新人教版八年级数学上册《三角形》习题

合集下载

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

人教版初中八年级数学上册第十一章《三角形》经典练习题(含答案解析)

人教版初中八年级数学上册第十一章《三角形》经典练习题(含答案解析)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 4.内角和为720°的多边形是( ).A .三角形B .四边形C .五边形D .六边形5.若一个多边形的每个内角都等于160°,则这个多边形的边数是( )A .18B .19C .20D .21 6.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .1,3,5C .2,3,4D .2,6,10 7.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12B .3,2,1C .5,12,7D .5,13,5 8.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,49.如图,线段BE 是ABC 的高的是( )A .B .C .D .10.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60°11.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°12.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是()A .43°B .47°C .30°D .60°13.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .414.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .815.做一个三角形的木架,以下四组木棒中,符合条件的是( )A .3cm,2cm,1cmB .3cm,4cm,5cmC .6cm,6cm,12cmD .5cm,12cm,6cm二、填空题16.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.17.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.18.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.19.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.20.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.21.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.22.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.23.如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________.24.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.25.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.26.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题27.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.28.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.29.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.30.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF=∠CFE.(2)如图2,过点E作EG⊥AB于点G,请直接写出图中与∠CAE互余的所有角.。

人教版数学八年级上册 (三角形 全等三角形)综合测试题

人教版数学八年级上册 (三角形 全等三角形)综合测试题

初中人教版数学八年级上(三角形全等三角形)测试卷一、单选题(共10题;共30分)1.已知正n边形的一个内角为135°,则边数n的值是()A. 6B. 7C. 8D. 102.三角形的内角和等于()A. 90°B. 180°C. 300°D. 360°3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD. ∠BDA=∠CDA4.一个多边形的内角和是720°,这个多边形的边数是()A. 4B. 5C. 6D. 75.已知三角形两条边的长分别为2、4,则第三条边的长可以是()A. 1B. 3C. 6D. 76.如图,,AB丄BC,则图中互余的角有()A. 2对B. 3对C. 4对D. 5对7.如图,用四条线段首尾相接连成一个框架,其中AB=12,BC=14,CD=18,DA=24,则A、B、C、D任意两点之间的最长距离为()A. 24cmB. 26cmC. 32cmD. 36cm8.(2021•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90° ②∠ADE=∠CDE ③DE=BE④AD=AB+CD,四个结论中成立的是()A. ①②④B. ①②③C. ②③④D. ①③10.如图,则∠A+∠B+∠C+∠D+∠E=()度A. 90B. 180C. 200D. 360二、填空题(共6题;共18分)11.如图,∠1+∠2+∠3+∠4=________ °。

12.如图,△ABC中,∠ACB=90°,∠ABC=60°,BD⊥AB,∠DAC=50°,则∠D的度数为________.13.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是________ .14.如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:________.(答案不唯一,写一个即可)15.如图,已知AB∥CF,E为DF的中点,若AB=11 cm,CF=5 cm,则BD=________cm.16.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中阴影部分的面积S是________三、解答题(共8题;共72分)17.如图,已知在△ABC 和△ABD 中,AD = BC,∠DAB = ∠CBA,求证:∠C = ∠D.18.一个零件的形状如图中阴影部分.按规定∠A等于90°,∠B、∠C分别等于29°和21°的零件是合格零件,检验人员度量得∠BDC=141°,就断定这个零件不合格.你能说明理由吗?19.如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.20.如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.21.如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.22.如图,在直角△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AP平分∠BAC交BD于点P.(1)∠APD的度数(2)若∠BDC=58°,求∠BAP的度数.23.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.24.在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP于D,交直线BC于Q.(1)如图1,当P在线段AC上时,求证:BP=AQ.(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.(3)如图3,当P在线段AC的延长线上时,∠DBA 等于多少时,AQ=2BD.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:C.【分析】根据任意多边形的外角和为360°可求解。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

人教版初中八年级数学上册第十一章《三角形》习题(含答案解析)

人教版初中八年级数学上册第十一章《三角形》习题(含答案解析)

一、选择题1.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定2.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒3.下列四组线段中,不可以构成三角形的是( ) A .4,5,6B .1.5,2,2.5C .13,14,15D .1,2,34.下列说法正确的是( ) A .射线AB 和射线BA 是同一条射线 B .连接两点的线段叫两点间的距离 C .两点之间,直线最短 D .七边形的对角线一共有14条5.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 6.若一个多边形的每个内角都等于160°,则这个多边形的边数是( ) A .18 B .19 C .20 D .21 7.下列长度(单位:cm )的三条线段能组成三角形的是( ) A .13,11,12 B .3,2,1 C .5,12,7 D .5,13,5 8.用下列长度的三根木棒首尾相接,能做成三角形框架的是( ) A .2,2,4 B .3,4,5 C .1,2,3 D .2,3,6 9.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 10.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .1011.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( ) A .8B .5C .6D .712.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒ 13.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm14.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④15.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°二、填空题16.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.17.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.18.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.19.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .20.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.21.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.22.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.23.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.24.如图,△ABC的面积为1,分别倍长(延长一倍)AB,BC,CA得到△A1B1C1,再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长2020次后得到的△A2020B2020C2020的面积为_____.25.如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=________.26.把一副直角三角板按如图所示的方式摆放在一起,其中90∠,90C=∠=,F∠+∠等于___________度.∠=,则12AD30∠=,45三、解答题27.图①、图②、图③都是5×5的网格,每个小正方形的顶点称为格点,△ABC 的顶点均在格点上,在图①、图②、图③给定网格中,仅用无刻度的直尺,按下列要求完成画图,并保留作图痕迹.(1)在图①中边AB 上找到格点D ,并连接CD ,使CD 将△ABC 面积两等分; (2)在图②中△ABC 的内部找到格点E ,并连接BE 、CE ,使△BCE 是△ABC 面积的14. (3)在图③中△外部画一条直线l ,使直线l 上任意一点与B 、C 构成的三角形的面积是△ABC 的18.28.在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒, (1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形? 29.如图,A 、O 、B 三点在同一直线上,OE ,OF 分别是∠BOC 与∠AOC 的平分线.求:(1)当∠BOC=30°时,∠EOF 的度数; (2)当∠BOC=60°时,∠EOF 等于多少度?(3)当∠BOC=n°时,∠EOF等于多少度?(4)观察图形特点,你能发现什么规律?30.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n边形的一个顶点出发,可作_______条对角线,多边形有n个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?。

(完整)人教版八年级上册数学三角形练习题

(完整)人教版八年级上册数学三角形练习题

人教版八年级上册数学三角形练习题一.选择题1.以下列各组线段为边,能组成三角形的是 A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是 A.1 B.1C.17或2 D.22图6、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为456789123、如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠34.要使五边形木架不变形,至少要再钉根木条。

、一个多边形的内角和的度数是外角和的2倍,这个多边形是。

16、如图6,△ABC中,∠A=36°,BE平分∠ABC, CE 平分∠ACD,∠E=________.、在△ABC 中,∠A=100°,∠B=3∠C,则∠B=________.、如图8,△ABC 中,∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB 于E,则∠BDE=______.9、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形边数是图8CADCFA2005.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80,∠B=60;求∠AEC的度数.D E6BE和CF7、101112.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC 的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。

人教版八年级上册数学《三角形》单元测试题带答案

人教版八年级上册数学《三角形》单元测试题带答案

人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。

人教版八年级数学上册第十一章《三角形》练习题

人教版八年级数学上册第十一章《三角形》练习题

八年级数学《三角形》单元测试题一、选择题:1.下列长度的三条线段中,能组成三角形的是 ( )A 、3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm 2.若三角形两边长分别是4、5,则周长c 的范围是( ) A. 1<c<9 B. 9<c<14 C. 10<c<18 D. 无法确定3.一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 94.已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=( ) A 、 55° B 、 70° C 、 40° D 、 110°5.如图所示,已知△ABC 为直角三角形,∠B=90°,若沿图中虚线剪去∠B ,则∠1+∠2 等于( )A 、90° B 、135° C 、270° D 、315°6. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( )A 、90°B 、130°C 、270°D 、315° 7.三角形的一个外角是锐角,则此三角形的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定 8. 在∆ABC 中,B A ∠=∠,055比C ∠大025,则B ∠等于 ( ) A. 050 B. 075 C. 0100 D. 01259. 一个多边形的内角和比它的外角和的3倍少,这个多边形边数是( )A. 5条B. 6条C. 7条D. 8条10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )第5题图DC BA第7题图第6题图A.1个B.2个C.3个D.4个 二、填空题:1. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

新人教版八年级数学上册三角形》测试题

新人教版八年级数学上册三角形》测试题

新人教版八年级数学上册三角形》测试题一.选择题(10小题,共30分)1.以下哪组线段能组成三角形。

A。

3cm,4cm,5cmB。

4cm,6cm,10cmC。

1cm,1cm,3cmD。

3cm,4cm,9cm2.等腰三角形的一边长等于4,另一边长等于9,则它的周长是多少。

A。

17B。

13C。

17或22D。

223.一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为多少。

A。

6B。

8C。

10D。

124.在下图中,正确画出AC边上高的是哪个选项。

5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是哪个选项。

A。

三角形的角平分线B。

三角形的中线C。

三角形的高D。

以上都不对6.适合条件∠A=∠B=∠C的三角形是哪个选项。

A。

锐角三角形B。

等边三角形C。

钝角三角形D。

直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是多少。

A。

8B。

9C。

10D。

118.若一个多边形的内角和等于1080°,则这个多边形的边数是多少。

9.n边形的每个外角都为24°,则边数n为多少。

A。

13B。

14C。

15D。

1610.如图,∠A+∠B+∠C+∠D+∠E+∠F的和为多少度。

二、填空题(每小题3分,共30分)1.如图1,共有多少个三角形。

2.如图2,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是多少。

3.如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠3等于多少度。

4.要使五边形木架(用5根木条钉成)不变形,至少要再钉几根木条。

5.一个多边形的内角和的度数是外角和的2倍,这个多边形是什么类型。

6.△ABC中,∠A=36°,BE平分∠ABC,CE平分∠ACD,∠E等于多少度。

7.在△ABC中,∠A=100°,∠B=3∠C,则∠B等于多少度?8、在△ABC中,已知∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB于E,求∠BDE的度数。

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)1.已知实数x、y满足|x-4|+|y-5|=12,则x+y的取值范围是________。

2.如图,AB和CD相交于点O,∠A=∠C,则∠1+∠2的度数为________。

3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是________。

4.若过六边形的一个顶点可以画n条对角线,则n的值是________。

5.如图,ABC中,BC边上的高是AE,AD=5,DE=3,则BE的长度为________。

6.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的取值范围是________。

7.如图,∠1等于40°,则∠3的度数是________。

8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是________米。

9.以下说法正确的有()个:①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n-3)条对角线,这些对角线把这个n边形分成了(n-2)个三角形。

10.现有两根木棒,长度分别为5cm和13cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取________。

13.2016年2月6日凌晨,台湾高雄发生了6.7级地震。

中国派出了武警部队探测队,他们在得知某建筑物下面有生命迹象后,使用仪器在生命迹象上方建筑物的A、B两侧地面上的位置探测到了生命迹象C。

已知探测线与地面的夹角分别为30度和60度(如图),则C的角度是多少?14.如图所示,BD是三角形ABC的中线,点E、F分别为BD、CE的中点。

若AEF的面积为3平方厘米,则ABC的面积是多少平方厘米?15.设三角形的三个内角的度数分别为x、y、z。

八年级数学上册第十一章《三角形》测试题-人教版(含答案)

八年级数学上册第十一章《三角形》测试题-人教版(含答案)

八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。

人教版初中八年级数学上册第十一章《三角形》习题(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》习题(含答案解析)(1)

一、选择题1.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 2.已知三角形的两边长分别为1和4,则第三边长可能是( ) A .3B .4C .5D .6 3.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( ) A .2B .9C .13D .15 4.将一个多边形纸片剪去一个内角后得到一个内角和是外角和4倍的新多边形,则原多边形的边数为( )A .9B .10C .11D .以上均有可能 5.如图,1∠等于( )A .40B .50C .60D .70 6.用下列长度的三根木棒首尾相接,能做成三角形框架的是( ) A .2,2,4B .3,4,5C .1,2,3D .2,3,6 7.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变 B .减少 C .增加 D .不能确定 8.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°9.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .010.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm 11.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 13.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA 14.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤ 15.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .5二、填空题16.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.17.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.18.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;19.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线20.如果三角形两条边分别为3和5,则周长L 的取值范围是________21.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.22.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.23.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)24.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.25.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .26.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=____.(填写度数).三、解答题27.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.28.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?29.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.30.(1)一个多边形的内角和等于1800度,求这个多边形的边数.(2)一个多边形的每一个内角都是108°,求这个多边形的边数.。

人教版八年级数学上册第十一章《三角形》单元练习题

人教版八年级数学上册第十一章《三角形》单元练习题

第十一章《三角形》单元练习题一.选择题1.下来三条线段中,能构成三角形的是()A.3,4,8 B.5,6,11 C.5,5,10 D.5,6,72.一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.103.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.64.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°5.△ABC的三个内角∠A,∠B,∠C满足∠A:∠B:∠C=1:2:3,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180°B.减小(n﹣2)×180°C.增加(n﹣1)×180°D.没有改变7.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°8.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.9.如图,在△ABC中,点D在AB边上,点E在AC边上DE∥BC,点B、C、F在一条直线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.75°B.50°C.35°D.30°10.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远11.如图,为估计池塘岸边两点A、B的距离,小方在池塘的一侧选取一点O,测得OA=6cm,OB=4cm,则点A、B间的距离不可能是()A.10 cm B.8cm C.6cm D.4cm12.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°二.填空题13.如图,在△ABC中,AB=2018,AC=2015,AD为中线,则△ABD与△ACD的周长之差=.14.如图,在△ABC中,D为AB延长线上一点,DE⊥AC于E,∠C=40°,∠D=20°,则∠ABC的度数为.15.一个三角形的两边长分别是2和6,第三边长为偶数,则第三边长为.16.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有个.三.解答题17.如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.18.如图,△ABC中,点D、E在边AB上,点F在边BC上,点G在边AC上,EF、CD 与BG交于M、N两点,∠ADG=50°,∠ACB=60°.(1)若∠BMF+∠GNC=180°,CD与EF平行吗?为什么?(2)在(1)的基础上,若∠GDC=∠EFB,试求∠A的度数.19.在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?20.如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.22.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB 于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.23.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;3(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.参考答案一.选择题1.解:根据三角形任意两边的和大于第三边,得A,3+4=7<8,不能组成三角形;B,5+6=11=11,不能组成三角形;C,5=5=10,不能够组成三角形;D,5+6=11>7,能组成三角形.故选:D.2.解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.3.解:设多边形的边数为n,由题意得,(n﹣2)•180°=900°,解得n=7,所以,从一点引对角线的条数=7﹣3=4.故选:B.4.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.5.解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,由题意得,k+2k+3k=180°,解得k=30°,∠C=3×30°=90°,∴这个三角形是直角三角形.故选:C.6.解:∵多边形的外角和等于360°,与边数无关,∴凸多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选:D.7.解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.8.解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.9.解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:C.10.解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.11.解:∵6﹣4<AB<6+4,∴2<AB<10.∴所以不可能是10cm.故选:A.12.解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共4小题)13.解:∵AD是△ABC的中线,∴BD=CD,∵△ABD周长=AB+AD+BD,△ACD周长=AC+CD+AD,∴△ABD周长﹣△ACD周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=2018﹣2015=3,即△ACD和△BCD的周长之差是3,故答案为:3.14.解:∵DE⊥AC,∠D=20°,∴∠A=70°,∵∠A+∠C+∠ABC=180°,∴∠ABC=180°﹣40°﹣70°=70°,故答案为70°.15.解:根据三角形的三边关系,得6﹣2<x<6+2,即4<x<8.又∵第三边长是偶数,则x=6,故答案为:616.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴⑤正确;即正确的有4个,故答案为:4.三.解答题(共7小题)17.解:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°,∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=×60°=30°,∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°﹣∠B=90°﹣75°=15°,∴∠DAE=∠BAE﹣∠BAD=30°﹣15°=15°,在△AEC中,∠AEC=180°﹣∠C﹣∠CAE=180°﹣45°﹣30°=105°;18.解:(1)∵∠BMF+∠GNC=180°∠BMF+∠NMF=180°,∴∠GNC=∠NMF,∴CD∥EF;(2)∵CD∥EF,∴∠DCB=∠EFB,∵∠GDC=∠EFB,∴∠DCB=∠GDC,∴DG∥BC,∴∠ADG=∠ABC=50°,∠AGD=∠ACB=60°..∴∠A=180°﹣50°﹣60°=70°.19.解:(1)设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20)+α=180°,解得α=40°.即多边形的每个外角为40°.又∵多边形的外角和为360°,∴多边形的外角个数==9.∴多边形的边数=9,答:这个多边形的边数是9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,当截线为经过对角2个顶点的直线时,多边形的边数减少了1条边,内角和=(9﹣2﹣1)×180°=1080°;当截线为经过多边形一组对边的直线时,多边形的边数不变,内角和=(9﹣2)×180°=1260°;当截线为只经过正方形一组邻边的一条直线时,多边形的边数增加一条边,内角和=(9﹣2+1)×180°=1440°.答:将这个多边形剪去一个角,剩下多边形的内角和是1080°或1260°或1440°.20.解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.21.解:(1)DG∥BC.理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)∵CD⊥AB,∴∠BDC=90°.∵∠B=34°,∴∠BCD=90°﹣34°=56°.∵∠ACD=47°,∴∠ACB=∠ACD+∠BCD=47°+56°=103°.∵由(1)知DG∥BC,∴∠3=∠ACB=103°.22.解:(1)作PH∥AB,又AB∥CD,则PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠PEB=∠AEM,∴∠PFD﹣∠AEM=90°;(3)由(2)得,∠PFD=90°+∠PEH=120°,∴∠N=180°﹣∠DON﹣∠PFD=45°.23.解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,(1分)∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.。

人教版八年级上册数学《 三角形》试题(带答案)

人教版八年级上册数学《 三角形》试题(带答案)

八年级数学上册第11章《三角形》试题姓名:学号:分数:一、选择题(本大题共10道小题,每小题3分,共30分)1. 在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°2. 如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,则AE是哪个三角形的角平分线()A.△ABE B.△ADFC.△ABC D.△ABC,△ADF3. 在△ABC中,BC边所对的角是()A.∠A B.∠B C.∠C D.∠D4. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD5. 如图,以AB为边的三角形共有()A.5个B.4个C.3个D.2个6. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°7. 用三角尺作△ABC的边BC上的高,下列三角尺的摆放位置正确的是()8. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 129. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.610. 如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共10道小题,每小题3分,共30分)11. 如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是________;在△ACD 中,∠C所对的边是________.12. 如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=________°.13. 如图,以点A为顶点的三角形有________个,它们分别是_______________.14. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.15. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.16. 如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线.若∠B=71°,则∠BAC=________.17. 如图所示,x的值为________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD 的周长为________.19. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.20. 如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4 cm2,则阴影部分的面积为________.三、解答题(本大题共8道小题,每小题6-10分,共60分)21. (6分)已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.22. (6分)“X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.23. (6分)用一条长41 cm的细绳围成一个三角形,已知此三角形的第一条边长为x cm,第二条边长比第一条边长的3倍少4 cm.(1)请用含x的式子表示第三条边长;(2)若此三角形恰好是一个等腰三角形,求这个等腰三角形的三边长.24. (6分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AF是角平分线,交CD于点E.试说明:∠1=∠2.25. (8分)在平面内,分别用相同的3根、5根、6根……火柴首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:(1)4根火柴能搭成三角形吗?(2)12根火柴能搭成几种不同形状的三角形?请画出它们的示意图.(提示:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形)26. (8分)数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?27. (10分)等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.28. (10分)观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.答案1. 【答案】C2. 【答案】D3. 【答案】A4. 【答案】D5. 【答案】C6. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40°,∵∠ACB=90°,∴∠B=90°-∠A=90°-40°=50°.7. 【答案】A8. 【答案】B 【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.9. 【答案】B10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况共四种:两个三角形、三角形和四边形、三角形和五边形、两个四边形.二、填空题(本大题共10道小题)11. 【答案】AB AD12. 【答案】60[解析] 如图,延长电线杆与地面相交.∵电线杆与地面垂直,∴∠1=90°-30°=60°.由对顶角相等,得α=∠1=60°.13. 【答案】4△ABC,△ADC,△ABE,△ADE14. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.15. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.16. 【答案】38° 【解析】∵AD ∥BC ,∠B =71°,∴∠EAD =∠B =71°.∵AD 是∠EAC 的平分线,∴∠EAC =2∠EAD =142°,∴∠BAC =180°-∠EAC =180°-142°=38°. 17. 【答案】55° [解析] 由多边形的外角和等于360°,得360°-105°-60°+x +2x =360°,解得x =55°.18. 【答案】13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.19. 【答案】75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.20. 【答案】1 cm 2 [解析] 因为E 为AD 的中点,所以S △BDE =12S △ABD ,S △CDE =12S △ACD .所以S △BCE =12S △ABC .又因为F 为EC 的中点,所以S △BFE =12S △BCE .所以S △BFE =12×12×4=1(cm 2).三、解答题(本大题共8道小题)21. 【答案】解:设这个多边形的边数是n. 依题意,得(n -2)×180°=3×360°-180°, 解得n =7.∴这个多边形的边数是7.22. 【答案】解:(1)360°+360°=720°. (2)设X 的边数为n ,则Y 的边数为3n. 由题意,得180(n -2)+180(3n -2)=1440, 解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.23. 【答案】解:(1)∵三角形的第一条边长为x cm ,第二条边长比第一条边长的3倍少4 cm , ∴第二条边长为(3x -4)cm.∴第三条边长为41-x -(3x -4)=(45-4x)cm.(2)若x =3x -4,则x =2,另两边长分别为2和37,根据三角形三边关系可知,2,2,37不能组成三角形;若x =45-4x ,则x =9,另两边长分别为9和23,根据三角形三边关系可知,9,9,23不能组成三角形;若3x -4=45-4x ,则x =7,另两边长分别为17,17,根据三角形三边关系可知,7,17,17可以组成三角形.∴这个等腰三角形的三边长分别为17 cm ,17 cm ,7 cm. 24. 【答案】解:∵∠ACB =90°, ∴∠2+∠CAF =90°. ∵AF 是△ABC 的角平分线, ∴∠CAF =∠BAF. ∴∠2+∠BAF =90°.∵CD ⊥AB ,∴∠AED +∠BAF =90°. 又∵∠AED =∠1, ∴∠1+∠BAF =90°. ∴∠1=∠2.25. 【答案】解:(1)4根火柴不能搭成三角形. (2)12根火柴能搭成3种不同形状的三角形. 示意图如下:26. 【答案】解:(1)把100 cm 的木棒折去了35 cm 后还剩余65 cm. ∵20+65<90,∴20 cm ,65 cm ,90 cm 长的三根木棒不能构成三角形. (2)设折去x cm 后剩余的部分不能与另两根木棒搭成三角形. 根据题意,得20+(100-x)≤90, 解得x≤30,∴100 cm 长的木棒至少折去30 cm 后剩余的部分就不能与另两根木棒搭成三角形. 27. 【答案】83证明:∵BE ,CF 均是△ABC 的中线, ∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.28. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M. 由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.。

人教版八年级上册数学《三角形》单元测试题带答案

 人教版八年级上册数学《三角形》单元测试题带答案

人教版八年级上册数学《三角形》单元测试题带答案一、选择题1. 下列关于三角形的说法中,错误的是()。

A. 三角形的内角和为180度B. 一个三角形有三个顶点C. 三角形的三条边互相垂直D. 三角形的一个外角等于另外两个内角的和答案:C2. 在直角三角形ABC中,已知∠A=30°,∠B=60°,则∠C=()。

A. 60°B. 30°C. 90°D. 120°答案:C3. 三角形的一个内角是60°,一个外角是120°,则另一个内角是()。

A. 60°B. 120°C. 90°D. 150°答案:D4. 已知在三角形ABC中,∠A=50°,∠B=70°,AB=BC,则AC的大小为()。

A. 50°B. 70°C. 60°D. 80°答案:D5. 若两个三角形的对应角相等,则这两个三角形是()。

A. 相似三角形B. 对称三角形C. 同位角三角形D. 直角三角形答案:A二、填空题1. 三角形的外角是()。

答案:两个不相邻的内角的和2. 一个三角形的外角等于一个角的两个不相邻内角的和,这个角是一个()。

答案:内角3. 相似三角形对应角相等,对应边(比例/成比例)。

答案:成比例4. 三角形的一个内角为60度,则这个角的补角是()。

答案:120度5. 等边三角形的三个角都是()。

答案:60度三、计算题1. 已知在三角形ABC中,∠B=50°,∠C=60°,AC=7cm,求BC的长度。

答案:由三角形内角和的性质可得∠A=180°-50°-60°=70°。

由正弦定理可得:$\frac{BC}{\sin 50^\circ}=\frac{7}{\sin 70^\circ}$,解得BC=6cm。

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

人教版数学八年级上册:第十一章《三角形》单元测试题(附参考答案)

第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。

人教版八年级上册数学第十一单元《 三角形》试题(带答案)

人教版八年级上册数学第十一单元《 三角形》试题(带答案)

八年级数学上册第11章《三角形》试题姓名:学号:分数:一、选择题(每小题3分,共8小题,满分24分)1.以下列各组线段长为边,能构成三角形的是()A.1cm,5cm,4cm B.8cm,7cm,7cmC.3cm,3cm,7cm D.7cm,8cm,16cm2如图,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,则下列说法不正确的是()A.△ABC中,AC是BC边上的高B.△BCD中,DE是BC边上的高C.△ABE中,DE是BE边上的高D.△ACD中,AD是CD边上的高3如图,AD,BE,CF是△ABC的三条中线,则下列说法错误的是()A.AE=AC B.AB=2BF C.AD=CF D.BD=DC4如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°5如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△EBC的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高6下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架7在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个8如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°二、填空题(每小题3分,共6小题,满分18分)9已知三角形的三边分别为3,x,4,那么x的取值范围是.10如果一个三角形两边上的高所在的直线的交点在三角形的外部,那么这个三角形是三角形.11如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是.12当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为.13如图,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形(边数为20)是由正方形“扩展”而来的….依此类推,由正n边形“扩展”而来的多边形的边为.14如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.三、解答题(共9小题,满分58分)15如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?16一副三角板如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.17如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?18如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.19如图,求∠A+∠B+∠C+∠D+∠E.20已知:如图1,在△ABC中,CD是高,若∠A=∠DCB.(1)试说明∠ACB=90°;(2)如图2,若AE是角平分线,AE、CD相交于点F.求证:∠CFE=∠CEF.21如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.22.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.23如图1所示,在△ABC中,AE是∠BAC的平分线,∠B<∠C,F为AD上一点,且FD⊥BC于D.(1)试推导∠EFD与∠B、∠C的大小关系.(2)如图2所示,当点F在AE的延长线上时,其余条件不变,在(1)中推导的结论还成立吗?请说明理由.第11章三角形一、选择题(每小题3分,共8小题,满分24分)1.以下列各组线段长为边,能构成三角形的是()A.1cm,5cm,4cm B.8cm,7cm,7cmC.3cm,3cm,7cm D.7cm,8cm,16cm【考点】三角形三边关系.【专题】三角形;推理能力.【答案】B【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、1+4=5,故不能构成三角形,不合题意;B、7+7=14>8,故能构成三角形,符合题意;C、3+3=6<7,故不能构成三角形,不合题意;D、7+8=15<16,故不能构成三角形,不合题意.故选:B.2如图,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,则下列说法不正确的是()A.△ABC中,AC是BC边上的高B.△BCD中,DE是BC边上的高C.△ABE中,DE是BE边上的高D.△ACD中,AD是CD边上的高【考点】三角形的角平分线、中线和高.【专题】三角形;推理能力.【答案】C【分析】三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:A、△ABC中,AC是BC边上的高,正确;B、△BCD中,DE是BC边上的高,正确;C、DE不是△ABE的高,错误;D、△ACD中,AD是CD边上的高,正确.故选:C.3如图,AD,BE,CF是△ABC的三条中线,则下列说法错误的是()A.AE=AC B.AB=2BF C.AD=CF D.BD=DC【考点】三角形的角平分线、中线和高.【专题】三角形;推理能力.【答案】C【分析】根据三角形的中线的定义判断即可.【解答】解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BD=DC=BC,故A、B、D都正确;C不一定正确.故选:C.4如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】平行线的性质.【答案】C【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选:C.5如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△EBC的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高【考点】三角形的角平分线、中线和高.【专题】三角形.【答案】C【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、∵AE=DE,∴BE是△ABD的中线,正确;B、∵BD平分∠EBC,∴BD是△EBC的角平分线,正确;C、∵BD是△EBC的角平分线,∴∠EBD=∠CBD,∵BE是中线,∴∠EBD≠∠ABE,∴∠1=∠2=∠3不正确,符合题意;D、∵∠C=90°,∴BC是△ABE的高,正确.故选:C.6下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架【考点】三角形的稳定性;多边形.【专题】三角形;多边形与平行四边形;应用意识.【答案】A【分析】利用三角形的稳定性进行解答.【解答】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、C、D选项都是利用了三角形的稳定性,故选:A.7在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【考点】三角形内角和定理;勾股定理的逆定理.【答案】C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.8如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°【考点】多边形内角与外角.【专题】多边形与平行四边形;几何直观.【答案】D【分析】如图,一条直线将该五边形ABCDE分割成两个多边形(含三角形)的情况有5种,分别求出每一个图形的两个多边形的内角和即可作出判断.【解答】解:图①中,m+n=180°+720°=900°;图②中,m+n=180°+360°=540°;图③中,m+n=180°+540°=720°;图④中,m+n=360°+540°=900°;图⑤中,m+n=360°+360°=720°.故m+n不可能是1080°.故选:D.二、填空题(每小题3分,共6小题,满分18分)9已知三角形的三边分别为3,x,4,那么x的取值范围是.【考点】三角形三边关系.【专题】三角形;运算能力;推理能力.【答案】1<x<7.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的任意两边之和大于第三边,两边之差小于第三边可得:4﹣3<x<4+3,即1<x<7.故答案为:1<x<7.10如果一个三角形两边上的高所在的直线的交点在三角形的外部,那么这个三角形是三角形.【考点】三角形的角平分线、中线和高.【专题】三角形;推理能力.【答案】锐角.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故答案为:锐角.11如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是.【考点】三角形内角和定理.【专题】线段、角、相交线与平行线;三角形;运算能力.【答案】70°.【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°,故答案为:70°.12当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为.【考点】三角形内角和定理.【专题】新定义.【答案】见试题解答内容【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可.【解答】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.13如图,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形(边数为20)是由正方形“扩展”而来的….依此类推,由正n边形“扩展”而来的多边形的边为.【考点】规律型:图形的变化类.【专题】规律型;几何直观;推理能力.【答案】n(n+1).【分析】观察可得边数与n的关系为n(n+1),即可得到答案.【解答】解:当n=3时,边数为3×4=12;当n=4时,边数为4×5=20;⋯故正n边形,边数为:n(n+1);故答案为:n(n+1).14如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.【考点】多边形内角与外角.【专题】正多边形与圆;运算能力.【答案】540°.【分析】根据三角形的内角和与四边形的内角和公式得∠3+∠4+8=180°①,∠6+∠7+∠10+∠11=360°②,∠1+∠2+∠5+∠9=360°③,三式相加,再由邻补角的性质即可得出答案.【解答】解:如图,∵∠3+∠4+8=180°①,∠6+∠7+∠10+∠11=360°②,∠1+∠2+∠5+∠9=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠9+∠10+∠11+∠12=900°,∵∠8+∠10=180°,∠9+∠11=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=900°﹣180°﹣180°=540°.故答案为:540°.三、解答题(共9小题,满分58分)15如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?【考点】多边形内角与外角.【答案】见试题解答内容【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n 边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数为n,根据题意,得(n﹣2)•180=360×3+180,解得:n=9.则这个多边形的边数是9.16一副三角板如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.【考点】余角和补角.【答案】见试题解答内容【分析】由∠CAF=∠DCE,∠ACF+∠DCE=90°可得∠CAF+∠ACF=90°,利用三角形的内角和定理得出结论.【解答】解:∵∠CAF=∠DCE,∠ACF+∠DCE=90°,∴∠CAF+∠ACF=90°,∴∠F=90°.17如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?【考点】三角形的角平分线、中线和高.【答案】见试题解答内容【分析】AD是BC边上的中线,可得BD=CD,分别求出△ABD的周长和△ACD的周长,根据三角形ABD的周长比△ACD的周长小5列方程求出.【解答】解:能.由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD﹣(AB+BD+AD)=AC﹣AB=5.即AC与AB的边长的差为5.18如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【答案】见试题解答内容【分析】先根据直角三角形的两个锐角互余,求得∠BAD,再根据角平分线的定义,求得∠CAE=∠BAC=45°,∠ACF=∠ACB=20°,最后根据三角形内角和定理,求得△AOC中∠AOC的度数.【解答】解:∵AD是高,∠B=50°,∴Rt△ABD中,∠BAD=90°﹣50°=40°,∵∠BAC=90°,∠B=50°,∴△ABC中,∠ACB=90°﹣50°=40°,∵AE,CF是角平分线,∴∠CAE=∠BAC=45°,∠ACF=∠ACB=20°,∴△AOC中,∠AOC=180°﹣45°﹣20°=115°.19如图,求∠A+∠B+∠C+∠D+∠E.【考点】三角形内角和定理;三角形的外角性质.【专题】数形结合;三角形;推理能力.【答案】180°.【分析】连接BC,根据三角形的内角和定理即可证得∠D+∠E=∠3+∠4,然后根据三角形的内角和定理即可求解.【解答】解:连接BC,∵∠D+∠E+∠1=∠3+∠4+∠2=180°,又∵∠1=∠2,∴∠D+∠E=∠3+∠4,∴∠A+∠B+∠C+∠D+∠E=∠A+∠ABE+∠ACD+∠3+∠4=∠A+∠ABC+∠ACB=180°.20已知:如图1,在△ABC中,CD是高,若∠A=∠DCB.(1)试说明∠ACB=90°;(2)如图2,若AE是角平分线,AE、CD相交于点F.求证:∠CFE=∠CEF.【考点】三角形内角和定理.【专题】探究型.【答案】见试题解答内容【分析】(1)根据题意可以求得∠BCD+∠ACD的度数,从而可以解答本题;(2)根据题意和(1)中的结论,直角三角形中两个锐角互余和对顶角相等,可以求得结论成立.【解答】解:(1)∵在△ABC中,CD是高,∠A=∠DCB,∴∠CDA=90°,∴∠A+∠ACD=90°,∴∠DCB+∠ACD=90°,∴∠ACB=90°;(2)证明:∵AE是角平分线,∴∠CAE=∠BAE,∵∠FDA=90°,∠ACE=90°,∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°,∴∠AFD=∠CEA,∵∠AFD=∠CFE,∴∠CFE=∠CEA,即∠CFE=∠CEF.21如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.【考点】平行线的判定.【答案】见试题解答内容【分析】根据角平分线的定义和四边形的内角和进行解答即可.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠B,DF平分∠D,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.22.△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小.(2)若∠B<∠C,则2∠EAD与∠C﹣∠B是否相等?若相等,请说明理由.【考点】三角形的角平分线、中线和高.【答案】见试题解答内容【分析】(1)由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE 是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC;(2)由(1)知,用∠C和∠B表示出∠EAD,即可知2∠EAD与∠C﹣∠B的关系.【解答】解:(1)∵∠B=30°,∠C=70°∴∠BAC=180°﹣∠B﹣∠C=80°∵AE是角平分线,∴∠EAC=∠BAC=40°∵AD是高,∠C=70°∴∠DAC=90°﹣∠C=20°∴∠EAD=∠EAC﹣∠DAC=40°﹣20°=20°;(2)由(1)知,∠EAD=∠EAC﹣∠DAC=∠BAC﹣(90°﹣∠C)①把∠BAC=180°﹣∠B﹣∠C代入①,整理得∠EAD=∠C﹣∠B,∴2∠EAD=∠C﹣∠B.23如图1所示,在△ABC中,AE是∠BAC的平分线,∠B<∠C,F为AD上一点,且FD⊥BC于D.(1)试推导∠EFD与∠B、∠C的大小关系.(2)如图2所示,当点F在AE的延长线上时,其余条件不变,在(1)中推导的结论还成立吗?请说明理由.【考点】三角形内角和定理;三角形的外角性质.【答案】见试题解答内容【分析】(1)根据三角形的内角和定理和角平分线的定义表示出∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AEC,然后根据直角三角形两锐角互余列式计算即可得解;(2)与(1)的求解过程完全相同.【解答】解:(1)∠EFD=(∠C﹣∠B).理由如下:∵AE是∠BAC的平分线,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C),在△ABE中,∠AEC=∠BAE+∠B=(180°﹣∠B﹣∠C)+∠B=90°+∠B﹣∠C,∵FD⊥BC,∴∠EFD=90°﹣(90°+∠B﹣∠C)=(∠C﹣∠B);(2)仍然成立.又(1)知∠DEF=∠AEC=90°+∠B﹣∠C,∴∠EFD=(∠C﹣∠B).。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形》习题
(一)填空部分
1、如果三角形的两边长为6和2,且第三边为偶数,则第三边的长是 .
2、(1)等腰三角形两边是1和5,则周长是
(2)等腰三角形两边是3和5,则周长是
3、已知D 、E 分别为△ABC 中边BC 、AC 中点,若△DAE 的面积是3㎝2,则△ABD 的面积是 ,△ABC 的面积是 。

4、在三角形ABC 中,∠B=90°,AB=3,BC=4,则△ABC 的面积= 。

5、如图,在△ABC 中,∠ABC = 90°,BD ⊥AC ,AB = 3㎝,BC= 4㎝,AC=5㎝,则△ABC 的面积是 ,BD = 。

6、AD 是△ABC 的角平分线,则∠1 = ∠ =2
1∠ 。

7、长为3、5、7、10的四根木条,选其中的三根组成三角形,有 种选法。

8、把图中∠1 、∠2 、∠3 按由小到大的顺序排列为
(二)解答部分
9、如图,试说明∠1 >∠2.
10、如图,试说明∠BDC = ∠A +∠B +∠C
11、如图,试说明AB +DC >AD +BC
12、如图,AD 、BE 都是△ABC 的高,AD = 4,BC = 6,AC = 5,求BE 的长。

5、已知:在△ABC 中,∠A - ∠B = 30°,∠C = 4∠B
求:∠A 、∠B 、∠C 的度数。

课后检测
一、填空
1、一个三角形周长为27cm ,三边比为2∶3∶4,则最长边比最短边长 cm 。

2、等腰三角形的两边长分别为4和 9,则它的周长是 。

3、△ABC 的周长是偶数,a=2,b=7,则此三角形的周长是_________。

4、△ABC 的面积是18cm2, AD 是中线,则△ADC 的面积是_________
5、满足∠A-∠B=∠C 的三角形ABC 是 三角形。

6、一个多边形从一个顶点出发有4条对角线,这个多边的形对角线共有 条。

7、为使一扇木门不变形,在木门的背面钉一 根木条,这样做应用的数学道理是: 。

8、一个三角形三个外角的比是2:3:4,则三个内角的比是______________。

9、a 、b 、c 是三角形的三边,化简a b c b a c c a b --+--+--=
10、直角三角形两锐角的平分线相交所成的锐角是______度。

11、一个多边形除∠A 外其余内角的和是1000°,则∠A =________。

12、如果三角形三内角之比为8∶9∶17,那么三角形为 角三角形。

二、选择题
1、下列长度的三条线段可以组成三角形的是 ( )
(A)3、4、2 (B )12、5、6 (C )1、5、9 (D )5、2、7
2、三角形的两边分别为3和5,则三角形周长y 的范围是( )
A.2<y <8
B.10<y <18
C.10<y <16
D.无法确定
3、以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个
4、下面各角能成为某个多边形的内角和的是( )
A .430°
B .4343°
C .4320°
D .4360°
7、给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )
A.1个
B.2个
C.3个
D.4个
8、
依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )
(A )(
C )(
D 9、等腰三角形的底边BC=8 cm ,且|AC
-BC|=2 cm ,则腰长
AC 为( )
A.10 cm 或6 cm
B.10 cm
C.6 cm
D.8 cm 或6 cm
10、在下图中,正确画出AC 边上高的是( ).
A B C D
三、解答题:
1、如图,在△ABC 中,∠BAC 是钝角,完成下列画图.
(1)∠BAC 的平分线AD ;
(2)AC 边上的中线BE ;
(3)AC 边上的高BF ;
2、在△ABC 中,∠A=2
1(∠B +∠C )、∠B -∠C=20°,求∠A 、∠B 、∠C 的度数。

C B A
3、一个多边形的每个内角都是144°,求多边形的边数。

4、已知:如图,AF ∥CD ,∠ABC=∠DEF ,∠BCD=∠EFA , 求证:AB ∥DE ,(提示:连接AD )
5、写出下列三个图形中所标各角的和:
(1) (2) (3) 图(1)中 ∠1+∠2+∠3+∠4+∠5+∠6= 度。

图(2)中 ∠A+∠B+∠C+∠D+∠E+∠F= 度。

图(3)中 ∠A+∠B+∠C+∠D+∠E+∠F= 度。

6、如右图,若∠BOF=120°,
则∠A+∠B+∠C+∠D+∠E+∠F= 度。

A B C D E F 1 4 3 2 A B C D E F
F
A
C B
E。

相关文档
最新文档