6-1流体的压强和理想流体的连续性方程

合集下载

流体力学 连续性方程

流体力学     连续性方程

第3章流体动力学基础教学要点一、教学目的和任务1、本章目的1)使学生掌握研究流体运动的方法2)了解流体流动的基本概念3)通过分析得到理想流体运动的基本规律4)为后续流动阻力计算、管路计算打下牢固的基础2、本章任务1)了解描述流体运动的两种方法;2)理解描述流体流动的一些基本概念,如恒定流与非恒定流、流线与迹线、流管、流束与总流、过水断面、流量及断面平均流速等;3)掌握连续性方程、伯努利方程、动量方程,并能熟练应用于求解工程实际问题动量方程的应用二、重点、难点1、重点:流体流动中的几个基本概念,连续性方程,伯努利方程及其应用,动量方程及其应用。

2、难点:连续性方程、伯努利方程以及与动量方程的联立应用。

三、教学方法本章讲述流体动力学基本理论及工程应用,概念多,容易混淆,而且与实际联系密切。

所以,必须讲清楚每一概念及各概念之间的联系和区别,注意讲情分析问题和解决问题的方法,选择合适的例题和作业题。

流体动力学:是研究流体运动规律及流体运动与力的关系的力学。

研究方法:实际流体→理想流体→实验修正→实际流体流体动力学:研究流体运动规律及流体与力的关系的力学。

3.1 流体运动要素及研究流体运动的方法一、流体运动要素表征流体运动状态的物理量,一般包括v、a、p、ρ、γ和F等。

研究流体的运动规律,就是要确定这些运动要素。

(1)每一运动要素都随空间与时间在变化;(2)各要素之间存在着本质联系。

流场:将充满运动的连续流体的空间。

在流场中,每个流体质点均有确定的运动要素。

二、研究流体运动的两种方法研究流体运动的两种方法:拉格朗日法和欧拉法。

(1,质点的运动要素是初始点坐标和时间的函数。

用于研究流体的波动和震荡等(2)欧拉法(“站岗”的方法)欧拉法是以流场中每一空间位置作为研究对象,而不是跟随个别质点。

其要点:分析流动空间某固定位置处,流体运动要素随时间的变化规律;分析流体由某一空间位置运动到另一空间位置时,运动要素随位置的变化规律。

《大学物理教程》郭振平主编第十一章流体运动基础知识点及答案

《大学物理教程》郭振平主编第十一章流体运动基础知识点及答案

第十一章 流体运动基础一、基本知识点流体的可压缩性:流体的体积会随着压强的不同而改变的性质。

流体的黏性:内摩擦力作用导致相邻流体层速度不同的性质。

理想流体:绝对不可压缩且完全没有黏性的流体。

稳定流动:空间各点的流速不随时间变化的流体流动。

流线:在流体空间设想的一系列曲线,其上任意一点的切线方向都与流体通过该点时速度方向一致。

任何两条流线不能相交。

流管:在稳定流动的流体中的一个由流线围成的管状微元。

稳定流动的连续性方程:单位时间内通过任一截面的流体质量都相等,即S ρυ=恒量也称为质量流量守恒定律。

理想流体稳定流动的连续性方程:单位时间内通过任一截面的流体体积都相等,即S υ=恒量也称为体积流量守恒定律。

理想流体的伯努利方程:理想流体作稳定流动时,单位体积的势能、动能及该点压强之和是一恒量,即212P gh ρρυ++=恒量牛顿黏滞定律:黏性力f 的大小与两速度不同的流体层的接触面积S 及接触处的速度梯度d dxυ成正比,即 d f Sdxυη= 式中比例系数η称为流体的黏滞系数或黏度。

η值的大小取决于流体本身的性质,并和温度有关,单位是2N s m -⋅⋅或Pa s ⋅。

表11-1 几种流体的黏度流体 温度()C ︒η()Pa s ⋅流体 温度()C ︒η()Pa s ⋅水0 20 37 100 31.7910-⨯ 31.00510-⨯ 30.69110-⨯ 30.28410-⨯ 空气0 20 100617.110-⨯ 618.110-⨯ 621.810-⨯蓖麻油7.5 2050 60112.2510-⨯ 19.8610-⨯ 11.2210-⨯ 10.8010-⨯ 氢气-125168.310-⨯ 61310-⨯血液 373(2.5~3.5)10-⨯二氧 化碳0 30061410-⨯ 62710-⨯雷诺数: 判断黏性流体的流动状态的一个无量纲的数e rR ρυη=式中,υ为流速,ρ为流体密度,η为黏度,r 为流管半径。

流体力学理论基础

流体力学理论基础

3.2.2 伯努利方程
3.3 流动阻力基本概念
流体旳平衡—流体静力学基础
3.1.1 平衡状态下流体中旳应力特征
1、流体静压力方向必然重叠于受力面旳内法向方向
n
A
c
b
B
P
a
2、平衡流体中任意点旳静压强只能由该点旳坐标位置
决定,而与该压强作用方向无关。
z
c
pn
dz py
px dy O dx b
a
pz
x
PyD g sin J x
PyD ghc AyD gyc sin AyD
gyc sin AyD g sin J x
根据面积二次力矩平行移轴定理
J x Jc yc2 A
yD
yC
JC yC A
常见图形旳几何特征量
常见截面旳惯性矩
y
z h
b
Jc
bh3 12
y
dz
Jc
d4
64
0
0'
p0=p=pa+ρgh0
h0=(p-pa) /ρg =(119.6-100)×103/(1000×9.81)=2.0m
3.1.5 均质流体作用在平面上旳液体总压力
p0
O
C点为平面壁旳形心,
a
hD
hc h dp P
y
yc
D点为总压力P旳作用点 取微元面积dA,设形

yD
dA
心位于液面下列h深处
T
A hE
hc
HP
D
B 60
解:闸门形心
hc 1.5m
总压力
P hc A
98001.5 ( 3 1) sin 60

流体的连续性方程

流体的连续性方程

流体的连续性方程流体力学是关于流体力学与流动的规律和性质的科学。

在流体的运动过程中,流体的密度和速度都会发生变化。

为了描述这种变化,我们引入了连续性方程,它是流体力学中的重要基本方程之一。

连续性方程是描述流体质量守恒的方程。

它基于以下几个假设:假设流体是连续均匀的,假设流体是非可压缩的,假设流体在稳态流动过程中质量不会减少或增加。

基于这些假设,我们可以得到流体的连续性方程。

在流体力学中,流体的连续性方程可以表示为以下形式:∇·ρv+A=0其中,ρ是流体的密度,v是流体的速度矢量,∇·是散度运算符,A 是质量流量。

连续性方程的物理意义是流体的质量在单位时间内的净流入或流出量等于单位时间内质量积累的速率。

在实际应用中,根据具体问题的不同,连续性方程可以具体表达为不同的形式。

下面将介绍几个常见的连续性方程的应用。

1. 理想流体的连续性方程理想流体是指当流体受到外力作用时不发生黏性耗散的流体。

在理想流体中,连续性方程可以写作以下形式:∇·v=0这个方程表示了在理想流体中,速度矢量场的散度为零,即流体流入和流出的速率相等,流体的质量不会减少或增加。

2. 不可压缩流体的连续性方程不可压缩流体是指密度在流动过程中可以忽略变化的流体。

在不可压缩流体中,连续性方程可以写作以下形式:∇·v=0这个方程表示了在不可压缩流体中,速度矢量场的散度为零,即流体流入和流出的速率相等,流体的质量不会减少或增加。

不过需要注意的是,不可压缩流体的连续性方程只能描述速度场的分布,而不能描述流体密度的变化。

3. 积分形式的连续性方程连续性方程还可以表示为积分形式。

在空间中的一个任意闭合曲面S上,流体质量的净流出量等于质量积累的速率,即可以表示为以下积分形式:∮S ρv·n dS = -d/dt ∭V ρ dV其中,S是曲面的边界,n是法向量,V是曲面所包围的体积,∮和∭分别表示曲面和体积的积分。

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。

流体力学中三大基本方程

流体力学中三大基本方程

( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
t
t
(微团密度在单位时间内的变率及微团体积的乘积)
⑶根据连续性条件:
t x ( x ) y ( y) z ( z) 0
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
dy
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程:
得x方向上的运动微分方程:
d d txd x d y d z p xd x d y d z fx d x d y d z
单位体积流体的运动微分方程:
dx
dt
同理可得在单位时间内沿y,z方向流出 及 流入控制体的质
量差为
vy
d
x
d
yd和z
vz
dxdydz
y
z
故单位时间内流出及流入微元体流体质量总变化为:
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
pxfx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
同理可得y,z方向上的:

初二物理下学期流体压强及流速

初二物理下学期流体压强及流速

流体压强的特性
STEP 01
STEP 02
STEP 03
在静止流体中,压强与重 力平衡,即流体内部和外 部压强相等。
流体压强随流体的速度增 加而增加,随流体的速度 减小而减小。
流体压强具有方向性,总 是垂直于流体的流动方向。
流体压强的应用
流体静力学
利用流体压强原理研究静止流体 的平衡和受力情况,如船体的浮 沉原理。
定义
流体静压强是指流体静止时单位 面积上所受的垂直压力。
计算公式
流体静压强的大小与流体的密度和 重力加速度有关,计算公式为 P = ρgh,其中 P 是流体静压强,ρ 是 流体的密度,g 是重力加速度,h 是流体的高度。
应用场景
流体静压强在日常生活和工程中有 着广泛的应用,如水塔的高度计算、 管道压力损失等。
流体静压力实验则是在静止流体 中测量压力,以验证流体静压力 与流速无关的原理。
在管流实验中,可以通过测量不 同流速下管道内的压强值,观察 压强随流速的变化规律。
风洞实验则是在一个封闭的管道 中模拟气流流动,通过测量风速 和风压来验证伯努利方程。
流体流速与压强的实际应用
飞机飞行
飞机机翼的设计利用了伯努利方 程的原理,通过机翼的特殊形状 使得机翼上方的空气流速增加, 下方的空气流速减缓,产生向上
THANKS
感谢您的观看
风向标
风向标用于监测风向,确 保风车叶片迎风。
旋转动力驱动发电机,产 生电能。
汽车尾翼的设计
01
02
03
尾翼功能
汽车尾翼主要用于增加车 辆的下压力,提高稳定性。
空气动力学
尾翼的形状和角度经过精 心设计,以适应汽车行驶 时的气流。
材质和结构

流体流速压强公式

流体流速压强公式

流体流速压强公式
在流体力学中,流速和压强之间的关系可以由伯努利方程来描述。

根据伯努利方程,对于稳态、不可压缩、理想流体(忽略粘性和外力),在流体沿着流线的运动过程中,流速和压强之间存在以下关系:
P + 1/2ρv^2 + ρgh = 常数
其中,P是流体的压强,ρ是流体的密度,v是流速,g是重力加速度,h是流体所处位置的高度。

这个方程表示了流体的总能量守恒,称为伯努利定理。

它说明了流体的压强、速度和位置之间的关系。

当流速增大时,压强会减小;当流速减小时,压强会增大。

这是因为流体在流动过程中,动能和势能的转换导致了压强的变化。

需要注意的是,伯努利方程适用于理想流体的简化情况,并且对于复杂的流动情况(如湍流、粘性流体等),可能需要考虑其他因素和修正。

此外,伯努利方程也要求流体的流动是稳态的,没有外力作用,并且流体是不可压缩的。

流体力学第四章

流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。

流体力学第6章流体运动微分方程

流体力学第6章流体运动微分方程
代入式(5)可得
b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。

流体力学中的流体动力学方程

流体力学中的流体动力学方程

流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。

流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。

本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。

一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。

它表明流体在运动过程中,质量的流入等于流出。

连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。

二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。

根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。

三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。

根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。

四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。

流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。

综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。

这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。

通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。

在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。

数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。

流体力学公式总结

流体力学公式总结

工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。

1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。

1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αp VV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。

:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。

即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。

第六章 流体力学课后答案

第六章 流体力学课后答案

第六章 液体力学6-1 有一个长方体形的水库,长200 m ,宽150 m ,水深10 m ,求水对水库底面和侧面的压力。

解:水对水库底面的压力为:()()391 1.0109.810150200 2.910F ghS N ρ==⨯⨯⨯⨯⨯=⨯侧面的压力应如下求得:在侧面上建立如图所示的坐标系,在y 处取侧面窄条dy ,此侧面窄条所受的压力为:dF glydy ρ=整个侧面所受的压力可以表示为:2012hF glydy glh ρρ==⎰对于10h m =、200l m =的侧面:()2721'9.8102F glh N ρ==⨯ 对于10h m =、150l m =的侧面:()2721''7.4102F glh N ρ==⨯侧面的总压力为:()82222'2'' 3.410F F F N =+=⨯6-2 有三个底面积相同但形状各异的容器,分别盛上高度相同的水,如题图所示,根据静止流体压强的概念,三个容器底面的压强是相同的,所以每个容器底面所受的水的压力也是相同的,水对底面压力是由水的重量引起的,但是三个容器中所盛的水的重量显然不等,请对这个似乎矛盾的结果作出解释。

答:三个容器底面的压强是相同的,但流体对容器内壁的压强并不是容器对其支撑面的压强,容器对其支撑面的压力等于水与容器本身重量之和。

因此,容器对其支撑面的压强是不同的。

如蓝球内壁的压强要比蓝球对支撑面的压强要大得多。

6-3 在35.010s ⨯的时间内通过管子截面的二氧化碳气体(看作为理想流体)的质量为0.51 kg 。

已知该气体的密度为37.5kg m -⋅ ,管子的直径为2.0 cm ,求二氧化碳气体在管子里的平均流速。

解: 单位时间内流过管子截面的二氧化碳气体的体积,即流量为:53130.511.36107.5 5.010V m Q m s t ρ--===⨯⋅⨯⨯平均流速为:()521221.3610 4.3103.14 1.010V Q v m s S ----⨯===⨯⋅⨯⨯ 6-4 当水从水笼头缓慢流出而自由下落时,水流随位置的下降而变细,何故?如果水笼头管口的内直径为d ,水流出的速率为0v ,求在水笼头出口以下h 处水流的直径。

流体力学--理想流体的流动

流体力学--理想流体的流动

2p1 p2
S12 S22
p1 p2 gH
流速:2 S1
2gH S12 S22
,
1

S2
2gH S12 S22
体积流量:QV S22 S1S2
2gH S12 S22
只要读出两个 竖管的高度差, 就可以测量流 速和流量
•二. 流速的测定:
应用实例3. 皮托管:常用的流速测定装置;
补充例题, 水管里的水在压强为p=4×105 Pa的作用下流入房间, 水管的内直径为2.0 cm,管内水的流速为4 m/s。引入 到5 m高处二楼浴室的水管,内直径为1.0 cm,
试求浴室水管内水的流速和压强? (已知水的密度为=103 kg/m3)。
2 16m / s
p2 2.25105 (Pa)
伯努利方程:理想流体在重力场中作稳定流动时,能量守
衡定律在流动液体中的表现形式。
一. 伯努利方程的推导:
稳定流动的理想流体中,忽略流体的粘滞性,任意细流管中的 液体满足能量守恒和功能原理!
设:流体密度,细流管中分析一段流体a1 a2 : a1处:S1,1,h1, p1 a2处:S2,2,h2, p2 经过微小时间t后,流体a1 a2 移到了b1 b2, 从 整体效果看,相当于将流体 a1 b1 移到了a2 b2, 设a1 b1段流体的质量为m,则:
粘滞力:
粘滞流体在流动中各层的流速不同,相邻两流层之间有相 对运动,互施摩擦力,快的一层给慢的一层以向前的拉力; 慢的一层则给快的一层以向后的阻力,这种摩擦力称为内 摩擦,又称粘滞力;
粘滞力和哪些因素有关?
流体内相邻两层内摩擦力的大小:
与两流层的接触面积大小有关; 还与两流层间速度变化的快慢有关;

流体的流速与压强

流体的流速与压强

流体的性质
总结词
流体的性质包括粘性、压缩性和热传导性等。
详细描述
粘性是指流体抵抗剪切力的性质,即流体在流动时内部摩擦力的大小。压缩性是 指流体在压力变化下体积变化的性质。热传导性是指流体传递热量的能力。这些 性质对于研究流体的运动和传热规律具有重要意义。
流体的分类
总结词
根据流体的不同性质和用途,可以将流体分为牛顿流体和非牛顿流体、可压缩流体和不 可压缩流体等。
在地球表面,流体度,g为重力加速度,h为垂直 高度。
03
流体流动类型
层流与湍流
层流
流体在流动过程中,各层之间相对滑 动,呈有条不紊的流动状态。层流流 动时,流体内部摩擦力较小,流体层 之间的摩擦力较大。
湍流
流体在流动过程中,各部分之间剧烈 混合,流动呈现杂乱无章的状态。湍 流流动时,流体内部摩擦力较大,流 体层之间的摩擦力较小。
流体阻力的存在会导致流体能量损失,表现为流体压力和速度的变化。 为了减小流体阻力,可以采取改变流体流动状态、优化流道设计、减小
流体密度和粘度等措施。
流体阻力的计算是流体力学中的重要内容,常用的计算方法包括欧拉方 法和斯托克斯方法等。了解和掌握流体阻力的计算方法对于流体机械、 管道输送、航空航天等领域的设计和优化具有重要意义。
有限体积法
将求解域划分为一系列控 制体积,用控制体积上的 平均值近似代替微分方程 的解。
计算流体动力学(CFD)
01
02
03
04
网格生成
根据几何形状和求解需求,生 成计算所需的网格。
离散化
将微分方程转化为离散形式, 以便在计算机上进行数值求解

求解器
采用数值方法求解离散化的方 程组,得到流场变量的近似解

流体力学的连续性方程

流体力学的连续性方程

流体力学的连续性方程流体力学是研究流体在运动过程中的力学性质的学科。

其中,连续性方程是流体力学中的重要基本方程之一,描述了流体质点在运动过程中的连续性特征。

本文将介绍流体力学的连续性方程,并探讨其在流体力学研究中的应用。

一、连续性方程的基本原理连续性方程是基于流体质点的质量守恒定律推导而来的。

它描述了在稳态条件下,流体在运动中的连续性特征。

连续性方程的基本原理可以通过以下推导得到:考虑一个质量元dV,在任意时刻t处于速度场中,流体通过其两个相对面的质量流量之差与时间t的导数成正比,即:∂(ρdV)/∂t = -(∂(ρu)dA)/∂x其中,ρ是流体的密度,dA是质量元dV的表面积,u是流体的速度。

由于流体的质量守恒定律,可以得到∂(ρdV)/∂t = -∂(ρu)dA/∂x将上式中dA展开,得到:∂(ρdV)/∂t = -∂(ρux)dA/∂x - (ρudy)dA/∂y - (ρudz)dA/∂z根据偏导数的定义,上式可以变形为:∂(ρdV)/∂t = -(∂(ρux)dV)/∂x - (∂(ρuy)dV)/∂y - (∂(ρuz)dV)/∂z再次对上式进行变形,得到:∂ρ/∂t + (∂(ρu)/∂x)dV/∂x + (∂(ρv)/∂y)dV/∂y + (∂(ρw)/∂z)dV/∂z = 0由于密度ρ是一个常量,上式可以继续简化为:∂ρ/∂t + u(∂ρ/∂x) + v(∂ρ/∂y) + w(∂ρ/∂z) = 0这就是流体力学中的连续性方程。

二、连续性方程的应用连续性方程在流体力学中有着广泛的应用。

下面我们将介绍其中的几个重要应用。

1. 流体的运动学特性连续性方程可以描述流体质点在运动中的连续性特征。

通过解连续性方程,可以获得流体的速度场分布,进而推导出流体的压力、密度等物理量的变化规律。

2. 流量计算连续性方程可以用于计算流体通过管道、沟渠等通道的流量。

通过将连续性方程应用到通道的不同截面上,可以获得截面处流速与流量之间的关系,从而实现流量的计算与预测。

《流体力学》Ⅰ主要公式及方程式

《流体力学》Ⅰ主要公式及方程式

《流体力学》Ⅰ主要公式及方程式流体力学是研究流动的力学学科,它使用了一系列的公式和方程式来描述和解释流体的运动和性质。

以下是流体力学中的一些主要公式和方程式:1.连续性方程式:连续性方程式描述了质量守恒定律,即在一个封闭的流体系统中,质量的流入量等于流出量。

连续性方程式的公式如下:∇·(ρV)=0其中,∇表示向量的散度操作符,ρ表示流体的密度,V表示流体的速度矢量。

2.动量方程式:动量方程式描述了物体所受到的力和加速度之间的关系。

对于流体力学,动量方程式可以分为欧拉方程和纳维尔-斯托克斯方程两种形式。

欧拉方程描述了无粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+F其中,∂V/∂t表示速度V对时间t的偏导数,·表示向量点乘,p表示压力,F表示外力。

纳维尔-斯托克斯方程描述了粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+μ∇²V+F其中,μ表示流体的动力黏度,∇²表示向量的拉普拉斯算子。

3.质量守恒方程:质量守恒方程描述了流体的质量守恒定律,其公式如下:∂ρ/∂t+∇·(ρV)=0其中,ρ表示流体的密度,V表示流体的速度矢量。

4.能量守恒方程:能量守恒方程描述了流体的能量守恒定律,其公式如下:∂(ρe)/∂t+∇·(ρeV)=∇·(k∇T)+Q其中,e表示流体的单位质量内部能量,T表示流体的温度,k表示热传导系数,Q表示热源。

5.状态方程:状态方程描述了流体的状态,在流体力学中常用的状态方程有理想气体状态方程和液体状态方程。

理想气体状态方程公式如下:p=ρRT其中,p表示压力,ρ表示密度,R表示气体常数,T表示温度。

以上是流体力学中的一些主要公式和方程式。

这些方程式通过数学描述和解析,可以帮助我们理解和预测流体的运动和行为,对于各种工程和科学应用都具有重要的意义。

流体力学知识点总结

流体力学知识点总结

强分布图的形心,该作用线与受压面的交点便是压心 P。
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
梯形形心坐标:
a 上底,b 下底
解: 总压力为压强分布图的体积:
作压强×受压平面面积
合力矩定理:合力对 平行移轴定理
真空:当流体中某点的绝对压强小于大气压时, 则该点为真空,其相对压强必为负值。真
空值与相对压强大小相等,正负号相反(必小于 0)
p pabs pa
相对压强和绝对压强的关系
p pa pabs ( pabs pa ) P
绝对压强、相对压强、真空度之间的关系 ( pabs pa )
压强单位
任P一轴的g力si矩n 等于• 各yc分A力对同g一hc轴A力矩p之c A和
.
.
经典例题 一铅直矩形闸门,已知 h1=1m,h2=2m,宽 b=1.5m,求总压力及其作用点。
解:
hc 1 2 / 2 2 m A 1.5 2 3 m2
P 9.807 2 3 58.84 KN
yc hc 2 m ,
与质量力的合力正交的非水平面。
.
.
3 液体静力学基本方程
z p C
g
p p0 g(H z) p0 gh
P0
P P2 1 Z1 Z2
P—静止液体部某点的压强 h—该点到液面的距离,称淹没深度 Z—该点在坐标平面以上的高度 P0—液体表面压强,对于液面通大气的开口容器,视为
大气 压强并以 Pa 表示 推论
.
.
V
1 dV V dT
1
d dT
单位为“1/K”或“1/℃”
在一定压强下,体积的变化速度与温度成正比。水的压缩系数和热膨胀系数都很小。

6-1流体的压强和理想流体的连续性方程

6-1流体的压强和理想流体的连续性方程
v2
S2
v1
S1
体积流量(流量) 单位时间内流过某一截面的流 体体积。 流过截面S1和S2的流量为 V1 V2 S1v1 S2 v2 t t 10
对于不可压缩流体
S1 v1= S2 v2 或
S v = 恒量
上式称为理想流体的连续性方程。 理想流体作定常流动时, 速率与流管截面积的 乘积为恒量, 或者说速率与流管的截面积成反比。
13
压强 单位面积上所承受 的沿法线方向的压力的大小。

dF pdS dF p dS
dS
n
· A
一致。 d F 为压力,面元 d S 方向与点A的法向 n
压强是流体内点上的性质,为标量,其值与面元 的选取无关。
3
图中,d S1和 d S2 都通过点 A,d S1 的法线为 n1,d S2 的
4
静止流体内的压强差 1. 同一水平面上两点的压强差 2. 高度差为h两点间的压强差
5
习题6-1:有一个长方形的水库,长200 m,宽150 m, 水深10 m,求水对水库底面和侧面的压力。
6
§6-2 理想流体及其连续性方程
7
一、关于理想流体的几个概念 (perfect fluid )(B) 1. 理想流体 实际液体和气体除具有共同的流动性外, 还在不 同程度上具有两种性质:可压缩性和黏性。 理想流体 绝对不可压缩和完全没有黏性的流体。 2. 定常流动 一般情况下,同一时刻流体各处的流速不同,但有 些场合 , 流体质点流经空间任一给定点的速度是确 定的,且不随时间变化,称为定常流动。例如, 沿 着管道或渠道缓慢流动的水流, 在一段不长的时间 内可以认为是定常流动。
8
3. 流线 为了形象地描述流体的 运动 , 在流体中画一系列 曲线 , 每一点的切线方向 与流经该点流体质点的速 度方向相同,称为流线。 定常流动中的流线 ·不随时间变化; ·质点的运动轨迹; ·任何两条流线不相交。 4. 流管 流线围成的管状区域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体,包括液态和气态物体,具有流动性。在流体力学中,压强是重要概念,表示单位面积上所承受的正压力。对于静止流体,其内部各部分之间的作用力必定为正压力,且压强是标量,与面元的选取无关。进一步地,文档引入了理想流体的概念,即绝对础上,推导出了理想流体的连续性方程,该方程表明在细流管中,不可压缩流体流经不同截面的速率与截面积的乘积保持恒定。这一方程是流体力学中的基本原理,适用于所有压缩流体在特定条件下的流动分析。通过连续性方程,可以深入理解流体在管道或其他容器中的流动规律,为相关工程应用提供理论基础。
相关文档
最新文档