2019届北师大版高三数学(理)复习章末检测:第三章 导数及其应用(含答案)

合集下载

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(有答案解析)(1)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(有答案解析)(1)

一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-4.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2D .1(25.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞6.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞7.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .8.已知函数()32114332f x x mx x =-+-在区间[]12,上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤9.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭10.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<11.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<12.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 二、填空题13.已知函数(),e ,x xx a f x x x a⎧≥⎪=⎨⎪-<⎩,若存在实数b ,使函数()()g x f x b =-恰有三个零点,则a 的取值范围是__.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.16.已知函数()f x 是定义在R 上的增函数,()()2f x f x '+>,()01f =,则不等式()ln 2ln 3f x x +>+⎡⎤⎣⎦的解集为______.17.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 18.已知函数()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的单调递增区间为______. 19.若函数()2122f x x x aInx =-+有两个不同的极值点,则实数a 的取值范围是__________.20.已知定义在R 上的连续函数()y f x =对任意实数x 满足(4)()f x f x -=,(()2)0x f x -'>,则下列命题正确的有________.①若(2)(6)0f f <,则函数()y f x =有两个零点; ②函数(2)y f x =+为偶函数; ③(2)(sin12cos12)f f >︒+︒; ④若12x x <且124x x +>,则12()()f x f x <.三、解答题21.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 22.近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量y (单位:千件)与销售价格x (单位:元/件)之间满足如下的关系式:24(6),26,,2ay x x a R a x =+-<<∈-为常数.已知销售价格为4元/件时,每月可售出21千件.(1)求实数a 的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格x 的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)23.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围. 24.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 25.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围. 26.已知32()1,f x x ax a R =++∈. (1)若()f x 在23x =处取极值,求()f x 在点(,1)a -处切线方程; (2)若函数()f x 在区间[]01,最小值为-1,求a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小.【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx-=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.5.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.6.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 7.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.D解析:D 【分析】求函数的导函数,利用导函数与原函数单调性的关系进行判断,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,分离参数m ,即可得到答案. 【详解】由题得2()4f x x mx '=-+,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,即240x mx -+≥,则244x m x x x+≤=+在[]12,上恒成立,又44x x +≥=,当且仅当2x =时,等号成立,所以4m ≤, 故答案选D 【点睛】本题主要考查导数与原函数单调性之间的关系,将含参问题转化为最值成立,是解决本题的关键,属于中档题.9.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.10.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.11.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=,而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.12.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .二、填空题13.【分析】设函数求得求得函数的单调性和极值画出函数的图象结合图象分类讨论即可求解【详解】设函数则令得:当时函数单调递增;当时函数单调递减又故画出函数的图象如图所示:因为存在实数b 使函数恰有三个零点所以解析:1,1e ⎛⎫- ⎪⎝⎭【分析】 设函数()x x h x e =,求得()1xxh x e '-=,求得函数的单调性和极值,画出函数的图象,结合图象分类讨论,即可求解. 【详解】 设函数()x x h x e =,x ∈R ,则()1xxh x e '-=,令()0h x '=得:1x =, 当(),1x ∈-∞时,()0h x '>,函数()h x 单调递增; 当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,又()11h e=,故画出函数()h x 的图象,如图所示:因为存在实数b ,使函数()()g x f x b =-恰有三个零点, 所以存在实数b ,使方程()f x b =有三个实数根,所以存在实数b ,使函数()f x 与y b =的图象有3个交点,因为函数(),,x xx a f x e x x a⎧≥⎪=⎨⎪-<⎩,结合函数()h x 的图象和函数y x =-单调递减,所以1a <,①当01a ≤<时,函数()f x 的图象如图所示:显然存在实数b ,使函数()f x 与y b =的图象有3个交点,符合题意, ②当0a <时,函数()f x 的图象如图所示:要存在实数b ,使函数()f x 与y b =的图象有3个交点,则1a e-<,解得1a e >-,所以10a e-<<, 综上所述,a 的取值范围是:1,1e ⎛⎫- ⎪⎝⎭, 故答案为:1,1e ⎛⎫- ⎪⎝⎭. 【点睛】有关函数零点的判定方法及策略:(1)直接法:令()0f x =,有几个解,函数就有几个零点;(2)零点的存在定理法:要求函数()f x 在区间[],a b 上连续不断的曲线,且()()0f a f b <,再结合函数的图象与性质确定零点的个数;(3)图象法:利用图象交点的个数,作出两函数的图象,观察其交点的个数,得出函数()f x 的零点个数.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-2x =<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值故答案为: 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.16.【分析】构造函数则所以的单调递减将转化成又再根据函数单调性即可求出结果【详解】设所以因为所以所以在上为减函数因为函数是定义在上的增函数所以所以在上恒成立又因为所以所以即因为所以所以又在上为减函数所以 解析:(),0-∞【分析】 构造函数()()2+=x f x g x e ,则()()()()20'-+'=<xf x f xg x e,所以()g x 的单调递减,将()ln 2ln 3f x x +>+⎡⎤⎣⎦转化成()23+>xf x e,又()03g =,再根据函数单调性即可求出结果. 【详解】设()()2+=x f x g x e ,所以()()()()()()()222''-+-+'==x x x xf x e f x e f x f xg x e e, 因为()()2f x f x '+>,所以()0g x '<,所以()()2+=xf xg x e在R 上为减函数, 因为函数()f x 是定义在R 上的增函数,所以()0f x '>,所以()()20'+>>f x f x 在R 上恒成立,又因为()ln 2ln 3f x x +>+⎡⎤⎣⎦,所以()2ln3+>f x x ,所以()23+>x f x e ,即()23+>x f x e ,因为()01f =,所以()()00203+==f g e,所以()()0g x g >,又()()2+=xf xg x e在R 上为减函数,所以0x <. 故答案为:(),0-∞ 【点睛】本题主要考查导数在判断单调性中的应用,解题的关键是合理构造函数,利用导函数判断构造的函数的单调性.17.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值. 【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值, 则42R H l +=22lH R ∴=-22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=- 令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-= 60l R ∴-=6lR ∴=当6lR >时,(6)0V R l R π'=-< 当6lR <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-=故答案为:3216l π.【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.18.【分析】首先求出函数的导函数由再根据三角函数的性质解三角不等式即可;【详解】解:所以令即所以故的单调递增区间为故答案为:【点睛】本题考查利用导数求函数的单调区间三角函数的性质的应用属于中档题解析:06,π⎡⎤⎢⎥⎣⎦【分析】首先求出函数的导函数,由()0f x '>,再根据三角函数的性质解三角不等式即可; 【详解】 解:()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦所以()1sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦令()0f x '>,即1sin 02x -+>,所以06x π<<,故()f x 的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,故答案为:06,π⎡⎤⎢⎥⎣⎦【点睛】本题考查利用导数求函数的单调区间,三角函数的性质的应用,属于中档题.19.【分析】对函数求导要满足题意只需导函数在定义域内有两个零点数形结合即可求得【详解】由可得函数定义域为且若满足有两个不同的极值点则需要满足有两个不同的实数根即在区间上有两个不同的实数根也即直线与函数有 解析:()0,1【分析】对函数求导,要满足题意,只需导函数在定义域内有两个零点,数形结合即可求得. 【详解】 由()2122f x x x aInx =-+可得函数定义域为()0,∞+且()2a f x x x=+-' 若满足()f x 有两个不同的极值点, 则需要满足()20af x x x=-'+=有两个不同的实数根, 即22a x x =-+在区间()0,∞+上有两个不同的实数根,也即直线y a =与函数()22,0,y x x x =-+∈+∞有两个交点,在直角坐标系中作图如下:数形结合可知,故要满足题意,只需()0,1a ∈. 故答案为:()0,1. 【点睛】本题考查由函数极值点的个数,求参数范围的问题,属基础题;本题也可转化为二次函数在区间()0,∞+上有两个实数根,从而根据二次函数根的分布进行求解.20.①②④【分析】根据已知条件得到函数的对称轴以及函数的单调性结合题意对选项进行逐一判断即可【详解】因为故关于对称;又故当时单调递增;时单调递减对①:若根据函数单调性显然则根据零点存在定理和函数单调性在解析:①②④ 【分析】根据已知条件得到函数的对称轴,以及函数的单调性,结合题意,对选项进行逐一判断即可.【详解】因为(4)()f x f x -=,故()f x 关于2x =对称;又(()2)0x f x -'>,故当2x >时,()f x 单调递增;2x <时,()f x 单调递减. 对①:若(2)(6)0f f <,根据函数单调性,显然()()20,60f f ,则()20f -> 根据零点存在定理和函数单调性,()f x 在()()2,2,2,6-上各有1个零点,故①正确; 对②:因为()f x 关于2x =对称,故()2f x +关于0x =对称,故是偶函数,则②正确;对③:121257sin cos ︒+︒=︒<(),2-∞单调递减可知,()1212ff sin cos <︒+︒,故③错误;对④:因为12x x <,故可得1222x x -<-;因为124x x +>,故可得1222x x -<- 故2122x x ->-,又函数关于2x =对称,结合函数单调性, 故可得()()21f x f x >,故④正确. 综上所述:正确的有①②④. 故答案为:①②④. 【点睛】本题考查根据导数的正负判断函数的单调性,函数对称轴的识别,涉及辅助角公式的使用,利用函数单调性比较大小,属综合性中档题.三、解答题21.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22x x x x -++<-;只要证3222213ln 22x x x x --+<-;2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理. 22.(1)10a =;(2) 3.3. 【分析】(1)将“销售价格为4元/件时,每月可售出21千件”带入关系式中即可得出结果; (2)首先可通过题意得出每月销售装饰品所获得的利润24(6102)2f x x x x ,然后通过化简并利用导数求得最大值,即可得出结果. 【详解】(1)由题意可知,当销售价格为4元/件时,每月可售出21千件, 所以2214(46)42a ,解得10a =.(2)设利润为()f x ,则2f xy x ,26x <<,带入2104(6)2y x x =+--可得: 224(6)(6)10210422f x xx x x x ,化简可得32456240278f xx x x ,函数()f x 的导函数21211224043106f xx x x x ,26x <<,当0f x 时,1032x ,函数()f x 单调递增;当0f x时,1036x ,函数()f x 单调递减;当0fx 时,103x,函数()f x 取极大值,也是最大值,所以当103x,函数()f x 取最大值,即销售价格约为每件3.3元时,该店每月销售装饰品所获得的利润最大. 【点睛】本题考查函数的相关性质,主要考查函数的实际应用以及利用导数求函数的最值,本题的关键在于能够通过题意得出题目所给的销售量、销售价格以及每月销售装饰品所获得的利润之间的关系,考查推理能力与计算能力,考查化归与转化思想,是中档题. 23.(1)答案见解析;(2)[)1,-+∞.【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln x a x x≥-恒成立,令()()ln 0x h x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】 (1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x '=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a>. 所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以函数()y f x =有极大值点是1a ,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln x a x x≥-恒成立, 令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数.所以()()max 11h x h ==-,所以1a ≥-.因此,实数a 的取值范围是[)1,-+∞.【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.24.(1)230x e y e +-=(2)(,0]-∞【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题 (1)根据题意可得,()2f e e =, ()2ln 'x f x x -=,所以()22ln 1'e f e e e -==-,即21k e =-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥, 所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增,所以()()10g x g ≥=,所以不等式()()21a x f x x ->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+, ()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-< ⎪⎝⎭,所以存在10g a ⎛⎫<⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤25.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.26.(1)y x =;(2)3a=-. 【分析】(1)求出导函数,结合()f x 在23x =处取极值,导函数为0,求解a ,然后求解切线的斜率,求解切线方程.(2)令()0f x '=,求出极值点,若0a ,若32a -,若302a >>-,判断导函数的符号判断函数的单调性求解函数的极值与最值,然后推出结果.【详解】 解:(1)∵2()3()3f x x x a '=+,又()f x 在23x =处取极值, ∴2()03f '=得1a =-, 当1a =-时2()33f x x x ⎛⎫'=- ⎪⎝⎭,函数在(),0-∞和2,3⎛⎫+∞ ⎪⎝⎭上单调递增,在20,3⎛⎫ ⎪⎝⎭上单调递减,满足题意;∴32()1f x x x =-+,切点为(1,1),切线斜率为(1)1k f '==∴()f x 在点(1,1)的切线方程为y x = (2)∵2()3()3a f x x x '=+,令()0f x '=得0x =或23a - 若0a ≥,则(0,1)x ∈时()0f x '>,()f x 在[0,1]为增函数此时min ()(0)11f x f ==>-舍去若32a ≤-,则213a -≥,此时(0,1)x ∈时()0f x '<,()f x 在[0,1]为减函数 min ()(1)21f x f a ==+=-,得33(,)2a =-∈-∞-满足题意 若302a >>-,则2013a <-<,此时2(0,)3x a ∈-时()0f x '<,2(,1)3a x ∈-时()0f x '> ()f x 在2(0,)3a -单调递减,在2(,1)3a -单调递增,此时3min24()()11327a a f x f =-=+=-解得3(,0)2a =-舍去 综合以上得3a=-【点睛】 本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查转化思想以及计算能力,属于难题.。

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。

北师大版高三理科数学课后习题(含答案)单元质检卷三导数及其应用

北师大版高三理科数学课后习题(含答案)单元质检卷三导数及其应用

单元质检卷三导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2019山东聊城三模,5)函数f(x)=-2x+ln x的图像在x=1处的切线方程为( )A.2x+y-1=0B.2x-y+1=0C.x-y+1=0D.x+y+1=0x=1时,f(1)=-2+0=-2,所以切点为(1,-2),由题得f'(x)=-2+1x,∴k=f'(1)=-2+11=-1,所以切线方程为y+2=-1·(x-1),即x+y+1=0.故选A.2.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.3f'(x)=2x+1-1x =2x2+x-1x=0,得x=12或x=-1(舍去).当0<x<12时,f'(x)<0,f(x)递减;当x>12时,f'(x)>0,f(x)递增.则f(x)的最小值为f(12)=34+ln 2>0,所以f(x)无零点.3.函数f(x)=x2-1e x的图像大致为()解析函数f(x)=不是偶函数,可以排除C,D,=0,得极值点为x1=1-√2,x2=1+√2,所以排除又令f'(x)=-x2+2x+1e xB,选A.x3+(a+1)x2-(a2+a-3)x 4.(2019辽宁丹东质检)若x=1是函数f(x)=13的极值点,则a的值为()A.-2B.3C.-2或3D.-3或2x3+(a+1)x2-(a2+a-3)x,得f'(x)=x2+2(a+1)x-(a2+a-3), f(x)=13由题意可知f'(1)=0,即1+2(a+1)-(a2+a-3)=0,得a=3或a=-2, 当a=3时,f'(x)=x2+2(a+1)x-(a2+a-3)=x2+8x-9=(x+9)(x-1),当x>1或x<-9时,f'(x)>0,函数递增;当-9<x<1时,f'(x)<0,函数递减,显然x=1是函数f(x)的极值点;当a=-2时,f'(x )=x 2+2(a+1)x-(a 2+a-3)=x 2-2x+1=(x-1)2≥0, 所以函数f(x)是R 上的增函数,没有极值,不切合题意,舍去.故a=3.故选B.5.(2019广东揭阳二模,10)以下四个数中,最大的是( ) A.ln √33B .1eC .lnππD .√15ln1530f (x )=lnxx,则ln √33=f (3),1e=f (e),lnππ=f (π),√15ln1530=f (√由f'(x )=1-lnx x 2知函数f (x )在(0,e)上递增,在(e,+∞)上递减,所以当x=e 时,f (x )有最大值.故选B .6.(2019河北石家庄模仿二,10)已知当m,n∈[-1,1]时,sin-sin<n3-m3,则以下判断正确的是( ) A.m>n B.|m|<|n| C.m<nD.m 与n 的大小关系不确定剖析由题意,设f(x)=x3+sin,则f'(x)=3x2+cos,当x ∈[-1,1]时,f'(x )>0,f (x )单调递增,又由m 3+sin πm2<n 3+sin πn2,所以f (m )<f (n ),即m<n.故选C .7.“a ≤-1”是“函数f (x )=ln x+ax+1x 在[1,+∞)上为单调函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(x )=1x+a-1x2=ax 2+x -1x 2,∴ax 2+x-1≥0对x ∈[1,+∞)恒成立,或ax 2+x-1≤0对x ∈[1,+∞)恒成立,a ≥(1-x x2)max或a ≤(1-xx2)min,记g (x )=1-xx 2,则g'(x )=-x 2-2x (1-x )x 4=x (x -2)x 4,则递减区间为[1,2],递增区间为[2,+∞), 当x>1时,g (x )<0, ∴(1-xx 2)max=g (1)=0,(1-xx2)min=g (2)=-14,∴a ≥0或a ≤-14.故选A .8.(2019安徽皖南八校联考三,12)已知函数f(x)=当x∈[m,+∞)时,f(x)的取值范围为(-∞,e+2],则实数m 的取值范围是( ) A.-∞,1-e 2B.(-∞,1]C.1-e 2,1D.[ln 2,1]解析当x≥ln 2时,f'(x)=-(x-1)(ex-2),令f'(x)>0,则ln2<x<1;f'(x)<0,则x>1,∴函数f(x)在(ln 2,1)上是增长的,在(1,+∞)上是淘汰的.∴函数f(x)在x=1处取得极大值为f(1)=e+2,在x=ln 2处取得极小值为f(ln 2)=3+(ln 2-2)2,当x<ln 2时,f(x)=3-2x≤e+2,∴x,综上所述,m的取值范畴为,1.9.(2019四川内江一模,12)设函数f(x)在R上存在导数f'(x),对任意的x∈R,有f(-x)-f(x)=0,且x∈[0,+∞)时,f'(x)>2x.若f(a-2)-f(a)≥4-4a,则实数a的取值范围为( )A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)G(x)=f(x)-x2,则G'(x)=f'(x)-2x,x∈(0,+∞)时,G'(x)=f'(x)-2x>0,G(-x)=f(-x)-(-x)2=f(x)-x2=G(x),∴G(x)为偶函数,∴G(x)在[0,+∞)上是增长的,在(-∞,0)上是淘汰的.所以f(a-2)-f(a)≥4-4a,可得f(a-2)-4+4a-a2≥f(a)-a2,∴f(2-a)-(a-2)2≥f(a)-a2,即G(a-2)≥G(a),∴|a-2|≥|a|,∴a ≤1.故实数a 的取值范围为(-∞,1].10.(2019河南郑州三模,12)设函数f(x)在R 上存在导函数f'(x),任意x∈R,有f(x)-f(-x)=x3,在(0,+∞)上有2f'(x)-3x2>0,若f(m-2)-f(m)≥-3m2+6m-4,则实数m 的取值范围为( ) A.[-1,1]B.(-∞,1]C.[1,+∞)D.(-∞,-1]∪[1,+∞)g (x )=f (x )-12x 3,∴g (x )-g (-x )=f (x )-12x 3-f (-x )-12x 3=0, ∴函数g (x )为偶函数,∵x ∈(0,+∞)时,g'(x )=f'(x )-32x 2>0,∴函数g(x)在(0,+∞)上是增长的, ∴函数g(x)在(-∞,0)上是淘汰的,∴f (m-2)-f (m )=g (m-2)+12(m-2)3-g (m )-12m 3=g (m-2)-g (m )-3m 2+6m-4≥-3m 2+6m-4,∴g(m-2)≥g(m),∴|m-2|≥|m|,解得m≤1,∴实数m的取值范围为(-∞,1].11.(2019安徽合肥市一模,12)已知函数f(x)=ax2-2x+ln x有两个不同的极值点x1,x2,若不等式λ>f(x1)+f(x2)恒成立,则实数λ的取值范围是( )A.[-3,+∞)B.(3,+∞)C.[-e,+∞)D.(e,+∞)f(x)=2ax-2+1x =2ax2-2x+1x,结合x>0,令h(x)=2ax2-2x+1,要使得f(x)存在两个不同的极值点x1,x2,则要求h(x)=0有两个差别的根,且x1+x2=>0,x1x2=>0,则Δ=4-8a>0,解得0<a<,而f(x1)+f(x2)=a-2x1+ln x1+a-2x2+ln x2=a(x1+x2)2-2ax1x2-2(x1+x2)-lnx1x2=--ln 2a-1,构造新函数g(a)=--ln 2a-1,计算导数得到g'(a)=,结合前面提到的a的范围可知g(a)在0,单调递增,故g(a)<g=-3,因而λ≥-3.故选A.12.(2019山西晋城二模,12)已知函数f(x)=x2-3x+5,g(x)=ax-ln x,若对任意x∈(0,e),存在x1,x2∈(0,e)且x1≠x2,使得f(x)=g(xi)(i=1,2),则实数a的取值范围是( )A .(1e,6e )B.1e,e 74C.0,1e∪6e,e 74 D.6e,e 74f (x )=x 2-3x+5,x ∈(0,e),∴f (x )min =f (32)=114,f (x )<f (0)=5.当x ∈(0,e)时,函数f (x )的值域为114,5.由g'(x )=a-1x =ax -1x可知:当a≤0时,g'(x)<0,与题意不符,故a>0. 令g'(x )=0,得x=1a,则1a ∈(0,e),所以g(x)min=g=1+ln a,作出函数g(x)在(0,e)上的大抵图像如图所示,观察可知解得6e ≤a<e 74.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019广东适应性考试)已知函数f (x )=a e x +b (a ,b ∈R )在点(0,f (0))处的切线方程为y=2x+1,则a-b= .f(x)=a e x+b,得f'(x)=a e x,因为函数f(x)在点(0,f(0))处的切线方程是y=2x+1,所以{f(0)=1=a+b,f'(0)=2=a,解得{a=2,b=-1,所以a-b=3.14.(2019天津南开模拟)已知函数f(x)=ex--2cos-x,其中e为自然对数的底数,若f(2a2)+f(a-3)+f(0)<0,则实数a的取值范围为.答案-32,1解析∵f(x)=e x-1e x -2cosπ2-x=e x-1e x-2sin x,∴f(-x)=e-x-1e-x -2sin(-x)=-e x-1e x-2sin x=-f(x),f(x)是奇函数,且f(0)=0,又∵f'(x)=e x+1e x -2cos x,e x+1e x≥2,2cos x≤2,∴f'(x)≥0,∴f(x)在(-∞,+∞)上递增,∴f(2a2)+f(a-3)+f(0)<0,化为f(2a2)<-f(a-3)=f(3-a),∴2a2<3-a⇒-32<a<1.15.(2019河北武邑中学期末,16)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是.-6,-2]ax 3-x 2+4x+3≥0变形为ax 3≥x 2-4x-3.当x=0时,0≥-3,故实数a 的取值范围是R . 当x ∈(0,1]时,a ≥x 2-4x -3x 3,记f (x )=x 2-4x -3x 3,f'(x )=-x 2+8x+9x 4=-(x -9)(x+1)x 4>0,故函数f (x )递增,则f (x )max =f (1)=-6,故a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,记f (x )=x 2-4x -3x 3,令f'(x )=0,得x=-1或x=9(舍去),当x ∈(-2,-1)时,f'(x )<0;当x ∈(-1,0)时,f'(x )>0, 故f (x )min =f (-1)=-2,则a ≤-2. 故实数a 的取值范围是[-6,-2].16.设边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,此中一块是梯形,记S=,则S 的最小值是 .剖析如图所示,设AD=x m(0<x<1),则DE=AD=x m,∴梯形的周长为x+2(1-x )+1=(3-x )(m),又S △ADE =√34x 2 m 2,∴梯形的面积为√34−√34x 2m 2,∴S=4√33×x 2-6x+91-x 2(0<x<1),∴S'=-8√33×(3x -1)(x -3)(1-x 2).令S'=0,得x=13或x=3(舍去).当x ∈0,13时,S'<0,S 递减;当x ∈13,1时,S'>0,S 递增.故当x=13时,S 的最小值是32√33.三、解答题(本大题共5小题,共70分)17.(14分)(2019河北衡水第一中学调研)已知函数f (x )=e x +ax-a (a ∈R ,且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f(x)不存在零点,求实数a 的取值范畴.由题意知,函数f (x )的定义域为R ,又f (0)=1-a=2,得a=-1,f(x)=ex-x+1,求导得f'(x)=ex-1.知f(x)在[-2,0]上是淘汰的,在[0,1]上是增长的,所以当x=0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f'(x )=e x +a ,由于e x >0,①当a>0时,f'(x)>0,f(x)在R 上是增函数,当x>1时,f(x)=ex+a(x-1)>0;当x<0时,取x=-,则f-<1+a--1=-a<0.所以函数f(x)存在零点,不满意题意.②当a<0时,令f'(x )=0,得x=ln(-a ).在(-∞,ln(-a ))上,f'(x )<0,f (x )递减, 在(ln(-a ),+∞)上,f'(x )>0,f (x )递增, 所以当x=ln(-a )时,f (x )取最小值.函数f(x)不存在零点,等价于f(ln(-a))=+aln(-a)-a=-2a+aln(-a)>0,解得-e2<a<0.综上所述,所求实数a 的取值范围是(-e 2,0).18.(14分)(2019湖南六校联考,21)已知f(x-1)=2ln(x-1)-+k(x>1).(1)判断当-1≤k ≤0时f (x )的单调性;(2)若x1,x2(x1≠x2)为f(x)两个极值点,求证:x[f(x1)+f(x2)]≥(x+1)[f(x)+2-2x].f (x-1)=2ln(x-1)+k (x -1)x(x>1),所以f (x )=2ln x+kx x+1(x>0). f'(x )=2x +k (x+1)2=2x 2+(4+k )x+2x (x+1)2,当-1≤k ≤0时,Δ=(4+k )2-16=k (k+8)≤0,2x 2+(4+k )x+2>0恒成立. 于是,f(x)在定义域上为单调增函数.f'(x )=2x +k (x+1)2=2x 2+(4+k )x+2x (x+1)2,由题设知,f'(x )=0有两个不相等的正实数根x 1,x 2,则{x 1+x 2=-4+k 2>0,x 1x 2=1>0,Δ=(4+k )2-16>0,得k<-8,而f (x 1)+f (x 2)=2ln x 1+kx 1x 1+1+2ln x 2+kx 2x 2+1=2ln(x 1x 2)+kx 1x 1+1+x 2x 2+1=2ln(x 1x 2)+k ·2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=k ,又(x+1)[f (x )-2lnx ]x=k ,故欲证原不等式等价于证明不等式(x+1)[f (x )-2lnx ]x≥x+1x[f (x )-2(x-1)],也就是要证明:对任意x>0,有ln x ≤x-1.令g (x )=ln x-x+1(x>0),由于g (1)=0,并且g'(x )=1x -1,当x>1时,g'(x )<0,则g (x )在(1,+∞)上为减函数; 当0<x<1时,g'(x)>0,则g(x)在(0,1)上为增函数. 则g(x)在(0,+∞)上有最大值g(1)=0,即g(x)≤0,故原不等式建立.19.(14分)(2019浙江,22)已知实数a ≠0,设函数f (x )=a ln x+√1+x ,x>0.(1)当a=-34时,求函数f (x )的单调区间;(2)对任意x∈,+∞均有f(x),求a 的取值范畴. 注:e=2.718 28…为自然对数的底数.当a=-34时,f (x )=-34ln x+√1+x ,x>0.f'(x )=-34x+1√=(√1+x -2)(2√1+x+1)√,所以,函数f (x )的递减区间为(0,3),递增区间为(3,+∞). (2)由f (1)≤12a ,得0<a ≤√24.当0<a ≤√24时,f (x )≤√x2a等价于√x a2−2√1+x a-2ln x ≥0.令t=1a,则t ≥2√2.设g (t )=t 2√x -2t √1+x -2ln x ,t ≥2√2,则 g (t )=√x t-√1+1x 2-1+x√-2ln x.①当x ∈17,+∞时,√1+1x ≤2√2,则g (t )≥g (2√2)=8√x -4√2√1+x -2ln x. 记p (x )=4√x -2√2√1+x -ln x ,x ≥17,则p'(x )=2√−√2√−1x=2√x √x+1-√2x -√x+1√ =√√√√√√故17,11 )- 0)p 17单调递减所以,p (x )≥(1)=0.因此,g (t )≥g (2√2)=2p (x )≥0.②当x ∈1e2,17时,g(t)≥g√1+1x =-2√xlnx-(x+1)√.令q(x)=2√x ln x+(x+1),x∈1e2,17,则q'(x)=lnx+2√+1>0,故q(x)在上是增长的,所以q(x)≤q17.由①得,q17=-2√77p17<-2√77p(1)=0.所以,q(x)<0.因此,g(t)≥g√1+1x =-q(x)√>0.由①②知,对任意x∈1e2,+∞,t∈[2√2,+∞),g(t)≥0,即对任意x∈1e2,+∞,均有f(x)≤√x2a.综上所述,所求a的取值范围是0,√24.20.(14分)(2019山东青岛二模,21)已知函数f(x)=(x2+a)ekx,e=2.718…为自然对数的底数.(1)若k=-1,a∈R,判断函数f(x)在(0,+∞)上的单调性;(2)令a=0,k=1,若0<m≤2e,求证:方程f(x)-m(x+1)ln x=0无实根.由已知k=-1,所以f(x)=(x2+a)e-x=x2+ae x,所以f'(x)=x2+ae x '=2xe x-(x2+a)e xe2x=-x2+2x-ae x.①若a≥1,则在R上恒有u(x)=-(x-1)2+1-a≤0,所以f'(x)=0,所以f(x)在(0,+∞)上是淘汰的.②若a<1,则u(x)=-(x-1)2+1-a图像与x轴有两个差别交点.设u(x)=-(x-1)2+1-a=0的两根分别为x1=1-√1-a,x2=1+√1-a.(i)若0<a<1,0<x1<1,x2>1,所以当0<x<x1时,u(x)<0;当x1<x<x2时,u(x)≥0;当x>x2时,u(x)<0.所以,此时f(x)在(0,x1)上和(x2,+∞)上是淘汰的,在(x1,x2)上是增长的.(ii)若a≤0,x1=1-√1-a≤0,x2=1+√1-a≥2.所以,x∈(0,x2)上总有u(x)>0;在当x>x2上,u(x)<0.所以此时f(x)在(0,x2)上是增长的,在(x2,+∞)上是淘汰的.综上:若a≥1,f(x)在(0,+∞)上是减少的;若0<a<1,f(x)在(0,x1)上和(x2,+∞)上是减少的;在(x1,x2)上是增加的;若a≤0,f(x)在(0,x2)上是增长的,在(x2,+∞)上是淘汰的.(2)由题知a=0,k=1,所以f(x)=x2e x,令g(x)=e x-(x+1),对任意实数x>0,g'(x)=e x-1>0恒成立,所以g(x)=e x-(x+1)>g(0)=0,即e x>x+1>0.则x2e x-m(x+1)ln x>x2(x+1)-m(x+1)ln x=(x+1)(x2-m ln x).令h(x)=x2-m ln x,所以h'(x)=(x2-m ln x)'=2x-mx =2x2-mx.因为0<m≤2e,所以h'(x)=(x2-m ln x)'=2x-mx =2x2-mx=2(x+√m2)(x-√m2)x.所以当x∈0,√m2时,h'(x)<0,h'√m2=0;当x∈√m2,+∞时,h'(x)>0.所以h(x)=x2-mln x在(0,+∞)上有最小值.所以h√m2=m2-m ln√m2=m21-ln m2.因为0<m2≤e,所以ln m2<1,所以1-ln m2>0,所以m21-ln m2>0,即当0<m≤2e时,对任意x>0,h(x)=x2-m ln x>0.所以x2e x-m(x+1)ln x>0.所以方程f(x)-m(x+1)ln x=0无实根.21.(14分)(2019山东济宁二模,21)已知函数f(x)=x-a(ln x)2,a∈R.(1)当a=1,x>1时,试比较f(x)与1的大小,并说明理由;(2)若f(x)有极大值,求实数a的取值范围;(3)若f(x)在x=x0处有极大值,证明1<f(x0)<当a=1,x>1时,f(x)=x-(ln x)2,x>1.f'(x)=1-2(ln x)×1x =x-2lnxx.令g(x)=x-2ln x,x>1,则g'(x)=1-2x =x-2x.当x∈(1,2)时,g'(x)<0,g(x)递减,当x∈(2,+∞)时,g'(x)>0,g(x)递增.∴g(x)≥g(2)=2-2ln 2>0,即f'(x)>0,∴f(x)在(1,+∞)上是增长的.∴f(x)>f(1)=1.故当a=1,x>1时,f(x)>1.(2)f'(x)=1-2alnxx =x-2alnxx(x>0),令h(x)=x-2a ln x(x>0),则h'(x)=1-2ax =x-2ax.①当a=0时,f(x)=x无极大值.②当a<0时,h'(x)>0,h(x)在(0,+∞)上是增长的, h(1)=1>0,h(e12a)=e12a-1<0,存在x1∈(e12a,1),使得h(x1)=0.∴当x∈(0,x1)时,f'(x)<0,f(x)递减,当x∈(x1,+∞)时,f'(x)>0,f(x)递增,∴f(x)在x=x1处有极小值,f(x)无极大值.③当a>0时,h(x)在(0,2a)上是淘汰的,在(2a,+∞)上是增长的,∵f(x)有极大值,∴h(2a)=2a-2a ln(2a)=2a(1-ln 2a)<0,即a>e2,又h(1)=1>0,h(e)=e-2a<0,∴存在x0∈(1,e),使得h(x0)=x0-2a ln x0=0,即a ln x0=x02,∴当x∈(0,x0)时,f'(x)>0,f(x)递增,当x∈(x0,e)时,f'(x)<0,f(x)递减,∴f(x)有极大值.综上所述,a>e2.(3)由(2)可知,a ln x0=x02,∴f(x0)=x0-a(ln x0)2=x0-x0ln x02(1<x0<e),设p(x)=x-xlnx2(1<x<e),则p'(x)=1-1+lnx2=1-lnx2>0,∴p(x)在(1,e)上是增长的,∴p(1)<p(x)<p(e),即1<p(x)<,故1<f(x0)<。

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)

新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)

一、选择题1.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞- B .(,1] -∞-C .[1,) -+∞D .[,)e2.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( ) A .-1≤m ≤1 B .-1<m ≤1C .-1<m <1D .-1≤m <13.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-6.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r7.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)8.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 9.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃10.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-11.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202012.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( ) A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.函数()f x 在(0,+∞)上有定义,对于给定的正数K ,定义函数()()()(),,K f x f x K f x K f x K⎧≤⎪=⎨>⎪⎩,取函数()2253ln 2f x x x x =-,若对任意x ∈(0,+∞),恒有()()K f x f x =,则K 的最小值为______. 18.函数()3212132a f x x x x =-++的递减区间为()2,1--,则实数a 的值________. 19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________. 20.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.三、解答题21.已知函数()()()3222110f x ax a x a =--+≠.(1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围.22.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭.(1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立. 23.已知函数()32122f x ax x x =+-,其导函数为()f x ',且(1)0f '-=. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程 (Ⅱ)求函数()f x 在[1,1]-上的最大值和最小值. 24.设函数()(1)f x lnx m x =-+,2()2m g x x =,(0,)x m R >∈. (Ⅰ)若对任意121x x >>,1212()()1f x f x x x -<--恒成立,求m 的取值范围;(Ⅱ)()()()h x f x g x =+,讨论函数()y h x =的单调性. 25.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x≥-在(]0,1x ∈内恒成立,求t 的取值范围. 26.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果.【详解】函数()xf x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.2.D解析:D 【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D.点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x ---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x-+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A. 【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==,()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ',则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=, 整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.6.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.7.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g =因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>;当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.8.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C . 9.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.10.A解析:A 【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论. 【详解】设函数()()()2ln 0=-=->y f x g x x x x ,()212120-'∴=-=>x y x x x x,令0y '<,0x,0∴<<x ,函数在⎛ ⎝⎭上为单调减函数;令0y '>,0x,2∴>x ,函数在2⎛⎫+∞ ⎪ ⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+.故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+. 故选:A. 【点睛】本题主要考查利用导数研究函数的最值,属于中档题.11.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=,因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 12.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解. 【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a << 故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不解析:16 【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】 因为()ln 2xg x x=+,()0,x ∈+∞, 所以()21ln xg x x-'=,令()0g x '=得x e =,所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增; 当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减, 又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =,所以121022t t e<<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16. 【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+(x =+2x =<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值故答案为:【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④ 【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x xf x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案. 【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x xf x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x xf x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =, ()3313130g e e =--<,()4414200g e e =-->, 则方程2()2f x x x =+有一根在(3,4)之间, 故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立,令()x xh x e ekx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立, 若0x x e e k -+->,即1x xx x k e ee e-<+=+恒成立, 而12x xe e +,若有2k <,故④正确;综合可得:①②④正确; 故答案为:①②④. 【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】根据题意利用导数求出函数的最大值即可【详解】由得当时函数单调递减当时函数单调递增所以函数的最大值为:即所以要想恒有只需所以的最小值为故答案为:【点睛】本题考查了利用导数求函数最大值问题考查了解析:2332e【分析】根据题意,利用导数求出函数()2253ln 2f x x x x =-的最大值即可. 【详解】 由()2253ln 2f x x x x =-得()()213ln f x x x '=-, 当13x e >时,()0f x '<,函数()f x 单调递减, 当130x e <<时,()0f x '>,函数()f x 单调递增,所以函数()y f x =的最大值为:231332e f e ⎛⎫= ⎪⎝⎭,即()2332f x e ≤,所以要想恒有()()K f x f x =,只需2332K e ≥,所以K 的最小值为2332e .故答案为:2332e【点睛】本题考查了利用导数求函数最大值问题,考查了学生的数学阅读和运算求解能力.18.【分析】根据题意求出函数的导函数则方程的两根为和利用韦达定理即可得到结论【详解】由题意因函数的递减区间为所以方程的两根为和由韦达定理可得:即故答案为:【点睛】本题考查了导函数的运算法则一元二次方程根 解析:3-【分析】根据题意,求出函数的导函数,则方程220x ax -+=的两根为2-和1-,利用韦达定理即可得到结论. 【详解】由题意,()22f x x ax =-+',因函数()f x 的递减区间为()2,1--,所以,方程220x ax -+=的两根为2-和1-, 由韦达定理可得:21a --=,即3a =-. 故答案为:3-. 【点睛】本题考查了导函数的运算法则,一元二次方程根与系数的关系,属于基础题.19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x a-<<-时,()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f a f ⎧⎛≥⎪ ⎨⎝⎭⎪-≥⎩,即3320320a a a a ⎧⎛⎛⎫⎪-+≥ ⎪ ⎪⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤ 【分析】①通过导数研究函数的单调性可得结论正确; ②利用导数可知函数为增函数,函数最多一个零点;③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围. 【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的;对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()xf x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()xf x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的. 故答案为:①③⑤ 【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.三、解答题21.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间; (2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增;③当12a =时,()230f x x '=≥,()f x 在R 上单调递增; ④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭;当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫ ⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭;(2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤⎥⎝⎦上单调递增,在10,2⎛⎫ ⎪⎝⎭上单调递减.因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.22.(1)1,1a b ==;(2)证明见解析. 【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos xf x ae xg x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()xh x e x x =+-,则()21xh x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减,当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增.∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 23.(1) 4250x y --=. (2) ()max 32f x =,min 22()27f x =-. 【解析】分析:(1)先由'(1)0f -=求出a 的值,再求出函数()y f x =在点(1,(1))f 的切线方程;(2)先求出函数的极值,列表格,根据单调性求出最大值和最小值. 详解: (Ⅰ)()232f x ax x '=+-∵()10f '-=,∴3120a --=.解得1a = ∴()32122f x x x x =+-,()232f x x x '=+- ∴()1f 12=-,()12f '=. ∴曲线()y f x =在点()()1,1f 处的切线方程为4250x y --=(Ⅱ)出(Ⅰ),当()0f x '=时,解得1x =-或23x =当x 变化时,()f x ,()f x '的变化情况如下表:∴()f x 的极小值为327f ⎛⎫=- ⎪⎝⎭又()312f -=,()112f =- ∴()()max 312f x f =-=,()min 222327f x f ⎛⎫==-⎪⎝⎭. 点睛:本题主要考查了导数的几何意义,利用导数求函数最值的步骤等,属于中档题.求出a 的值是解题的关键.24.(Ⅰ)1m ;(Ⅱ)答案见解析. 【分析】(Ⅰ)依题意,1122()()f x x f x x +<+,构造函数()()(1)k x f x x lnx mx x =+=->,则1()0(1)k x m x x'=->恒成立,由此即可求得m 的取值范围; (Ⅱ)表示出()h x ,求导,分类讨论即可得出其单调性情况. 【详解】(Ⅰ)依题意,121x x >>,1212()()1f x f x x x -<--,即1212()()()f x f x x x -<--,亦即1122()()f x x f x x +<+,令()()(1)k x f x x lnx mx x =+=->,由题意即知函数()y k x =在区间(1,)+∞上单调递减,则1()0(1)k x m x x'=->恒成立, ∴1m x在区间(1,)+∞上恒成立,故1m . (Ⅱ)2()(1)(0)2m h x lnx m x x m =-++>,1(1)(1)()(1)mx x h x m mx x x--'=-++=, 当0m =时,1()xh x x-'=,(0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当0m <时,101m<<, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当1m =时,()0h x ',()h x 的单调递增区间为(0,)+∞, 当1m 时,令()0h x '=,得1x =或1x m =;101m<<,当x 变化,()h x ',()h x 变化如下表即单调增区间为1(0,)m,(1,)+∞,减区间为(,1)m . 当01m <<时,令()0h x '=,得1x =或1x m =;11m>,当x 变化,()h x ',()h x 变化如下表即单调增区间为(0,1),1(,)m+∞,减区间为(1,)m. 综上:当0m 时,单调增区间为(0,1),减区间为(1,)+∞,当01m <<时,单调增区间为(0,1),1(,)m+∞,减区间为1(1,)m, 当1m =时,()h x 的单调递增区间为(0,)+∞, 当1m 时,单调增区间为1(0,)m,(1,)+∞,减区间为1(,1)m. 【点睛】本题主要考查利用导数研究函数的单调性,考查构造思想及分类讨论思想,考查运算求解能力,属于中档题. 25.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可.(2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x --+'=,因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减, 所以当1x =时,312ln ()xh x x x x=+-有最小值2, 得22t ≤,所以1t ≤, 故t 的取值范围是(],1-∞, 【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 26.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。

2019高三数学(北师大版理科)一轮:单元质检卷三 导数及其应用 Word版含解析

2019高三数学(北师大版理科)一轮:单元质检卷三 导数及其应用 Word版含解析

单元质检卷三导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如果一个物体的运动方程为s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒2.设曲线y=x+1x-1在点(3,2)处的切线与直线ax+y+3=0垂直,则a等于()A.2B.-2C.1 2D.-123.若函数y=e x+mx有极值,则实数m的取值范围是()A.m>0B.m<0C.m>1D.m<14.已知函数f(x)=-x3+ax2-x-1在R上是减少的,则实数a的取值范围是()A.(-∞,-√3]∪[√3,+∞)B.[-√3,√3]C.(-∞,-√3)∪(√3,+∞)D.(-√3,√3)5.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.36.已知a≤1-xx +ln x对任意x∈[12,2]恒成立,则a的最大值为()A.0B.1C.2D.37.(2017河北唐山三模,理12)已知函数f(x)=x3+ax2+bx有两个极值点x1,x2,且x1<x2,若x1+2x0=3x2,函数g(x)=f(x)-f(x0),则g(x)()A.恰有一个零点B.恰有两个零点C.恰有三个零点D.至多两个零点〚导学号21500614〛8.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)>0,且g(3)=0,则不等式f(x)g(x)<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)9.(2017河北石家庄二中模拟,理12)若存在正实数m,使得关于x的方程x+a(2x+2m-4e x)[ln(x+m)-ln x]=0成立,其中e为自然对数的底数,则实数a的取值范围是()A.(-∞,0)B.(0,12e)C.(-∞,0)∪[12e ,+∞)D.[12e ,+∞)10.已知函数f (x )=-2f '(1)3√x -x 2的最大值为f (a ),则a 等于( ) A .116B .√434C .14D .√43811.若函数f (x )=x 33−a 2x 2+x+1在区间(12,3)内有极值点,则实数a 的取值范围是( ) A .(2,52) B .[2,52) C .(2,103) D .[2,103) 12.(2017江西新余一中模拟七,理12)设点M (x 1,f (x 1))和点N (x 2,g (x 2))分别是函数f (x )=sin x+16x 3和g (x )=x-1图像上的点,且x 1≥0,x 2≥0,若直线MN ∥x 轴,则M ,N 两点间的距离的最小值为( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=e x ·sin x 的图像在点(0,f (0))处的切线方程是 .14.(2017内蒙古包头一模,理15)已知函数f (x )是定义在R 上的可导函数,其导函数记为f'(x ),若对于任意x ∈R ,有f (x )>f'(x ),且y=f (x )-1是奇函数,则不等式f (x )<e x 的解集为 .15.若实数a ,b ,c ,d 满足2a 2-lna b =3c -2d =1,则(a-c )2+(b-d )2的最小值为 . 16.已知f (x )=x+x ln x ,若k (x-2)<f (x )对任意x>2恒成立,则整数k 的最大值为 .三、解答题(本大题共5小题,共70分)17.(14分)(2017安徽安庆二模,理21)已知函数f (x )=ax 2+x+a e x ,a ∈R . (1)若a ≠0,求函数f (x )的递增区间;(2)若a=0,x 1<x<x 2<2,证明:f (x )-f (x 1)x -x 1>f (x 2)-f (x 1)x 2-x 1.。

2019年高考数学(理)真题汇编:专题03 导数及其应用

2019年高考数学(理)真题汇编:专题03 导数及其应用

专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(4)

新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(4)

一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .⎫+∞⎪⎪⎝⎭D .⎛ ⎝⎭3.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫ ⎪⎝⎭4.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152B .有最大值152C .有最小值152-D .有最大值152-5.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2 B .3C .4D .56.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( )A .2(,]e-∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞9.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 10.若函数2()x f x mx e -=-+恰有两个不同的零点,则实数m 的取值范围为( ) A .1,1e ⎛⎫ ⎪⎝⎭B .1,e ⎛⎫+∞ ⎪⎝⎭C .(1,)eD .(,)e +∞11.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭ 12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.14.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________15.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.16.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.17.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____. 18.设函数()21ln 12f x x x bx =+-+(b 为常数),若函数()f x 在[]1,3上存在单调减区间,则实数b 的取值范围是______.19.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.20.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.三、解答题21.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.22.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值.23.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.24.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x≥-在(]0,1x ∈内恒成立,求t 的取值范围. 25.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2, 则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.A解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =->有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x -'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.A解析:A【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解. 【详解】 由题意得2ln x xa x +=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x xa x +=在(0,1)上为增函数, 可得),(1a ∈-∞,当(1,),()0,0x g x a ∈+∞<<',2ln x xa x+=在(1,)+∞上单调递减, 可得(0,1)∈a , 即要2ln x xa x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A 【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c ≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.5.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.6.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.9.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .10.B解析:B 【分析】根据题意,得到方程有两不等实根,构造函数2()x e g x x-=,0x ≠,对其求导,判定函数单调性,求出极值,画出函数大致图像,结合图像,即可得出结果. 【详解】显然,0x =不是函数()f x 的零点,令2()0x f x mx e-=-+=,得2x e m x-=, 构造函数2()x e g x x -=,0x ≠,则22(1)()x e x g x x --'=,令()0g x '>得到1x >,令()0g x '<得到1x <且0x ≠,即函数2()x e g x x -=在(),0-∞上单调递减,在()0,1上单调递减,在()1,+∞上单调递增;所以函数2()x e g x x-=有极小值1(1)g e =;画出函数()g x 的图象,如图所示,由图像可知,当0m ≤时,直线y m =与()g x 的图象不可能有两个交点, 当0m >,只需1m e>,()g x 的图象与直线y m =即有两个不同的交点, 即函数2()x f x mx e -=-+恰有两个不同的零点, ∴m 的取值范围为1,e⎛⎫+∞ ⎪⎝⎭.故选:B. 【点睛】本题主要考查导数的方法研究函数的零点,利用数形结合的方法即可求解,属于常考题型.11.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =, 故()()1g x g >,解得:1x >, 故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.14.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.15.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.16.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值.【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.17.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围. 【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnxf x x -=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.18.【分析】根据题意将函数在上存在单调减区间转化为在上有解则只需:只需在内即可结合基本不等式即可求出的取值范围【详解】解:由题意知:在上存在单调减区间在上有解即在上有解即在上有解只需在内即可当且仅当时取 解析:()2,+∞【分析】根据题意,将函数()f x 在[]1,3上存在单调减区间,转化为()0f x '<在[]1,3上有解,则只需:只需在[]1,3内min1b x x ⎛⎫>+ ⎪⎝⎭即可,结合基本不等式,即可求出b 的取值范围. 【详解】解:由题意知:()()21ln 102f x x x bx x =+-+>, ()211x bx f x x b x x-+'∴=+-=, ()f x 在[]1,3上存在单调减区间,()0f x '∴<在[]1,3上有解,即10x b x+-<在[]1,3上有解,即1>+b x x 在[]1,3上有解,只需在[]1,3内,min1b x x ⎛⎫>+ ⎪⎝⎭即可,0x,12x x∴+≥,当且仅当1x=时取得最小值2,即在在[]1,3内min12x x ⎛⎫+= ⎪⎝⎭,所以:2b >,则b 的取值范围是:()2,+∞. 故答案为:()2,+∞. 【点睛】本题考查导数的应用,以及基本不等式的应用,考查转化思想和计算能力.19.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m 的取值范围.【详解】当0x >时,2ln ()xf x x '=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →;作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<;故答案为:1(0,)2. 【点睛】本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.20.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->, ∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增,而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2. 故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.三、解答题21.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r -=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<.所以()()2222229002900900900S x x x x x x =-=-+-=. 当且仅当22900x x =-,即152x =时,S 取最大值为2900cm . 所以,取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r -=所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V .取BC 为时,做出的圆柱形罐子体积最大,最大值为3cm π.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围.22.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;23.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln am x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -,直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a-=,解得2a =-. (2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x'='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln ax a x x x +<-. 整理得0001ln 0ax a x x +-+<. 构造函数1()ln am x x a x x+=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值. 令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减,只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题. 24.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可.(2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x--+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减, 所以当1x =时,312ln ()xh x x x x=+-有最小值2, 得22t ≤,所以1t ≤, 故t 的取值范围是(],1-∞, 【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 25.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案.【详解】(1)由题意,得21()(0)kf x x x x'=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题. 26.(1)0b =(2)63a -≤≤- 【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可. (2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可. 【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值, 所以()0f x '=,即得0b =;经检验可知:b =0符合题意. (2)令(0)0f '=,即2320x ax +=, 解得0x =或23x a =-. 依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-. 【点睛】本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。

北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(答案解析)

北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(答案解析)

一、选择题1.已知函数()3sin f x x x ax =+-,则下列结论错误的是( )A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点 2.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( ) A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞5.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( )A .1(0,)eB .(0,1]eC .1(2D .1(26.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .57.以下不等式不成立的是( )A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞8.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<9.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)10.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞11.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .12.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .32⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .322,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦二、填空题13.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.14.已知()(sin )xf x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.若函数的()1,2ln ,x m x ef x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.17.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.18.如图,等腰直角ABC 底边4BC =,E 为BC 上异于B ,C 的一个动点,点F 在AB 上,且EF BC ⊥,现将BEF 沿EF 折起到B EF '的位置,则四棱锥B AFEC '-体积的最大值为___________.19.若函数()2122f x x x aInx =-+有两个不同的极值点,则实数a 的取值范围是__________.20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.函数()21xf x xe x =-+.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()()ln g x f x x x m =-+-的零点个数. 22.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 23.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围.24.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 25.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性.(2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;26.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 2.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件.故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x-+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.5.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.6.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.7.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1x f x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.8.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.9.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=,当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.10.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.11.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.12.A解析:A【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围.【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立.①当0x =时,则有10≥恒成立,此时a R ∈;②当10x -≤<时,由3310x ax ++≥可得213a x x ≤--, 令()21f x x x =--,()32211220x f x x x x -'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得2x =,列表如下:2()2max 22f x ⎛=-= ⎝⎭3a ∴≥a ≥. 综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根 解析:814,16⎛⎫ ⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可.【详解】因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax b f x x a x x++'=++=, 设()2g x x ax b =++, 因为函数()f x 在()1,2上存在两个极值点,所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,所以根据韦达定理有:1212x x a x x b +=-⎧⎨⋅=⎩, 故()23939b a b b ab b ++=++ ()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈, 所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 由于12x x ≠,所以()()22112281334,16x x x x ⎛⎫--∈ ⎪⎝⎭. 故答案为:814,16⎛⎫ ⎪⎝⎭. 【点睛】 思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 4x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x e f x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞.于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e -. 故答案为:312e -. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.17.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】 由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭, 当102x <<时,0V '>,1322x <<时,0V '<, 所以当12x =时,V 取得最大值,最大值为2. 故答案为:2【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题. 18.【分析】设则设根据四棱锥的体积公式可求得四棱锥体积为利用正弦函数的最大值以及导数求得的最大值可得结果【详解】设则设则四棱锥的高四边形的面积为则四棱锥体积为当且仅当时取等号令则令得令得所以函数在上递增【分析】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,根据四棱锥的体积公式可求得四棱锥B AFEC '-体积为31sin (8)6x x θ-,利用正弦函数的最大值以及导数求得31(8)(04)6y x x x =-<<的最大值可得结果. 【详解】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,则四棱锥B AFEC '-的高sin sin h B E x θθ'==,四边形AFEC 的面积为22111424222x x ⨯⨯-=-, 则四棱锥B AFEC '-体积为211sin (4)32x x θ⨯-3311sin (8)(8)66x x x x θ=-≤-,当且仅当sin 1θ=,2πθ=时取等号, 令31(8)(04)6y x x x =-<<,则21(83)6y x '=-,令0y '>,得0x <<0y '<4x <<,所以函数31(8)(04)6y x x x =-<<在上递增,在上递减,所以当x =31(8)6y x x =-所以当,23x πθ==时,四棱锥B AFEC '-【点睛】本题考查了棱锥的体积公式,考查了正弦函数的最值,考查了利用导数求函数的最值,属于中档题.19.【分析】对函数求导要满足题意只需导函数在定义域内有两个零点数形结合即可求得【详解】由可得函数定义域为且若满足有两个不同的极值点则需要满足有两个不同的实数根即在区间上有两个不同的实数根也即直线与函数有 解析:()0,1【分析】对函数求导,要满足题意,只需导函数在定义域内有两个零点,数形结合即可求得.【详解】由()2122f x x x aInx =-+可得函数定义域为()0,∞+且()2a f x x x=+-' 若满足()f x 有两个不同的极值点,则需要满足()20a f x x x=-'+=有两个不同的实数根, 即22a x x =-+在区间()0,∞+上有两个不同的实数根,也即直线y a =与函数()22,0,y x x x =-+∈+∞有两个交点,在直角坐标系中作图如下:数形结合可知,故要满足题意,只需()0,1a ∈.故答案为:()0,1.【点睛】本题考查由函数极值点的个数,求参数范围的问题,属基础题;本题也可转化为二次函数在区间()0,∞+上有两个实数根,从而根据二次函数根的分布进行求解.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭ 故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)1y x =-+;(2)答案见解析.【分析】(1)利用导数求出函数()f x 在0x =处的切线的斜率,并求出切点的坐标,利用点斜式可求得所求切线的方程;(2)令()()ln ln 1xh x f x x xe x x =-=--+,则问题转化为直线y m =与函数()y h x =的图象的交点个数,利用导数分析函数()h x 的单调性与极值,数形结合可得出直线y m =与函数()y h x =的图象的交点个数,由此可得出结论.【详解】(1)因为()()12xf x x e '=+-,所以()01f '=-, 又()01f =,切点坐标为()0,1,所以函数()f x 在0x =处的切线方程为:1y x =-+;(2)构造函数()()()ln ln 10xh x f x x x xe x x x =-+=--+> 则()()()()11111x xx xe h x x e x x +-'=+--=, 令()1x m x xe =-,()()10xm x x e '=+>,则()m x 在()0,∞+单调递增,且1102m ⎛⎫=-< ⎪⎝⎭,()110m e =->, 所以存在0,112x ⎛⎫∈⎪⎝⎭,使得()00m x =,即001x e x =,从而00ln x x =-. 所以当()00,x x ∈时,()0m x <,即()0h x '<,则()h x 单调递减;当()0,x x ∈+∞时,()0m x >,即()0h x '>,则()h x 单调递增.所以()()00000000min 01ln 112x h x h x x e x x x x x x ==--+=⋅-++=,如下图所示:所以当2m <时,()g x 没有零点;当2m =时,()g x 有1个零点;当2m >时,()g x 有2个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析.【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立.【详解】(1)函数()x f x e x =-的定义域为R ,且()1x f x e '=-. 令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--,当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-; (2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.23.(1)详见解析;(2)[1,)-+∞.【分析】(1)对函数求导[]()(2)121()a x x f x x -+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可.【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+, 则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增, 当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减; (2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立, 则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x -=+,则()()()()22211ln x x x g x x x +-+-'=+,令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<,所以当1x =时,()g x 取得最大值1-,所以1a ≥-,所以实数a 的取值范围是[1,)-+∞.【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论..2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.24.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果;(2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域. 【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =.∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f =-+>,即0>,而0>恒成立,∴0b >.所以实数b 的取值范围为()0,∞+.(2)()22f x x ax b '=-++, 由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩ 当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-, 令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符.当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤;令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =.又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减.又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】思路点睛: 导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 25.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.26.(1)1,1a b ==;(2)证明见解析.【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立.【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+, ()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭, 即1y bx =+,∵两条切线重合.∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-.易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减,当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增.∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到.∴不等式()()f x g x >恒成立.【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题.。

第三章.导数及其应用测试卷(含详细答案)

第三章.导数及其应用测试卷(含详细答案)

单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。

高考复习专题03 导数及其应用选择填空题(含解析)三年高考试题

高考复习专题03 导数及其应用选择填空题(含解析)三年高考试题

1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣12.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.19.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.110.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.1.【2019年新课标3理科06】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.2.【2019年新课标3理科07】函数y在[﹣6,6]的图象大致为()A.B.C.⊈D.【解答】解:由y=f(x)在[﹣6,6],知f(﹣x),∴f(x)是[﹣6,6]上的奇函数,因此排除C又f(4),因此排除A,D.故选:B.3.【2019年新课标1理科05】函数f(x)在[﹣π,π]的图象大致为()A.B.C.D.【解答】解:∵f(x),x∈[﹣π,π],∴f(﹣x)f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(),因此排除B,C;故选:D.4.【2018年新课标1理科05】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.5.【2018年新课标2理科03】函数f(x)的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.6.【2018年新课标3理科07】函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x或0<x,此时函数单调递增,由f′(x)<0得2x(2x2﹣1)>0,得x或x<0,此时函数单调递减,排除C,也可以利用f(1)=﹣1+1+2=2>0,排除A,B,故选:D.7.【2018年浙江05】函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x时,函数的值也为0,故排除C.故选:D.8.【2017年新课标2理科11】若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f (x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.9.【2017年新课标3理科11】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.B.C.D.1【解答】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1)的图象有两个交点,矛盾;③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1)在(﹣∞,1)上递减、在(1,+∞)上递增,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1)的图象的最低点为B(1,2a),由题可知点A与点B重合时满足条件,即2a=1,即a,符合条件;综上所述,a,故选:C.10.【2017年浙江07】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.11.【2019年新课标1理科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.12.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a =;若f(x)是R上的增函数,则a的取值范围是.【解答】解:根据题意,函数f(x)=e x+ae﹣x,若f(x)为奇函数,则f(﹣x)=﹣f(x),即e﹣x+ae x=﹣(e x+ae﹣x),变形可得a=﹣1,函数f(x)=e x+ae﹣x,导数f′(x)=e x﹣ae﹣x若f(x)是R上的增函数,则f(x)的导数f′(x)=e x﹣ae﹣x≥0在R上恒成立,变形可得:a≤e2x恒成立,分析可得a≤0,即a的取值范围为(﹣∞,0];故答案为:﹣1,(﹣∞,0].13.【2019年江苏10】在平面直角坐标系xOy中,P是曲线y=x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.【解答】解:由y=x(x>0),得y′=1,设斜率为﹣1的直线与曲线y=x(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.14.【2019年江苏11】在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A 处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.【解答】解:设A(x0,lnx0),由y=lnx,得y′,∴,则该曲线在点A处的切线方程为y﹣lnx0,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).15.【2019年浙江16】已知a∈R,函数f(x)=ax3﹣x.若存在t∈R,使得|f(t+2)﹣f(t)|,则实数a的最大值是.【解答】解:存在t∈R,使得|f(t+2)﹣f(t)|,即有|a(t+2)3﹣(t+2)﹣at3+t|,化为|2a(3t2+6t+4)﹣2|,可得2a(3t2+6t+4)﹣2,即a(3t2+6t+4),由3t2+6t+4=3(t+1)2+1≥1,可得0<a,可得a的最大值为.故答案为:.16.【2018年江苏11】若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.17.【2018年新课标2理科13】曲线y=2ln(x+1)在点(0,0)处的切线方程为.【解答】解:∵y=2ln(x+1),∴y′,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.18.【2018年新课标3理科14】曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.19.【2017年江苏11】已知函数f(x)=x3﹣2x+e x,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.【解答】解:函数f(x)=x3﹣2x+e x的导数为:f′(x)=3x2﹣2+e x2+20,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a,故答案为:[﹣1,].。

版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版 试题

版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版 试题

3.2 利用导数研究函数的单调性核心考点·精准研析考点一不含参数的函数的单调性1.函数y=xlnx的单调递减区间是( )A.(-∞,e-1)B.(e-1,+∞)C.(e,+∞)D.(0,e-1)2.函数f(x)=的单调递增区间为.3.(2019·某某高考改编)函数f(x)=-lnx+的单调递减区间为________________.4.(2019·某某高考改编)函数f(x)=e x cosx的单调递增区间为___________.【解析】1.选D.函数y=xlnx的定义域为(0,+∞),因为y=xlnx,所以y′=lnx+1,令y′<0得0<x<e-1,所以减区间为(0,e-1).2.因为f(x)=,所以f′(x)=,由f′(x)>0,解得x<-1-或x>-1+.所以f(x)的递增区间为(-∞,-1-)和(-1+,+∞).答案:(-∞,-1-)和(-1+,+∞)3.f(x)=-lnx+的定义域为(0,+∞).f′(x)=-+=,由x>0知>0,2+1>0,所以由f′(x)<0得-2<0,解得0<x<3,所以函数f(x)的单调递减区间为(0,3).答案:(0,3)4.由已知,有f′(x)=e x(cosx-sinx).因此,当x∈(k∈Z)时,有sinx<cosx,得f′(x)>0,则f(x)单调递增.所以f(x)的单调递增区间为(k∈Z).答案:(k∈Z)题2中,若将“f(x)=”改为“f(x)=x2e x”,则函数f(x)的单调递减区间是________________. 【解析】因为f(x)=x2e x,所以f′(x)=2xe x+x2e x=(x2+2x)e x.由f′(x)<0,解得-2<x<0,所以函数f(x)=x2e x的单调递减区间是(-2,0).答案:(-2,0)确定函数单调区间的步骤(1)确定函数y=f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【秒杀绝招】排除法解T1,根据函数的定义域排除A,已知当x∈(1,+∞)时,y=x和y=lnx都是增函数且为正数,所以y=xlnx也是增函数,从而排除B,C.考点二含参数的函数的单调性【典例】已知函数f(x)=lnx+ax2-(2a+1)x.若a>0,试讨论函数f(x)的单调性.【解题导思】序号题目拆解(1)求f′(x),解方程f′(x)=0求f(x)的定义域,求f′(x)并进行恰当的因式分解,求出方程f′(x)=0的根(2)由f′(x)的符号确定f(x)的单调性用导数为零的实数分割定义域,逐个区间分析导数的符号,确定单调性【解析】因为f(x)=lnx+ax2-(2a+1)x,所以f′(x)==,由题意知函数f(x)的定义域为(0,+∞),令f′(x)=0得x=1或x=,(1)若<1,即a>,由f′(x)>0得x>1或0<x<,由f′(x)<0得<x<1,即函数f(x)在,(1,+∞)上单调递增,在上单调递减;(2)若>1,即0<a<, 由f′(x)>0得x>或0<x<1,由f′(x)<0得1<x<, 即函数f(x)在(0,1),上单调递增, 在上单调递减;(3)若=1,即a=,则在(0,+∞)上恒有f′(x)≥0,即函数f(x)在(0,+∞)上单调递增.综上可得:当0<a<时,函数f(x)在(0,1)上单调递增, 在上单调递减,在上单调递增;当a=时,函数f(x)在(0,+∞)上单调递增;当a>时,函数f(x)在上单调递增, 在上单调递减,在(1,+∞)上单调递增.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性问题,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(2018·全国卷I改编)已知函数f=-x+alnx,讨论f的单调性.【解析】f(x)的定义域为(0,+∞),f′(x)=--1+=-.(1)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(2)若a>2,令f′(x)=0得,x=或x=.当x ∈∪时,f′(x)<0;当x∈时,f′(x)>0.所以f(x)在,上单调递减,在上单调递增.考点三利用导数解决函数单调性的应用问题命题精解读1.考什么:(1)考查函数图像的识别、比较大小或解不等式、根据函数的单调性求参数等问题.(2)考查直观想象、数学运算、逻辑推理的核心素养及数形结合、转化与化归的思想方法.2.怎么考:与基本初等函数、不等式等综合考查函数的图像及函数的单调性的应用等问题.3.新趋势:以导数法研究函数单调性为基础,综合考查利用单调性比较大小、解不等式及知单调性求参数的X围.学霸好方法由函数的单调性求参数的取值X围的方法(1)可导函数在区间D上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,从而构建不等式, 求出参数的取值X围,要注意“=”是否可以取到. (2)可导函数在区间D 上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值X 围.(3)若已知f(x)在区间D 上的单调性,区间D上含有参数时,可先求出f(x)的单调区间,令D 是其单调区间的子集,从而求出参数的取值X围.函数图像的识别【典例】函数f(x)=x2+xsinx的图像大致为( )【解析】选A.因为f(-x)=x2-xsin(-x)=x2+xsinx=f(x),所以f(x)为偶函数,B不符合题意,f(x)=x2+xsinx=x(x+sinx),令g(x)=x+sinx,则g′(x)=1+cosx≥0恒成立,所以g(x)是单调递增函数,则当x>0时,g(x)>g(0)=0,故x>0时,f(x)=xg(x),f′(x)=g(x)+xg′(x)>0,即f(x)在(0,+∞)上单调递增,故只有A符合题意.辨别函数的图像主要从哪几个角度分析?提示:从函数奇偶性、单调性、最值及函数图像所过的特殊点等角度分析.比较大小或解不等式【典例】(2019·某某模拟)函数f(x)在定义域R内可导,f(x)=f(4-x),且(x-2)f′(x)>0.若a=f(0),b=f,c=f(3),则a,b,c的大小关系是( )A.c>b>aB.c>a>bC.a>b>cD.b>a>c【解析】选C.由f(x)=f(4-x)可知,f(x)的图像关于直线x=2对称,根据题意知,当x∈(-∞,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.所以f(3)=f(1)<f<f(0),即c<b<a.单调性比较大小或解不等式,实际上是自变量的大小与相应函数值的大小关系的互推,比较大小时对自变量的取值X围有什么要求?提示:必须在同一个单调区间内.根据函数的单调性求参数【典例】(2019·高考)设函数f(x)=e x+ae-x(a为常数).若f(x)为奇函数,则a=________________;若f(x)是R上的增函数,则a的取值X围是__________.【解析】①显然f(0)有意义,又f(x)为奇函数,所以f(0)=0,得a=-1.②因为f(x)是R上的增函数,所以f′(x)=e x-ae-x=≥0恒成立,即g(x)=(e x)2≥a恒成立,又因为g(x)>0,且当x趋向于-∞时,g(x)趋向于0,所以0≥a,即a的取值X围是(-∞,0].答案:-1 (-∞,0]函数f(x)在某区间上是增函数,推出f′(x)>0还是f′(x)≥0?提示:推出f′(x)≥0.1.设函数y=f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数y=f′(x)可能为( )【解析】选D.由题意得,当x<0时,函数y=f(x)单调递增,故f′(x)>0;当x>0时,函数y=f(x)先增再减然后再增,故导函数的符号为先正再负然后再正.结合所给选项可得D符合题意.2.已知函数f′(x)是函数f(x)的导函数,f(1)=,对任意实数都有f(x)-f′(x)>0,设F(x)=,则不等式F(x)<的解集为 ( )A.(-∞,1)B.(1,+∞)C.(1,e)D.(e,+∞)【解析】选B.根据题意,F(x)=,其导数F′(x)==,又由f(x)-f′(x)>0,则有F′(x)<0,即函数F(x)在R上为减函数,又由f(1)=,则F(1)==,不等式F(x)<等价于F(x)<F(1),则有x>1,则不等式的解集为(1,+∞).3.若f(x)=2x3-3x2-12x+3在区间[m,m+4]上是单调函数,则实数m的取值X围是________________.【解析】因为f(x)=2x3-3x2-12x+3,所以f′(x)=6x2-6x-12=6(x+1)(x-2),令f′(x)>0,得x<-1或x>2;令f′(x)<0,得-1<x<2,f(x)在(-∞,-1]和[2,+∞)上单调递增,在(-1,2)上单调递减.若f(x)在区间[m,m+4]上是单调函数,则m+4≤-1或或m≥2.所以m≤-5或m≥2,则m的取值X围是(-∞,-5]∪[2,+∞).答案:(-∞,-5]∪[2,+∞)(2020·内江模拟)若函数f(x)=ax2+xlnx-x存在单调递增区间,则a的取值X围是( ) A. B.C.(-1,+∞)D.【解析】选B.因为f(x)=ax2+xlnx-x存在单调递增区间,则f′(x)=ax+lnx≥0在(0,+∞)上有解, 即a≥-在(0,+∞)上有解,令g(x)=-,x>0,则g′(x)=,当x>e时,g′(x)>0,g(x)单调递增,当0<x<e时,g′(x)<0,g(x)单调递减,又x→0,g(x)→+∞,x→+∞,g(x)<0且g(x)➝0,因为g(e)=-,所以a≥-,当a=-时,f′(x)=-x+lnx,令h(x)=-x+lnx,则h′(x)=-,当x>e时,h′(x)<0,函数单调递减,当0<x<e时,h′(x)>0,函数单调递增,h(x)≤h(e)=0,即f′(x)≤0恒成立,此时不满足题意,所以a的取值X围是.。

北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)

一、选择题1.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫⎪⎝⎭2.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2 B .1(2,2) C .(1,2)- D .(1,3)-4.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞5.函数()2e e x x f x x--=的图像大致为 ( ) A . B .C .D .6.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个7.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D . 8.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-a x 在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( )A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤ 9.函数()21x y x e =-的图象大致是( )A .B .C .D .10.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2e B .e C .1 D .1211.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( )A .1B .2C .eD .2e12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 16.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____ 19.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件;②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.20.设函数()2()1x f x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.22.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围. 23.已知函数()x f x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值;(2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值.24.已知函数()ln ()a f x x a R x=+∈. (1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=()f x x-4ln x 的零点个数. 26.已知函数()(2)()x f x x e alnx ax a R =-+-∈.(1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】 由题意得2ln x x a x+=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x x a x+=在(0,1)上为增函数, 可得),(1a ∈-∞, 当(1,),()0,0x g x a ∈+∞<<',2ln x x a x +=在(1,)+∞上单调递减,可得(0,1)∈a , 即要2ln x x a x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 2.A解析:A【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增;故选A .3.C解析:C【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围.【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=, 整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.D解析:D【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln x a x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解.【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=,()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x ∴=-()1x >, 不等式()f x ax ≤对任意()1,x ∈+∞恒成立, ∴2ln x ax x-≤对任意()1,x ∈+∞恒成立, 即ln x a x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln e g x g e e e==-=-, a e ∴≥-, ∴实数a 的取值范围是[),e -+∞.故选:D.【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥.5.B解析:B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.B解析:B【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论.【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)x g x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数,于是222x e x x -=+,化为2220(0)x e x x x ++=<,令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解,由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>,∴存在0(2,1)x ∈--使得0()0x ϕ'=,当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>, ∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个.故选:B .【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题. 7.D解析:D【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项【详解】 解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=,所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x =-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足.故选:D【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题8.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2a g x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果.【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减, 所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立, 得23,3x a a -≤∴≥-,又因为()2a g x x x =-在区间(]1,2上既有最大值,又有最小值,所以,可知()2'2a g x x x =+在(]1,2上有零点, 也就是极值点,即有解220a x x +=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C.【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.9.A解析:A【分析】 根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21x y x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.10.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x +=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.11.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论.【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()x f x e '=,切线方程为000()-=-x x y e e x x ,切线过原点,∴000x x e e x -=-⋅,01x =,∴(1)k f e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2a x =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2a x =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <, 综上:a 的取值范围为28a <<故选:D【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调 解析:1,e ⎛⎤-∞ ⎥⎝⎦ 【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x=, 则()21ln x f x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确.故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【 解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围.【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+, 令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e≥, 当()0g x '<,即ln 10x +<,解得10x e <<所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤- 故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.16.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数 解析:2【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=,所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去).所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--,所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内,所以2m =.故答案为:2【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围.【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln a g x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立, 只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞.【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.19.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数,函数最多一个零点;③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围.【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的.故答案为:①③⑤【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围.【详解】函数()2()1x f x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x x x e x =--+⋅≥,令'0f x ,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f =,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)1,1a b ==;(2)证明见解析.【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减, 当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增. ∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 22.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-. ∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =, 结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 23.(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122x h x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=,令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立,∴2151022x e x x k +---≥对任意x ∈R 恒成立, ∴215122xk e x x ≤+--对任意x ∈R 恒成立. 令()215122xh x e x x =+--,则()52x h x e x '=+-. 由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增. ∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502xe x +-=,∴0052x e x =-. ∴()()2200000051511732222h x x x x x x =-+--=-+. ∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型.24.(1)见解析;(2),a e =. 【分析】 (1)求得()2x af x x='-,分类讨论,即可求解函数的单调性;(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解. 【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增 所以()()min ln 12f x f a a ==+=,解得a e = (舍去), 当a e ≥时,由(1)知()f x 在[]1,e 单调递减, 所以()()min ln 12a af x f e e e e==+=+=,解得a e = , 综上所述,a e =. 【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表: x (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) +-+g (x )极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用. 26.(1)a e >;(2)()f x 有唯一零点;证明见解析. 【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求. 【详解】解:(1)()(1)x e x af x x x-'=-,0x >,设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增, 故存在0x 使得0()0g x =,当a e =时,()(1)0x e x af x x x-'=-恒成立,故()f x 单调递增无极值,a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增, 当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点 综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点. 【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。

【2019届走向高考】高三数学一轮(北师大版)第三章 导数及其应用:阶段测试卷第3章 第2节

【2019届走向高考】高三数学一轮(北师大版)第三章 导数及其应用:阶段测试卷第3章 第2节

第三章 第二节一、选择题1.(原创题)函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为( )A .1B .2C .3D .4[答案] A[解析] 从f ′(x )的图像可知f (x )在(a ,b )内从左到右的单调性依次为增→减→增→减,∴在(a ,b )内只有一个极小值点.2.已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =( ) A .9 B .6 C .-9 D .-6 [答案] D[解析] y ′=4x 3+2ax ,y ′|x =-1=-4-2a =8 ∴a =-6.3.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) [答案] A[解析] f ′(x )=3ax 2+2bx +c ,由题意知1、-1是方程3ax 2+2bx +c =0的两根,∴1-1=-2b3a,b =0,故选A .4.在R 上可导的函数f (x )的图像如图所示,则关于x 的不等式x ·f ′(x )<0的解集为( ) A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞)[答案] A[解析]在(-∞,-1)和(1,+∞)上f(x)递增,所以f′(x)>0,使xf′(x)<0的范围为(-∞,-1);在(-1,1)上f(x)递减,所以f′(x)<0,使xf′(x)<0的范围为(0,1).5.(文)(2014·新课标Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)[答案] D[解析]由条件知f′(x)=k-1x≥0在(1,+∞)上恒成立,∴k≥1.把函数的单调性转化为恒成立问题是解决问题的关键.(理)已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④[答案] C[解析]∵f′(x)=3x2-12x+9=3(x-1)(x-3),由f′(x)<0,得1<x<3,由f′(x)>0,得x<1或x>3,∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.又a<b<c,f(a)=f(b)=f(c)=0,∴y极大值=f(1)=4-abc>0,y极小值=f(3)=-abc<0.∴0<abc<4.∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3为函数f(x)的极值点,后一种情况不可能成立,如图.∴f(0)<0.∴f(0)f(1)<0,f(0)f(3)>0.∴正确结论的序号是②③.6.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值[答案] C[解析]本题考查函数零点的判断及函数的极值.①当k=1时,f(x)=(e x-1)(x-1),此时f′(x)=e x(x-1)+(e x-1)=e x·x-1,∴A、B项均错.②当k=2时,f(x)=(e x-1)(x-1)2此时f′(x)=e x(x-1)2+(2x-2)(e x-1)=e x·x2-2x-e x+2=e x(x+1)(x-1)-2(x-1)=(x-1)[e x(x+1)-2],易知g(x)=e x(x+1)-2的零点介于0,1之间,不妨设为x0,则有故f(x)在x=1处取得极小值.二、填空题7.(文)函数f(x)=(x-3)e x的单调递增区间是________.[答案](2,+∞)[解析]f′(x)=e x+(x-3)e x=e x(x-2),由f′(x)>0得x>2.(理)已知函数f(x)=ax3+bx2+c,其导函数f′(x)的图像如图所示,则函数f(x)的极小值是________.[答案] c[解析] 由f ′(x )的图像知,x =0是f (x )的极小值点, ∴f (x )极小值=f (0)=C .8.已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5在(-∞,+∞)内单调递减,则实数m 的值为________.[答案] -2[解析] ∵f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数, ∴m 2-4=0,∴m =±2.∵g (x )在(-∞,+∞)内单调递减, ∴g ′(x )=-3x 2+4x +m ≤0恒成立, 则16+12m ≤0,解得m ≤-43,∴m =-2.9.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,则实数a 的取值范围为________.[答案] a ≥1[解析] 由已知得a >1+ln xx 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln xx 2<0 (x >1),∴g (x )=1+ln xx 在区间(1,+∞)内单调递减,∴g (x )<g (1),∵g (1)=1,∴1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;。

2019大一轮高考总复习理数北师大版文档:第3章 第1节

2019大一轮高考总复习理数北师大版文档:第3章 第1节

第一节 导数的概念及运算1.导数的概念(1)函数f (x )在x =x 0处的导数①定义:称函数y =f (x )在x 0点的瞬时变化率为函数y =f (x )在点x 0处的导数,用f ′(x 0)表示,记作f ′(x 0)=!!! li mΔx →0 f (x 0+Δx )-f (x 0)Δx###.②几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x )(x -x 0).(2)函数f (x )的导函数一般地,如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=!!! li mΔx →0 f (x +Δx )-f (x )Δx###,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数复合函数y =f (φ(x ))的导数和函数y =f (u ),u =φ(x )的导数间的关系为y x ′=f (u )′φ(x )′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.提醒: 辨明三个易误点(1)利用公式求导时要特别注意不要将幂函数的求导公式(x α)′=αx α-1与指数函数的求导公式(a x )′=a x ln a 混淆.(2)求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.(3)曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.1.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)与f ′(x )表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( )(3)曲线的切线不一定与曲线只有一个公共点,与曲线只有一个公共点的直线不一定是曲线的切线.( )(4)若f (x )=t 3+2tx -x 2,则f ′(x )=3t 2+2x .( )(5)曲线“在点P 处的切线”与“过点P 的切线”是相同的.( ) 答案:(1)× (2)× (3)√ (4)× (5)×2.(教材习题改编)已知函数f (x )=x 3+x -2,且f ′(a )=2,则a =__________. 解析:f ′(x )=3x 2+1.所以f ′(a )=3a 2+1=2,得:a =±33.答案:±333.(教材习题改编)以初速度10 m/s 向上抛出一个物体,其上升的高度s (单位:m)与时间t (单位:s)的关系为s =10t -5t 2,则t s 时物体的速度v =__________,加速度 a =__________.解析:v =s ′=10-10t ,a =v ′=-10. 答案:10-10t -104.(2018·临沂月考)若函数f (x )=ln xx ,则f ′(2)=__________.解析:由f ′(x )=1-ln x x 2,得f ′(2)=1-ln 24. 答案:1-ln 245.(广东卷改编)曲线y =-5e x +3在点(0,-2)处的切线方程为__________.解析:因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.答案:5x +y +2=0导数的运算 [明技法] 导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导. (3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.[提能力]【典例】 求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =3x e x -2x +e ;(4)y =ln xx 2+1;(5)y =ln(2x -5).解:(1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2x ln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2.(5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.[刷好题]1.(2016·天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为__________.解析:因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 答案:32.(2018·烟台模拟)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为__________.解析:f ′(x )=a ⎝⎛⎫ln x +x ×1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:3导数的几何意义及应用 [析考情]导数的几何意义是高考重点考查的内容, 主要考查求曲线的切线斜率、切线方程或已知曲线的切线斜率、切线方程求参数的值或范围等问题.多以小题形式出现,有时也出现在解答题的第一问,分值约5分.[提能力]命题点1:求切线方程【典例1】 (2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是__________.解析:由题意可得当x >0时,f (x )=ln x -3x ,则f ′(x )=1x -3,f ′(1)=-2,则在点(1,-3)处的切线方程为y +3=-2(x -1),即y=-2x -1.答案:y =-2x -1 命题点2:求切点坐标【典例2】 (2018·潍坊检测)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为__________.解析:y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)命题点3:已知切线方程求参数的值【典例3】 (2018·大同质检)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,所以当x =x 0时,y ′=1x 0+a =1,即x 0+a =1.又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2. [悟技法]导数几何意义的应用及解法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0求解.[刷好题]1.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =__________.解析:∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,所以切线的方程为y -(a +2)=(3a +1)·(x -1),又切线过点(2,7),所以7-(a +2)=3a +1.即a =1.答案:12.(2018·贵阳模拟)若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是__________.解析:由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e)3.(2018·武威模拟)经过原点(0,0)作函数f (x )=x 3+3x 2图像的切线,则切线方程为__________.解析:f ′(x )=3x 2+6x .当(0,0)为切点时,f ′(0)=0,故切线方程为y =0.当(0,0)不为切点时,设切点为P (x 0,x 30+3x 20),则切线方程为y -(x 30+3x 20)=(3x 20+6x 0)(x -x 0),又点(0,0)在切线上,所以-x 30-3x 20=-3x 30-6x 20,解得x 0=0(舍去)或x 0=-32,故切线方程为9x +4y =0.答案:y =0或9x +4y =0课时作业提升(十三) 导数的概念及运算A 组 夯实基础1.曲线y =x e x-1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C ∵y =x e x -1,∴y ′=e x -1+x e x -1.∴当x =1时,y ′=e 0+e 0=2,选C . 2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1D .e解析:选B 由题由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.3.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得,当x =1时,y ′=2,即a -1=2,所以a =3. 4.(2018·日照月考)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2解析:选C 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C .5.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( )A .4B .5C .254D .132解析:选C ∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8,故切线方程为y -2=8(x +1),即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.6.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是__________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x3(x >0),故a ∈(-∞,0).答案: (-∞,0)7.(2018·安徽七校联考)若曲线y =32x 2+x -12的某一切线与直线y =4x +3平行,则切线方程为__________.解析:设切点为(x 0,y 0),切线的斜率k =y ′|x =x 0=3x 0+1,3x 0+1=4⇒x 0=1.又y 0=32x 20+x 0-12=2,则切点为(1,2),故切线的方程为y -2=4(x -1)⇒y =4x -2. 答案:y =4x -28.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =__________.解析:∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧m =a ,m =1,即a =1,∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1. 又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1. 答案:19.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图像为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞). 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解: (1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1. 所以⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4 (x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.B 组 能力提升1.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017D .2 0182 017解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017.2.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.3.已知函数f (x )=ln x +tan α,α∈⎝⎛⎭⎫0, π2的导函数为f ′(x ),若使得f ′(x 0)=f (x 0)成立的x 0满足x 0<1,则α的取值范围为__________.解析:∵f ′(x )=1x ,∴f ′(x 0)=1x 0,由f ′(x 0)=f (x 0),得1x 0=ln x 0+tan α,∴tan α=1x 0-ln x 0.又0<x 0<1,∴1x 0-ln x 0>1,即tan α>1,又α∈⎝⎛⎭⎫0, π2,∴α∈⎝⎛⎭⎫π4, π2. 答案:⎝⎛⎭⎫π4, π24.设函数y =x 2-2x +2的图像为C 1,函数y =-x 2+ax +b 的图像为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0, ①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , 即2x 20-(a +2)x 0+2-b =0. ②由①②消去x 0,可得a +b =52.5.(2018·唐山月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解: (1)由已知得f ′(x )=3ax 2+6x -6a ,因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2. 在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9. ②由f ′(x )=12得-6x 2+6x +12=12, 解得x =0或x =1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

2019高三数学(北师大版理科)一轮训练题单元质检卷三 导数及其应用 Word版含解析

2019高三数学(北师大版理科)一轮训练题单元质检卷三 导数及其应用 Word版含解析

单元质检卷三导数及其应用(时间分钟满分分)一、选择题(本大题共小题,每小题分,共分).如果一个物体的运动方程为,其中的单位是米的单位是秒,那么物体在秒末的瞬时速度是()米秒米秒米秒米秒.设曲线在点()处的切线与直线垂直,则等于()..若函数有极值,则实数的取值范围是()><><.已知函数()在上是减少的,则实数的取值范围是().(∞]∪[∞) .[].(∞)∪(∞) .().函数() 的零点的个数是().已知≤对任意∈恒成立,则的最大值为().(河北唐山三模,理)已知函数()有两个极值点,且<,若,函数()()(),则()().恰有一个零点.恰有两个零点.恰有三个零点.至多两个零点〚导学号〛.设()()分别是定义在上的奇函数和偶函数,当<时'()()()'()>,且(),则不等式()()<的解集是().()∪(∞) .()∪().(∞)∪(∞) .(∞)∪().(河北石家庄二中模拟,理)若存在正实数,使得关于的方程()[() ]成立,其中为自然对数的底数,则实数的取值范围是().(∞) ..(∞)∪..已知函数()的最大值为(),则等于().....若函数()在区间内有极值点,则实数的取值范围是().....(江西新余一中模拟七,理)设点(())和点(())分别是函数() 和()图像上的点,且≥≥,若直线∥轴,则两点间的距离的最小值为()二、填空题(本大题共小题,每小题分,共分).函数()·的图像在点(())处的切线方程是..(内蒙古包头一模,理)已知函数()是定义在上的可导函数,其导函数记为'(),若对于任意∈,有()>'(),且()是奇函数,则不等式()<的解集为..若实数满足,则()()的最小值为..已知() ,若()<()对任意>恒成立,则整数的最大值为.。

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(1)

最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(1)

一、选择题1.已知函数()3sin f x x x ax =+-,则下列结论错误的是( )A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点2.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或23.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-4.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞5.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( )A .11,27⎛⎫-∞-⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭6.若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞9.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞10.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭11.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .312.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <二、填空题13.已知定义域为R 的函数()f x 满足1122f ⎛⎫=⎪⎝⎭,()40f x x '+>,其中()f x '为()f x 的导函数,则不等式()sin cos20f x x -≥的解集为______.14.已知函数()ln (1)=+-f x x a x ,当()f x 有最大值,且最大值大于22a -时,则a 的取值范围是__________.15.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________ 16.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.17.已知函数()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的单调递增区间为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____20.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________.三、解答题21.已知函数()322=-+f x x ax b .(1)4a =时,()f x 在区间[]1,1-的最小值为-5,求b 的值 (2)讨论()f x 的单调性; 22.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.23.有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大.24.设函数()(1)f x lnx m x =-+,2()2m g x x =,(0,)x m R >∈. (Ⅰ)若对任意121x x >>,1212()()1f x f x x x -<--恒成立,求m 的取值范围;(Ⅱ)()()()h x f x g x =+,讨论函数()y h x =的单调性. 25.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围. 26.已知函数()(2)()x f x x e alnx ax a R =-+-∈. (1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 2.A解析:A 【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数. 【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+, 当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>. 综上所述,函数()y F x =的零点个数为0.故选:A. 【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.3.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.4.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=,()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 5.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.6.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由x y e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1x x xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.B解析:B【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.9.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立,令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.10.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.11.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.12.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.二、填空题13.【分析】引入函数求导后利用已知条件得即为增函数计算题设不等式又化为由单调性可求解最后再由正弦函数性质得出结论【详解】设则∴单调递增即为∴∴故答案为:【点睛】关键点点睛:本题考查用导数解函数不等式解题解析:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈ 【分析】引入函数2()()21g x f x x =+-,求导后利用已知条件得()0g x '>,即()g x 为增函数,计算102g ⎛⎫=⎪⎝⎭,题设不等式又化为(sin )(0)g x g ≥,由单调性可求解.最后再由正弦函数性质得出结论. 【详解】设2()()21g x f x x =+-,则()()40g x f x x ''=+>,∴()g x 单调递增.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2(sin )cos2(sin )2sin 10f x x f x x -=+-≥即为1(sin )2g x g ⎛⎫≥ ⎪⎝⎭,∴1sin 2x ≥,∴522,66k x k k Z ππππ+≤≤+∈. 故答案为:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈【点睛】关键点点睛:本题考查用导数解函数不等式,解题关键是引入新函数2()()21g x f x x =+-,利用导数确定单调性,不等式转化为()g x 的不等式,从而求解.解题时要善于观察,分析如何引入函数,引入什么样的函数.14.【解析】的定义域为∴若则∴函数在上单调递增在上无最大值;若则当时当时所以在上单调递增在上单调递减故在取得最大值最大值为∵∴令∵在单调递增∴当时当时∴的取值范围为故答案为点睛:本题考查了导数与函数的单 解析:(0,1)【解析】()()ln 1f x x a x =+-的定义域为∞(0,+),∴11axf x a x x-'=-=(), 若0a ≤,则()0f x '>,∴函数()f x 在∞(0,+)上单调递增,()f x 在∞(0,+)上无最大值;若0a >,则当10x a ∈(,)时,()0f x '>,当1x a∈+∞(,)时,()0f x '<,所以()f x 在10a(,)上单调递增,在1a+∞(,)上单调递减,故()f x 在1x a=取得最大值,最大值为11f lna a a =-+-(),∵122f a a ⎛⎫>- ⎪⎝⎭,∴10lna a +-<, 令()1g a lna a =+-,∵()g a 在∞(0,+)单调递增,0g =(1), ∴当01a <<时,()0g a <,当1a >时,()0>g a ,∴a 的取值范围为()0,1,故答案为()0,1.点睛:本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题;先求导,再分类讨论,根据导数即可判断函数的单调性,根据单调性求出函数的最大值,再构造函数()1g a lna a =+-,根据函数的单调性即可求出a 的范围.15.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.16.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x -+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a+'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.17.【分析】首先求出函数的导函数由再根据三角函数的性质解三角不等式即可;【详解】解:所以令即所以故的单调递增区间为故答案为:【点睛】本题考查利用导数求函数的单调区间三角函数的性质的应用属于中档题解析:06,π⎡⎤⎢⎥⎣⎦【分析】首先求出函数的导函数,由()0f x '>,再根据三角函数的性质解三角不等式即可; 【详解】 解:()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦所以()1sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦令()0f x '>,即1sin 02x -+>,所以06x π<<,故()f x 的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,故答案为:06,π⎡⎤⎢⎥⎣⎦【点睛】本题考查利用导数求函数的单调区间,三角函数的性质的应用,属于中档题.18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】 先求出()21ln xf x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案. 【详解】 由函数()ln xf x x =有()()2ln 1ln 0x x f x x x x-'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又函数()ln xf x x=在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e ≥⎧⎨+≤⎩,解得:01a e ≤≤-. 故答案为:[]0,1e - 【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围. 【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln ag x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立,只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.20.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】 变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案.【详解】由题可知函数()f x 的定义域为()0,∞+ 函数()ln 1f x ax x =--有零点, 等价于()ln 10f x ax x =--=有实数根()ln 10f x ax x =--=,即ln 1x a x+=, 设()ln 1x g x x +=,则()2ln 'xg x x-=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =, 画出图像,如图所示:根据图像知1a ≤.故答案为:(,1]-∞. 【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.三、解答题21.(1)1b =;(2)答案见解析. 【分析】(1)求导求出函数的单调区间,比较(1),(1)f f -得到函数的最小值为65b -=-即得解;(2)先求导,再对a 分三种情况得到函数的单调性. 【详解】(1)()3224f x x x b =-+,所以()2682(34)f x x x x x '=-=-,令()>00f x x '∴<,;()<00f x x '∴>,; 所以函数的单调递增区间为[1,0]-,单调递减区间为[0,1], 因为(1)246,(1)2f b b f b -=--+=-=-, 所以()f x 在区间[]1,1-的最小值65,1b b -=-∴=. (2)()()26223f x x ax x x a '=-=-.令0f x ,得0x =或3ax =. 若0a >,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0f x ;当0,3⎛⎫∈ ⎪⎝⎭a x 时,0f x .故()f x 在,0,,3a ⎛⎫+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若0a =,()f x 在(),-∞+∞单调递增;若0a <,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0fx ;当,03⎛⎫∈⎪⎝⎭a x 时,0f x.故()f x 在,3a ⎛⎫-∞ ⎪⎝⎭,0,单调递增,在,03⎛⎫⎪⎝⎭a 单调递减.【点睛】方法点睛:用导数求函数的单调区间步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.22.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭.【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性; (2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果. 【详解】(1)由题意得:()22xf x e a '=-,当0a ≤时,()0f x '>,()f x ∴在R 上单调递增; 当0a >时,令()0f x '=得:1ln 22ax =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意; 当0a =时,2()0x f x e =>恒成立,满足题意. 当0a >时,()f x 在1ln 22ax =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭,令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立.综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果. 23.(1)见解析;(2) 6a. 【详解】解: 2322221212(1)(2?44(0)2(2)'128'0,()26v a x xax ax a x x v ax ax a a av x x x x =-=-+<<=-+===)令舍,根据,列表,得到函数的极值和单调性06a(,) 6a(,)62a aV’+9-v增极大值 减6x =时,max ()27v x = 【点睛】此题是一道应用题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.24.(Ⅰ)1m ;(Ⅱ)答案见解析. 【分析】(Ⅰ)依题意,1122()()f x x f x x +<+,构造函数()()(1)k x f x x lnx mx x =+=->,则1()0(1)k x m x x'=->恒成立,由此即可求得m 的取值范围; (Ⅱ)表示出()h x ,求导,分类讨论即可得出其单调性情况. 【详解】(Ⅰ)依题意,121x x >>,1212()()1f x f x x x -<--,即1212()()()f x f x x x -<--,亦即1122()()f x x f x x +<+,令()()(1)k x f x x lnx mx x =+=->,由题意即知函数()y k x =在区间(1,)+∞上单调递减,则1()0(1)k x m x x'=->恒成立, ∴1m x在区间(1,)+∞上恒成立,故1m . (Ⅱ)2()(1)(0)2m h x lnx m x x m =-++>,1(1)(1)()(1)mx x h x m mx x x--'=-++=, 当0m =时,1()xh x x-'=, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当0m <时,101m<<, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当1m =时,()0h x ',()h x 的单调递增区间为(0,)+∞, 当1m 时,令()0h x '=,得1x =或1x m =;101m<<,当x 变化,()h x ',()h x 变化如下表即单调增区间为1(0,)m,(1,)+∞,减区间为(,1)m. 当01m <<时,令()0h x '=,得1x =或1x m =;11m>,当x 变化,()h x ',()h x 变化如下表即单调增区间为(0,1),1(,)m+∞,减区间为(1,)m. 综上:当0m 时,单调增区间为(0,1),减区间为(1,)+∞,当01m <<时,单调增区间为(0,1),1(,)m+∞,减区间为1(1,)m,当1m =时,()h x 的单调递增区间为(0,)+∞, 当1m 时,单调增区间为1(0,)m,(1,)+∞,减区间为1(,1)m. 【点睛】本题主要考查利用导数研究函数的单调性,考查构造思想及分类讨论思想,考查运算求解能力,属于中档题. 25.(1)1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222aln a a af ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围;【详解】解:(1)因为()2xf x e ax b =-+所以()()220xf x ea a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =,∴ln 21ln ln 02222aa a af e a ⎛⎫=-+< ⎪⎝⎭,即ln 0222a a aa -+< 所以3ln02a -< 所以32a e > 【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.26.(1)a e >;(2)()f x 有唯一零点;证明见解析. 【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求. 【详解】解:(1)()(1)x e x af x x x-'=-,0x >,设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增, 故存在0x 使得0()0g x =,当a e =时,()(1)0x e x af x x x-'=-恒成立,故()f x 单调递增无极值,a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增, 当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点 综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点. 【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2018·泰安高三二模)如图,函数y =f(x)的图象在点P(5,f(5))处的切线方程是y =-x +8,则f(5)+f′(5)等于 ( )A.12B .1C .2D .02.函数f(x)=ax 3-x 在(-∞,+∞)上是减函数,则 ( )A .a<1B .a<13C .a<0D .a≤03.(2018·洛阳模拟)已知f(x)=++ax +1,且f(x -1)的图象的对称中心是(0,3),则f′(2)的值为( )A .-19 B.19C .-14 D.144.若函数f(x)=e xsin x ,则此函数图象在点(4,f(4))处的切线的倾斜角为 ( ) A.π2B .0C .钝角D .锐角 5.(2018·山东)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y =-13x3+81x -234,则使该生产厂家获取最大年利润的年产量为 ( )A .13万件B .11万件C .9万件D .7万件6.已知f(x)=2x 3-6x 2+a (a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是 ( )A .-5B .-11C .-29D .-377.(2018·江西) 如图,一个正五角形薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S(t) (S(0)=0),则导函数y =S′(t)的图象大致( )8.已知x≥0,y≥0,x +3y =9,则x 2y 的最大值为 ( ) A .36 B .18 C .25 D .429.(2018·合肥模拟)已知R 上可导函数f(x)的图象如图所示,则不等式(x 2-2x -3)f′(x)>0的解集为 ( )A .(-∞,-2)∪(1,+∞)B .(-∞,-2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)10.如图所示的曲线是函数f(x)=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于 ( )A.89B.109C.169D.5411.(2018·宝鸡高三检测三)已知f′(x)是f(x)的导函数,在区间[0,+∞)上f′(x)>0,且偶函数f(x)满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13,则x 的取值范围是 ( ) A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 12.(2018·唐山月考)已知函数y =f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p ,q 的值分别为 ( )A .6,9B .9,6 C13.函数f(x)=xln x 在(0,5)上的单调递增区间是____________.14.(2018·安庆模拟)已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,则f(1),f(2),f(3)的大小关系为________________________.15.(2009·福建改编)22(1cos )x dx ππ-+⎰=________.16.下列关于函数f(x)=(2x -x 2)e x的判断正确的是________(填写所有正确的序号).①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值. 三、解答题(本大题共6小题,共70分)17.(10分)设f(x)=x 3-12x 2-2x +5.(1)求函数f(x)的单调递增、递减区间;(2)当x ∈[-1,2]时,f(x)<m 恒成立,求实数m 的取值范围.18.(12分)(2018·莆田月考)已知函数f(x)=23x 3-2ax 2+3x (x ∈R).(1)若a =1,点P 为曲线y =f(x)上的一个动点,求以点P 为切点的切线斜率取得最小值时的切线方程; (2)若函数y =f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.19.(12分)(2018·福州高三质检)已知函数f(x)=xln x. (1)求f(x)的极小值;(2)讨论关于x 的方程f(x)-m =0 (m ∈R)的解的个数.20.(12分)(2018·全国)已知函数f(x)=3ax 4-2(3a +1)x 2+4x.(1)当a =16时,求f(x)的极值;(2)若f(x)在(-1,1)上是增函数,求a 的取值范围.21.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x)x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小?22.(12分)(2018·黄山模拟)设函数f(x)=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f(x)的极值点. (1)求a 和b 的值;(2)讨论f(x)的单调性;(3)设g(x)=23x 3-x 2,试比较f(x)与g(x)的大小.答案 1.C [由题意知f′(5)=-1,f(5)=-5+8=3, 所以f(5)+f′(5)=3-1=2.]2.D [由题意知,f′(x)=3ax 2-1≤0在(-∞,+∞)上恒成立, a =0时,f′(x)≤0在(-∞,+∞)上恒成立;a>0时,1a ≥3x 2在(-∞,+∞)上恒成立,这样的a 不存在;a<0时,1a≤3x 2在(-∞,+∞)上恒成立,而3x 2≥0,∴a<0.综上,a≤0.]3.B [f(x)=a +1-1x +1,中心为(-1,a +1),由f(x -1)的中心为(0,3)知f(x)的中心为(-1,3),∴a=2.∴f(x)=3-1x +1.∴f′(x)=1+2.∴f′(2)=19.] 4.C [f′(x)=e x sin x +e xcos x=e x (sin x +cos x)=2e xsin ⎝⎛⎭⎪⎫x +π4,f′(4)=2e 4sin ⎝⎛⎭⎪⎫4+π4<0,则此函数图象在点(4,f(4))处的切线的倾斜角为钝角.]5.C [∵y′=-x 2+81,令y′=0得x =9(x =-9舍去). 当0<x≤9时,y′≥0,f(x)为增函数, 当x>9时,y′<0,f(x)为减函数. ∴当x =9时,y 有最大值.]6.D [f′(x)=6x 2-12x ,若f′(x)>0, 则x<0或x>2,又f(x)在x =0处连续, ∴f(x)的增区间为[-2,0).同理f′(x)<0,得减区间(0,2]. ∴f(0)=a 最大.∴a =3,即f(x)=2x 3-6x 2+3.比较f(-2),f(2)得f(-2)=-37为最小值.] 7.A [利用排除法.∵露出水面的图形面积S(t)逐渐增大, ∴S′(t)≥0,排除B.记露出最上端小三角形的时刻为t 0.则S(t)在t =t 0处不可导.排除C 、D ,故选A.]8.A [由x +3y =9,得y =3-x3≥0,∴0≤x≤9.将y =3-x 3代入u =x 2y ,得u =x 2⎝ ⎛⎭⎪⎫3-x 3=-x 33+3x 2.u′=-x 2+6x =-x(x -6). 令u′=0,得x =6或x =0.当0<x<6时,u′>0;6<x<9时,u′<0.∴x =6时,u =x 2y 取最大值36.]9.D [由f(x)的图象可知,在(-∞,-1),(1,+∞)上f′(x)>0,在(-1,1)上f′(x)<0.由(x 2-2x -3)f′(x)>0, 得⎩⎪⎨⎪⎧,x 2-2x -3>0或⎩⎪⎨⎪⎧,x 2-2x -3<0.即⎩⎪⎨⎪⎧x>1或x<-1,x>3或x<-1或⎩⎪⎨⎪⎧-1<x<1-1<x<3,所以不等式的解集为(-∞,-1)∪(-1,1)∪(3,+∞).]10.C [由图象知f(x)=x(x +1)(x -2)=x 3-x 2-2x =x 3+bx 2+cx +d , ∴b =-1,c =-2,d =0.而x 1,x 2是函数f(x)的极值点,故x 1,x 2是f′(x)=0,即3x 2+2bx +c =0的根,∴x 1+x 2=-2b 3,x 1x 2=c3,x 21+x 22=(x 1+x 2)2-2x 1x 2 =49b 2-2c 3=169.] 11.A [∵x ∈[0,+∞),f′(x)>0, ∴f(x)在[0,+∞)上单调递增,又因f(x)是偶函数,∴f(2x -1)<f ⎝ ⎛⎭⎪⎫13⇔f(|2x -1|)<f ⎝ ⎛⎭⎪⎫13 ⇒|2x -1|<13,∴-13<2x -1<13.即13<x<23.] 12.A [y′=3x 2+2px +q ,令切点为(a,0),a≠0,则f(x)=x(x 2+px +q)=0有两个不相等实根a,0 (a≠0),∴x 2+px +q =(x -a)2.∴f(x)=x(x -a)2,f′(x)=(x -a)(3x -a).令f′(x)=0,得x =a 或x =a3.当x =a 时,f(x)=0≠-4,∴f ⎝ ⎛⎭⎪⎫a 3=y 极小值=-4, 即427a 3=-4,a =-3,∴x 2+px +q =(x +3)2. ∴p =6,q =9.]13.⎝ ⎛⎭⎪⎫1e ,5 解析 ∵f′(x)=ln x +1,f′(x)>0, ∴ln x +1>0,ln x>-1,∴x>1e .∴递增区间为⎝ ⎛⎭⎪⎫1e ,5. 14.f(3)<f(1)<f(2)解析 由f(x)=f(π-x),得函数f(x)的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f′(x)=1+cos x>0恒成立, 所以f(x)在⎝ ⎛⎭⎪⎫-π2,π2上为增函数, f(2)=f(π-2),f(3)=f(π-3),且0<π-3<1<π-2<π2,所以f(π-3)<f(1)<f(π-2), 即f(3)<f(1)<f(2). 15.π+2解析 ∵(x +sin x)′=1+cos x ,∴π2-π2(1+cos x)dx =(x +sin x)22ππ-=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2.16.①②解析 f(x)>0⇒(2x -x 2)e x>0⇒2x -x 2>0⇒0<x<2,故①正确;f′(x)=e x (2-x 2),由f′(x)=0,得x =±2,由f′(x)<0,得x>2或x<-2, 由f′(x)>0,得-2<x<2,∴f(x)的单调减区间为(-∞,-2),(2,+∞),单调增区间为(-2,2). ∴f(x)的极大值为f(2),极小值为f(-2),故②正确. ∵x<-2时,f(x)<0恒成立,∴f(x)无最小值,但有最大值f(2). ∴③不正确.17.解 (1)f′(x)=3x 2-x -2,令f′(x)=0,即3x 2-x -2=0,解得x =1或x =-23,………………………………………………(2分)所以当x ∈⎝⎛⎭⎪⎫-∞,-23时,f′(x)>0,f(x)为增函数; 当x ∈⎝ ⎛⎭⎪⎫-23,1时,f′(x)<0,f(x)为减函数; 当x ∈(1,+∞)时,f′(x)>0,f(x)为增函数.…………………………………………(4分)所以f(x)的递增区间为⎝⎛⎭⎪⎫-∞,-23和(1,+∞), f(x)的递减区间为⎝ ⎛⎭⎪⎫-23,1.……………………………………………………………(6分) (2)当x ∈[-1,2]时,f(x)<m 恒成立,只需使x ∈[-1,2],f(x)的最大值小于m 即可.由(1)可知f(x)极大值=f ⎝ ⎛⎭⎪⎫-23=52227,f(2)=7,……………………………………………………(9分) 所以f(x)在x ∈[-1,2]的最大值为f(2)=7,所以m>7.………………………………………………………………………………(10分) 18.解 (1)设切线的斜率为k ,则k =f′(x)=2x 2-4x +3=2(x -1)2+1,当x =1时,k min =1.………………………………………………………………………(3分)又f(1)=53,∴所求切线的方程为y -53=x -1,即3x -3y +2=0.………………………………………………………………………(6分)(2)f′(x)=2x 2-4ax +3,要使y =f(x)为单调递增函数,必须满足f′(x)≥0,即对任意的x ∈(0,+∞),恒有f′(x)≥0,f′(x)=2x 2-4ax +3≥0,∴a≤2x 2+34x =x 2+34x ,而x 2+34x ≥62,当且仅当x =62时,等号成立.……………………………………………………………(10分)∴a≤62,又∵a ∈Z ,∴满足条件的最大整数a 为1.…………………………………………………………(12分) 19.解 (1)f(x)的定义域为(0,+∞),f′(x)=ln x +1,……………………………(2分)令f′(x)=0,得x =1e,当x ∈(0)所以,f(x)在(0,+∞)上的极小值是f ⎝ ⎛⎭⎪⎫1e =-1e .……………………………………(6分) (2)当x ∈⎝ ⎛⎭⎪⎫0,1e ,f(x)单调递减且f(x)的取值范围是⎝ ⎛⎭⎪⎫-1e ,0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f(x)单调递增且f(x)的取值范围是⎝ ⎛⎭⎪⎫-1e ,+∞.………………(8分) 令y =f(x),y =m ,两函数图象交点的横坐标是f(x)-m =0的解,由(1)知当m<-1e时,原方程无解;由f(x)的单调区间上函数值的范围知,当m =-1e 或m≥0时,原方程有唯一解;当-1e<m<0时,原方程有两解.………………………………………………………(12分)20.解 (1)f′(x)=4(x -1)(3ax 2+3ax -1).当a =16时,f′(x)=2(x +2)(x -1)2,……………………………………………………(3分)f(x)在(-∞,-2)内单调递减, 在(-2,+∞)内单调递增, 在x =-2时,f(x)有极小值.所以f(-2)=-12是f(x)的极小值.……………………………………………………(6分)(2)在(-1,1)上,f(x)单调递增当且仅当f′(x)=4(x -1)(3ax 2+3ax -1)≥0恒成立,即3ax 2+3ax -1≤0恒成立,①…………………………………………………………(7分) (ⅰ)当a =0时,①恒成立; (ⅱ)当a>0时,①成立, 即⎩⎪⎨⎪⎧3a +3a -1≤0,3a -3a -1≤0成立,解得0<a≤16.(ⅲ)当a<0时①成立,即3a ⎝ ⎛⎭⎪⎫x +122-3a4-1≤0成立,当且仅当-3a 4-1≤0,解得-43≤a<0.………………………………………………(11分)综上,a 的取值范围为⎣⎢⎡⎦⎥⎤-43,16.………………………………………………………(12分) 21.解 (1)设需要新建n 个桥墩,(n +1)x =m ,即n =mx -1(0<x<m),所以y =f(x)=256n +(n +1)(2+x)x=256⎝ ⎛⎭⎪⎫m x -1+mx (2+x)x=256m x+m x +2m -256(0<x<m).……………………………………………………(5分)(2)由(1)知f′(x)=-256m x 2+12mx -12,…………………………………………………(7分)令f′(x)=0,得x 32=512,所以x =64.当0<x<64时,f′(x)<0,f(x)在区间(0,64)内为减函数;当64<x<640时,f′(x)>0, f(x)在区间(64,640)内为增函数,………………………………………………………(10分) 所以f(x)在x =64处取得最小值,此时,n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.……………………………………………………(12分)22.解 (1)因为f′(x)=e x -1(2x +x 2)+3ax 2+2bx=xe x -1(x +2)+x(3ax +2b),又x =-2和x =1为f(x)的极值点, 所以f′(-2)=f′(1)=0,因此⎩⎪⎨⎪⎧-6a +2b =0,3+3a +2b =0,…………………………………………………………………(3分)解方程组得⎩⎪⎨⎪⎧a =-13,b =-1.………………………………………………………………(4分)(2)因为a =-13,b =-1,所以f′(x)=x(x +2)(e x -1-1),令f′(x)=0,解得x 1=-2,x 2=0,x 3=1.……………………………………………(6分) 因为当x ∈(-∞,-2)∪(0,1)时,f′(x)<0; 当x ∈(-2,0)∪(1,+∞)时,f′(x)>0.所以f(x)在(-2,0)和(1,+∞)上是单调递增的;在(-∞,-2)和(0,1)上是单调递减的.………………………………………………(8分)(3)由(1)可知f(x)=x 2e x -1-13x 3-x 2,故f(x)-g(x)=x2e x-1-x3=x2(e x-1-x),令h(x)=e x-1-x,则h′(x)=e x-1-1.…………………………………………………(9分) 令h′(x)=0,得x=1,因为x∈(-∞,1]时,h′(x)≤0,所以h(x)在x∈(-∞,1]上单调递减.故x∈(-∞,1]时,h(x)≥h(1)=0.因为x∈[1,+∞)时,h′(x)≥0,所以h(x)在x∈[1,+∞)上单调递增.故x∈[1,+∞)时,h(x)≥h(1)=0.……………………………………………………(11分) 所以对任意x∈(-∞,+∞),恒有h(x)≥0,又x2≥0,因此f(x)-g(x)≥0,故对任意x∈(-∞,+∞),恒有f(x)≥g(x).…………………………………………………………………………(12分)。

相关文档
最新文档