麻省理工 信号与系统 试卷

合集下载

信号与系统试卷及参考答案

信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。

(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。

(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。

《信号与系统》期末试卷A卷与答案.pptx

《信号与系统》期末试卷A卷与答案.pptx
2、(8 分)
0
y(t)
1 t2 2
Tt
1 T2
1
2 t Tt
2
3T2
2
2
0
t 0 0t T
T t 2T 2T t 3T 3T t
3、(3×4 分=12 分)
j dX ( j / 2)
(1)
tx(2t) 2
d
(1t)x(1t) x(1t) tx(1t)
(2) X ( j)e j j d [X ( j)e j] jX ' ( j)e j d
(3)
t
dx(t) dt
X ( j)
dX ( j) d
第 页 4共 6 页
学海无 涯
4、(5 分)解 :
s2
1 2s 2
s2 2s 2
s2 2s 2
F (s) es 2(s 1) es (s 1)2 1
f (t) (t 1) 2e(t 1) cos(t 1)u(t 1)
学海无涯
《信号与系统》期末试卷 A 卷
班级:
学号:
姓名:
_ 成绩:
一. 选择题(共 10 题,20 分)
j( 2 )n
j( 4 )n
1、 x[n] e 3 e 3 ,该序列是
A.非周期序列 B.周期 N 3
D。
C.周期 N 3/ 8
CDCC
D. 周期 N 24
2、一连续时间系统y(t)= x(sint),该系统是
3
3
(b)若系统因果,则Re{s} 2,h(t) 1 e2tu(t)-1 et u(t) 4分
3
3
(c)若系统非稳定非因果,则Re{s} -1,h(t) 1 e2t u(t) 1 et u(t) 4分

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。

2. 说明傅里叶变换与拉普拉斯变换的区别。

三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。

2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。

四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。

2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。

五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。

参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。

数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。

2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。

三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题 (2分1题,只有一个正确选项,共20题,40分)1、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )3、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )6。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号9. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ10卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f11零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差12号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在13知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统》期末试卷与答案

信号与系统》期末试卷与答案

信号与系统》期末试卷与答案信号与系统》期末试卷A卷班级:__________ 学号:_________ 姓名:_________ 成绩:_________一.选择题(共10题,20分)1、序列x[n] = e^(j(2πn/3)) + e^(j(4πn/3)),该序列的周期是:A。

非周期序列B。

周期 N = 3C。

周期 N = 3/8D。

周期 N = 242、连续时间系统 y(t) = x(sin(t)),该系统是:A。

因果时不变B。

因果时变C。

非因果时不变D。

非因果时变3、连续时间LTI 系统的单位冲激响应h(t) = e^(-4t)u(t-2),该系统是:A。

因果稳定B。

因果不稳定C。

非因果稳定D。

非因果不稳定4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a_k 是:A。

实且偶B。

实且为奇C。

纯虚且偶D。

纯虚且奇5、信号x(t) 的傅立叶变换X(jω) = {1,|ω|2},则x(t) 为:A。

sin(2t)/2tB。

sin(2t)sin(4t)sin(4t)/πtC。

0D。

16、周期信号x(t) = ∑δ(t-5n),其傅立叶变换X(jω) 为:A。

∑δ(ω-5)B。

∑δ(ω-10πk)C。

5D。

10πjω7、实信号 x[n] 的傅立叶变换为X(e^jω),则 x[n] 奇部的傅立叶变换为:A。

jRe{X(e^jω)}B。

Re{X(e^jω)}C。

jIm{X(e^jω)}D。

Im{X(e^jω)}8、信号 x(t) 的最高频率为 500Hz,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为:A。

500B。

1000C。

0.05D。

0.0019、信号 x(t) 的有理拉普拉斯共有两个极点 s = -3 和 s = -5,若 g(t) = e^(xt),其傅立叶变换G(jω) 收敛,则 x(t) 是:A。

左边B。

右边C。

双边D。

不确定10、系统函数 H(s) = (s+1)/s,Re(s)。

《信号与系统》考试试题及参考答案

《信号与系统》考试试题及参考答案

《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_以下系统,哪个可进行无失真传输_B B _w w j w w w d w w w w w www-6)( )1()(H )( )()(H )(3)(H )( )1()1()(H )( 33=-===--=-且;;;D e j C e j B ej A j j jj U答:(B) 2. 下列哪一项是理想低通滤波器的系统函数_下列哪一项是理想低通滤波器的系统函数_C C _îíì<>=îíì><==--=-20 020 )(H )( 20 020 )(H )(3)(H )( )1()1()(H )(3 33w w w w w w w w w w ww ww jjj je j D e j C ej B e j A ;;;U答:(C )3. 对于一个L TI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+ 5f 2(t)对应响应是_t t U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U et__。

__。

4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2­=n f ,则=+)2()1(21ff _10_,用)(n d 表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n fdddd d________________________。

___________________。

5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{0*=_{0,6,15,11,10}0____ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__=__00_;)(¥f =_=_2/52/52/5__。

信号与系统考试试卷(附答案)

信号与系统考试试卷(附答案)

---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………信号与系统考试试卷(附答案)~ 学年 上 学期 信号与系统 课程 时间110分钟64 学时, 4 学分,闭卷,总分100分,占总评成绩70 %一、判断题(本题10分,每小题2分)(对的打√,错的打×)1. For any casual signals, Unilateral LT = Bilateral LT.( )2. If the input-output relationship of a system is ))(sin()(t x t y =, then the system is a causal system. ( )3. If )(s X is the LT of a continuous time signal )(t x , then the FT of the signal is ωωj s s X j X ==|)()(. ( )4. If an absolutely integrable signal )(t x is known to have a pole at 2=s , then )(t x could be right sided. ( )5. If all poles of a continuous LTI system are located on the left S-plane, then the system must be stable. ( )二、填空题(本题20分,每小题2分)1.Let )4000sin()2000cos(1)(t t t x ππ++=, then the lowestsampling frequency of )(t x is ( ) Hz. 2.Compute⎰-=-'55)2cos()1(τπττδd ( ).3.If 2||)21)(1(311)(111>+--=---z z z z z X ,, then =][n x ( ). 4.Given )1()(2+=-t u e t x t , then the unilateral LT of )(t x is ( ).5. If 0]Re[:9)(2>+=s Roc s s s H ,then =)(ωj H ( ).6.The system function of a delay unit is ( );The system function of a integrator is ( ) 7.The ωj axis in S-plane is corresponding to the ( ) in Z-plane. 8.The LT of⎰∞-td x ττ)( is ( );The ZT of ∑∞-nn x )( is ( ).9.The FT of )(5.0)(5.0)(3t u e t u e t x t t --+= is ( ). 10. If the input to an LTI system is,nz n x 0][= and if max 0||||i z z > , then=][n y ( ),here i z are poles of system function H(z). 三、计算题 (本题40分,每小题8分) 1. Let )2()1()(---=t u t u t x and )4()2()(---=t u t u t h . Compute?)(*)()(==t h t x t y and plot )(t y .2. A causal and stable LTI system S has the frequency response ωωωωj j j H 564)(2+-+=.(a) Determine a differential equation relating the input )(t x and output )(t y of S. (b) Determine the impulse response )(t h of S.---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………3. Suppose t t t x ππ400sin 2200sin )(+=, and t t x t g π400sin )()(=. If the product t t x t g π400sin )()(= is passed through an ideal lowpass filter with cutoff frequency π400 and passband gain of 2, determine the signal obtained at the output of the lowpass filter.4 Let impulse train ∑∞-∞=-=n TnT t t )()(δδ, Determine its FS, FT anddraw the spectrum.5.According Fig.1, determine the system function )(z H and the unit impulse response ][n h .Fig.1R=1.5ΩL=0.5x(ty(t )C=1F+- 四、综合题(本题30分,每小题各15分)1. Consider the RLC circuit Fig.2. (1) Determine the zero-state response of this circuitwhen the input voltage is )()(2t u e t x t -=. (2) Determine the zero-input response of voltage for ->0t , given that 1)0(=-y and 1)0(='-y . (3) Determine the output of the circuit when the input voltage is )()(2t u e t x t -= and the initial condition is the same as the one specified in part (2).Fig.22. Consider a causal LTI system whose input ][n x and output ][n y are related through the difference equation ]2[8]1[6][]2[92]1[][-+--=-+--n x n x n x n y n y n y . (a) Determine the system function )(z H and unit response ][n h . (b) Design this system (Draw a z-domain block diagram).评卷---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………信号与系统考试试卷答案~学年 上 学期 信号与系统 课程 时间110分钟64 学时, 4 学分,闭卷,总分100分,占总评成绩70 %一、判断题(本题10分,每小题2分)(对的打√,错的打×) 1. √ 2. × 3. × 4. × 5.√二、填空题(本题20分,每小题2分) 1. ( 4000 ) Hz. 2. ( 0 ).3. (][)2(97][92][n u n u n x n -+=). 4. ( 2]Re[:21)1()(2->+↔+=-s Roc s t u e t x t ). (未写收敛域不扣分)5. ( )]3()3([292-+++-ωδωδπωωj ) (未写冲激项扣1分)6. ( 1-z ); ( 1-s ) (对一个给满分) 7. ( unit circle ) 8. (s s X )( ); (1)(-z zz X ). (对一个给满分) 9.)3)(1(2+++ωωωj j j10. =)(t y ( nz z H 00)( ).三、计算题 (本题40分,每小题8分)1. Let )2()1()(---=t u t u t x and )4()2()(---=t u t u t h . Compute )(*)()(t h t x t y =and plot )(t y .Solution: ∞-==τττd t x h t h t x t y )()()(*)()( 2分3分3.03373403.04)()()()()( +-=++=⋅=z zz z z X z W z W z Y z H 所以)1()3.0(337)()()3.0(337)(340)(---=--=n u n δn u n δn h n n 2. A causal and stable LTI system S has the frequency response ωωωωj j j H 564)(2+-+=. (a)Determine a differential equation relating the input )(t x and output )(t y of S. (b) Determine the impulse response )(t h of S.Solution: )(4)()(6)(5)(t x t x t y t y t y +'=+'+'' 4分)(]2[)(32t u e e t h t t ---= 4分3. Supposet t t x ππ400sin 2200sin )(+= , and t t x t g π400sin )()(= . If the productt t x t g π400sin )()(= is passed through an ideal lowpass filter with cutoff frequency π400 and passband gain of 2, determine the signal obtained at the output of the lowpass filter.Solution: )200()200([200sin πωδπωδππ--+↔j t , 2分and )]400()400([2400sin 2πωδπωδππ--+↔j t 2分 Then )(*)(21)(ωωπj Y j X t g ↔2分 t t y π200sin )(=⇒ 2分4. Let impulse train ∑∞-∞=-=n T nT t t )()(δδ, Determine its FS, FT and draw the spectrum.Solution :(1) ⎰-Ω=⋅=2/2/1)(1T T tjn T n T dt e t T a δ , ∑∑∞-∞=∞-∞=ΩΩ==⇒n n t jn t jn T e T e Tt 11)(δ 4分(2) ∑∞-∞=Ω-=n nT n a X )(2)(ωδπω , ∑∞-∞=ΩΩ=Ω-Ω=⇒n Tn X)()()(ωδωδω 4分5.According Fig.1, determine the system function )(z H and the unit impulse response ][n h .Solution:4分4分R=2Ω L=1Hx(t y(t )C=1F+- +----○---○---学 院专业班 学 号 姓 名………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 …………四、综合题(本题30分,每小题15分)1. Consider the RLC circuit Fig.2. (1) Determine the zero-stateresponse of this voltage when the input current is )()(t u t x =.(2) Determine the zero-input response of voltage for ->0t , given that 1)0(=-y and 1)0(='-y . (3) Determine the output of the circuit when the input voltage is)()(t u t x = and the initial condition is the same as the one specified in part (2).Solution :1) 232)(2++=s s s H , 21)(+↔s t x ,22)2(212)(2+-++-++=s s s s Y zs )(2)(2)(2)(22t u e t u te t u e t y t t t zs -----=⇒ 6分2) )(2)(3)(221323422t u e t u e t y s s s s s Y t t zi zi ---=↔+-+=+++= 5分3) )(4)(2)(5)()()(22t u e t u te t u e t y t y t y tt t zi zs -----=+= 4分(答案错误扣2分)2. Consider a causal LTI system whose input ][n x and output ][n y are related through the differenceequation]2[8]1[6][]2[91]1[32][-+--=-+--n x n x n x n y n y n y .(a) Determine the system function )(z H and unit response ][n h . (b) Design this system (Draw a z-domain block diagram).Solution:(a) 2121921861)(----+-+-=z z z z z H 8分]1[)32(20]1[)31(55[][3/21203/11551)(1111-+--=↔-+--=----n u n u n n h z z z H n n δ4分(b) 3种方法实现的框图均对。

MIT信号与系统网络课程练习题答案

MIT信号与系统网络课程练习题答案

1 x(−t) 2
1 t
−4 −2
-1
2
4
1
xe (t)
t
−4 −2
-1
2
4
8
xo (t)
1 t
−4 −2
-1
2
4
The value of the even part (and the odd part for that matter) at t = 0 is ambiguous as it depends on how the plot for x(t) is defined at t = 0. The plots in this solution assume that the value of x(t) at t = 0 is halfway between 0 and 2, i.e. 1. Using a different definition you may get an even part that is discontinuous at t = 0. This is also correct provided it is consistent with your assumption of what the value of x(t) is at the discontinuity. For instance, if you assume that x(0) = 2, then the plot of the even part will have a “spike” at t = 0 of height 2.
� � n=0
� � n�n = � 1 + � + �2 + · · · + � + 2�2 + 3�3 + · · ·

信号与系统试题及答案

信号与系统试题及答案

信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。

在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。

全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。

(完整版)《信号与系统》期末测验试题及答案(13P)

(完整版)《信号与系统》期末测验试题及答案(13P)

《信号与系统》测验一、单项选择题 ................................................. 1 二、简答题 ..................................................... 4 三、计算题 .. (8)一、单项选择题1.设系统的初始状态为()0t x ,输入为()t f ,完全响应为()t y ,以下系统为线性系统的是 D 。

(A) ()()()[]t f t x t y lg 02•= (B) ()()()t f t x t y 20+=(C) ()()()ττd f t x t y tt ⎰+=00 (D) ()()()()ττd f dtt df t x e t y tt t ⎰++=-00 2.一个矩形脉冲信号,当脉冲幅度提高一倍,脉冲宽度扩大一倍,则其频带宽度较原来频带宽度 A 。

(A )缩小一倍 (B ) 扩大一倍 (C ) 不变 (D )不能确定 3. 某系统的系统函数为)2)(5.0()(--=z z zz H ,若该系统是因果系统,则其收敛区为B 。

(A )|z|<0.5 (B )|z|>2 (C )0.5<|z|<2 (D )以上答案都不对 4. 下面关于离散信号的描述正确的是 B 。

(A) 有限个点上有非零值,其他点为零值的信号。

(B) 仅在离散时刻上有定义的信号。

(C) 在时间t 为整数的点上有非零值的信号。

(D) 信号的取值为规定的若干离散值的信号。

5.下列信号中为周期信号的是 D 。

t t t f 5sin 3sin )(1+= t t t f πcos 2cos )(2+=k k k f 2sin 6sin )(3ππ+= )(21)(4k k f kε⎪⎭⎫⎝⎛=()A )(1t f 和)(2t f ())(),(21t f t f c 和)(3k f())(2t f B 和)(3k f ())(1t f D 和)(3k f6. 连续周期信号的频谱具有 D 。

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

《信号和系统》试题(卷)与答案解析

《信号和系统》试题(卷)与答案解析

i go2012年度教学质量综合评估测验卷《信号与系统》试题注:1、开课学院:信息工程学院学院。

命题组:电子信息教研组2、考试时间:120分钟,所有答案均写在答题纸上。

3、适用班级:信息工程学院通信工程专业及电子类专业。

4、在答题前,请在所发两张答题纸上认真填写所要求填写的个人信息。

卷面题型及分值:总分一二三四五六七八九十100202060一、选择题(每小题2分,共10小题。

每一小题仅有一个选项是正确的。

共计20分)1、下列说法不正确的是( )。

A 、一般周期信号为功率信号。

B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号2、下列关于冲激函数性质的表达式不正确的是()。

A 、B 、)()0()()(t f t t f δδ=()t aat δδ1)(=C 、D 、)(d )(t tεττδ=⎰∞-)()-(t t δδ=3、,属于其极点的是()。

)2)(1()2(2)(-++=s s s s s H A 、1 B 、2 C 、0 D 、-24、If f 1(t ) ←→F 1(jω), f 2(t ) ←→F 2(jω) Then[ ]A 、[a f 1(t ) + b f 2(t ) ] ←→ [a F 1(jω) *b F 2(jω) ]B 、[a f 1(t ) + b f 2(t ) ] ←→ [a F 1(jω) - b F 2(jω) ]C 、[a f 1(t ) + b f 2(t ) ] ←→ [a F 1(jω) + b F 2(jω) ]D 、[a f 1(t ) + b f 2(t ) ] ←→ [a F 1(jω) /b F 2(jω) ]5、下列说法不正确的是()。

A 、H(z)在单位圆内的极点所对应的响应序列为衰减的。

即当k→∞时,响应均趋于0。

B 、H(z)在单位圆上的一阶极点所对应的响应函数为稳态响应。

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、卷积f1(k+5)*f2(k—3) 等于。

(A)f1(k)*f2(k) (B)f1(k)*f2(k-8)(C)f1(k)*f2(k+8)(D)f1(k+3)*f2(k—3)2、积分等于。

(A)1。

25(B)2.5(C)3(D)53、序列f(k)=—u(-k)的z变换等于。

(A)(B)-(C)(D)4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于.(A)(B)(C)(D)5、已知一个线性时不变系统的阶跃相应g(t)=2e—2t u(t)+,当输入f(t)=3e—t u(t)时,系统的零状态响应y f(t)等于(A)(—9e—t+12e—2t)u(t) (B)(3-9e-t+12e-2t)u(t)(C)+(—6e—t+8e-2t)u(t) (D)3 +(—9e-t+12e-2t)u(t)6、连续周期信号的频谱具有(A)连续性、周期性(B)连续性、收敛性(C)离散性、周期性(D)离散性、收敛性7、周期序列2的周期N等于(A)1(B)2(C)3(D)48、序列和等于(A)1 (B) ∞(C) (D)9、单边拉普拉斯变换的愿函数等于10、信号的单边拉氏变换等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0。

5)k+1u(k+1)]*=________________________2、单边z变换F(z)=的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=,则函数y(t)=3e-2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j)=2u(1-)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换的原函数f(t)=__________________________6、已知某离散系统的差分方程为,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果,三、(8分),求(1) (2)六、(10分)某LTI系统的系统函数,一、选择题(共10题,每题3分,共30分,1、D2、A3、C4、B5、D6、D7、D8、二、填空题(共9小题,每空3分,共30分)1、2、3、4、5、6、7、8、9、,22k!/S k+1四、(10分)解:1)2)六、(10分)解:由得微分方程为将代入上式得二、写出下列系统框图的系统方程,并求其冲激响应。

MIT信号与系统网络课程练习题答案

MIT信号与系统网络课程练习题答案

1 x(−t) 2
1 t
−4 −2
-1
2
4
1
xe (t)
t
−4 −2
-1
2
4
8
xo (t)
1 t
−4 −2
-1
2
4
The value of the even part (and the odd part for that matter) at t = 0 is ambiguous as it depends on how the plot for x(t) is defined at t = 0. The plots in this solution assume that the value of x(t) at t = 0 is halfway between 0 and 2, i.e. 1. Using a different definition you may get an even part that is discontinuous at t = 0. This is also correct provided it is consistent with your assumption of what the value of x(t) is at the discontinuity. For instance, if you assume that x(0) = 2, then the plot of the even part will have a “spike” at t = 0 of height 2.
t x(1 − 3 )
2 1 9 t
−6 −3
3
6
−1
t Figure 2.a.3: x(1 − 3 )

(完整版)信号与系统试题库-整理

(完整版)信号与系统试题库-整理

信号与系统试题库一、选择题共50题1.下列信号的分类方法不正确的是( A ):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是( D ):A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B、两个周期信号x(t),y(t)的周期分别为2和2,则其和信号x(t)+y(t)是周期信号。

C、两个周期信号x(t),y(t)的周期分别为2和 ,其和信号x(t)+y(t)是周期信号。

D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号. 3。

下列说法不正确的是( D ).A、一般周期信号为功率信号。

B、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C、ε(t)是功率信号;D、e t为能量信号;4.将信号f(t)变换为( A)称为对信号f(t)的平移或移位。

A、f(t–t0)B、f(k–k0)C、f(at)D、f (—t)5.将信号f(t)变换为(A)称为对信号f(t)的尺度变换。

A 、f (at )B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B ).A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞-D 、)()-(t t δδ=7。

下列关于冲激函数性质的表达式不正确的是(D).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t t εττδ=⎰∞-D 、⎰∞∞-=')(d )(t t t δδ8。

下列关于冲激函数性质的表达式不正确的是( B ).A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δC 、)(d )(t t εττδ=⎰∞-D 、)0(d )()(f t t t f =⎰+∞∞-δ9。

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案

信号与系统》期末试卷 A 卷6、一周期信号x(t)(t n5n) ,其傅立叶变换 X(j) 为 A 2( 2k 5(2kA.) B.) 5k52k 51kC. 10(10 k)D.()k10 k107、一实信号 x[n]的傅立叶变换为 X(e j ),A. jRe{X(e j )}B. Re{X(e j )}C. jIm{ X(e j )}D.班级: 学号:姓名:成绩:1、 选择题(共 2j(3)nx[n] e 310题, 20 分)4j(3 )ne 3 ,该序列是2、 3、 4、 5、 A.非周期序列一连续时间系统 A. 因果时不变连续时间 A. 因果稳定若周期信号 A.实且偶LTI B. 周期 N 3C.周期 N 3/8y(t)= x(sint) ,该系统是B.因果时变C.非因果时不变D. 周期 N 24D. 非因果时变系统的单位冲激响应 4th(t) e 4tu(t 2) ,该系统是 AB.因果不稳定C.非因果稳定D. 非因果不稳定x[n] 是实信号和奇信号,则其傅立叶级数系数 B.实且为奇C.纯虚且偶a k 是DD. 纯虚且奇一信号 x(t)的傅立叶变换 X( j1,| | 0,| |222,则 x(t)为 sin2tA.2tB.sin2tsin4t C.4tsin4t D.t则 x[n] 奇 部 的 傅 立 叶 变 换 为Im{ X(e j )}8、一信号x(t) 的最高频率为500Hz,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。

A. 500B. 1000C. 0.05D. 0.0019、一信号x(t) 的有理拉普拉斯共有两个极点s=-3 和s=-5,若g(t) e4t x(t) ,其傅立叶变换G( j ) 收敛,则x(t)是 C 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数H(s)se,Re{ s} 1 ,该系统是 C 。

s1A. 因果稳定B. 因果不稳定C. 非因果稳定D. 非因果不稳定二.简答题(共 6 题,40 分)1、 (10 分)下列系统是否是( 1)无记忆;(2)时不变;(3)线性;(4)因果;(5) 稳定,并说明理由。

大学考试试卷《信号与系统》及参考答案

大学考试试卷《信号与系统》及参考答案

信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。

2. 连续信号,该信号的拉普拉斯变换收敛域为()。

A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。

7. 下列论断正确的为()。

A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。

8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。

B. 若起始状态为零,则零状态响应为零。

C. 若系统的零状态响应为零,则强迫响应也为零。

D. 若激励信号为零,零输入响应就是自由响应。

2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。

答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。

具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。

信号与系统期末考试试卷(有详细答案)

信号与系统期末考试试卷(有详细答案)

《 信号与系统 》考试试卷(时间120分钟)院/系 专业 姓名 学号一、填空题(每小题2分,共20分)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?)2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常 数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s(H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 � −jk�0 (0) 2e − e−jk�0 (1) = 3
2 1
−jk�0 , for allk. = − e 3 3
ak
Now we are ready to find bk , the Fourier series representation of the output y (t): bk = ak H (jk�0 ) (O & W, Section 3.8, p.226, and specifically eq.(3.124) ) � � �� 8
5
and complex exponentials with a fundamental frequency of �0 = � . 2 y (t) = 1 − cos = 1− � 3ω t 2 � =1− ej
3� t 2
1 −j −2 e 2
3� t 2
1 j (3) � t 1 j (−3) � t 2 e 2 − e 2 2 � 1 1 = 1 − ej (3)�0 t − ej (−3)�0 t = bk ejk�0 t 2 2 k � ⎧1, k=0 � 1 � bk − 2 , k = ±3 ⎧ � 0, otherwise � bk = ak H (jk�0 ) � H (jk�0 ) =
2
Problem 1 Consider the LTI system with impulse response given in O&W 3.34. Find the Fourier series representation of the output y (t) for the following input.
M �
1 − (� ) = 2 1 − �2 Plugging in (⇒):
−1

1 − (�2 ) −1 2 1 − �2 2 − 2�2N +2 1 − �2 2 − 2�2N +2
1 − �2 2 − 2�2N +2
2 − 2�2N +2 �2N +2 (2N + 2) log(�)
N +1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.003: Signals and Systems—Fall 2003 Problem Set 4 Solution
Basically, H (j� ) is an ideal Low Pass Filter (LPF) and we need to find how wide it needs to be, in order to pass at least 90% of its input’s average energy per period (i.e. average power). First, let’s rewrite the condition above relating the average powers of the input and out­ put, with Fourier series coefficients ak and bk , respectively: Px =
→ → → → → ← ←
N +1 → N →
� 2 R −1 1 − �2 � � 2R −R+1 1 − �2
2R + (1 − R)(1 − �2 ) 1 − �2
R + 1 − (1 − R)�2 (� 1 − �2 > 0) 1.9 − 0.1�2 (plugging in R=0.9) 2 0.05 + 0.05� (simplifying a bit) 2 log(0.05 + 0.05� )
x(t)
2
···
−5
−4 −3
−2
1
−1
2 3
4
5 6
··· t
−1
From O & W 3.34, the impulse response of the LTI system is: h(t) = e−4|t| . From the figure above, we can see that x(t) has a period T = 3 � �0 =
x(t) 1 ··· −4 −2 0 2 4 ··· t
� sin(kω/2) −jk�/2 ⎧ �2 e , j (kω )2 ak = ⎧ �1, 2
k= ≤ 0 k = 0.
Consider the LTI system with frequency response H (j� ) depicted below:
� �
�|k| ejk(�/4)t , where � is a real number between 0 and 1
k =−�
How large must W be in order for the output of the system to have at least 90% of the average energy per period of x(t)?
And finally, we plug the expressions of ak and bk in the required condition and simplify.
By matching the the expression of x(t) with the synthesis equation, we can conclude that
�0 = � and ak = �|k|
4 Px = =
� �
|ak | =
2
k =−�
2 − 1 (� 0 < |�| < 1) 1 − �2
N � | 2
� � k =0
�2k − 1 (� � is real)
Py = =
k =−� N �
� �
|bk | =
2� . 3
First, we calculate the frequency response: � � � � −j�t e−4|t| e−j�t dt h(t)e dt = H (j� ) = −� −� � 0 � � −4(−t) −j�t = e e dt + e−4(t) e−j�t dt −� 0 � 0 � � = e(4−j�)t dt + e(−4−j�t)t dt −� 0 �0 � � �� 1 1 (4−j� )t � (−4−j� )t � + = e e � � 4 − j� −4 − j� −� 0 1 1 = (1 − 0) + (0 − 1) (remember that e−�+ja = 0 for any real a) 4 − j� −4 − j�
2
|ak |2
, where N is the largest integer, such that N ← W/�0
k =−N
|�|k||2 = 2
2 N +1
k =−N
N � k =0
�2k − 1 (� � is real) � 1 − � M +1 � , for any complex � ≤= 0 �n = 1−� n=0
1 1 4 + j� + 4 − j�
= + = 4 − j� 4 + j� 16 + � 2
8
H (j� ) = . 16 + � 2
3
Next, we find the Fourier series coefficients of x(t), ak : � � 1 1 2 −jk�0 t = x(t) e dt = [2α (t) − α (t − 1)] e−jk�0 t dt T T 3 −1 ⎩
� �
|ak |2
,
Py =
k =−�
k =−�
The required condition, then,would be: Py → RPx �
� �
� �
|bk |2
|bk | → R
2
k =−�
k =−�
� �
|ak |2
, where R=0.9 (⇒)
Then, let’s calculate the Fourier series coefficients of the output, bk : ⎪ ⎪ ak , |k�0 | ← W ak , |k | ← W/�0 � bk = ak H (jk�0 ) � bk = = 0, |k�0 | > W 0, |k | > W/�0 1
2 1 −jk�0 − e = 3 3 16 + (k�0 )2 � � 2� 8 2 − e−jk 3
= � ⎩ , for all k. 3 16 + k 2� 2 3
4
Problem 2 The periodic triangular wave shown below has Fourier series coefficients a k .
H (j� )
A2 x(t) H (j� )
y (t)
A1 A3
−�3 −�2 −�1
�1
�2
�3

Determine values of A1 , A2 , A3 , �1 , �2 , and �3 of the LTI filter H (j� ) such that � � 3ω y (t) = 1 − cos t . 2 At the beginning, it is worth noting that the output y (t) contains only a DC component and � . H (j� ) is a linear system so the output will only a single sinusoid with a frequency of 32 have frequency components that exit in the input. Knowing that the input x(t) has a DC component and a fundamental frequency of �0 = � , let’s dissect y (t) into a DC component 2
相关文档
最新文档