自招竞赛课程数学讲义:二次曲线中点弦、切线、切点弦及双切线方程(1)【讲师版】

合集下载

高中数学竞赛专题精讲6二次函数(含答案)

高中数学竞赛专题精讲6二次函数(含答案)

6二次函数(2)二次方程问题其实质就是其相应二次函数的零点(图象与x轴的交点)问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用形数结合的方法来研究是非常有益的。

设f(x)=ax2+bx+c(a≠0)的二实根为x1,x2,(x1<x2),Δ=b2-4ac,且α、β(α<β)是预先给定的两个实数。

1.当两根都在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<x2<β,对应的二次函数f (x)的图象有下列两种情形(图1)当a>0时的充要条件是:Δ>0,α<-b/2a<β,f(α)>0,f (β)>0当a<0时的充要条件是:Δ>0,α<-b/2a<β,f(α)<0,f (β)<0两种情形合并后的充要条件是:Δ>0,α<-b/2a<β,af(α)>0,af (β)>0 ①2.当两根中有且仅有一根在区间(α,β)内,方程系数所满足的充要条件:∵α<x1<β或α<x2<β,对应的函数f(x)的图象有下列四种情形(图2)从四种情形得充要条件是:f (α)·f (β)<0 ②3.当两根都不在区间[α,β]内方程系数所满足的充要条件:(1)两根分别在区间[α,β]之外的两旁时:∵x1<α<β<x2,对应的函数f(x)的图象有下列两种情形(图3):当a>0时的充要条件是:f (α)<0,f (β)<0当a>0时的充要条件是:f (α)>0,f (β)>0两种情形合并后的充要条件是:af (α)<0,af (β)<0 ③(2)两根分别在区间[α,β]之外的同旁时:∵x1<x2<α<β或α<β<x1<x2,对应函数f(x)的图象有下列四种情形(图4):当x1<x2<α时的充要条件是:Δ>0,-b/2a<α,af (α)>0 ④当β<x1<x2时的充要条件是:Δ>0,-b/2a>β,af (β)>0 ⑤二次函数与二次不等式前面提到,一元二次不等式的解集相应于一元二次函数的正值、负值区间。

二次曲线中点弦、切线、切点弦及双切线方程(1)

二次曲线中点弦、切线、切点弦及双切线方程(1)

万方数据
 万方数据
 万方数据
 万方数据
 万方数据
 万方数据
二次曲线中点弦、切线、切点弦及双切线方程
作者:胡圣团, HU Sheng-tuan
作者单位:湖南省澧县一中,415500
刊名:
中等数学
英文刊名:HIGH-SCHOOL MATHEMATICS
年,卷(期):2009(8)
被引用次数:1次
1.徐敏亚.徐卫祥对一道复习题的思考——略谈二次曲线的中点弦问题[期刊论文]-中学数学月刊2009(8)
2.关忠二次曲线中点弦方程的求法及其应用[期刊论文]-中学数学研究2006(11)
3.邱家富二次曲线存在中点弦的一个充要条件[期刊论文]-中学数学杂志(高中版)2008(4)
4.李宏凌中点弦公式及其应用[期刊论文]-考试周刊2007(18)
5.孙志祥关于二次曲线的中点弦问题的探究[期刊论文]-河北理科教学研究2005(4)
6.张志强圆锥曲线的中点弦方程及应用[期刊论文]-数学教学研究2001(8)
7.周华生.Zhou Hua-Sheng二次曲线中点弦理论的简化和推广[期刊论文]-河北理科教学研究2006(2)
8.圆锥曲线中点弦方程的求法及应用[期刊论文]-中学数学研究2002(11)
9.梁鹤成"点差法"巧解弦中点问题[期刊论文]-中学生数理化(高二版)2008(11)
10.郝宝铭中点弦问题的解法探究[期刊论文]-中学数学月刊2007(4)
1.薛志坚从切线方程看高师解析几何对中学数学的指导作用[期刊论文]-数学教学研究 2011(04)
引用本文格式:胡圣团.HU Sheng-tuan二次曲线中点弦、切线、切点弦及双切线方程[期刊论文]-中等数学2009(8)。

高中数学竞赛辅导第四讲常见的初等函数、二次函数

高中数学竞赛辅导第四讲常见的初等函数、二次函数

高中数学竞赛辅导第四讲 常见的初等函数、二次函数知识、方法、技能常函数y=c ,幂函数y=x α(α∈Q),指数函数y=a x ,对数函数y=log a x,三角函数(y=sinx, y=cosx , y=tanx 等),反三角函数(y=arcsinx, y=arccosx , y=arctanx 等)是数学中最为基本的函数,我们把它们统称为基本初等函数.学习中应熟练掌握各基本初等函数的定义域、值域、单调性、奇偶性、周期性等基本性质,并能利用这些性质快捷地比较两个数值的大小或解有关不等式.具体解题时,若绘出各基本初等函数的草图,往往能“一目了然”地获得问题的结果.绘制幂函数y=x α(α=,nmm 、n 是互质的整数)草图的一般步骤是: (1)根据指数α的大小判断函数图象在第一象限的情形如图 I-1-4-1.(2)判断函数的奇偶性并确定函数图像在其他象限的情况①m,n 均为奇数时,y=x α为奇函数,图象在一、三象限内关于原点中心对称. ②m 为偶数,n 为奇数时Y=x α为偶函数,图象在一、二象限内关于y 轴对称. ③m 为奇数,n 为偶数时,y=x α既不是奇函数也不是偶函数,函数只在第一象限有图像.常见的函数往往是由基本初等函数通过有限次加减乘除运算或复合而得到的,我们称之为初等函数.其中二次函数和形如y=x+xk的分式函数在高考和竞赛中具有尤为重要的地位.同学们要熟练掌握求二次函数解析式、值域的有关方法,并会用这些方法解决相关的问题;会判断二次方程根的分布情况;会利用函数y=x+xk的性质求出一些分式函数的值域.赛题精讲例1 3个幂函数y=4321,x y x =和y=65x 的图象如图I —1—4—2:试写出各个函数的图象的对应编号. 【思路分析】3个函数的定义域、值域、单调性都相同,具有类似的草图,仅从草图已无法区分这三者了.只能更为“精细”地考察和函数值的大小,不妨取x=2试一试.【略解】当x=2时,3个函数值分别为6543212,2,2.因为 y=t2为增函数,而图中所以.222,654321654321<<<<,x=2时,图象①的对应点纵坐标最大,图象③的对应点纵坐标最小,所以y=654321,x y x y x ==和对应的图象依次为③,②,①.【评述】一般地,当α越大大时,幂函数图像在x>1对应的部分越“高”.此外,本题方法也可应用于辨别两个草图相近的指数函数或对函数的图象.例2 比较下列各题中两个值的大小:(1)5353)3()2(----与;(2);)()14.3(3232π--与 (3)5432)()(ππ--与(4)log 23与log 23.1.【思路分析】(1)中两数有相同的指数-53,故可将这两者看做同一函数53-=x y 的两个不同函数值,利用函数单调性比较两数大小.【略解】(1)因为53-=xy 是(-∞,0)上的减函数,又,32->-所以5353)3()2(---<-.(2)因为;)()14.3(,14.3)0,(323232ππ-<-->--∞=所以上的减函数又是x y(3)因为y=54323232)(,5432,)(,),(πππππ<-<=-+∞-∞所以又上的增函数是x(4)因为y=log 2x 是(0,+∞)上的增函数,又3<3.1,所以log 23<log 23.1. 例3 求下列函数的定义域:(1));1,0(log log log ≠>=a a x y a a a (2).1223log )31(91.03+-+-=x x y x【略解】(1)据题意有log a log a x>0.①a>1时,上式等价于log a x>1,即x>a.②0<a<1时,上式等价于0<log a x<1,即1>x>a . 所以,当a>1时,函数定义域为(a,+∞);而当0<a<1时,函数定义域为(a,1).(2)据题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+->+-≤⎪⎪⎩⎪⎪⎨⎧≤+-<≤⎪⎪⎩⎪⎪⎨⎧≥+-≥--.011223,01223,)31()31(.1122309)31(.01223log ,0)31(932311.03x x x x x x x x x x x 即即解得].3,32(.321.332,213232所以函数定义域为即或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<>-≥x x x x x【评述】解指数、对数不等式时,要注意比较底数a 与1的大小,从而确定去掉指数、对数符号后不等号是否改向.例4 解方程:(1);34)223()223(=++-x x (2))0.(1446>=x x x【略解】(1)因为,1)223)(223(=+-所以原方程等价于.34)223(1)223(=-+-xx126666612)(144144)(144)2(.2.21217.341,)223(6666====±=±==+=-x x x x x x x x x x t t t t 即则令令y=x 6,显然y>1,则f(x)=y y 是y 的增函数.所以y y =1212只有惟一解y=12. 即原方程有解.126=x例5 比较下列各组数的大小 : (1)sin48°, cos313°;(2)cos96°, sin96°, tan69°.【思路分析】 比较两数大小的一种方法是将两数看成同一函数的两个函数值,然后利用函数单调性来比较;另一种方法是寻找某个中介量(如0,1)等.【略解】(1)cos313°=cos(360°-47°)=cos47°=sin43°<sin48° 所以cos313°<sin48°(2)因为钝角的余弦小于0,正弦大于0,所以cos96°<0, 0<sin96°<1. 又tan69°>tan45°=1所以cos96°<sin96°<tan69°.例6 已知x ∈[0,π],比较cos(sinx)与sin(cosx)的大小.【略解】)sin 2sin()cos(sin x x -=π).cos(sin )sin(cos )sin 2sin()sin(cos .sin 2cos ,]2,2[sin ,22cos sin .1cos 1,2sin 212,],0[x x x x x x t y x x x x x <-<-<-=<≤+<≤-≤-≤-∈即所以所以上的增函数是且又因为时当πππππππππ例7 已知40,10πα<<<<b ,比较下列三数的大小:..)(cos )(sin ..cos sin .),0()(,0cos log .)(sin )(sin 0cos log sin log ,10.1cos 22sin 040][.)(sin ,cos log )(cos ,)(sin cos log cos log cos log cos log sin log cos log log sin y z x y z t t f z x b z y x b b b b b b bb b b b <<∴<<∴<+∞=∴>∴><∴>>∴<<<<<<∴<<===即又上的增函数是即又解αααααααααααααααααπαααααα例8 求下列函数的最小正周期:(1)y=tanx -cotx; (2)y=sin(cosx); (3)y=cos(sinx).【略解】(1)因为.222sin 212cos cos sin cos sin cot tan 22x ctg x xxx x x x x -=-=-=- 所以函数y=tanx -cotx 的最小正周期T=2π. (2)因为sin(cos(x+2π))=sin(cosx),所以2π是函数y=sin(cosx)的周期.设最小正周期为T ,若0<T<2π,则sin[cos(x+T)=sin(cosx)特别地,令x=0, sin(cosT)=sinl.而另一方面,0<T<2π,-1≤cosT<1,由正弦函数的单调性和sin(cosT)<sinl ,与sin(cosT)=sinl 矛盾,所以假设不成立.综上,函数y=sin(cosx) 的最小正周期为2π.(3)因为cos(sin(π+x))=cos(-sinx)=cos(sinx),所以π是函数y=cos(sinx)的周期,仿(2)可证函数y=cos(sinx)的最小正周期为π.【评述】(1)求函数最小正周期时,应尽量将函数化简.(2)对于由两个函数f(x)和g(x)复合而成的函数f(g(x)),如果g(x)是周期函数,且其最小正周期为T 1,那么,f(g(x))也是周期函数,且T 1仍是f(g(x))的一个周期,但未必是它的最小正周期.例9 判断下列函数的周期性,若是周期函数,试求出其最小正周期.(1)y=2sin25x+3cos6x ; (2)y=sin πx+cos2x . 【略解】(1)y=2sin 25x 和y=3cos6x 的最小正周期分别是πππ54,354因此和 ,3π的最小公倍数4π是y=2sin25x+3cos6x 的周期.可以证明4π也是它的最小正周期.(2)y=sin πx 和cox2x 的周期分别为2和π,因为π2不是有理数,所以2和π没有最小公倍数(此处倍数应为整数倍),可以证明y=sin πx+cos2x 不是周期函数.【证明】假设T 是函数y=sin πx+cos2x 的周期.则 sin π(x+T)+cos2(x+T)=sin πx+cos2x. sin π(x+T)-sin πx=cos2x -cos2(x+T),2sin2πTcos(πx+2πT)=2sinTsin(2x+T), (*) 令x=0, 得2cos 2πTsin 2πT=2sin 2T.即sin 2πTcos 2πT=sin 2T ①而令x=-2, 化简得 sin 2πTcos 2πT=sinTsin(T+4).②令x=-2, 得sin 2πTcos 2πT=sinTsin(T -4) ③由②-③得 sinTsin(T+4)-sinTsin(T -4)=0,即2sinTcosTsin4=0, sin2T=0, T=Z k k ∈,2π④ 但显然④不适合①,矛盾,所以假设不成立.函数y=sin πx+cos2x 不是周期函数.【评述】一般地,周期函数f(x)和g(x)的最小正周期分别为T 1和T 2,若T 1/T 2∉θ,则函数f(x)+g(x)不是周期函数,若T 1/T 2∈θ,则f(x)+g(x)是周期函数.针对性训练题1.已知∈++=b a x b x a x f ,(,4sin )(3R )且f(lglog 310)=5,则f(lglg3)的值是 . 2.设a 、b 满足2a 2+6b 2=3,证明函数f(x)=ax+b 在[-1,1]上的满足|f(x)|≤2. 3.已知方程x 2+2mx+2m 2-3=0,有一根比2大,另一根比2小,求m 的取值范围. 4.关于x 的实系数二次方程x 2+ax+b=0有两个实数根α、β,证明: (1)如果|α|<2, |β|<2,那么2|a|<4+b,且|b|<4. (2)如果2|α|<4+b, 且|b|<4,那么|α|<2, |β|<2. 5.若a<0,求证:方程01112=++++ax a x x (1)有两个异号实根; (2)正根必小于-32a ,负根必大于-32a 2.6.已知f(x)=|1-2x|, x ∈[0,1],那么方程f(f(f(x)))=21x 的解的个数是 . 7.已知集合A={(x, y)||x|+|y|=a,a>0}, B={(x, y)||xy|+1=|x|+|y|}, A ∩B 是平面上正八边形的 顶点构成的集合,则a 的值为 . 8.函数11363)(2424+--+--=x x x x x x f 的最大值为 .9.函数),0[11)(2+∞+-+=是x ax x f 上的单调函数,求a 的取值范围. 10.关于x 的方程(a 2-1)x 2-2(5a+1)x+24=0有两个不等的负整数根,求a.。

高二数学直线与双曲线(绝对精品,有答案超好的讲义,自己整理原创)

高二数学直线与双曲线(绝对精品,有答案超好的讲义,自己整理原创)

双曲线与直线一、双曲线性质:1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. 11.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

二次曲线中点弦、切线、切点弦及双切线方程

二次曲线中点弦、切线、切点弦及双切线方程

=(nla2 4-a;Ox;+(blb2+b A)《+
(aIb2+a2b1)XOYo一
[(alb2+a2b1)Yo+2ala2名o]名。一
[(aIb2+a2b1)茗o+2bIb2Yo]Yo,
且口A麟。算+A byoy=A似:+A 6_《.
从而,O;Xo髫+byoy=鲋j+6扼.
这说明,点M(戈。,Y。)关于双直线AC、
\ ∥~y /a。+2
O/
-x

都成等角.证明:这
图6
样的折线只能位于
抛物线对称轴的一侧.
(第22届全苏数学奥林匹克)
讲解:不妨设抛物线为Y=ax2(a>0).
依次取折线上三个相邻的顶点A;(并nax;)
(i=n,n+1,n+2,nE N).
由抛物线在点A。+。处的切线方程(或求
导数)可知其斜率
k七 l2j2:}2-ak=x^忌A+nl一, +l一An.++2.--=鼎掣叫=凸X(nX+n2+4"X石nn++I1)?).
即5菇一7y-鲁:o.
所以,Q也是MN的中点,即定点Q平分 线段MN.
注:从曲线的含变化参数的方程(实际
上就是曲线系方程)求出曲线上的定点,是
证明曲线过定点的常规方法.由于本题中的
切点弦MN只依赖点Jp的位置,因此,使用切
点弦方程正是时机.证明点Q平分线段MN
实际上是使用了同一法,同时也发挥了中点
弦方程的作用.
2009年第8期

二次曲线中点弦、切线、切点弦及双切线方程
胡圣团
(湖南省澧县一中,415500)
(本讲适合高中) 1知识简介
记G(x,Y)=Ax2+Bxy+Cy2+Dk+E|y+F 1.1二次曲线中点弦的方程

高二自主招生讲座(解析几何)

高二自主招生讲座(解析几何)

2014自主招生(数学)解读与备考2013、12一、先看一个问题:例1、(2011年自主招生华约数学试题14)已知双曲线2222:1(0,0)x y C a b a b-=>>,12F F 、分别为C 的左、右焦点。

P 为C 右支上一点,且12=,3F PF π∠ 12F PF ∆的面积为2.(Ⅰ)求C 的离心率e ;(Ⅱ)设A 为C 的左顶点,Q 为第一象限内C 上的任意一点,问是否存在常数(0)λλ>,使得22QF A QAF λ∠=∠恒成立。

若存在,求出λ的值;若不存在,请说明理由. 谈几个问题:1、北约考察的重点:研究能力(意识与方法);2、谈谈题是怎么编的 (1)、机器 (2)、理论结论1、设F 为圆锥曲线焦点,其相应准线为l ,作一直线交圆锥曲线于P A 、两点,交l 于M ,则FM 平分AFP ∠(或其外角)。

点(0,1),E 且与椭圆相交于,C D 两点.① 求椭圆方程;② 若直线l 与x 轴相交于点G ,且,GC DE =求k 的值;③ 设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率. 证明对任意的k ,恒有2AC AD k k ⋅=-xy结论2、设),(00y x P 为椭圆)0(12222>>=+b a by a x 上一定点,PB PA 、为它的任意两条弦,斜率分别为21,k k 。

若12k k λ⋅=(注:22b a λ≠),则直线AB 过定点(2222002222,a b a b x y a b a bλλλλ++---)。

例3、已知椭圆22221(0)x y a b a b +=>>的离心率是,且经过点(2,1)M .直线1(0)2y x m m =+<与椭圆相交于A ,B 两点. (1)求椭圆的方程;(2)求△MAB 的内心的横坐标.结论3、设),(00y x P 为椭圆)0(12222>>=+b a by a x 上一定点,PB PA 、为它的任意两条弦,斜率分别为21,k k ,若021=+k k ,则直线AB 的斜率是定值0202y a x b k =。

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

高中数学竞赛标准教材2人教版 二次函数与命题【讲义】

第二章 二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab2,下同.2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增).当a <0时,情况相反.3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac ).1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点. 3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点.当a <0时,请读者自己分析.4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m ,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m , n ]时,f (x )在[m , n ]上的最小值为f (x 0); 当x 0<m 时.f (x )在[m , n ]上的最小值为f (m);当x 0>n 时,f (x )在[m , n ]上的最小值为f (n )(以上结论由二次函数图象即可得出). 定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题.不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题.注1 “p 或q ”复合命题只有当p ,q 同为假命题时为假,否则为真命题;“p 且q ”复合命题只有当p ,q 同时为真命题时为真,否则为假命题;p 与“非p ”即“p ”恰好一真一假. 定义2 原命题:若p 则q (p 为条件,q 为结论);逆命题:若q 则p ;否命题:若非p 则q ;逆否命题:若非q 则非p .注2 原命题与其逆否命题同真假.一个命题的逆命题和否命题同真假.注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题.定义3 如果命题“若p 则q ”为真,则记为p ⇒q 否则记作p ≠q .在命题“若p 则q ”中,如果已知p ⇒q ,则p 是q 的充分条件;如果q ⇒p ,则称p 是q 的必要条件;如果p ⇒q 但q 不⇒p ,则称p 是q 的充分非必要条件;如果p 不⇒q 但p ⇒q ,则p 称为q 的必要非充分条件;若p ⇒q 且q ⇒p ,则p 是q 的充要条件.二、方法与例题1.待定系数法.例1 设方程x 2-x +1=0的两根是α,β,求满足f (α)=β,f (β)=α,f (1)=1的二次函数f (x ). 【解】 设f (x )=ax 2+bx +c (a ≠0),则由已知f (α)=β,f (β)=α相减并整理得(α-β)[(α+β)a +b +1]=0, 因为方程x 2-x +1=0中△≠0,所以α≠β,所以(α+β)a +b +1=0. 又α+β=1,所以a +b +1=0.又因为f (1)=a +b +c =1,所以c -1=1,所以c =2.又b =-(a +1),所以f (x )=ax 2-(a +1)x +2. 再由f (α)=β得a α2-(a +1)α+2=β,所以a α2-a α+2=α+β=1,所以a α2-a α+1=0. 即a (α2-α+1)+1-a =0,即1-a =0, 所以a =1,所以f (x )=x 2-2x +2. 2.方程的思想.例2 已知f (x )=ax 2-c 满足-4≤f (1)≤-1, -1≤f (2)≤5,求f (3)的取值范围. 【解】 因为-4≤f (1)=a -c ≤-1, 所以1≤-f (1)=c -a ≤4.又-1≤f (2)=4a -c ≤5, f (3)=38f (2)-35f (1), 所以38×(-1)+35≤f (3)≤38×5+35×4,所以-1≤f (3)≤20.3.利用二次函数的性质.例3 已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0),若方程f (x )=x 无实根,求证:方程f (f (x ))=x 也无实根.【证明】若a >0,因为f (x )=x 无实根,所以二次函数g (x )=f (x )-x 图象与x 轴无公共点且开口向上,所以对任意的x ∈R ,f (x )-x >0即f (x )>x ,从而f (f (x ))>f (x ). 所以f (f (x ))>x ,所以方程f (f (x ))=x 无实根. 注:请读者思考例3的逆命题是否正确. 4.利用二次函数表达式解题.例4 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )=x 的两根x 1, x 2满足0<x 1<x 2<a1, (Ⅰ)当x ∈(0, x 1)时,求证:x <f (x )<x 1; (Ⅱ)设函数f (x )的图象关于x =x 0对称,求证:x 0<.21x 【证明】 因为x 1, x 2是方程f (x )-x =0的两根,所以f (x )-x =a (x -x 1)(x -x 2), 即f (x )=a (x -x 1)(x -x 2)+x . (Ⅰ)当x ∈(0, x 1)时,x -x 1<0, x -x 2<0, a >0,所以f (x )>x . 其次f (x )-x 1=(x -x 1)[a (x -x 2)+1]=a (x -x 1)[x -x 2+a1]<0,所以f (x )<x 1. 综上,x <f (x )<x 1.(Ⅱ)f (x )=a (x -x 1)(x -x 2)+x =ax 2+[1-a (x 1+x 2)]x +ax 1x 2,所以x 0=a x x a x x a 21221)(2121-+=-+,所以012121222210<⎪⎭⎫⎝⎛-=-=-a x a x x x ,所以.210xx <5.构造二次函数解题.例5 已知关于x 的方程(ax +1)2=a 2(a -x 2), a >1,求证:方程的正根比1小,负根比-1大. 【证明】 方程化为2a 2x 2+2ax +1-a 2=0. 构造f (x )=2a 2x 2+2ax +1-a 2,f (1)=(a +1)2>0, f (-1)=(a -1)2>0, f (0)=1-a 2<0, 即△>0,所以f (x )在区间(-1,0)和(0,1)上各有一根. 即方程的正根比1小,负根比-1大. 6.定义在区间上的二次函数的最值.例6 当x 取何值时,函数y =2224)1(5+++x x x 取最小值?求出这个最小值.【解】 y =1-222)1(511+++x x ,令=+112x u ,则0<u ≤1. y =5u 2-u+1=5201920191012≥+⎪⎭⎫ ⎝⎛-u , 且当101=u 即x =±3时,y m in =2019.例7 设变量x 满足x 2+bx ≤-x (b <-1),并且x 2+bx 的最小值是21-,求b 的值. 【解】 由x 2+bx ≤-x (b <-1),得0≤x ≤-(b +1).ⅰ)-2b ≤-(b +1),即b ≤-2时,x 2+bx 的最小值为-214,422-=-b b ,所以b 2=2,所以2±=b (舍去).ⅱ) -2b>-(b +1),即b >-2时,x 2+bx 在[0,-(b +1)]上是减函数, 所以x 2+bx 的最小值为b +1,b +1=-21,b =-23.综上,b =-23.7.一元二次不等式问题的解法.例8 已知不等式组⎩⎨⎧>+<-+-12022a x a a x x ①②的整数解恰好有两个,求a 的取值范围.【解】 因为方程x 2-x +a -a 2=0的两根为x 1=a , x 2=1-a , 若a ≤0,则x 1<x 2.①的解集为a <x <1-a ,由②得x >1-2a . 因为1-2a ≥1-a ,所以a ≤0,所以不等式组无解. 若a >0,ⅰ)当0<a <21时,x 1<x 2,①的解集为a <x <1-a . 因为0<a <x <1-a <1,所以不等式组无整数解.ⅱ)当a =21时,a =1-a ,①无解. ⅲ)当a >21时,a >1-a ,由②得x >1-2a ,所以不等式组的解集为1-a <x <a . 又不等式组的整数解恰有2个, 所以a -(1-a )>1且a -(1-a )≤3,所以1<a ≤2,并且当1<a ≤2时,不等式组恰有两个整数解0,1. 综上,a 的取值范围是1<a ≤2. 8.充分性与必要性.例9 设定数A ,B ,C 使得不等式A (x -y )(x -z )+B (y -z )(y -x )+C (z -x )(z -y )≥0 ①对一切实数x ,y ,z 都成立,问A ,B ,C 应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A ,B ,C 的等式或不等式表示条件)【解】 充要条件为A ,B ,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ). 先证必要性,①可改写为A (x -y )2-(B -A -C )(y -z )(x -y )+C (y -z )2≥0 ② 若A =0,则由②对一切x ,y ,z ∈R 成立,则只有B =C ,再由①知B =C =0,若A ≠0,则因为②恒成立,所以A >0,△=(B -A -C )2(y -z )2-4AC (y -z )2≤0恒成立,所以(B -A -C )2-4AC ≤0,即A 2+B 2+C 2≤2(AB +BC +CA )同理有B ≥0,C ≥0,所以必要性成立.再证充分性,若A ≥0,B ≥0,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ),1)若A =0,则由B 2+C 2≤2BC 得(B -C )2≤0,所以B =C ,所以△=0,所以②成立,①成立. 2)若A >0,则由③知△≤0,所以②成立,所以①成立. 综上,充分性得证. 9.常用结论. 定理1 若a , b ∈R , |a |-|b |≤|a +b |≤|a |+|b |.【证明】 因为-|a |≤a ≤|a |,-|b |≤b ≤|b |,所以-(|a |+|b |)≤a +b ≤|a |+|b |, 所以|a +b |≤|a |+|b |(注:若m>0,则-m ≤x ≤m 等价于|x |≤m ). 又|a |=|a +b -b |≤|a +b |+|-b |,即|a |-|b |≤|a +b |.综上定理1得证.定理2 若a ,b ∈R , 则a 2+b 2≥2ab ;若x ,y ∈R +,则x +y ≥.2xy (证略)注 定理2可以推广到n 个正数的情况,在不等式证明一章中详细论证.三、基础训练题1.下列四个命题中属于真命题的是________,①“若x +y =0,则x 、y 互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题. 2.由上列各组命题构成“p 或q ”,“p 且q ”,“非p ”形式的复合命题中,p 或q 为真,p 且q 为假,非p 为真的是_________.①p ;3是偶数,q :4是奇数;②p :3+2=6,q :③p :a ∈(a ,b ),q :{a }⊄{a ,b }; ④ p : Q ⊄R , q : N =Z .3. 当|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围是________.4. 不等式ax 2+(ab +1)x +b >0的解是1<x <2,则a , b 的值是____________.5. x ≠1且x ≠2是x -11-≠x 的__________条件,而-2<m<0且0<n <1是关于x 的方程x 2+m x +n =0有两个小于1的正根的__________条件.6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.7.若S={x |m x 2+5x +2=0}的子集至多有2个,则m 的取值范围是_________.8. R 为全集,A ={x |3-x ≥4}, B =⎭⎬⎫⎩⎨⎧≥+125x x, 则(C R A )∩B =_________.9. 设a , b 是整数,集合A ={(x ,y )|(x -a )2+3b ≤6y },点(2,1)∈A ,但点(1,0)∉A ,(3,2)∉A 则a ,b 的值是_________.10.设集合A ={x ||x |<4}, B ={x |x 2-4x +3>0},则集合{x |x ∈A 且x ∉A ∩B }=_________. 11. 求使不等式ax 2+4x -1≥-2x 2-a 对任意实数x 恒成立的a 的取值范围.12.对任意x ∈[0,1],有⎪⎩⎪⎨⎧>+--<-+-0304222k kx x k kx x ①②成立,求k 的取值范围.四、高考水平训练题1.若不等式|x -a |<x 的解集不空,则实数a 的取值范围是_________.2.使不等式x 2+(x -6)x +9>0当|a |≤1时恒成立的x 的取值范围是_________. 3.若不等式-x 2+kx -4<0的解集为R ,则实数k 的取值范围是_________.4.若集合A ={x ||x +7|>10}, B ={x ||x -5|<k },且A ∩B =B ,则k 的取值范围是_________.5.设a 1、a 2, b 1、b 2, c 1、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0解集分别为M 和N ,那么“212121c c b b a a ==”是“M=N ”的_________条件. 6.若下列三个方程x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是_________. 7.已知p , q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则r 是q 的_________条件. 8.已知p : |1-31-x |≤2, q : x 2-2x +1-m 2≤0(m>0),若非p 是非q 的必要不充分条件,则实数m 的取值范围是_________.9.已知a >0,f (x )=ax 2+bx +c ,对任意x ∈R 有f (x +2)=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),求x 的取值范围.10.已知a , b , c ∈R , f (x )=ax 2+bx +c , g (x )=ax +b , 当|x |≤1时,|f (x )|≤1, (1)求证:|c |≤1;(2)求证:当|x |≤1时,|g (x )|≤2;(3)当a >0且|x |≤1时,g (x )最大值为2,求f (x ). 11.设实数a ,b ,c ,m 满足条件:mcm b m a ++++12=0,且a ≥0,m>0,求证:方程ax 2+bx +c =0有一根x 0满足0<x 0<1.五、联赛一试水平训练题1.不等式|x |3-2x 2-4|x |+3<0的解集是_________.2.如果实数x , y 满足:⎪⎩⎪⎨⎧=->->+44020222y x y x y x ,那么|x |-|y |的最小值是_________.3.已知二次函数f (x )=ax 2+bx +c 的图象经过点(1,1),(3,5),f (0)>0,当函数的最小值取最大值时,a +b 2+c 3=_________.4. 已知f (x )=|1-2x |, x ∈[0,1],方程f (f (f )(x )))=21x 有_________个实根. 5.若关于x 的方程4x 2-4x +m=0在[-1,1]上至少有一个实根,则m 取值范围是_________. 6.若f (x )=x 4+px 3+qx 2+x 对一切x ∈R 都有f (x )≥x 且f (1)=1,则p +q 2=_________. 7. 对一切x ∈R ,f (x )=ax 2+bx +c (a <b )的值恒为非负实数,则ab cb a -++的最小值为_________.8.函数f (x )=ax 2+bx +c 的图象如图,且ac b 42-=b -2ac . 那么b 2-4ac _________4. (填>、=、<)9.若a <b <c <d ,求证:对任意实数t ≠-1, 关于x 的方程(x -a )(x -c )+t (x -b )(x -d)=0都有两个不等的实根.10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x 的系数等于较小的根,二次项系数都是1.证明:这种练习不可能无限次继续下去,并求最多能延续的次数. 11.已知f (x )=ax 2+bx +c 在[0,1]上满足|f (x )|≤1,试求|a |+|b |+|c |的最大值.六、联赛二试水平训练题1.设f (x )=ax 2+bx +c ,a ,b ,c ∈R , a >100,试问满足|f (x )|≤50的整数x 最多有几个?2.设函数f (x )=ax 2+8x +3(a <0),对于给定的负数a ,有一个最大的正数l (a ),使得在整个区间[0,l (a )]上,不等式|f (x )|≤5都成立.求l (a )的最大值及相应a 的值.3.设x 1,x 2,…,x n ∈[a , a +1],且设x =∑=ni i x n 11, y =∑=n j j x n 121, 求f =y -x 2的最大值.4.F (x )=ax 2+bx +c ,a ,b ,c ∈R , 且|F (0)|≤1,|F (1)|≤1,|F (-1)|≤1,则对于|x |≤1,求|F (x )|的最大值.5.已知f (x )=x 2+ax +b ,若存在实数m ,使得|f (m)|≤41,|f (m+1)|≤41,求△=a 2-4b 的最大值和最小值.6.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R , a ≠0)满足下列条件: 1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;2)当x ∈(0, 2)时,f (x )≤221⎪⎭⎫ ⎝⎛+x ;3)f (x )在R 上最小值为0. 求最大的m(m>1),使得存在t ∈R ,只要x ∈[1, m]就有f (x +t )≤x . 7.求证:方程3ax 2+2bx -(a +b )=0(b ≠0)在(0,1)内至少有一个实根. 8.设a ,b ,A ,B ∈R +, a <A , b <B ,若n 个正数a 1, a 2,…,a n 位于a 与A 之间,n 个正数b 1, b 2,…,b n 位于b 与B 之间,求证:.2)())((2222112222122221⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+≤+++++++++AB ab abABb a b a b a b b b a a a n n n n 9.设a ,b ,c 为实数,g (x )=ax 2+bx +c , |x |≤1,求使下列条件同时满足的a , b , c 的值:(ⅰ)⎪⎭⎫⎝⎛21g =381; (ⅱ)g (x )m ax =444; (ⅲ)g (x )m in =364.。

01【数学】高中数学竞赛讲义-二次函数(1)

01【数学】高中数学竞赛讲义-二次函数(1)

§5二次函数(1)二次函数是最简单的非线性函数之一,而且有着丰富内涵。

在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。

它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。

因此,必须透彻熟练地掌握二次函数的基本性质。

学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x↔R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。

一、“四个二次型”概述(一元)二次函数y=ax2+bx+c (a≠0)→a=0→(一元)一次函数y=bx+c(b≠0)↑↑↑↑(一元)二次三项式ax2+bx+c(a≠0)→a=0→一次二项式bx+c(b≠0)↓↓↓↓↓↓↓↓↓一元二次方程ax2+bx+c=0(a≠0)→a=0→一元一次方程bx+c=0(b≠0)↓↓↓一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a≠0)→a=0→一元一次不等式bx+c>0或bx+c<0(b≠0)观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。

故将它们合称为“四个二次型”。

其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。

新动态高中数学竞赛培训教材(共30讲含详细答案)

新动态高中数学竞赛培训教材(共30讲含详细答案)

高中数学竞赛培训教材[全套](共30讲,含详细答案)目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

从简单情况考虑,就是一种以退为进的一种解题策略。

二次曲线切点弦方程

二次曲线切点弦方程

二次曲线切点弦方程二次曲线和直线的切点是指直线与二次曲线在某一点上相切的现象。

直线与二次曲线在切点处有相同的斜率,也就是说它们在这一点上有相同的切线。

切点的存在与否取决于直线与二次曲线的位置和方向。

要求二次曲线和直线的切点的弦方程,首先要确定二次曲线和直线的方程,然后找到它们的切点坐标,最后建立切点的弦方程。

下面我将详细介绍如何求解二次曲线和直线的切点弦方程。

1. 求二次曲线和直线的方程假设给定的二次曲线方程为$y=ax^2+bx+c$,直线方程为$y=mx+n$。

我们首先要找到二次曲线和直线的交点坐标,即联立这两个方程求解$x$和$y$的值。

将直线方程代入二次曲线方程,得到:$ax^2+bx+c=mx+n$移项整理得到:$ax^2+ (b-m)x +(c-n)=0$这是一个二次方程,求解得到$x$的两个解,即二次曲线和直线的交点的横坐标。

将$x$的值代入直线方程或二次曲线方程,即可得到对应的纵坐标。

2. 计算切点的坐标找到二次曲线和直线的交点坐标后,我们需要进一步计算这个交点处的切点坐标。

切点是指直线与二次曲线在该点上相切的点,也就是说它们在这一点上有相同的切线。

切线的斜率是直线和曲线在切点处的斜率,我们可以通过导数的方法来求解。

求二次曲线$y=ax^2+bx+c$的导数得到$y'=2ax+b$,直线$y=mx+n$的斜率为$m$。

因为在切点处切线的斜率应该相等,所以我们有:$2ax+b=m$将切点坐标代入上式,可以解出切线的斜率。

然后代入切点坐标和切线斜率,求解出切点的坐标。

3. 建立切点的弦方程求解出切点的坐标后,我们可以建立切点的弦方程。

弦是连接两个点的直线,我们可以利用两点式来建立弦方程。

设切点坐标为$(x_1,y_1)$,且经过另一个点$(x_2,y_2)$,则弦方程为:$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$将切点坐标和另一个点的坐标代入上式,即可得到切点的弦方程。

二次曲线的一般理论课件

二次曲线的一般理论课件

焦准距
焦半径
二次曲线上的任意一点到焦点的距离 称为焦半径,它等于该点到准线的距 离。
二次曲线上的焦点到准线的距离称为 焦准距,它是常数。
04 二次曲线的切线
二次曲线的切线定义
切线定义
切线是与二次曲线在某一点相切 的直线,该点称为切点。
切线的几何意义
切线是唯一一条与二次曲线在切 点处既相切又垂直的直线。
详细描述
二次曲线的一般方程为Ax^2+Bxy+Cy^2+Dx+Ey+F=0,其 中A、B、C、D、E、F为常数,且A、C不同时为0。这个方 程描述了一个平面上的二次曲线,其中x和y是平面上的坐标, A、B、C、D、E、F是常数。
二次曲线的性质
总结词
二次曲线具有一些重要的性质,如对称性、中心性、离心率等。
详细描述
二次曲线具有对称性,即曲线关于x轴、y轴或原点对称。此外,二次曲线还有 一个中心,即曲线的离心率指向一个固定点(称为焦点)。离心率决定了曲线 的形状和大小。
二次曲线的分类
总结词
根据不同的分类标准,二次曲线可以分为不同的类型。
详细描述
根据形状和开口方向,二次曲线可以分为椭圆型、双曲线型和抛物线型。根据焦 点个数,二次曲线可以分为单焦点和双焦点二次曲线。此外,根据对称性,二次 曲线还可以分为中心对称和非中心对称二次曲线。
二次曲线的一般方程的推导
总结词
二次曲线的一般方程的推导基于多项式和代数的基本原理,通过将二次曲面进行参数化,可以得到一 般方程。
详细描述
推导二次曲线的一般方程通常采用参数化的方法,将二次曲面表示为参数t的函数 (x(t), y(t), z(t)),然 后通过代入和整理得到一般方程。这个过程需要一定的代数和微积分知识。

《二次曲线的切线》课件

《二次曲线的切线》课件
要点一
二次曲线的切线在解析几何中的 应用
在解析几何中,二次曲线的切线可以用来研究曲线的性质 和关系。通过切线,我们可以更好地理解曲线的方程和参 数,从而更好地研究曲线的几何性质。
要点二
具体应用
在解析几何中,可以利用切线来研究曲线的对称性、中心 、顶点和焦距等性质,有助于我们更深入地理解曲线的结 构和性质。
在几何上,切线是唯一与曲线 在某一点既相切又平行的直线 。
03
二次曲线切线的求法
切线的点斜式方程
总结词
通过切点和斜率表示切线的方程。
详细描述
切线的点斜式方程是二次曲线切线的一种表示形式,它通过切点和该点的斜率 来表示切线方程。设切点为$(x_0, y_0)$,斜率为$m$,则切线的点斜式方程为 $y - y_0 = m(x - x_0)$。
切线的点向式方程
总结词
通过切点和方向向量表示切线的方程。
详细描述
切线的点向式方程是另一种表示形式,它通过切点和方向向量来表示切线方程。设切点为$(x_0, y_0)$,方向向 量为$(dx, dy)$,则切线的点向式方程为$(x - x_0)dx + (y - y_0)dy = 0$。
切线的参数式方程
在物理学中的应用
二次曲线的切线在物理学 中的应用
在物理学中,二次曲线的切线可以用来描述 物理现象和规律。例如,在力学中,物体的 运动轨迹可以看作是二次曲线的切线;在光 学中,光线通过透镜的路径也可以看作是二 次曲线的切线。
具体应用
在物理学中,可以利用切线来描述物体的运 动轨迹、光线的传播路径等物理现象,有助 于我们更准确地理解和描述物理规律和现象
《二次曲线的切线》ppt课件
• 二次曲线的基本概念 • 二次曲线的切线定义 • 二次曲线切线的求法 • 二次曲线切线的应用 • 二次曲线切线的扩展知识

二次曲线市公开课一等奖省赛课微课金奖PPT课件

二次曲线市公开课一等奖省赛课微课金奖PPT课件
例1 已知椭圆的焦点是F1 3, 0, F2 3, 0,动点 M 到两焦
点的距离之和是10,求椭圆的标准方程.
解 这是焦点在x轴上的椭圆.因此设所求椭圆的标准方程为 x2 y2 1 a2 b2
由已知条件:c = 3;2a = 10,从而得 a = 5. b2 a2 c2 25 9 16,
32 12 3D E F 0
2D 2E F 8 即5D 3E F 34.
3D E F 10
第9页
解这个方程组得:D = -8,E = -2,F =12.
所求圆的方程为:x2 y2 8x 2 y 12 0.
配方后,得 : x 42 y 12
2
5.
可知圆心为4,1,半径为 5.
解 所求圆的圆心在直径AB的中点,a,b.
由中点坐标公式,得
a = 2+-6 2,
2
-2+4 b= 2 1
根据两点间距离公式,可得圆的半径
1 r= 2
2 62 2 42 5.
由式9-1,所求圆的方程为: x 22 y 12 25.
第6页
现在, 我们已经掌握了圆的方程的两种表达形式.就是说,
一、椭圆定义与标准方程
1.椭圆定义 如图9-6所示,取一条没有伸缩性的绳子,将它们的两端分 别固定在平板上的 F1 ,F2 两点,用铅笔尖把绳子拉紧,移动一周 则笔尖画出的曲线就是椭圆.
第18页
在上面椭圆的画法中,我们
可以看到,曲线上任意一点到两
点F1 ,F2的距离之和都等于一个常 数,即绳子的长度.根据椭圆的
任何一个圆,都可以写成标准式 x-a2 y b2 r2或一般式
x2 y2 Dx Ey F 0
标准式的特点, 就在于它具有鲜明的几何意义, 从形式上可

高中数学备课教案二次曲线的参数方程与切线

高中数学备课教案二次曲线的参数方程与切线

高中数学备课教案二次曲线的参数方程与切线高中数学备课教案:二次曲线的参数方程与切线一、引言二次曲线是高中数学中重要的内容,掌握二次曲线的参数方程及其与切线的关系对于解题和理解曲线的性质具有重要意义。

本教案将详细介绍二次曲线的参数方程的推导过程以及如何求解与二次曲线相切的切线方程。

二、二次曲线的参数方程二次曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E、F为常数。

为了方便研究二次曲线的性质,可以使用参数方程来表示二次曲线。

1. 推导过程设二次曲线上的任意一点为P(x, y),则有:x = αt² + βt + γy = δt² + εt + ζ其中α、β、γ、δ、ε、ζ为待定参数,t为一个实数。

将x和y的表达式代入二次曲线的一般方程,得到:A(αt² + βt + γ)² + B(αt² + βt + γ)(δt² + εt + ζ) + C(δt² + εt + ζ)² + D(αt² + βt + γ) + E(δt² + εt + ζ) + F = 0整理后可得:(α²A + Bδα)t⁴ + (2αβA +B(εα + δβ) + 2Cδε)t³ + (2αγA + B(εβ + ζα +δγ) + 2C(δζ + εγ) + Dα + Eδ)t²+ (2βγA + B(ζβ + εγ) + Cζ² + Dβ + Eε)t + (γ²A + Cε² + 2ζγC + Dγ + Eζ+ F) = 0由于上述方程的每一项都是t的多项式,所以该方程为t的一个参数方程。

2. 参数方程的使用二次曲线的参数方程可以通过求解方程组得到参数α、β、γ、δ、ε、ζ的具体值。

……高中数学竞赛标准讲义:第二章:二次函数与命题

……高中数学竞赛标准讲义:第二章:二次函数与命题

2010高中数学竞赛标准讲义:第二章:二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab2,下同。

2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。

当a <0时,情况相反。

3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2).2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点。

3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点。

当a <0时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。

双曲线中点弦二级结论

双曲线中点弦二级结论

在双曲线中,中点弦二级结论是一个关于双曲线中点弦的几何性质。

下面是双曲线中点弦二级结论的表述和解释:
假设在双曲线上取一点P,并以点P为端点在双曲线上作一条切线,该切线与双曲线的交点分别为A和B。

如果以点P为中点,作通过点P的弦CD,且弦CD与双曲线交于点E和F,则点E、F是切线AB上的两个定点。

换句话说,点E和F与切线AB的距离相等,且它们都在双曲线的对称轴上。

这个结论可以通过双曲线的几何性质和切线的定义来推导和证明。

在双曲线上取任意一点P,作切线AB,并将切线AB延长,使其与双曲线交于点C和D。

然后以点P为中点作弦CD,连接点E和F,我们可以证明点E和F满足上述的几何特性。

这个结论在双曲线的研究中有一些重要的应用,特别是在双曲线的对称性和切线性质的推导中。

它也是双曲线的一项基本几何性质,对于理解和分析双曲线的形态和性质非常有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自招竞赛数学
“二次曲线中点弦、切线、切点弦及双切线方程(1)”
讲义编号:
这是解析几何中应用做广的知识点,在高考压轴题中也会经常出现,如果能熟练掌握,不仅仅对于自招竞赛有好处,对于高考做题的速度也有促进作用。

二次曲线中点弦、切线、切点弦及双切线方程(1)重在知识梳理和初步的知识应用(例1-例3)。

二次曲线中点弦、切线、切点弦及双切线方程(2)重在知识进一步的应用(例4-例7)和练习巩固。

Tips:例1作为例题的同时也作为知识梳理前的诊断题。

学生如果高三复习得好,用一般的高考常用解题思路也能完成这三题,只是计算量大,只有让他们先体会下按照原来的做法去做这类题目的艰辛才能更好的感受到上完此次课的收获。

2个小时的讲义授课安排建议为:诊断题(一题为高考题、一题为后面会讲解的例1)让学生尝试花时间40分钟(两道题都在40分钟内要有所尝试和思路),先看看学生的诊断题解题思路,只讲解诊断题1(按教学提示多角度讲解,耗时15分钟左右),题2不讲解。

接下来,花30分钟时间给学生讲解本节讲义的核心内容——知识梳理部分;最后剩下的时间讲解例题,例题讲解过程中注意分析学生之前在做的时候计算量大在哪里,新的知识给解题带来的方便。

诊断题1与例3类似的感觉,让学生体会高考与竞赛的联系和差别。

估计3道例题时间会来不及,视学生情况安排时间,讲不完的例题给学生提示思路,留作作业。

1.(2013年高考数学陕西卷理科第20题)已知动圆过定点(4,0)
A,且在y轴上截得的弦MN的长为8。

(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)已知点(1,0)
∠B-,设不垂直于x轴的直线l与轨迹C交于不同的两点P Q
、,若x轴是PBQ 的角平分线,证明直线l过定点。

教学提示:尝试多角度解题。

(1)解法1:设00(,)C x y ,则圆C 的方程为2222
0000()()(4)x x y y x y -+-=-+,令0x =,得20028160y y y x -+-=
,所以0y y =
8MN ==,即2008y x =,故
轨迹C 的方程为28y x =。

解法2:设(,)c x y ,由题意可知,22
22
24
c
c
MN MC x AC x -=-=,即222(4)16x y x -+-=,整理得,
28y x =,故轨迹C 的方程为28y x =。

注:解法1根据题意求什么就设什么,将题意代数化,从而得到动点的横、纵坐标满足的关系式;解法2从几何图形上考虑,对直线与圆相交的问题,常常用直角三角形来代数化。

(2)考查抛物线背景下的直线过定点问题,由“x 轴是PBQ ∠的角平分线”易得:直线BP 、BQ 关于x 轴对称,即两直线的斜率互为相反数。

1.立足根本,常规解题
解法1:设直线l 的方程为1122,(,),(,)y k x b P x y Q x y =+,由2
,
8,y kx b y x =+⎧⎨=⎩
消去y 得,222
(28)0k x k b x
b +-+=,则
222(28)464320kb k b kb ∆=--=->, 2
12122
282,.kb b x x x x k k
-+== 由x 轴是PBQ ∠的角平分线可知,0PB QB k k +=, 即
1212211212()(1)()(1)0,11(1)(1)
y y kx b x kx b x x x x x ++++++==++++ 即12122()()20kx x k b x x b ++++=,
所以222
2()(82)
20kb k b kb b k k +-+
+=,整理得,0k b +=,符合题意,所以直线l 的方程为y kx k =-,易知其过定点(1,0)。

注:直线与抛物线的相交问题,将抛物线与直线方程联立,利用韦达定理简化运算,是解析几何常见的解题思路。

解法2:设直线BP 的方程为y mx m =+,与抛物线C 交于另一点'Q ,设'112
2(,)Q (,)p x y x y ,由对称性易知22(,)Q x y -,
联立2,
8,
y mx m y x =+⎧⎨=⎩消去y 得,2222(28)0m x m x m +-+=,。

相关文档
最新文档