴AD BC =BE CF = BE EC CF EC ∴+=+BC EF =AD EF ∴=//AD EF ∴AEFD AE BC ⊥ 90AEF ∴∠=︒∴AEFD(2)解:四边形是菱形,,,,,在中,,在中,,四边形是菱形,,在中,26.(本小题满分8分)(1)解:是的切线.证明:如图1,连接、,则.图1.在中,.由圆周角定理,得....,即.,且是半径,是的切线;(2)如图2,过点B 作,延长与交于点F ,,图2又是的中点,,在和中,,,,,,,……①.,,.,.……② ABCD 6AB =6AD AB BC ∴===2CE = 624BE ∴=-=∴Rt ABE △AE ==Rt AEC △AC === ABCD OA OC ∴=∴Rt AEC △12OE AC ==PC O OA OC OA OC =OAC OCA ∴∠=∠∴AOC △2180AOC OCA ∠+∠=︒2AOC B ∠=∠22180B OCA ∴∠+∠=︒90B OCA ∴∠+∠=︒ACP B ∠=∠ 90ACP OCA ∴∠+∠=︒90OCP ∠=︒OC PC ∴⊥OC O PC ∴O //BF CA ED BF CED F ∴∠=∠D BC CD BD ∴=BDF △CDE △CED F CDE BDF CD BD ∠∠⎧⎪∠=∠⎨⎪=⎩=()BDF CDE AAS ∴≅△△BF CE ∴=//BF CA PBF PAE ∴△∽△PB BF PA AE ∴=PB CEPA AE∴=PBC ACP ∠=∠ APC CPB ∠=∠APC CPB ∴△∽△PA PC PC PB ∴=2PC PB PA∴=将②带入①,得,且.,即.27.(本小题满分12分)解:(1)抛物线经过的定点D 的坐标是.解析如下:当时,y 的值一定等于0.抛物线经过的定点D 的坐标是.(2)顶点P 在x 轴上,即抛物线与x 轴只有一个交点,即,方程化简得,此方程无解,不存在实数m ,使点P 在x 轴上.(3)当时,,此时顶点P 的坐标是,的图像经过定点即直线绕定点旋转,当直线与线段有交点时,此时的交点就是使的值最小的点,当直线经过点时,,当直线经过点时,,综上所述,k 的取值范围是.22PC CE PA CA∴=PC m PA =2CE m CA ∴=2CE m AE =()1,0()2222y mx m x m =+-+- 2222mx x mx m =+-+-2222mx mx m x =-++-()22122m x x x =-++-()()2121m x x =-+-∴1x =∴()1,0 ∴240b ac -=2(22)4(2)0m m m ---=40=∴12m =-221513(3)2222y x x x =-+-=--+()3,2 3y kx =+()0,3()0,3∴3y kx =+DP QD QP +Q 3y kx =+()1,0D 3k =-3y kx =+()3,2P 13k =-133k -≤≤-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初中数学中考复习试题(含答案)学校:
__________
第I卷(选择题)
请点击修改第I卷的文字说明
一、选择题
1.下列四个说法:其中正确说法的个数是--------------------------------------------()个
①方程2x+2x-7=0的两根之和为-2,两根之积为-7;
②方程2x-2x+7=0的两根之和为-2,两根之积为7;
③方程32x-7=0的两根之和为0,两根之积为
7
3
-;
④方程32x+2x=0的两根之和为-2,两根之积为0。
(A)1 (B)2 (C)3 (D)4
2.若
12
,x x是方程2
2630
x x
-+=的两个根,则
12
11
x x
+的值为---------------------------( )
(A)2(B)2
-(C)
1
2
(D)
9
2
3.二次函数y=ax2+bx+c的图象如图所示,下列结论错误
..的是【▲】A.ab<0
B.ac<0
C.当x<2时,y随x增大而增大;当x>2时,y随x增大而减小
D.二次函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根
4.右图是由八个相同小正方体组合而成的几何体,则其左视图是 【 ▲ 】
5.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件
大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6
107-⨯ B .6
107.0-⨯ C .7
107-⨯ D .8
1070-⨯
第II 卷(非选择题)
请点击修改第II 卷的文字说明
二、填空题
6.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;
(2)以B 点为位似中心,将△ABC 放大到2倍。
7.如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P
是直线EF 、GH 之间任意一点,连结PE 、PF
、PG 、PH ,则△PEF 和△PGH
的面积和等于 ▲ .
A
B
C
D
8.下面的计算对不对?如果不对,应怎样改正?
(1) (2) (3)
(4) (5) (6)
9. 试写出一个开口方向向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式____________________ 10. 抛物线
的图像与x 轴交于(x 1,0)(x 2,0)两点,且0< x 1<1,1< x 2<2,
且与y 轴交于点(0,-2)。
下列结论: (1)2a+b>1 (2)3a+b>0 (3)a+b<2 (4)a<-1.其中正确的结论的个数为________________个
11. 一条抛物线的对称轴是x=1且与x轴有惟一的公共点,并且开口方向向下,则这条抛物线的解析式是____________________(任写一个)
12. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________
H C B
13.如图,在菱形ABCD 中,AE ⊥BC 于E ,EC =8,cos ∠B =13
5
,则这个菱形的面积是 ▲ .
14.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼关于原点对称,若小鱼上的 点P (a ,b )对应大鱼上的点Q ,则点Q 的坐标为
15.算术平方根等于本身的数是_________,立方根等于本身的数是________. 16.在某建筑物AC 上,挂着宣传条幅BC ,小明站在点F 顶端B ,测的仰角为45°,再往条幅方向前行20米到达 点E 处,看到条幅顶端B ,测的仰角为60°, 求宣传条幅BC
的长,(小明的眼睛距离地面3米)
E
C
B A
17.若函数 5
2
)2(--=m
x m y 是反比例函数,则m 的值为
18.已知二次函数2
=(2)2y x m x m +--,当=m 时,函数图象的顶点在y 轴上;当
=m 时,函数图象的顶点在x 轴上;当=m 时,函数图象经过原点.
19.若方程0132
=--x x 的两根分别是1x 和2x ,则
2
111x x += . 20.求二次函数1632
+--=x x y 图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.
21.若1x 和2x 分别是一元二次方程03522
=-+x x 的两根. (1)求| 1x 2x -|的值 (2)求22
2111x x +的值 22.m x m
x y +++=
)14
(412的图象与x 轴相交于点A 、B 两点. (1)求证:不论m 为何值该抛物线总经过点(-4,0); (2)若B (x 0,0)且-4<x 0<0,试确定m 的取值范围;
(3)在(2)的条件下,如果这个二次函数的图象与一次函数94
9
+-=x y 的图象相交于点C ,且∠BAC 的余弦值为
5
4
,求这个二次函数的解析式.
三、解答题
23.设a
c
=
ρ,且1>ρ,025222=+-a ac c ,求ρ的值。
24.菱形的面积为2
24cm ,两条对角线分别为xcm 和ycm , 求(1)y 与x 之间的函数关系式
(2)当其中一条对角线x=6cm 时,求另一条对角线的长
25.已知x 1和x 2是一元二次方程2x 2+5x -3=0的两根,利用根与系数的关系求下列各式的值:
(1)求| x 1-x 2|的值; (2)求2212
11x x +的值; (3)x 13+x 23.
26.如图,在边长为6的正方形ABCD 的两侧作正方形BEFG 、正方形DMNK ,恰好使得N 、
A 、F 三点在同一条直线上,联结MF 交线段AD 于点P ,联结NP
,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y .
(1)求y 关于x 的函数关系式及自变量x 的取值范围;
(2)当△NPF 的面积为32时,求x 的值;
(3)以P 为圆心,AP 为半径的圆能否与以G 为圆心,GF 为半径的圆相切,若能请求x 的值,若不能,请说明理由.
27.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. (1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.
28.某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:
A
B
C D
E
F
G
M
N
K
P 第28
(
18
(1)共抽取了 名学生的体育测试成绩进行统计; (2)随机抽取的这部分学生中男生体育成绩众数是 ; 女生体育成绩的中位数是 .
(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?
29.计算或化简:
(1
-(
1)0
-2sin45° (2)先化简,再求值:x x 12-÷⎪⎭⎫ ⎝
⎛--x x 121,其
中x =2
30.如图,梯形ABCD 中,AD //BC ,EF 经过梯形对角线的交点O ,且EF //AD 。
(1)求证:OE =OF ; (2)求OE OE AD BC +的值; (3)求证:112
AD BC EF
+=。