第七章-平面直角坐标系-全章教案
第七章平面直角坐标系教案
第七章平面直角坐标系教案2015第七章平面直角坐标系教案概念:平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系。
平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点o是原点.这个平面叫做坐标平面.x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的。
教学目标:知识与技能:认识并会画平面直角坐标系,能由点的位置写出其坐标;在给定的直角坐标系中能根据坐标描出点,了解点与坐标的一一对应关系。
过程与方法:1.在找点的坐标和通过坐标找点的过程中,发展学生的自学、思考能力。
2.通过“合作交流”等数学活动,培养起合作交流意识与探究精神。
情感态度与价值观:通过同学之间的交流与游戏,激发学生学习数学的兴趣;通过相同的点在不同的坐标系中有不同的坐标的认识,让学生懂得事物是相对的,是变化的辩证唯物主义观。
教学重点与难点:教学重点:平面直角坐标系概念。
教学难点:在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点。
教学方法:自主学习,合作交流教学媒体:多媒体,课件教学过程:一、创设情境,导入新课:1.出示图片,学生欣赏风景。
2.向学生提出问题:如何确定小鸟在直线上的位置?3.引导学生明确数轴上点的坐标概念。
4.提问:如何确定平面上点的位置?5.引出课题:7.1.2平面直角坐标系。
二、探索新知,解决问题活动一:学生阅读笛卡尔的简介,了解平面直角坐标系的由来及意义,增强其学习的目的.性。
河北省平泉四海中学七年级数学下册:第七章平面直角坐标系(教案)
-在实际问题中运用坐标系,包括从实际问题中抽象出坐标系模型。
举例解释:
-难点1:学生往往难以理解不同象限内点的坐标符号规律,需要通过直观图示和实际操作来加强理解。
-难点2:对称点坐标的确定需要学生具备一定的空间想象能力,教师需提供多个示例,帮助学生建立直观感受。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平面直角坐标系》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要确定位置的情况?”(例如:在地图上找到某个地方的位置)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面直角坐标系的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调坐标系的基本性质和坐标运算这两个重点。对于难点部分,如对称点的坐标确定,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面直角坐标系相关的实际问题,如如何在坐标系中表示物体的移动。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用坐标系来测量教室中物体的位置。
-难点3:教师需要引导学生如何将实际问题转化为坐标系中的数学问题,例如在地图上标定地点时,如何确定坐标。
在教学过程中,教师应针对上述重点和难点内容,采用多样化的教学手段和方法,如实物演示、互动讨论、动态软件模拟等,以确保学生能够深刻理解并掌握平面直角坐标系的相关知识。同时,通过分层设计的练习题,逐步引导学生从基础概念学习到复杂问题解决的能力提升。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解平面直角坐标系的概念和应用。我发现,通过生活中的实际例子引入,确实能够激发学生的兴趣,让他们意识到数学知识在现实世界的实用性。然而,我也注意到,对于坐标系的理解,尤其是坐标符号和对称点的问题,学生们的掌握程度并不均衡。
新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)
7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。
记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。
例2 :请同学们说出以下各个地点所表示的有序数对。
—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。
例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。
(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。
七年级数学下册 第七章 平面直角坐标系教案 (新版)新
平面直角坐标系知识点1、有序数对的概念2、确定平面上点的位置常用的方法3、平面直角坐标系4、点的坐标的特点5、特殊位置的点的坐标特征6、用坐标表示地理位置7、用坐标表示平移教学目标熟练掌握平面直角坐标系的特征以及常用的特殊点的应用教学重点平面直角坐标系的特征以及四个象限教学难点点的平移规律以及特殊点的坐标的特点教学过程 一、课堂导入在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是多少?二、复习预习有序数对的概念:有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b)三、知识讲解考点/易错点11、确定平面上点的位置常用的方法:以某一点为原点(0,0),将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置;以某一点为观察点,用方位角、目标到这个点的距离来确定目标所在的位置。
考点/易错点2平面直角坐标系:在平面内,两条互相垂直,并且原点重合的数轴。
组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右的方向为正方向,竖直的数轴称为y轴或纵轴,取向上为正方向,两坐标轴的交点为平面直角坐标系的原点。
在平面直角坐标系建立了之后,坐标平面就被两条坐标轴分成I、II、III、IV四个部分,它们分别叫做第一象限,第二象限,第三象限,第四象限。
考点/易错点3用坐标表示地理位置:(1)建立直角坐标系,选定一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
四、例题精析 【例题1】【题干】如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)【答案】B,5)在第二象限,所以其关于y轴的对称点在第一象限,纵观四个选项,在第一象限的只有B。
第7章+平面直角坐标系——几何图形的面积问题++教案+2023数学七年级下册-2024学年人教版
《平面直角坐标系中几何图形的面积问题》教学设计设计理念:平面直角坐标系中几何图形的面积问题往往让七年级的学生思路难寻。
实际上数学是一门具有丰富内容并且与现实世界联系非常密切的学科,本节就体现了平面直角坐标系是解决实际问题的有效的数学模型的思想。
教师以需要创设的问题情境,激发学生探究实际问题的兴趣,引发学生思考,体验数学知识的实用性。
教材分析:本节课是七年级下总复习中“平面直角坐标系”专题复习。
是学生学习了平面直角坐标系相关知识的基础上,让学生进一步体验如何在平面直角坐标系中通过点的坐标解决几何问题,体会数形结合的思想。
在教学中培养学生的语言表达、动手操作的能力、与人合作的意识及解决问题的能力。
学情分析:学生已经有了一定的知识储备,但他们的信息掌握程度不高,知识面教窄,语言表达能力和动手操作能力不强。
因此,在学习中要让学生经历实践、思考、交流、表达与操作的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识来解决问题。
教学目标:1、掌握点到坐标轴的距离以及平行于坐标轴的直线上点的坐标特征;2、会在平面直角坐标系中利用点的坐标求几何图形的面积;3、 体会数形结合、转化、分类讨论等数学思想。
重、难点:在平面直角坐标系中通过点的坐标就几何图形的面积教学过程一、 复习引入1、若A(2,-3),则点A 到x 轴的距离是 ,到y 轴的距离是 。
2、若A(-1,0),B(4,0),则线段AB 的长是 。
3、若A(0,3),B(0,-1),则线段AB 的长是 。
4、若A(-2,-4),B(3,-4),则AB 与x 轴有何位置关系?你知道线段AB 的长度吗?5、若M(5,-2),N(5,5),则MN 与y 轴有何位置关系?求线段MN 的长度归纳:(1)点A(x ,y )到x 轴的距离是y ,到y 轴的距离是x ;(2) 点A(1x ,y ),B(2x ,y ),且21x x >,则AB=21x x -或AB=21x x +,AB//x 轴(3) 点A(x ,1y ),B(x ,2y ),且21y y >,则AB=21y y -或AB=21y y +,AB//y 轴二、 微课讲授1、 三角形AOB 中,A(4,0),B(0,3),求三角形AOB 的面积;2、三角形ABC中,A(4,0),B(3,2),C(-1,0),求三角形ABC的面积;3、三角形ABC中,已知A(-3,2),B(0,3),C(-3,-2),求三角形ABC的面积归纳:(1)如果有边在x轴或y轴上,常以这边作为底边。
第七章平面直角坐标系专题《巧用面积法求坐标》教案
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在解决实际问题时,例如“已知矩形的对角线顶点坐标,求矩形的另一个顶点坐标”,学生需要学会抓住关键信息,忽略次要信息,建立正确的数学模型。难点在于引导学生如何从复杂的实际问题中提炼出关键信息,进行有效建模。
本节课的教学难点与重点是紧密围绕课本内容,注重培养学生解决实际问题的能力。在教学过程中,教师需针对这些难点与重点进行有针对性的讲解和指导,确保学生能够透彻理解并掌握本节课的知识。
-能够将实际问题转化为数学模型,运用面积法求解坐标:培养学生建立数学模型解决问题的能力,将所学知识应用于解决实际问题。
举例解释:
-在讲解面积法求解坐标时,重点强调三角形的面积计算公式,以及如何将这个公式应用于坐标求解。
-通过示例题,如“已知三角形ABC的三个顶点坐标,求顶点D的坐标(D点在坐标轴上)”,引导学生掌握将实际问题转化为数学模型的过程。
3.重点难点解析:在讲授过程中,我会特别强调面积法的基本原理和坐标与面积的关系这两个重点。对于难点部分,我会通过实际例题和图形分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与面积法求坐标相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过操作,演示面积法的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《平面直角坐标系》教案
《平面直角坐标系》教案精选平面直角坐标系教案。
教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。
教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。
2、把握坐标法解决几何问题的步骤;体会坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要消失正确的背景图案,需要缺点不同的画布所在的位置。
在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P 都可以由惟一的实数对(x,y)确定。
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。
七年级数学下册第七章平面直角坐标系复习教案(新版)新人教版
第七章平面直角坐标系1.在直角坐标系内,能够根据坐标描出点的位置;根据坐标系内点的位置,写出点的坐标.2.能够通过建立坐标系或者其他方法说明事物的位置.3.在直角坐标系内,感受图形平移后点的坐标变化,并能够根据坐标的变化说明图形的平移.1.通过知识的整合构建知识体系,形成系统性知识.2.通过习题的演练,提高分析问题、解决问题的能力.强化用数学知识解决生活中问题的意识,养成认真思考、细心操作的习惯.【重点】在直角坐标系内点和坐标的对应关系.【难点】领会图形的平移实际就是图形点的坐标的变化.一、平面直角坐标系中的点与坐标的对应关系平面直角坐标系中,坐标与点是一一对应的关系,即平面内一点有唯一的有序实数对(x,y)和它相对应;反过来对于任意一个有序实数对(x,y),在坐标平面内都有唯一的点和它对应.平面内点的坐标由横坐标和纵坐标确定,横、纵坐标的符号决定点所在的象限,横坐标为0或纵坐标为0,说明点在y轴上或x轴上.二、图形的平移在平面直角坐标系内,如果把一个点的横坐标都加上(或减去)一个正数a,相应的对应点就是把原来的点向右(或向左)平移a个单位长度;如果把这个点的纵坐标都加上(或减去)一个正数a,相应的对应点就是把原来的点向上(或向下)平移a个单位长度.在平面直角坐标系中,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.反之亦然.专题一平面直角坐标系中的点与坐标的对应关系【专题分析】平面直角坐标系是函数学习的重要基础,在中考数学中占有重要的地位,是多年中考命题的常考点.本专题知识在中考中重点考查确定点的坐标、点所处的象限,以及根据坐标描点或根据要求确定点的坐标.中考命题中多以选择、填空等题型考查基本知识和基本技能.在平面直角坐标系中,点P(m2+1,-2)关于x轴对称的点在第象限;关于y轴对称的点在第象限.〔解析〕因为P(m2+1,-2)中,m2+1>0,-2<0,所以P(m2+1,-2)在第四象限,所以点P关于x轴对称的点在第一象限,关于y轴对称的点在第三象限.〔答案〕一三【针对训练1】若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限〔解析〕本题主要考查点的坐标与代数知识的综合运用.x轴上点的纵坐标等于0,所以n=0,则n-1=-1,n+1=1,所以点B的坐标为(-1,1),在第二象限.故选B.[规律方法]一、三象限内的点横、纵坐标同号;二、四象限内的点横、纵坐标异号;平面内点到x轴的距离是它纵坐标的绝对值,到y轴的距离是它横坐标的绝对值;横坐标不同,纵坐标相同的两个点的连线平行于x轴,横坐标相同、纵坐标不同的两个点的连线平行于y轴.等腰梯形的各点坐标为B(-1,0),A(0,2),C(4,0),求点D的坐标.〔解析〕求一个点的坐标,首先求出它到x轴与y轴的距离,然后再看它所在的象限,确定其横、纵坐标的符号.解:如图所示,过D点作DE⊥x轴,因为四边形ABCD为等腰梯形.所以CE=BO=1.又因为C点坐标为(4,0),所以OC=4.所以OE=4-1=3.因为AD∥BC,所以D点的纵坐标与A点纵坐标相等,为2.所以D点坐标为(3,2).【针对训练2】如图所示,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)〔解析〕因为A(1,1),B(-1,1),C(-1,-2),D(1,-2),所以AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,所以绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201……2,所以细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点B的坐标为(-1,1).故选B.专题二图形的平移【专题分析】平移问题一直以来都是中考的热点,掌握好“用坐标表示平移”的变换规律是关键,即“右加左减,上加下减”;平移过程中各对应点的坐标变换规律是相同的.在中考命题中经常和对称、旋转等知识结合在一起考查.考查的方式较为灵活,多种题型中均有出现.如图所示,将四边形ABCD先向左平移3个单位长度,再向上平移2个单位长度,那么点A的对应点A'的坐标是 ()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)〔解析〕因为四边形ABCD先向左平移3个单位长度,再向上平移2个单位长度,所以点A也先向左平移3个单位长度,再向上平移2个单位长度,所以由图可知A'的坐标为(0,1).故选B.【针对训练3】在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1),B(1,3),将线段AB通过平移后得到线段A'B',若点A的对应点为A'(3,2),则点B的对应点B'的坐标是.〔解析〕由于图形平移过程中,对应点的平移规律相同,由点A到点A'可知,点的横坐标加5,纵坐标加1,故点B'的坐标为(1+5,3+1),即(6,4).故填(6,4).专题三数形结合思想【专题分析】平面直角坐标系的建立使平面内的点与有序实数对之间建立了一一对应关系,是实现数与形的结合.由点找坐标,由坐标确定点的位置,通过坐标的变化呈现图形变换,也促进了数形之间的相互转化.数与形的结合,直观形象,为分析问题和解决问题提供了新的方法.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示,可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D 的坐标为(2,-2),你能帮她写出其他各景点的坐标吗?〔解析〕由游乐园D的坐标为(2,-2),可以确定平面直角坐标系中原点的位置,以及坐标轴的位置,从而可以确定其他景点的坐标.解:如图,由题意可知本题是以点O为坐标原点,即O(0,0),OA为y轴的正半轴,建立平面直角坐标系的,则A(0,4),B(-3,2),C(-2,-1),E(3,3).【针对训练4】已知在平面直角坐标系中,A(3,4),B(4,1),求△AOB的面积.〔解析〕△AOB的三边均不与坐标轴平行,不能直接求面积,需通过作辅助线,用“添补”法间接计算.解:分别过A,B作x轴和y轴的平行线,交y轴于E,交x轴于F,AE,BF交于C点.由A ,B 的坐标可知AE =3,AC =1,BC =3,BF =1,所以S △AOB =S 长方形OECF -S △OAE -S △ABC -S △BOF=4×4-12×4×3-12×3×1-12×4×1=16-6-32-2 =6.5.本章质量评估(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.根据下列表述,能确定具体位置的是 ( )A.瑞安光大电影院第2排B.瑞安市虹桥路C.北偏东45°D.东经119°,北纬42°2.纪念馆的位置如图所示,则其所覆盖的坐标可能是 ( )A.(-5,3)B.(4,3)C.(5,-3)D.(-5,-3)3.若点A (2,n )在x 轴上,则点B (n -2,n +1)在 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图所示,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是 ( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.如图所示,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的1,则点A的对应点的坐标是()2A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)6.如图所示,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D7.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()9.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:f(a,b)=(-a,b).如:f(1,3)=(-1,3);g(a,b)=(b,a).如:g(1,3)=(3,1);h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).按照以上变换有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于()A.(-5,-3)B.(5,3)C.(5,-3)D.(-5,3)10.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按下图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位长度,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)二、填空题(每小题4分,共32分)11.小凡在教室中的座位是3排4列,记为(3,4),那么若小豪的座位为(2,3),则所表示的位置是.12.在平面直角坐标系中,点A(2,m2+1)一定在第象限.13.在平面直角坐标系中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为.14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A'处,则点A'的坐标为.15.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.18.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m,再将数对(m,1)放入其中后,得到的实数是.三、解答题(共58分)19.(9分)如图.(1)正门北偏东30°的方向上有哪些动物景点?要想确定蝴蝶馆的位置,还需要有什么数据?(2)距正门图上距离为1个单位长度的景点又有哪些?(3)要确定每个景点的位置,各需要几个数据?20.(7分)在直角坐标系中,依次连接点(1,0),(1,3),(7,3),(7,0),(1,0)和点(0,3),(8,3),(4,5),(0,3)两组图形共同组成了一个什么图形?如果将上面各点的横坐标都加上1,纵坐标都减1,那么用同样方式连接相应各点所得的图形发生了哪些变化?21.(8分)如图是某公园的平面图(每个方格的边长表示100个单位长度).(1)写出任意五个景点的坐标.(2)某星期天的上午,苗苗在公园沿(-500,0),(-200,-100),(300,200),(500,0)的路线游玩了半天,请你写出她路上经过的地方.22.(12分)如图所示,在正方形ABCD中,已知A,B,C三个顶点的坐标分别为(-4,2),(-1,2),(-1,5),请回答下列问题.(1)推算D点的坐标,并说明理由;(2)观察正方形各个顶点的坐标,你发现了什么?(3)若在直角坐标系中作一线段与x轴平行,则这条线段上每个点的坐标有什么共同的特点?23.(12分)下图中标明了李明同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿着(-2,-1),(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1),(-2,-1)的路线转了一下,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?24.(10分)某城市的街道恰好呈东西与南北横纵交错格局.一次,警察局电子监控器屏幕上发现一辆作案后的小轿车A正在点A(3,1)处以每分钟0.5个单位长的速度向北逃窜,根据各街道的交通状况进行分析,逃犯很可能逃到点B(3,6)后改为向东逃窜.此时正在点C(5,-1)处巡逻的警车接到指令后立即以每分钟0.7个单位长的速度进行追捕,那么逃犯最快将在什么地方被追捕到?【答案与解析】1.D(解析:A.瑞安光大电影院第2排,没有明确第几号,所以位置不确定,故本选项错误;B.瑞安市虹桥路,没有明确第几号,所以位置不确定,故本选项错误;C.北偏东45°,位置不明确,故本选项错误;D.东经119°,北纬42°,有序数对,位置明确,故本选项正确.故选D.)2.C(解析:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,-3).故选C.)3.B(解析:由于点A(2,n)在x轴上,则n=0,那么点B的坐标为(-2,1),所以点B在第二象限.故选B.)4.A(解析:P(-4,-1)向右平移2个单位长度,再向下平移3个单位长度后,坐标为(-4+2,-1-3),即为(-2,-4).故应选A.),则点A的5.A(解析:点A变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的12对应点的坐标是(-4,3).故选A.)6.B(解析:由点M的位置用(-40,-30)表示可以知道,表格中每个单位长度表示10米,所以结合各坐标系中点的特征,可知(10,20)表示的位置是点B.)7.C(解析:因为点P在第二象限内,所以点的横坐标小于0,纵坐标大于0,又因为P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是-3,所以点P的坐标为(-3,4).故选C.)8.C(解析:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是3的点,在与l2平行且与l2的距离是3的两条直线上.以上四条直线有四个交点,故“距离坐标”是(2,3)的点共有4个.故选C.)9.B(解析:按照本题的规定可知:h(5,-3)=(-5,3),则f(-5,3)=(5,3),所以f(h(5,-3))=(5,3).故选B.)10.B(解析:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).故选B.)11.2排3列(解析:根据题意可知,排数在前,列数在后,所以若小豪的座位为(2,3),则小豪的座位为2排3列.)12.一(解析:因为m2≥0,1>0,所以纵坐标m2+1>0,因为点A的横坐标2>0,所以点A一定在第一象限.)13.3(解析:因为点A到x轴的距离为|y|=3,而OB=2,所以S=1×2×3=3.)214.(1,2)(解析:根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.点A(-1,0)向右跳2个单位长度,即-1+2=1,向上跳2个单位,即0+2=2,所以点A'的坐标为(1,2).)15.(D,6)(解析:由题意可知白棋⑨在纵线对应D,横线对应6的位置,故记作(D,6).)16.答案不唯一,如(0,0)(解析:因为点P(x,y)的坐标满足x+y=xy,所以x,y符号相同,代入数字进行验证,符合条件的点的坐标有(0,0),(2,2)等.)17.-4或6(解析:因为点M(1,3)与点N(x,3)之间的距离是5,所以|x-1|=5,解得x=-4或6.)18.66(解析:根据新定义的规则,将(-2,3)放入魔术盒会得到(-2)2+3+1=8,再将(m,1)也就是(8,1)放入魔术盒,得到实数82+1+1=66.)19.解:(1)观察图形知,正门北偏东30°的方向上的动物景点有蝴蝶馆、大象馆.要想确定蝴蝶馆的位置,还需知道蝴蝶馆与原点(正门)的距离或蝴蝶馆所在点的横坐标和纵坐标. (2)距正门图上距离为1个单位长度的景点是长颈鹿馆. (3)要确定每个景点的位置,需要知道各景点的横、纵坐标.20.解:如图,在直角坐标系中,依次连接点(1,0),(1,3),(7,3),(7,0),(1,0)和点(0,3),(8,3),(4,5),(0,3),则共同组成的图形是“小房子”.若将上面各点的横坐标都加上1,纵坐标都减1,再连接相应各点,所得图形的形状、大小都不变,只是位置沿水平方向向右平移一个单位长度,再向下平移一个单位长度.21.解:(1)答案不唯一,如湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200). (2)西门→望春亭→牡丹园→东门.22.解:(1)设另一个顶点D的坐标为(a,b).因为AB∥CD∥x轴,所以点D的纵坐标与点C的纵坐标相同,即b=5.又因为AD∥BC∥y轴,所以点D的横坐标与点A的横坐标相同,即a=-4.故点D的坐标为(-4,5). (2)观察可知,纵坐标相同的各点的连线平行于x轴,横坐标相同的各点的连线平行于y轴. (3)平行于x轴的直线上的点的纵坐标相等.23.解:(1)学校的坐标为(1,3);邮局的坐标为(0,-1). (2)李明家-商店-公园-汽车站-水果店-学校-游乐场-邮局-李明家. (3)连接他在(2)中经过的地点,得到的图形如图,是一艘帆船.24.解:第一种情况:警车向正西行驶到点(3,-1),然后尾随逃犯,这样也可以追上,但这一条路从直观上来看显然需要追捕较长的时间才能追上,也就是说需要20分钟才能追上,此时在点(8,6)处追上;第二种情况:警车直接向正北方向行驶到点(5,6),这时再看逃犯是否通过点(5,6)来决定进一步追捕的方向.显然,警车到达点(5,6)需要的时间是10分钟,此时逃犯到达点(3,6),警车应改为向西行驶,只需再过2÷1.2≈1.7(分钟)就可以追捕到逃犯,其地点大约是(3.85,6).。
第七章_平面直角坐标系_全章教案
第七章平面直角坐标系教材内容本章内容包括平面直角坐标系及有关概念,点坐标,用坐标表示地理位置和平移等。
实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。
用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。
用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。
用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。
此外,用坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。
教学目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。
〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。
重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。
课时分配7.1平面直角坐标系……………………………………… 4课时7.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时7.1.1有序实数对〔教学目标〕理解有序数对的意义,能利用有序数对表示物体的位置。
〔重点难点〕有序数对的概念,用有序数对来表示物体的位置是重点;用有序数对表示平面内的点是难点。
人教版第七章平面直角坐标系全章教案
7.1.1有序数对【教学目的】1、理解有序数对的意义。
2、能用有序数对表示实际生活中物体的位置3、经验用有序数对表示位置的过程,体验数、符号是描绘世界的重要手段,体验数形结合思想【教学重点】利用有序数对精确地表示出一个点的位置【教学难点】有序数对中有序的理解教学过程一、导入新知问题:假如教师要提问同学(下面为某教室平面图)1、只给一个数据“第3列”,你能确定答复问题的同学的位置吗?2、给两个数据“第3列第2排”,你能确定该同学的位置吗?3、你认为在平面中须要几个数据才能确定一个位置?二、探究新知通过找“列数”和“排数”的穿插点,我们就能找个详细的位置。
问题1、(约定“列数”在前,“排数”在后)(1)(2)视察上面四组数对以及他们所对应的位置,思索:1,3和3,1表示的是不是同一位置?归纳:有依次的两个数a与b组成的数对,假如约定了前面的数表示“列数”,后面的数表示“排数”,那么a与b组成的数对就表示一个确定的位置。
我们把这种有依次的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
像表格中的数对可以记作(1,3)、(5,2)(3,6)。
问题2:利用有序数对可以精确表示一个位置,你能举诞生活中用有序数对表示地理位置的例子吗?三、应用新知嬉戏情境:下面我们通过嬉戏来加强同学们对有序数对的理解。
约定“列数”在前,“排数”在后,请找出与以下有序数对相对用的同学(1,5)),(5,1),(2,4),(4,2),(3,3),(7,3),看看叫什么名字?练习1、依据左下图例子(3,2),口答其他圆点的有序数对?练习2、如右下图,红马的位置是(2,1),你能表示出红帅、红车、红炮的位置吗?练习3、假如将一张“12排10号”的电影票记为(12,10),那么(10,12)的电影票表示的位置是,“6排25号”简洁记为练习4、下列数据不能确定物体位置的是()A、盼望路25号B、北偏东30°C、东经118°,北纬40°D、西南方向50米处四、总结提升:本节课主要学习了有序数对1、什么叫做有序数对?2、留意的问题:(1)表示平面内的点的位置可以用有序数对;(2)有序数对用符号表示时,中间用逗号隔开,外边必需加小括号。
《平面直角坐标系》的教案(精选5篇)
《平面直角坐标系》的教案(精选5篇)《平面直角坐标系》的教案(精选5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?下面是小编收集整理的《平面直角坐标系》的教案(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
《平面直角坐标系》的教案1[教学目标]1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位2、渗透对应关系,提高学生的数感。
[教学重点与难点]重点:平面直角坐标系和点的坐标。
难点:正确画坐标和找对应点。
[教学设计][设计说明]一、利用已有知识,引入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二、明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system)。
水平的数轴称为x轴(x—axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y—axis)或纵轴,取向上方向为由数轴的表示引入,到两个数轴和有序数对。
从学生熟悉的物品入手,引申到平面直角坐标系。
描述平面直角坐标系特征和画法正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。
表示方法为(a,b)。
a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(—1,2);C(—3,—2);D(2,—2)问题1:各象限点的坐标有什么特征?练习:教材49页:练习1,2、三。
深入探索教材48页:探索:识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
第七章《平面直角坐标系》单元教案
第七章平面直角坐标系7.1平面直角坐标系7.1.1有序数对1.理解有序数对的应用意义,了解平面上确定点的常用方法.2.培养学生应用数学知识的意识,激发学生的学习兴趣.重点有序数对及平面内确定点的方法.难点利用有序数对表示平面内的点.一、创设情境,引入新课教师出示以下几个情景,并请同学们思考共同之处.1.一位居民打电话给供电部门“卫星路第8根电线杆的路灯坏了”,维修人员很快修好了路灯.2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”.3.某人买了一张6排3号的电影票,很快找到了自己的座位.分析以上情景,他们都利用哪些数据找到位置的?师:你还能举出生活中利用数据表示位置的例子吗?学生回答,由教师指导分析.二、讲授新课有序数对:用含有两个数的数对表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).利用有序数对,可以很准确地表示出一个位置.教师反复强调:明确数对表示的含义和格式.三、例题讲解【例】如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?分析:寻找规律,确定路线.图中确定点用前一个数表示街,后一个数表示大道.解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3).根据所学的知识,请同学们思考自己在班级里的位置,应该怎样表示?四、方法探究常见的确定平面上的点的位置常用的方法:1.以某一点为原点(0,0),将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置.2.以某一点为观测点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45°、距灯塔3 km处.五、课堂小结为什么要用有序数对表示点的位置,没有顺序可以吗?总结几种常用的表示点的位置的方法.本节课板书的内容比较少,板书有序数对和实际举例的有序数对,目的是突出“有序数对”的概念,让学生从感官上得以完善,建立简单的坐标系是对本节课知识的巩固,同时为下节课学习平面直角坐标系打好基础.7.1.2平面直角坐标系1.认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能根据点的坐标画出点的位置.2.渗透对应关系,培养学生的数感.重点平面直角坐标系和点的坐标.难点正确画坐标和找对应点.一、创设情境,引入新课启发学生,在地图上我们要确定一个地点的位置,需要借助经线和纬线,这两条线从局部上可以看成是平面内两条互相垂直的直线,有刻度、有方向的直线,进而抽象成数轴.而平面内,两条互相垂直的且有公共原点的数轴,就如同地图上的经线和纬线,可以帮助我们确定平面内任何一个点的位置.这就是我们今天要学习的知识:平面直角坐标系.二、观察体验,探索结论给出严格的平面直角坐标系的概念、画法以及象限的规定.凝聚学生注意力,强调由点的位置如何确定点的坐标以及坐标的表示形式.探索活动(1)将任意点A放入直角坐标系中,由其所处的位置让学生确定点的坐标.教师提出问题:1.点在各个象限的坐标有什么特点?2.坐标轴上的点有什么特点?3.坐标轴上的点属于第几象限呢?探索活动(2)由坐标描出点的位置,给学生提供动手实践的机会,由学生自己根据对平面直角坐标系的理解,亲自动手,独立操作完成,师生共同进行归纳总结.同时,针对本节课的易错点,即点的坐标的表示形式,设计了顺口溜形式,作为本节课阶段性小结:“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”探索活动(3)在全班展开互动游戏来深化本节课的教学.以班里某个同学为坐标原点,建立全班范围的平面直角坐标系.问题:1.你的象限以及你的坐标是多少?2.在x、y轴的同学,你们的坐标有什么特点?3.横坐标为2的同学起立,你们所在的直线和y 轴上的同学有什么位置关系?纵坐标为-1的同学起立,你们所在的直线和x轴上的同学有什么位置关系?4.你的坐标和你到x轴、y轴的距离有什么关系?三、讲授新课1.定义:在平面内两条互相垂直、原点重合的数轴组成平面直角坐标系.其中水平的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴.两坐标轴的交点为平面直角坐标系的原点.(如上活动(1)图)注:(1)横轴取向右为正方向,纵轴取向上为正方向.一般情况下,横轴和纵轴的单位长度取一致.(2)建立平面直角坐标系,必须满足三个条件:a.两条数轴b.互相垂直c.公共原点2.点的坐标:对于平面内任一点M,分别作垂直于x轴、垂直于y轴的垂线,设垂足分别为x、y,则x叫做点M的横坐标、y叫做点M的纵坐标,有序数对(x,y)叫做点M的坐标.3.(1)各象限符号的确定:点在第一象限P(a,b)a>0,b>0 符号特征(+,+)点在第二象限P(a,b)a<0,b>0 符号特征(-,+)点在第三象限P(a,b)a<0,b<0 符号特征(-,-)点在第四象限P(a,b)a>0,b<0 符号特征(+,-)(2)坐标轴上的点的坐标特征:点P(a,b)在x轴上时记作P(a,0)点P(a,b)在y轴上时记作P(0,b)原点记作(0,0)(3)在平面直角坐标系中的点和有序数对是一一对应的关系.即:对于平面内任意一点,都有唯一的有序数对与它对应.对于任意的有序数对,平面上都有唯一的一个点与它对应.4.根据坐标描点的步骤:(1)找到该点的横坐标在x轴上的位置,过该位置作x轴的垂线.(2)找到该点的纵坐标在y轴上的位置,过该位置作y轴的垂线.(3)两线交点即为要描出的点的位置.四、巩固练习1.点(-3,2)在第________象限;点(-1.5,-1)在第________象限;点(0,3)在________轴上;若点(a+1,-5)在y轴上,则a=________.2.在x轴上,且与原点距离为3个单位长度的点的坐标为________.3.若点P在第二象限,它的横坐标与纵坐标的和为-1,则点P的坐标可以是________.4.若点(a,b-1)在第二象限,则a的取值范围是________,b的取值范围是________.5.如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()A.平行于x轴B.平行于y轴C.经过原点D.以上都不对【答案】1.二三y-12.(3,0)或(-3,0)3.(-2,1)(答案不唯一)4.a<0b>15.B五、课堂小结本节课主要内容回顾:平面直角坐标系;点的坐标及其表示;各象限内点的坐标的特征;坐标的简单应用.请同学们自己讨论,交流心得.通过今天的学习,我们发现,当我们确定了一个点的坐标时,就能准确地找到这个点的位置.同学们,如果你们确定了你们人生的坐标,那么也一定要不断努力,不断进取,才能使你们早日登上你们学业的象牙塔.7.2坐标方法的简单应用7.2.1用坐标表示地理位置1.了解用平面直角坐标系来表示地理位置的意义及主要过程.2.培养学生解决实际问题的能力.重点利用坐标表示地理位置.难点建立适当的直角坐标系,利用平面直角坐标系解决实际问题.一、创设情境,引入新课不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便,你知道怎样用坐标表示地理位置吗?今天我们学习如何用坐标表示地理位置.二、师生互动探究用坐标表示地理位置的方法.活动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.教师提问:如何建立平面直角坐标系呢?以哪个参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况的平面图?学生讨论回答:小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点,根据描述,可以以正东方向为x轴、以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10000(即图中1 cm相当实际中10000 cm,即100 m).由学生画出平面直角坐标系,标出学校的位置,即(0,0).教师引导学生一起完成示意图.教师再问:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?学生讨论,总结回答:可以很容易地写出三位同学家的位置.活动2:归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向.(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度.(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.活动3:思考:如图,一艘船在A处遇险后向相距35 n mile位于B处的救生船报警,如何用方向和距离描述救生船相对于遇险船的位置?救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?由图可知,救生船在遇险船北偏东60°的方向上,与遇险船的距离是35 n mile,用北偏东60°,35 n mile就可以确定救生船相对于遇险船的位置,反过来,用南偏西60°,35 n mile就可以确定遇险船相对于救生船的位置.一般地,可以建立平面直角坐标系,用坐标表示地理位置,此外,还可以用方位角和距离表示平面内物体的位置.三、课堂小结让学生归纳如何利用坐标表示地理位置.通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足.针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.7.2.2用坐标表示平移掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上的坐标的变化,来判定图形的移动过程.重点掌握坐标变化与图形平移的关系.难点利用坐标变化与图形平移的关系解决实际问题.一、复习回顾、引入新课教师提问:1.什么叫做平移?2.平移后得到的新图形与原图形有什么关系?学生回答:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移.平移后图形的位置改变,形状、大小不变.二、探索点的坐标变化与平移间的关系1.观察试验探索思考:(1)将点A(-2,-3)向右平移5个单位长度,它的坐标是________.将点A(-2,-3)纵坐标不变,横坐标加5,它的位置发生了什么变化?(2)把点A向上平移4个单位长度呢?若A点横坐标不变,纵坐标加4呢?教师总结:归纳1:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).归纳2:在平面直角坐标系中,如果把点(x,y)的横坐标加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把点(x,y)纵坐标加(或减去)一个正数b,相应的新图形就是把原图向上(或向下)平移b个单位长度.思考:如何平移点A(-2,1)得到点A′?指示:可将点A按照:(1)先向右平移5个单位长度,再向下平移3个单位长度.(2)先向下平移3个单位长度,再向右平移5个单位长度.教师总结:点的斜向平移,可通过点的水平平移和竖直平移来完成.三、探索图形上点的坐标变化与图形平移间的关系【例】如图,三角形ABC三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1,B1,C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2,依次连接A2,B2,C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置有什么关系?解:如图,所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC 的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.教师强调:在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移b个单位长度.四、巩固练习1.在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长度所得点的坐标是________.2.将点P(-4,3)沿x轴负方向平移2个单位长度,再沿y轴负方向平移2个单位长度,所得到的点的坐标为________.3.已知三角形的三个顶点坐标分别是(-4,-1),(1,1),(-1,4),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)【答案】1.(-1,2) 2.(-6,1) 3.A五、课堂小结本节课是在学生学习了位置平移的概念和性质的基础上进行的,主要是引导学生运用分类思想,依次经过点或图形平移的观察、画图、比较、推理、归纳等活动,最终探索出点的坐标变化与点平移的关系、图形各个点的坐标变化与图形平移的关系,并结合演示体验坐标平面上的点与有序数对成一一对应的关系.在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行游戏或试验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性.。
人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)
教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。
人教版第七章平面直角坐标系教案
课题:7.1.2平面直角坐标系课型:新授学习目标:1.认识平面直角坐标系,了解点与坐标的对应关系2.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置3.对给定的正方形会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形。
学习重点:由点的位置确定点的坐标,根据点的坐标在直角坐标系中描出点的位置。
学习难点:探索点与坐标之间的关系。
学习过程:一、温故知新:1、规定了、、的直线叫做数轴。
2、数轴上原点及原点右边的点表示的数是;原点左边的点表示的数是。
3、画数轴时,一般规定向为正方向。
4、数轴上的点与是一一对应的。
二、活动探究(一)平面直角坐标系1、观察:在数轴上,点A对应的实数为-3,叫做点A在数轴上的坐标为,点B对应的实数为2,叫做点B在数轴上的坐标为。
即:数轴上的点可以用一个来表示,这个数叫做这个点的。
反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。
2、思考:能不能有一种办法来确定平面内的点的位置呢?3、平面直角坐标系概念:平面内画两条互相、原点的数轴,组成平面直角坐标系。
水平的数轴称为或,习惯上取向为正方向;竖直的数轴为或,取向为正方向;两个坐标轴的交点为平面直角坐标系的。
4、小练习判断下面四个图形中,是平面直角坐标系的是( )(二)如何在平面直角坐标系中表示一个点1、以A 为例,表示方法为:由点A 分别向x ,y 轴作垂线,垂足分别为M ,N 垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 的横坐标是 ,纵坐标是 。
A 点在平面直角坐标系中的坐标为(3,4), 记作:A (3,4) 2、方法归纳: 由点A 分别向x 轴和 作垂线。
3、强调:横坐标在前,纵坐标在后,中间用逗号,莫忘加括号。
4、活动:你能说出点B 、C 、D 的坐标吗? 注意:横坐标和纵坐标不要写反。
5、思考归纳:原点O 的坐标是( , ),x 轴上的点纵坐标都是 , y 轴上的横坐标都是 。
第七章 平面直角坐标系全章教案
7.1.1有序数对[教学目标]1.理解有序数对的应用意义,了解平面上确定点的常用方法2.培养学生用数学的意识,激发学生的学习兴趣.[教学重点与难点]重点:有序数对及平面内确定点的方法.难点:利用有序数对表示平面内的点.[教学设计] [设计说明]一.问题探知1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案. 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?二.概念确定有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)利用有序数对,可以很准确地表示出一个位置。
与3大道例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?1大道1街2街3街4街5街6街分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3);根据描述的情景找出表示地点的数量学生举例说明生活中的类似确定点的我位置的例子明确数对的表示含义和格式寻找规律确定路线1.在教室里,根据座位图,确定数学课代表的位置2.教材65页练习三.方法归类常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
人教版七年级数学下册第七章平面直角坐标系(复习)教学设计
(五)总结归纳
1.知识梳理:对本节课所学知识进行梳理,强调重点,突出难点。
a.介绍平面直角坐标系的基本概念、坐标与图形的对应关系。
b.梳理坐标平面上平行和垂直线性的特点及运用。
2.方法总结:总结解决坐标平面问题的常用方法,如数形结合、分类讨论等。
4.理解并掌握坐标平面上平行和垂直线性的特点,能够运用这一特点解决相关问题。
(二)过程与方法
1.通过小组讨论、自主探究和教师引导,让学生在实践中掌握平面直角坐标系的相关知识。
2.引导学生运用数形结合的方法,将实际问题转化为数学问题,培养学生的数学建模能力。
3.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高解决问题的能力。
b.合作学习:组织学生进行小组讨论,鼓励他们相互交流、分享解题思路,以培养学生的团队协作能力和发散思维。
c.现实情境:设计一些与生活密切相关的实际问题,引导学生运用所学知识解决问题,提高学生的数学建模能力。
3.教学过程设想:
a.导入:通过复习上一章的知识,自然过渡到平面直角坐标系的学习。
b.新课讲解:以生动的语言、直观的图形,讲解平面直角坐标系的概念和坐标与图形的对应关系。
2.教师引导:在各小组讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入思考。
(四)识,设计不同难度的练习题,让学生在课堂上即时巩固所学知识。
a.基础题:如给出点的坐标,让学生绘制对应的图形。
b.提高题:如求解线段的长度、角的度数等。
c.拓展题:如解决实际问题,将地图上的坐标转换为平面直角坐标系中的点。
3.情感态度与价值观:强调数学在现实生活中的应用价值,激发学生学习数学的兴趣和热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平面直角坐标系教材内容本章内容包括平面直角坐标系及有关概念,点坐标,用坐标表示地理位置和平移等。
实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。
用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。
用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。
用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。
此外,用坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。
教学目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。
〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。
重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。
课时分配7.1平面直角坐标系……………………………………… 4课时7.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时7.1.1有序实数对〔教学目标〕理解有序数对的意义,能利用有序数对表示物体的位置。
〔重点难点〕有序数对的概念,用有序数对来表示物体的位置是重点;用有序数对表示平面内的点是难点。
〔教学过程〕一、问题导入在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置?在地图上你怎样确定一个地点的位置?下象棋时,有人说“炮二平八”,你怎么走棋子?这些都说的是用两个数确定一个物体的位置,那么怎样确定一个物体的位置呢?二、有序数对…投影1‟下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.怎样确定教室里座位的位置?可用排数和列数两个不同的数来确定位置。
排数和列数的先后顺序对位置有影响吗?举例说明。
排数和列数的先后顺序对位置有影响,如(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”,则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。
这就是说用两个数表示物体的位置是有顺序的。
假设我们约定“列数在前,排数在后”,请你在课本图6.1-1上标出被邀请参加讨论的同学的座位。
上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
生活中利用有序数对表示位置的情况是很常见的。
你能再举出一些例子吗?三、例题…投影2‟写出表示学校里各个地点的有序数对.分析:从表示大门的有序数对你能知道前一个数的意义是什么?后一个数的意义是什么吗?答:宣传橱窗(2,2),办公楼(3,3),实验楼(3,7),运动场(6,8),教学楼(7,4),宿舍楼(8,5),食堂(9,6)。
四、课堂练习 课本65面练习。
五、课堂小结1、在生活中的许多情况下,我们可以用一对有序数对表示位置,当然表示位置的方法不止这一种,以后我们会知道还有其它的表示位置的方法。
2、用有序数对表示位置时,要注意数对的顺序,明确前一个数的意义和后一个数的意义,这样我们才不会搞错。
作业:课本68面第1题。
7.1.2平面直角坐标系 (一)[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义;3、会用坐标表示点。
[重点难点]平面直角坐标系和点的坐标是重点;根据点的位置写出点的坐标是难点。
[教学过程] 一、复习导入数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标。
[投影1]如图,点A 的坐标是2,点B 的坐标是-3。
坐标为-4的点在数轴上的什么位置?-3BA32C8 1 2 345 6 7123456789 10● ● ●●● ●●● 大门 食堂 宿舍楼 宣传橱窗 实验楼 教学楼 运动场办公楼 (5,2)在点C处。
这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。
类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示。
如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点。
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。
二、点的坐标如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)。
类似地,请你根据课本66面图7.1-3,写出点B、C、D的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后。
三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限。
[投影2]做一做:课本68面练习1题。
思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点? 原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0。
2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数; 第二象限上的点,横坐标为负数,纵坐标为正数; 第三象限上的点,横坐标为负数,纵坐标为负数; 第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习[投影3]1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离。
2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,则a=______,b=______.3、点M(-2,3)在第 象限,则点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2, 3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、已知一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点。
作业:课本68面第2,3题;7.1.2平面直角坐标系 (二)[教学目标]1、在给定的直角坐标系中,会根据坐标描出点的位置;2、能建立适当的直角坐标系,描述物体的位置。
[重点难点]描出点的位置和建立坐标系是重点;适当地建立坐标系是难点。
[教学过程] 一、复习导入…投影1‟写出图中点A 、B 、C 、D 、E 的坐标。
.(由点的位置可以写出它的坐标,反之,已知点的坐标怎样确定点的位置呢?二、例题…投影2‟例在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).分析:根据点的坐标的意义,经过A点作x轴的垂线,垂足的坐标是A点横坐标,作y轴的垂线,垂足的坐标是A点的纵坐标。
你认为应该怎样描出点A的坐标?先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y 轴的垂线,垂线的交点就是A.类似地,我们可以描出点B、C、D、E.三、建立直角坐标糸…投影3‟探究:如图,正方形ABCD的边长为6. A(O)x D CB(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?y轴是AD所在直线.(2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.可以看到建立的直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?要尽量使更多的点落在坐标轴上。
四、课堂练习…投影4‟1、课本68面练习2题.2、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________.五、课堂小结1、已知点的位置可以写出它的坐标,已知点的坐标可以描出点的位置。
点与有序数对(坐标)是一一对应的关系。
2、为了方便地描述物体的位置,需要建立适当的直角坐标糸。
作业:课本69面第4题;70面第5,6题。
第七章复习一(7.1)一、双基回顾1、点的坐标:过平面内任意一点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的坐标a 、b 分别叫做点P 的 ,有序数对(a ,b )叫做P 点的 。
注意:平面上的点与有序实数对(坐标)一一对应。
〔1〕已知点P 的坐标是(-2,3),则点P 到x 轴的距离是 ,到y 轴的距离是 . 2、象限〔2〕如果点M 到y 轴的距离是4,到x 轴的距离是3,则M 的坐标为 .3、坐标轴上点的特征:x 轴上点的坐标的特点是 ,y 轴上点的坐标的特点是 ,原点的坐标是 .〔3〕如果点A (m ,n )的坐标满足mn=0,则点A 在( ) A. 原点上 B. x 轴上 C. y 轴上 D. 坐标轴上 4、建立直角坐标糸〔4〕如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点 . 二、例题导引例1 如果点M (a+b ,ab )在第二象限,那么点N (a ,b )在第________象限;若a =0,则M 点在 .例2已知长方形ABCD 中,AB=5,BC=3,并且AB ∥x 轴,若点A 的坐标为(-2,4),求点C 的坐标.炮将象(x例3 已知四边形ABCD 各顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),求四边形ABCD 的面积。
三、练习升华夯实基础1、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示_______________。