高三上学期期中考试数学(文)试题.docx

合集下载

2021-2022学年高三上学期数学(文)期中试题及答案

2021-2022学年高三上学期数学(文)期中试题及答案

2021-2022学年上学期期中考试高三数学(文科)试题考试时间:120分钟 分数:150分本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则U C A =( )A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}2. 131ii +- = ( )A. 1+2iB. -1+2iC. 1-2iD. -1-2i3. 已知实数x , y 满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z=y-x 的最大值为 ( )A. 1B. 0C. -1D. -2 4. “p ⌝为假命题”是“p q ∧为真命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为( ) A. 32π B. 16π C. 12π D. 8π(5题图) (6题图)是否开始k=1,s=1k<5?输出s结束 k=k+1s=2s-k6. 执行如图所示的程序框图,输出的s 值为 ( ) A. -10 B. -3 C. 4 D. 57. 已知x 与y 之间的几组数据如表:x 0 1 2 3 y267则y 与x 的线性回归方程y b x a ∧∧∧=+必过点 ( )A. (1,2)B. (2,6)C. (315,24) D. (3,7)8. 下列函数中,在定义域内与函数3y x =的单调性与奇偶性都相同的是 ( )A. sin y x =B. 3y x x =-C. 2x y =D.2lg(1)y x x =++9. 对于使()f x N ≥成立的所有常数N 中,我们把N 的最大值叫作()f x 的下确界.若,a b ∈(0, +∞),且2a b +=,则133a b +的下确界为 ( ) A. 163 B. 83 C. 43 D. 2310.如图所示的数阵中,每行、每列的三个数均成等差数列.如果数阵中111213212223313233a a a a a a aa a ⎛⎫ ⎪ ⎪ ⎪⎝⎭所有数的和等于36,那么22a = ( )A. 8B. 4C. 2D. 111.三棱锥P-ABC 的侧棱PA 、PB 、PC 两两垂直,侧面面积分别是6,4,3,则三棱锥的体积是 ( )A. 4B. 6C. 8D.1012.函数()f x 的定义域为R ,f(0)=2,对x R ∀∈,有()()1f x f x '+>,则不等式()1x xe f x e >+ 的解集为 ( ) A. {}|0x x > B. {}|0x x < C. {}|11x x x <->或 D. {}|10x x x <->>或1第Ⅱ卷(非选择题)二.填空题(本大题共4小题,每小题5分,共计20分)13.已知-向量a 与b 的夹角为60°,且a =(-2,-6),10b =,则ab =14.已知数列{}n a 是等比数列,且1344,8a a a ==,则5a 的值为15.抛物线2(0)y ax a =<的焦点坐标为 16.将边长为2的等边∆ABC 沿x 轴正方向滚动,某时刻A 与坐标原点重合(如图),设顶点(,)A x y 的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:①f(x)的值域为[0,2]; ②f(x)是周期函数且周期为6 ; ③()(4)(2015)f f f π<<;④滚动后,当顶点A 第一次落在x 轴上时,f(x)的图象与x 轴所围成的面积为833π+.其中正确命题的序号为三.解答题(本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)在∆ABC 中,内角A,B,C 的对边分别为,,a b c .已知3cos 3cos c b C c B =+(I )求sin sin C A 的值 (II)若1cos ,233B b =-=,求∆ABC 的面积。

2023届河北省唐山一中高三上学期期中数学试题及答案

2023届河北省唐山一中高三上学期期中数学试题及答案

唐山一中2022—2023 学年度第一学期期中考试高三年级 数学试卷说明:1.考试时间 120分钟,满分 150分。

2.将卷Ⅰ答案用 2B 铅笔涂在答题卡上,将卷Ⅱ答案用黑色字迹的签字笔书写在答题卡上。

卷Ⅰ(选择题 共60分)一.单项单选题(本题共 8 小题,每题 5 分,共 40 分.在每个题给出的四个选项中,只有一项是符合题目要求的)1.设集合{|12}A x x =-< ,{|}B x x a =<,若A B ⋂≠∅,则实数a 的取值范围是()A .{|2}a a <B .{|2}a a >-C .{|1}a a >-D .{|12}a a -< 2.()12i 34i z +=-,则=z ()A .2B CD .33.已知a ,b 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题错误的是()A .若,//αγβα⊥,则βγ⊥B .若//,//,a αββγα⊥,则a γ⊥C .若,,//a b a b αγβγ== ,则//αβD .若,,αγβγαβ⊥⊥= b ,则b γ⊥4.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{}n a ,则6=a ()A .103B .107C .109D .1055.若,x R k Z ∈∈,则“||4x k ππ-<”是“|tan |1x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知()cos()f x x =+ωϕ(其中0>ω,ππ22ϕ-<<)的部分图象如图所示,下列四个结论:(1)函数()f x 的单调递增区间为ππ2π,2π36k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z(2)函数()f x 的单调递减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,k ∈Z(3)函数()f x 的最小正周期为π(4)函数()f x 在区间[,]-ππ上有5个零点.其中正确的个数为()A .1B .2C .3D .47.已知0.30.22,3a b ==,若()2log c a b =+,则a b c 、、大小关系为()A .c b a>>B .c a b>>C .a b c>>D .b a c>>8.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为()A B C D .18二.不定项选择题(本题共4小题,每小题5分,共20分.在每个小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.如图所示,在四棱锥E ABCD -中,CDE △是边长为2的正三角形,点N 为正方形ABCD 的中心,M 为线段DE 的中点,BC DE ⊥则下列结论正确的是()A .直线BM 与EN 是异面直线B .线段BM 与EN 的长度不相等C .直线DE ⊥平面ACMD .直线EA 与平面ABCD 10.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列命题中正确的有()A .若cos cos cos a b cA B C==,则△ABC 一定是等边三角形B .若cos cos a A b B =,则△ABC 一定是等腰三角形C .A B >是sin sin A B >成立的充要条件D .若2220a b c +->,则△ABC 一定是锐角三角形11.设数列{}n a 的前n 项和为n S ,下列命题正确的是()A .若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -仍为等差数列B .若{}n a 为等比数列,则n S ,2n n S S -,32n n S S -仍为等比数列C .若{}n a 为等差数列,则{}n aa (a 为正常数)为等比数列D .若{}n a 为等比数列,则{}lg n a 为等差数列12.已知函数()f x 与()g x 的定义域均为R ,()(),f x g x ''分别为()(),f x g x 的导函数,()()5f x g x '+=,()()225f x g x '--+=,若()g x 为奇函数,则下列等式一定成立的是()A .()25f -=B .()()4g x g x +=.C .()()8g x g x -'='D .()()8f x f x +'='卷Ⅱ(非选择题共90分)三.填空题(本题共4小题,每小题5分,共20分.)13.平面向量a 与b 的夹角为60︒,(3,4),||1== a b ,则|2|a b +=_____________.14.已知等差数列{}n a 的前n 项和为n S ,且111012S S S >>,则满足0n S >的正整数n 的最大值为____15.在三棱锥P ABC -中,PA ⊥底面ABC ,4PA =,AB BC AC ===M 为AC 的中点,球O 为三棱锥P ABM -的外接球,D 是球O 上任一点,则三棱锥-D PAC 体积的最大值为____________.16.已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.四.解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题10分)已知等比数列{}n a 的公比>1q ,满足:2346=13,=3S a a .(1)求{}n a 的通项公式;(2)设1,=+,n n n a n b b n n -⎧⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .18.(本题12分)如图,四棱锥P -ABCD 中,PD ⊥底面ABCD ,AB ∥CD ,∠BAD =3π,AB =1,CD =3,M 为PC上一点,且MC =2PM.(1)证明:BM //平面PAD ;(2)若AD =2,PD =3,求点D 到平面PBC 的距离.19.(本题12分)在斜三棱柱111ABC A B C -中,ABC 为等腰直角三角形,AB AC =,侧面11BB C C 为菱形,且160B BC ∠=︒,点E 为棱1A A 的中点,1EB EC =,平面1B CE ⊥平面11BB C C .(1)证明:平面11BB C C ⊥平面ABC ;(2)求平面1AB C 与平面1B CE 的夹角的余弦值.20.(本题12分)如图,矩形纸片ABCD 的长AB为3,将矩形ABCD 沿折痕,EF GH 翻折,使得,A B 两点均落于DC 边上的点P,若EG EPG ∠θ==.(1)当sin2sin θθ=-时,求矩形的宽AD 的长度;(2)当0,2πθ⎛⎤∈ ⎥⎝⎦时,求矩形的宽AD 的最大值.21.(本题12分)已知等差数列{}n a 的前n 项和为n S ,且11a =,5212S S =+;数列{}n b 的前n 项和n T ,且11b =,数列{}n b 的11n n b T +=+,()*n ∈N .(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足:()()112141n n n n n n n a a c a a b -++=-+,当2n ≥时,求证:12212n c c c ++⋅⋅⋅+<.22.(本题12分)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性;(2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.高三数学期中考试参考答案:1-8CCCBCBAA 9-12BD AC AC ACD13-162129e 17.(1)法一:因为{}n a 是公比1q >的等比数列,所以由3246=13=3S a a ⎧⎨⎩,得()12323511++=13=3a a a a q a q ⎧⎪⎨⎪⎩,即()2111++=13=3a q q a q ⎧⎪⎨⎪⎩,两式相除得21133q q q ++=,整理得231030q q -+=,即()()3130q q --=,解得3q =或13q =,又1q >,所以3q =,故131a q ==,所以1113n n n a a q --==,(2)当n 为奇数时,13n n n b a -==,当n 为偶数时,213n n n b b n n --=+=+,所以12342122n n n b b b b S b b -=++++++ ()()1321242n n b b b b b b -=+++++++ ()()222022023332n n n --=++++++++++ ()()022********n n -=+++++++ ()()22132+2=2+132nn n --⨯91(1)4nn n -=++.18.(1)过点M 作ME //CD ,交PD 于点E ,连接AE .因为AB //CD ,故AB //EM .又因为MC =2PM ,CD =3,且△PEM ∽△PDC ,故13EM PM DC PC ==,解得EM =1.由已知AB =1,得EM =AB ,故四边形ABME 为平行四边形,因此BM //AE ,又AE ⊂平面PAD ,BM ⊄平面PAD ,所以BM //平面PAD.(2)连接BD ,由已知AD =2,AB =1,∠BAD =3π,可得DB 2=AD 2+AB 2-2AD ·AB ·cos ∠BAD =3,即DB 因为DB 2+AB 2=AD 2,故△ABD 为直角三角形,且∠ABD =2π.因为AB ∥CD ,故∠BDC =∠ABD =2π.因为DC =3,故BC =.由PD ⊥底面ABCD ,得PD ⊥DB ,PD ⊥DC ,故PB =,PC =,则BC =PB ,故△PBC 为等腰三角形,其面积为S △PBC =12·PC 12=×2.设点D 到平面PBC 的距离为h ,则三V 三棱锥D -PBC =13·S △而直角三角形BDC 的面积为S△BDC =12·DC ·DB =12三棱锥P -BDC 的体积为V 三棱锥P -BDC =13·S △·PD =13因为V 三棱锥D -PBC =V 三棱锥P -BDC ,即2h =2,故h =5.所以点D 到平面PBC 的距离为5.19解:(1)分别取BC ,1B C 的中点O 和F ,连接OA ,OF ,EF ,1B O ,如下图:因为O ,F 分别是BC ,1B C 的中点,所以1FO BB ,且112FO BB =,因为点E 为棱1A A 的中点,所以1AE BB ,且112AE BB =,所以FO AE ,且FO AE =,所以四边形AOFE 是平行四边形,所以EF AO ∥.因为1EB EC =,F 是1B C 的中点,所以1EF B C ⊥,又因为平面1B CE ⊥平面11BB C C ,且平面1B CE 平面111BB C C B C =,所以EF ⊥平面11BB C C ,所以AO ⊥平面11BB C C ,因为AO ⊂平面ABC ,所以平面11BB C C ⊥平面ABC .(2)因为侧面11BB C C 为菱形,且160B BC ∠=︒,所以1BB C △为正三角形,所以1B O BC ⊥,由(1)知平面11BB C C ⊥平面ABC ,平面11BB C C 平面ABC BC =,所以1B O ⊥平面ABC ,又由AB AC =,故OA ,OC ,1OB 两两垂直,设2AB =,则1AA BC ==,以O 为坐标原点,OA →,OC →,1OB →分别为x ,y ,z 轴的正方向,建立空间直角坐标系如下:则)A,()C,(1B,,22E ⎭,所以(1B C →=,2CE →=⎭,()AC →=,设平面1B CE 的法向量为()111,,m x y z →=,则1111110022m B C m CE y z ⎧⋅=⎪⎨⋅+=⎪⎩,令11z =,则1y =10x =,从而()m →=.设平面1AB C 的法向量为()222,,n x y z →=,则122220,0,n B C n AC ⎧⋅==⎪⎨⋅==⎪⎩令2y =21z =,2x =从而)n →=,设平面1AB C 与平面1B CE 的夹角为θ,则||2cos =|cos<,|7||||m n m n m n θ→→→→→→⋅>==⋅,所以平面1AB C 与平面1B CE的夹角的余弦值为7.20(1)依题意,在△EPG 中,EG =,3PE PG +=,EPG ∠θ=,AD 的长度即为△EPG 的边EG 上的高,当sin2sin θθ=-时,2sin cos sin θθθ=-,所以12cos ,(0,),23πθθπθ=-∈∴=EG = ,,PE AE x PG BG y ====x y ∴+,①由余弦定理得,2222cos EG PE PG PE PG θ=+-⋅得,221272x y xy ⎛⎫+-⋅-= ⎪⎝⎭,227x y xy ∴++=,②21212,sin 232PEG xy S xy AD AD π-⇒=∴=⋅=⋅⇒ ①②.(2)在PEG △中,,,3PE AE x PG BG y x y ====+=,①222cos 7x y xy θ+-=,②()2121cos 2,1cos xy xy θθ-⇒+=∴=+①②22sincostan11222sin 2212cos 12PEG S xy AD AD θθθθθ==⋅⇒==+-max 0,0,0tan 1,()2242AD πθπθθ<≤∴<≤<∴=21(1)解:因为11a =,由5212S S =+,得34512a a a ++=,所以4312a =,即44a =,设等差数列{}n a 的公差为d ,所以41141a a d -==-,所以()()11111n a a n d n n =+-=+-⨯=.由11n n b T +=+,()*n ∈N ,得11n n b T -=+,()2n ≥,两式相减得()11n n n n n b b T T b +--=-=,即()122n n b b n +=≥,又2111112b T b b =+=+=,所以数列{}n b 是以1为首项、2为公比的等比数列,则11122n n n b b --=⋅=;(2)由(1)知:()()()()()()1111221114112n n n n n n n n n a a n n c a a b n n --+++++=-=-⋅++⋅,()()11111212n n n n n -+⎡⎤=-⋅+⎢⎥⋅+⋅⎣⎦,∴21232122334111111122222323242n n T c c c c ⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+=+-+++-⋅⋅⋅ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭()()22121111112221222122n n n n n n ++⎛⎫-+=-< ⎪ ⎪⋅+⋅+⋅⎝⎭.22解1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x +--+-'=-+-==ⅰ)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x >ⅱ)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立ⅲ)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a>-综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈∴212112ln ln ln x x x xa x x t --==-()1a g x x'=+∴122112122221122ln 2x x x x g ax x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,∴ln 0t <∴()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t tt λλ+-=++,∴()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ⅰ)24λ≥时,204t λ-<,∴()0h t '>,∴()h t 在()0,1上单调递增∴()()10h t h <=恒成立,∴(][),22,λ∈-∞-+∞ 合题ⅱ)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,∴()0h t '>,∴()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<,∴()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减∴2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞。

四川省成都市第七中学2022-2023学年高三上学期期中考试文科数学试题(解析版)

四川省成都市第七中学2022-2023学年高三上学期期中考试文科数学试题(解析版)

成都七中2022~2023学年度(上)高三年级半期考试数学试卷(文科)(试卷总分:150分,考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,则()U A B = ð( )A. {}0,6 B. {}1,4 C. {}2,4 D. {}3,5【答案】C【解析】【分析】根据交集、补集的定义,即得解【详解】由题意,全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,故{0,2,4,6}U B =ð则(){2,4}U A B =∩ð故选:C2. 复数43i 2i z -=+(其中i 为虚数单位)的虚部为( )A. 2- B. 1- C. 1 D. 2【答案】A【解析】【分析】根据复数除法的运算法则,求出复数z ,然后由虚部的定义即可求解.【详解】解:因为复数()()()()2243i 2i 43i 510i 12i 2i 2i 2i 21z ----====-++-+,所以复数z 的虚部为2-,故选:A .3. 青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角12名青少年的视力测量值()1,2,3,,12i a i =⋅⋅⋅(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】依题意该程序框图是统计这12名青少年视力小于等于4.3人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于4.3的人数,由茎叶图可知视力小于等于4.3的有5人,故选:B4. 抛物线()220y px p =≠上的一点()9,12P -到其焦点F 的距离PF 等于( )A. 17B. 15C. 13D. 11【答案】C【解析】【分析】由点的坐标求得参数p ,再由焦半径公式得结论.【详解】由题意2122(9)p =⨯-,解得8p =-,所以4(9)132P p PF x =--=--=,故选:C .5. 奥运会跳水比赛中共有7名评委给出某选手原始评分,在评定该选手的成绩时,去掉其中一个最高分和一个最低分,得到5个有效评分,则与7个原始评分(不全相同)相比,一定会变小的数字特征是( )A. 众数B. 方差C. 中位数D. 平均数【答案】B【解析】的【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】对于A:众数可能不变,如8,7,7,7,4,4,1,故A错误;对于B:方差体现数据的偏离程度,因为数据不完全相同,当去掉一个最高分、一个最低分,一定使得数据偏离程度变小,即方差变小,故B正确;对于C:7个数据从小到大排列,第4个数为中位数,当首、末两端的数字去掉,中间的数字依然不变,故5个有效评分与7个原始评分相比,不变的中位数,故C错误;对于C:平均数可能变大、变小或不变,故D错误;故选:B6. 已知一个几何体的三视图如图,则它的表面积为()A. 3πB. 4πC. 5πD. 6π【答案】B【解析】【分析】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,根据题干三视图的数据,以及圆锥的侧面积和球的表面积公式,即得解【详解】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同底面圆的半径1r =,圆锥的母线长2l ==记该几何体的表面积为S 故211(2)4422S r l r πππ=+⨯=故选:B7. 设平面向量a ,b 的夹角为120︒,且1a = ,2b = ,则()2a a b ⋅+= ( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用向量数量积的运算律以及数量积的定义,计算即得解【详解】由题意,()22222112cos120211a ab a a b ⋅+=+⋅=⨯+⨯⨯=-= 则()21a a b ⋅+= 故选:A8. 设x ,y 满足240220330x y x y x y +-≤⎧⎪-+≤⎨⎪++≥⎩,则2z x y =+的最大值是( )A. 2- B. 1- C. 1 D. 2【答案】D【解析】【分析】画出不等式组表示的平面区域,如图中阴影部分所示, 转化2z x y =+为2y x z =-+,要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大,数形结合即得解【详解】画出不等式组表示的平面区域,如图中阴影部分所示转化2z x y =+为2y x z=-+要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大由图像可知,当经过图中B 点时,直线的截距最大240220x y x y +-=⎧⎨-+=⎩,解得(0,2)B 故2022z =⨯+=故2z x y =+的最大值是2故选:D9. “α为第二象限角”是“sin 1αα>”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据条件sin 1αα->求出α的范围,从而可判断出选项.【详解】因为1sin 2sin 2sin 23πααααα⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由sin 1αα>,得2sin 13πα⎛⎫-> ⎪⎝⎭,即1sin 32πα⎛⎫-> ⎪⎝⎭,所以522,636k k k Z ππππαπ+<-<+∈,即722,26k k k Z πππαπ+<<+∈,所以当α为第二象限角时,sin 1αα>;但当sin 1αα>时,α不一定为第二象限角,故“α为第二象限角”是“sin 1αα>”的充分不必要条件.故选:A .10. 已知直线()100,0ax by a b +-=>>与圆224x y +=相切,则22log log a b +的最大值为( )A. 3B. 2C. 2-D. 3-【答案】D【解析】【分析】由直线与圆相切可得2214a b +=,然后利用均值不等式可得18ab ≤,从而可求22log log a b +的最大值.【详解】解:因为直线()100,0ax by a b +-=>>与圆224x y +=相切,2=,即2214a b +=,因为222a b ab +≥,所以18ab ≤,所以22221log log log log 38a b ab +=≤=-,所以22log log a b +的最大值为3-,故选:D .11. 关于函数()sin cos 6x x f x π⎛⎫=-⎪⎝⎭的叙述中,正确的有( )①()f x 的最小正周期为2π;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦内单调递增;③3f x π⎛⎫+ ⎪⎝⎭是偶函数;④()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称.A. ①③B. ①④C. ②③D. ②④【答案】C【解析】【分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得()11sin(2)264f x x π=-+,再根据正弦型函数的性质,结合各项描述判断正误即可.【详解】()211sin cos sin sin )cos sin 622x f x x x x x x x x π⎛⎫=-=+=+= ⎪⎝⎭11112cos 2sin(2)44264x x x π-+=-+,∴最小正周期22T ππ==,①错误;令222262k x k πππππ-≤-≤+,则()f x 在[,63k k ππππ-+上递增,显然当0k =时,63ππ⎡⎤-⎢⎥⎣⎦,②正确;1111sin(2)cos 2322424f x x x ππ⎛⎫+=++=+ ⎪⎝⎭,易知3f x π⎛⎫+ ⎪⎝⎭为偶函数,③正确;令26x k ππ-=,则212k x ππ=+,Z k ∈,易知()f x 的图象关于1,124π⎛⎫ ⎪⎝⎭对称,④错误;故选:C12. 攒尖在中国古建筑(如宫殿、坛庙、园林等)中大量存在,攒尖式建筑的屋面在顶部交汇成宝顶,使整个屋顶呈棱锥或圆锥形状.始建于1752年的廓如亭(位于北京颐和园内,如图)是全国最大的攒尖亭宇,八角重檐,蔚为壮观.其檐平面呈正八边形,上檐边长为a ,宝顶到上檐平面的距离为h ,则攒尖的体积为( )A.B.C.D. 【答案】D【解析】【分析】攒尖是一个正八棱锥,由棱锥体积公式计算可得.【详解】如图底面正八边形ABCDEFGH 的外接圆圆心是O (正八边形对角线交点),设外接圆半径为R ,在OAB 中,4AOB π∠=,AB a =,由余弦定理得222222cos (24a R R R R π=+-=-,22R ==,正八边形的面积为218sin 24S R π=⨯22(1a =,所以攒尖体积13V Sh ==.故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13. 命题“x N ∃∈,22x x <”的否定是_______________________.【答案】2,2x x N x ∀∈≥【解析】【分析】根据命题的否定的定义求解.【详解】特称命题的否定是全称命题.命题“x N ∃∈,22x x <”的否定是:2,2x x N x ∀∈≥.故答案为:2,2x x N x ∀∈≥.14. 函数()ln f x x =-在1x =处的切线方程为_______________________.(要求写一般式方程)【答案】230x y +-=【解析】【分析】利用导函数求出斜率,即可写出切线方程.【详解】()ln f x x =-的导函数是()1f x x'=,所以()111122f '=-=-.又()11f =,所以函数()ln f x x =-在1x =处的切线方程为()1112y x -=--,即230x y +-=.故答案为:230x y +-=.15. 已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为1F 、2F ,且两条渐近线互相垂直,若C 上一点P 满足213PF PF =,则12F PF ∠的余弦值为_______________________.【答案】13【解析】【分析】由题意可得b a =,进而得到c =,再结合双曲线的定义可得123,PF a PF a ==,进而结合余弦定理即可求出结果.【详解】因为双曲线()2222:10,0x y C a b a b -=>>,所以渐近线方程为b y x a =±,又因为两条渐近线互相垂直,所以21b a ⎛⎫-=- ⎪⎝⎭,所以1b a =,即b a =,因此c =,因此213PF PF =,又由双曲线的定义可知122PF PF a -=,则123,PF a PF a ==,所以在12F PF △中由余弦定理可得222122112121cos 23PF PF F F F PF PF PF +-∠===⋅,故答案为:13.16. 已知向量(),a x m = ,()32,2b x x =-+ .(1)若当2x =时,a b ⊥ ,则实数m 的值为_______________________;(2)若存在正数x ,使得//a b r r,则实数m 取值范围是__________________.【答案】①. 2- ②. (),0[2,)-∞⋃+∞【解析】【分析】(1)由2x =时,得到()2,a m = ,()4,4b = ,然后根据a b ⊥ 求解;(2)根据存在正数x ,使得//a b r r,则()22320x m x m +-+=,()0,x ∈+∞有解,利用二次函数的根的分布求解.【详解】(1)当2x =时,()2,a m = ,()4,4b = ,因为a b ⊥ ,所以2440m ⨯+=,解得2m =-,所以实数m 的值为-2;(2)因为存在正数x ,使得//a b r r,所以()()232x x m x +=-,()0,x ∈+∞有解,即()22320x m x m +-+=,()0,x ∈+∞有解,所以()223022380m m m -⎧->⎪⎨⎪∆=--≥⎩或230220m m -⎧-≤⎪⎨⎪<⎩,解得2m ≥或0m <,所以实数m 的取值范围是(),0[2,)-∞⋃+∞.故答案为:-2,(),0[2,)-∞⋃+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个题目考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某企业有甲、乙两条生产线,其产量之比为4:1.现从两条生产线上按分层抽样的方法得到一个样本,其部分统计数据如表(单位:件),且每件产品都有各自生产线的标记.的产品件数一等品二等品总计甲生产线2乙生产线7总计50(1)请将22⨯列联表补充完整,并根据独立性检验估计;大约有多大把握认为产品的等级差异与生产线有关?()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(2)从样本的所有二等品中随机抽取2件,求至少有1件为甲生产线产品的概率.【答案】(1)列联表见解析,有97.5%的把握认为产品的等级差异与生产线有关; (2)710【解析】【分析】(1)完善列联表,计算出卡方,再与观测值比较即可判断;(2)记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ,用列举法列出所有可能结果,再根据古典概型的概率公式计算可得;小问1详解】解:依题意可得22⨯列联表如下:产品件数一等品二等品总计甲生产线38240乙生产线7310总计45550所以()225038327 5.5561040545K ⨯-⨯=≈⨯⨯⨯,因为5.024 5.556 6.635<<,所以有97.5%的把握认为产品的等【级差异与生产线有关;【小问2详解】解:依题意,记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ;则从中随机抽取2件,所有可能结果有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc 共10个,至少有1件为甲生产线产品的有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc 共7个,所以至少有1件为甲生产线产品的概率710P =;18. 如图,在正三棱柱111ABC A B C -中,D 是BC 的中点.(1)求证:平面1ADC ⊥平面11BCC B ;(2)已知1AA =,求异面直线1A B 与1DC 所成角的大小.【答案】(1)证明见解析; (2)6π【解析】【分析】(1)证得AD ⊥平面11BCC B ,结合面面垂直的判定定理即可证出结论;(2)建立空间直角坐标系,利用空间向量的夹角坐标公式即可求出结果.【小问1详解】因为正三棱柱111ABC A B C -,所以AB AC =,又因为D 是BC 的中点,所以AD BC ⊥,又因为平面ABC ⊥平面11BCC B ,且平面ABC ⋂平面11BCC B BC =,所以AD ⊥平面11BCC B ,又因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B ;【小问2详解】取11B C 的中点E ,连接DE ,由正三棱柱的几何特征可知,,DB DA DE 两两垂直,故以D 为坐标原点,分以,,DA DB DE 所在直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,设2AB =,则1AA =,所以()()(11,0,1,0,0,0,0,0,1,A B D C -,则((11,0,1,A B DC =-=-u u u r u u u r,所以111111cos ,A B DC A B DC A B DC ⋅===⋅u u u r u u u ru u u r u u u r u u u r u u u r 由于异面直线成角的范围是0,2π⎛⎤⎥⎝⎦,所以异面直线1A B 与1DC ,因此异面直线1A B 与1DC 所成角为6π.19. 已知n N *∈,数列{}n a 的首项11a =,且满足下列条件之一:①1122n n n a a +=+;②()121n n na n a +=+.(只能从①②中选择一个作为已知)(1)求{}n a 的通项公式;(2)若{}n a 的前n 项和n S m <,求正整数m 的最小值.【答案】(1)22n nn a = (2)4【解析】【分析】(1)若选①,则可得11222n n n n a a ++⋅-⋅=,从而可得数列{}2nn a ⋅是以2为公差,2为首项的等差数列,则可求出2nn a ⋅,进而可求出n a ,若选②,则1112n n a a n n +=⋅+,从而可得数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1为首项的等比数列,则可求出na n,进而可求出n a ,(2)利用错位相减法求出n S ,从而可求出正整数m 的最小值【小问1详解】若选①,则由1122n n n a a +=+可得11222n n n n a a ++⋅-⋅=,所以数列{}2n n a ⋅是以2为公差,1122a ⋅=为首项的等差数列,所以222(1)2nn a n n ⋅=+-=,所以22n nn a =,若选②,则由()121n n na n a +=+,得1112n n a a n n +=⋅+,所以数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1111a a ==为首项的等比数列,所以1112n n a n -⎛⎫=⨯ ⎪⎝⎭,所以1222n n nnn a -==【小问2详解】因为12312462(1)222222n n n n n S --=+++⋅⋅⋅++,所以234112462(1)2222222n n n n nS +-=+++⋅⋅⋅++,所以23112222122222n n n n S +=+++⋅⋅⋅+-2311112()2222n nn=+++⋅⋅⋅+-111[1]42121212n nn -⎛⎫- ⎪⎝⎭=+⨯--222n n +=-,所以2442n nn S +=-,所以4n S <,所以正整数m 的最小值为4,20. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为,左顶点A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)依题意可得b =、3a c +=,再根据222c a b =-,即可求出a 、c ,从而求出椭圆方程、离心率;(2)设直线l 为y kx m =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,依题意可得12AM AN k k ⋅=-,即可得到方程,整理得到225480m k km --=,即可得到m 、k 的关系,从而求出直线过定点;【小问1详解】解:依题意b =、3a c +=,又222c a b =-,解得2a =,1c =,所以椭圆方程为22143x y +=,离心率12c e a ==;【小问2详解】解:由(1)可知()2,0A -,当直线斜率存在时,设直线l 为y kx m =+,联立方程得22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得()2223484120k xkmx m +++-=,设()11,M x y ,()22,N x y ,所以122834km x x k +=-+,212241234m x x k-=+;因为直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,所以12AM AN k k ⋅=-;即()()22121212121212121212222242AM ANk x x km x x m y y kx m kx m k k x x x x x x x x +++++⋅=⋅=⋅==-+++++++所以2222222241281343441282243434m km k km m k k m km k k -⎛⎫+-+ ⎪++⎝⎭=--⎛⎫+-+ ⎪++⎝⎭,即22221231164162k m k m km -+=-+-,所以225480m k km --=,即()()2520m k m k -+=,所以2m k =或25m k =-,当2m k =时,直线l :2y kx k =+,恒过定点()2,0-,因为直线不过A 点,所以舍去;当25m k =-时,直线l :25y kx k =-,恒过定点2,05⎛⎫ ⎪⎝⎭;当直线斜率不存在时,设直线0:l x x =,()00,M x y ,()00,N x y -,则00001222AM AN y y k k x x -⋅=⋅=-++,且2200143x y +=,解得025x =或02x =-(舍去);综上可得直线l 恒过定点2,05⎛⎫⎪⎝⎭.21. 已知函数()sin xf x e k x =-,其中k 为常数.(1)当1k =时,判断()f x 在区间()0,∞+内的单调性;(2)若对任意()0,x π∈,都有()1f x >,求k 的取值范围.【答案】(1)判断见解析 (2)(,1]k ∈-∞【解析】【分析】小问1:当1k =时,求出导数,判断导数在()0,∞+上的正负,即可确定()f x 在()0,∞+上的单调性;小问2:由()1f x >得sin 10x e k x -->,令()sin 1x g x e k x =--,将参数k 区分为0k ≤,01k <≤,1k >三种情况,分别讨论()g x 的单调性,求出最值,即可得到k 的取值范围.【小问1详解】当1k =时,得()sin xf x e x =-,故()cos xf x e x '=-,当()0,∞+时,()0f x '>恒成立,故()f x 在区间()0,∞+为单调递增函数.【小问2详解】当()0,x π∈时,sin (0,1]x ∈,故()1f x >,即sin 1x e k x ->,即sin 10x e k x -->.令()sin 1x g x e k x =--①当0k ≤时,因为()0,x π∈,故sin (0,1]x ∈,即sin 0k x -≥,又10x e ->,故()0f x >在()0,x π∈上恒成立,故0k ≤;②当01k <≤时,()cos x g x e k x '=-,()sin x g x e k x ''=+,故()0g x ''>在()0,x π∈上恒成立,()g x '在()0,x π∈上单调递增,故0()(0)0g x g e k ''>=->,即()g x 在()0,x π∈上单调递增,故0()(0)10g x g e >=-=,故01k <≤;③当1k >时,由②可知()g x '在()0,x π∈上单调递增,设()0g x '=时的根为0x ,则()g x 在0(0,)x x ∈时为单调递减;在0(,)x x π∈时为单调递增又0(0)10g e =-=,故0()0g x <,舍去;综上:(,1]k ∈-∞【点睛】本题考查了利用导数判断函数单调性,及利用恒成立问题,求参数的取值范围的问题,对参数做到不重不漏的讨论,是解题的关键.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 在平面直角坐标系xOy 中,伯努利双纽线1C (如图)的普通方程为()()222222x y x y +=-,曲线2C 的参数方程为cos sin x r y r θθ=⎧⎨=⎩(其中r ∈(,θ为参数).的(1)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,求1C 和2C 的极坐标方程;(2)设1C 与2C 的交于A ,B ,C ,D 四点,当r 变化时,求凸四边形ABCD 的最大面积.【答案】(1)1:C 2222cos 2sin ρθθ=-;2:C r ρ=(2)2【解析】【分析】(1)根据直角坐标方程,极坐标方程,参数方程之间的公式进行转化即可;(2)设点A 在第一象限,并且设点A 的极坐标,根据题意列出点A 的直角坐标,表示出四边形ABCD 的面积进行计算即可.小问1详解】1:C ()()222222x y x y +=-,由cos ,sin x y ρθρθ==,故222222()2(cos sin )ρρθρθ=-,即2222cos 2sin ρθθ=-2:C cos sin x r y r θθ=⎧⎨=⎩,即222x y r +=,即22r ρ=,rρ=【小问2详解】由1C 和2C 图象的对称性可知,四边形ABCD 为中心在原点处,且边与坐标轴平行的矩形,设点A 在第一象限,且坐标为(,)ρα(02πα<<,又r ρ=,则点A 的直角坐标为(cos ,sin )r r αα,又2222cos 2sin ραα=-,即2222cos 2sin 2cos 2r ααα=-=故S 四边形ABCD =22cos 2sin 2sin 2r r r ααα⋅==22cos 2sin 22sin 4ααα⋅⋅=又02πα<<,故042απ<<,因此当42πα=,即8πα=时,四边形ABCD 的面积最大为2.[选修4—5:不等式选讲](10分)【23. 设M 为不等式1431x x ++≥-的解集.(1)求集合M 的最大元素m ;(2)若a ,b M ∈且a b m +=,求1123a b +++的最小值.【答案】(1)3m = (2)12【解析】【分析】(1)分类讨论13x ≥,1x ≤-,113x -<<,打开绝对值求解,即得解;(2)由题意1,3,3a b a b -≤≤+=,构造11(2)(3)132([11]2328113823a b b a a b a b a b ++++++=+⨯=+++++++++,利用均值不等式即得解【小问1详解】由题意,1431x x ++≥-(1)当13x ≥时,1431x x ++≥-,解得3x ≤,即133x ≤≤;(2)当1x ≤-时,1413x x --+≥-,解得1x ≥-,即=1x -;(3)当113x -<<时,1413x x ++≥-,解得1x ≥-,即113x -<<综上:13x -≤≤故集合{|13}M x x =-££,3m =【小问2详解】由题意,1,3,3a b a b -≤≤+=,故(2)(3)8a b +++=故11(2)(3)132()[112328113823a b b a a b a b a b ++++++=+⨯=+++++++++由于1,3a b -≤≤,故20,30a b +>+>由均值不等式,113211[11[1123823821b a a b a b +++=+++≥++=++++当且仅当3223b a a b ++=++,即2,1a b ==时等号成立故求1123a b +++的最小值为12。

河南省南阳市2021-2022学年高三上学期期中考试 数学文科试卷

河南省南阳市2021-2022学年高三上学期期中考试 数学文科试卷

2021年秋期高中三年级期中质量评估数学试题(文)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号写在答题卡上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上。

写在本试卷和草稿纸上无效。

4.考试结束,只交答题卡。

第I卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有A.7个B.8个C.15个D.16个2.设iz=4+3i,则z=A.-3-4iB.-3+4iC.3-4iD.3+4i3.意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即F(1)=F(2)=1,F(n)=F(n-l)+F(n-2)(n≥3,n∈N*),此数列在现代物理“准晶体结构”、化学等领域都有着广泛的应用。

若此数列的各项除以2的余数构成一个新数列{a n},则数列{a n}的前2021项的和为A.2020B.1348C.1347D.6724.已知命题p:“∃x0∈R,0x e-x0-1≤0”,则¬p为A.∀x∈R,e x-x-1≥0B.∀x∈R,e x-x-1>0C.∃x0∈R,0x e-x0-1≥0D.∃x0∈R,0x e-x0-1>05.已知f(x)=14x2+sin(2+x),f'(x)为f(x)的导函数,则y=f'(x)的图象大致是6.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b7.设变量x ,y 满足约束条件x 1x 2y 30x y 0≥⎧⎪-+≥⎨⎪-≥⎩,则目标函数z =2x -y 的最小值为A.-1B.0C.1D.38.若实数a ,b 满足a>0,b>0,则“a>b ”是“a +lna>b +lnb ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知x>1,y>0,且1211x y+=-,则x +2y -1的最小值为 A.9 B.10 C.11 D.2+26 10.已知OA 、OB 是两个夹角为120°的单位向量,如图示,点C 在以O 为圆心的AB 上运动。

山东省德州市2023-2024学年高三上学期期中考试数学试题(含答案解析)

山东省德州市2023-2024学年高三上学期期中考试数学试题(含答案解析)

山东省德州市2023-2024学年高三上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________x.B..D ..已知平行六面体1111ABCD A B C D -的所有棱长都为30DAB =︒,则1AC 的长为()A .53+B .5-C .53+D .5.若π5sin α⎛⎫-=,则5πsin 2α⎛⎫+的值为(A .3872πcmB .872π4C .3432πcm 2D .432πcm 8.函数()f x 的定义域为D ,若存在闭区间[],a b D ⊆,使得函数[],a b 上是单调递增函数,且()f x 在[],a b 上的值域为[ka 二、多选题三、填空题四、双空题五、解答题(1)求S 关于x 的函数关系式;(1)求证:⊥AE 平面ABCD ;(2)求平面PBA 与平面PBC 所成锐二面角的余弦值.22.已知函数()()2e lnf x ax x =-有两个极值点对数的底数.(1)求实数a 的取值范围;(2)若()1212eln e 2ln ln ln x x x x λ≥⋅+-恒成立,求λ的取值范围.参考答案:故选:C.5.D【分析】根据诱导公式可得cos 【详解】由π5sin 35α⎛⎫-= ⎪⎝⎭可得即π5cos 65α⎛⎫+=-⎪⎝⎭所以5ππsin 2=sin 263αα⎛⎫⎛++ ⎪ ⎝⎭⎝故选:D 6.C【分析】根据给定条件,求出数列【详解】依题意,52n a n =-,显然数列因此22805805(n S n n n n +++==取等号,【详解】如图,作出函数()y f x =的图象,对于选项A :令()10f x x --=,可得()1f x x =+,则函数()1y f x x =--的零点个数即为()y f x =与1y x =+的交点个数;由图象可知()y f x =与1y x =+有三个交点,即函数()1y f x x =--有三个零点,故A 正确;对于选项B :令()0=-=y f x t ,可得()f x t =,则函数()y f x t =-的零点个数即为()y f x =与y t =的交点个数;若函数()y f x t =-有两个零点,由图象可知{}(]03,7t ∈ ,故B 正确;对于选项C :若关于x 的方程()f x t =有四个不等实根,则()y f x =与y t =有四个交点,不妨设1234x x x x <<<,由图象可得:(]1,3t ∈,且12342,6+=-+=x x x x ,所以12344x x x x +++=,故C 错误;对于选项D :因为()()2320f x f x -+=,解得()1f x =或()2f x =,结合图象可知:()1f x =有三个根,()2f x =有四个根,所以关于x 的方程()()2320f x f x -+=有7个不等实数根,故D 正确;故选:ABD.11.BD【分析】根据等比数列基本量的计算可得2q =,11a =,进而根据求和公式即可判断AB,根据等差等比数列的定义即可求解CD.,因为方程()2f x x =恰好只有一个实数根,即结合图象可得0m <或11m e=+,故结合图象可得021a <<,即102a <<,故60,0,P ⎛⎫60,,0A ⎛⎫-6,B ⎛-由图可知,当02a <<时,直线y a =与函数()2eln x g x x=的图象有两个交点,且当10x x <<或2x x >时,()ln 2e 0x f x a x '=-⋅>;【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.。

安徽省黄山市屯溪2024-2025学年高三上学期11月期中数学试题含答案

安徽省黄山市屯溪2024-2025学年高三上学期11月期中数学试题含答案

屯溪2024-2025学年度第一学期期中质量检测高三数学试题(答案在最后)命题人:(考试时间:120分钟满分:150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集{}{}{}0,1,2,3,4,0,1,4,1,3U A B ===,则()U A B =ð()A.{}2,3 B.{}1,3,4 C.{}1,2,3 D.{}0,1【答案】C 【解析】【分析】根据给定条件,利用补集、并集的定义直接求解即可.【详解】由{}{}0,1,2,3,4,0,1,4U A ==,得{2,3}U A =ð,而{}1,3B =,所以{}3()1,2,U B A = ð.故选:C2.已知命题2:1,1p x x ∀<->,则p ⌝是()A.21,1x x ∃<-≤B.21,1x x ∀≥->C.21,1x x ∀<->D.21,1x x ∃≤-≤【答案】A 【解析】【分析】运用全称命题的否定,否定结论,全称量词换成存在量词即可解题.【详解】全称命题的否定,否定结论,全称量词换成存在量词.则G ∀<−1,2>1,则p ⌝是21,1x x ∃<-≤.故选:A.3.设各项均为正数的等比数列{}n a 满足41082a a a ⋅=,则()2121011log a a a a 等于()A.102B.112 C.11D.10【答案】C 【解析】【分析】等比数列中若+,,,N m n p q ∈,m n p q +=+,则m n p q a a a a ⨯=⨯.我们先根据此条性质和已知条件求出6a 的值,最后运用对数性质计算即可.【详解】在等比数列{}n a 中,8462108a a a a a ==⋅,得62a =.根据等比数列性质,2211121039485762a a a a a a a a a a a ======.所以1210111112103948576()()()()()a a a a a a a a a a a a a a a = 5116262()a a ==⨯,1121210112log ()log (2)11a a a a == .故选:C.4.若()()220,cos 2,cos 2m n m n αβαβ-≠-=+=,则tan tan αβ=()A.2m nm n +- B.m n m n +-C.2m n m n-+ D.m n m n-+【答案】D 【解析】【分析】由两角和差的余弦展开式求出cos cos ,sin sin m n m n αβαβ=+=-,再由同角的三角函数关系求解即可;【详解】因为()()cos cos cos sin sin 2,cos cos cos sin sin 2m n αβαβαβαβαβαβ-=+=+=-=,所以cos cos ,sin sin m n m n αβαβ=+=-,所以sin sin tan tan cos cos m nm nαβαβαβ-==+.故选:D.5.已知函数()f x 与其导函数()f x '的图象的一部分如图所示,则关于函数()()e xf xg x =的单调性说法正确的是()A.在(1,1)-单调递减B.在(0,2单调递减C.在[2单调递减 D.在[1,2]单调递减【答案】B 【解析】【分析】根据图象判断出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,求导得到()()()exf x f xg x '-'=,()g x在(1,2x ∈-上单调递减,在2x ⎡⎤∈⎣⎦上单调递增,得到答案.【详解】从图象可以看出过点()2,0的为()f x 的图象,过点()1,0的为导函数()f x '的图象,()()()e xf x f xg x '-'=,当(1,2x ∈-时,()()0f x f x '-<,故()0g x '<,()()ex f x g x =在(1,2x ∈-上单调递减,当2x ⎡⎤∈-⎣⎦时,()()0f x f x '-≥,故()0g x '≥,()()ex f x g x =在2x ⎡⎤∈⎣⎦上单调递增,ACD 错误,B 正确,故选:B6.若对任意实数b ,关于x 的方程()212ax b x x ++-=有两个实根,则实数a 的取值范围是()A.02a <≤B.01a <≤ C.10a -≤< D.11a -≤≤且0a ≠【答案】B 【解析】【分析】根据方程有两个根,利用判别式可转化为关于实数b 的不等式恒成立,即可求解.【详解】关于x 的方程()212ax b x x ++-=有两个实根,即方程()2120ax b x b +-+-=有两个实根,所以()()210Δ1420a b a b ≠⎧⎪⎨=---≥⎪⎩,即()20212810a b a b a ≠⎧⎨-+++≥⎩对任意实数b 恒成立,所以()()220Δ4124810a a a ≠⎧⎪⎨=+-+≤⎪⎩,即200a a a ≠⎧⎨-≤⎩,得01a <≤.故选:B.7.直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,则ω=()A.13B.23C.32D.3【答案】B 【解析】【分析】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,再结合条件,即可求解.【详解】由()π2sin 16f x x ω⎛⎫=+= ⎪⎝⎭,得到π1sin 62x ω⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 66x k k ω+=+∈或π5π2π,Z 66x k k ω+=+∈,又直线1y =被函数()()π2sin 06f x x ωω⎛⎫=+> ⎪⎝⎭的图象所截得线段的最小值为π,显然最小值在一个周期内取到,不妨取0k =,得到0x =或2π3x ω=,所以2ππ3ω=,解得23ω=,故选:B.8.已知定义在(0,)+∞上的函数()f x 满足(()()xf yf x xf y y=-,且当1x >时,()0f x >,则()A.2()2()f x f x ≥B.322()()()f x f x f x ≥C.2()2()f x f x ≤D.322()()()f x f x f x ≤【答案】D 【解析】【分析】应用赋值法构造出23(),(),()f x f x f x 的等量关系,再结合不等式性质判断即可.【详解】由题意,0,0x y >>,()()()x f yf x xf y y=-.赋值1x y ==,得1(1)(1(1)1(1)01f f f f ==⋅-⋅=;赋值1x =,得1(1)1()()f yf f y f y y ⎛⎫=-⋅=- ⎪⎝⎭,即1()f f x x ⎛⎫=- ⎪⎝⎭,当1x >时,()0f x >,当01x <<时,则11x >,所以1()0f f x x ⎛⎫=-> ⎪⎝⎭,即()0f x <;赋值2x y =,得()222()()y f f y yf y y f y y ⎛⎫==- ⎪⎝⎭,解得21()()f y y f y y ⎛⎫=+ ⎪⎝⎭,即21()()f x x f x x ⎛⎫=+⎪⎝⎭;AC 项,由21()()f x x f x x ⎛⎫=+⎪⎝⎭,0x >,得()212()2()f xf x x f x x ⎛⎫-=+- ⎪⎝⎭,其中由0x >,可知1220x x +-≥=,当1x >时,1()0,2()0f x x f x x ⎛⎫>+-≥ ⎪⎝⎭,即()22()f x f x ≥;当01x <<时,1()0,2()0f x x f x x ⎛⎫<+-≤ ⎪⎝⎭,即()22()f x f x ≤;故AC 错误;BD 项,21,x x y x ==,得232222111()()()()1x f f x f x x f f x x f x x x x x ⎛⎫ ⎪⎛⎫==-=+ ⎪ ⎪⎝⎭ ⎪⎝⎭;又21()()f x x f x x ⎛⎫=+ ⎪⎝⎭,所以3222211()()()1()f x f x x f x x f x x x ⎛⎫=+=++ ⎪⎝⎭,则322222222211()()()1()2()()0f x f x f x x f x x f x f x x x ⎛⎫⎛⎫-=++-++=-≤ ⎪ ⎪⎝⎭⎝⎭,故322()()()f x f x f x ≤,且()f x 不恒为0,故B 错误,D 正确.故选:D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错或不选的得0分)9.给出下列四个关系式,其中正确的是()A.2024∈RB.0∈∅C.∈Z QD.∅{}【答案】AD 【解析】【分析】根据R,Z,Q 表示的数集,结合空集的性质、真子集的定义逐一判断即可.【详解】因为2024是实数,因此选项A 正确;因为空间集中没有元素,显然0∈∅不正确,因此选项B 不正确;因为所有的整数都是有理数,因此整数集是有理数集的子集,所以选项C 不正确;因为空集是任何非空集合的真子集,所以选项D 正确,故选:AD10.(多选)下列说法不正确的是()A.已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎩⎭B.不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C.()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D.不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>【答案】ACD 【解析】【分析】A 选项,考虑B =∅时,0m =,满足要求,可判断A ;B 选项,考虑0k =时,0k ≠两种情况讨论可得充要条件为30k -<≤,可判断B ;C 选项,由1212x -<-<,可求定义域判断C ;D 选项,根据不等式的解集得到0a >且2,3-为方程20ax bx c ++=的两个根,由韦达定理得到的关系,,a b c ,计算可判断D.【详解】A 选项,{}2,3A =-,又{}10B xmx =-=∣,当0m =时,B =∅,满足B A ⊆,当0m ≠时,1B m ⎧⎫=⎨⎬⎩⎭,当12m =时,{}2B =,满足B A ⊆,当13m =-时,{}3B =-,满足B A ⊆,综上,m 组成集合为110,,23⎧⎫-⎨⎬⎩⎭,A 说法不正确;B 选项,当0k =时,不等式为308-<恒成立,可得23208kx kx +-<对一切实数x 恒成立,当0k ≠时,由23208kx kx +-<对一切实数x 恒成立,可得20342()08k k k <⎧⎪⎨-⨯⨯-<⎪⎩,解得30k -<<,综上所述:不等式23208kx kx +-<对一切实数x 恒成立的充要条件是30k -<≤,所以不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<,故B 正确;C 选项,因为()f x 的定义域为()1,2-,所以1212x -<-<,解得302x <<,故()21f x -的定义域为30,2⎛⎫⎪⎝⎭,C 说法不正确;D 选项,不等式20ax bx c ++>解集为−∞,−2∪3,+∞,则0a >且2,3-为方程20ax bx c ++=的两个根,故23,23b c a a-+=--⨯=,则,6b a c a =-=-,故60a b c c a ++==-<,D 说法不正确.故选:ACD.11.如图,心形曲线22:()1L x y x +-=与y 轴交于,A B 两点,点P 是L上的一个动点,则()A.点,02⎛⎫⎪ ⎪⎝⎭和−1,1均在L 上B.点PC.O 的最大值与最小值之和为3D.PA PB +≤【答案】ABD 【解析】【分析】点代入曲线判断A ,根据曲线分段得出函数取得最大值判断B ,应用三角换元再结合三角恒等变换求最值判断C ,应用三角换元结合椭圆的方程得出恒成立判断D.【详解】令0x =,得出1y =±,则()()1,0,1,0,A B -对于A :2x =时,21122y ⎛⎫+-= ⎪ ⎪⎝⎭得0y =或y =,=1x -时,()2111y +-=得1y =,所以,02⎛⎫ ⎪ ⎪⎝⎭和()1,1-均在L 上,A 选项正确;对于B :因为曲线关于y 轴对称,当0x ≥时,()221x y x+-=,所以y x =+()()222221112y y x x x x =+=+-+≤++-=,所以2x =时,y 最大,最大值为22+=B 选项正确;对于C :OP =,因为曲线关于y 轴对称,当0x ≥时,设cos ,sin x y x θθ=-=,所以()2222222cos cos sin 2cos sin 2sin cos OP x y θθθθθθθ=+=++=++()1cos231351sin2cos2sin2sin 222222θθθθθϕ+=++=++=+,因为θ可取任意角,所以OP 12=,OP 512+=,C 选项错误;对于D :PA PB +≤等价为点P 在椭圆22132y x +=内,即满足()222cos sin 3cos 6θθθ++≤,即()()31+cos221sin 262θθ++≤,整理得4sin23cos25θθ+≤,即()sin 21θβ≤+恒成立,故D 选项正确.故选:ABD.【点睛】方法点睛:应用三角换元,再结合三角恒等变换化简,最后应用三角函数值域求最值即可.三、填空题(本题共3小题,每小题5分,共15分.)12.若()f x 是定义在R 上的奇函数,当0x >时,()2f x x x =-+,则(2)f -=______.【答案】2-【解析】【分析】根据函数为奇函数,利用()()f x f x -=-求解.【详解】由题意得,(2)2222f =-=+.∵()f x 是定义在R 上的奇函数,∴(2)(2)2f f -=-=-.故答案为:2-.13.函数()sin cos f x x x =+在()0,2π上的极小值点为:__________.【答案】5π4【解析】【分析】法一,由辅助角公式得π()4f x x ⎛⎫=+ ⎪⎝⎭,利用函数()f x 与π4f x ⎛⎫- ⎪⎝⎭图象的平移关系可得所求;法二,利用导函数,求出导函数的零点按零点分区间,分析导函数符号与原函数单调性即可求解极值点.【详解】法一:()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭,()0,2πx ∈,由()f x 的图象向右平移π4个单位可得到函数π4f x x ⎛⎫-= ⎪⎝⎭,π9π,44x ⎛⎫∈ ⎪⎝⎭的图象.而函数y x =在π9π,44⎛⎫⎪⎝⎭的极小值点为3π2,故函数()f x 的极小值点即为3ππ5π244-=.法二:()sin cos f x x x =+,()0,2πx ∈,则π()cos sin 4f x x x x ⎛⎫'=-=+ ⎪⎝⎭,由()0,2πx ∈,则ππ9π,444x ⎛⎫+∈ ⎪⎝⎭,令()0f x '=,得ππ42x +=或3π2,解得π4x =或5π4x =.则(),()f x f x '的变化情况如下表:xπ0,4⎛⎫ ⎪⎝⎭π4π5π,44⎛⎫ ⎪⎝⎭5π45π,2π4⎛⎫ ⎪⎝⎭()f x '+0-0+()f x极大值极小值()f x 在()0,2π上的极小值点为5π4.故答案为:5π4.14.函数,0ky k x=>与ln yx =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,设ln y x =在A 处的切线1l 的倾斜角为α,e x y =在B 处的切线2l 的倾斜角为β,若2βα=,则k =________.【答案】【解析】【分析】由对称性可得21ex x =,利用导数求切线1l 和2l 的斜率,得tan β和tan α,由2βα=解出1x ,再由11ln kx x =求出k 的值.【详解】函数,0ky k x=>与ln y x =和e x y =分别交于11(,)A x y ,22(,)B x y 两点,则111ln k y x x ==,222e x ky x ==,函数,0ky k x=>的图象关于直线y x =对称,函数ln y x =和e x y =的图象也关于直线y x =对称,所以11(,)A x y ,22(,)B x y 两点关于直线y x =对称,有221e xy x ==,函数ln y x =的导数为1y x'=,函数e x y =的导数为e x y '=,则11tan x α=,2tan e x β=,由2βα=,有22tan tan tan 21tan αβαα==-,即211212e 1x x x x ==-,由1>0x ,解得1x =所以11l n k x x ==.【点睛】关键点点睛:本题除了导数和倍角公式的运用,关键点在于运用函数的对称性或对数式的运算,得到21e x x =.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列.(1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)21n a n =-,12n n b -=;(2)232n n n T -=【解析】【分析】(1)根据()*12n n a a n +=+∈N 得到{}na 为公差为2的等差数列,利用等差数列求通项公式求出21n a n =-,再设{}nb 的公比为q ,列出方程,求出2q =,得到通项公式;(2)化简得到32n c n =-,故{}n c 为公差为3的等差数列,利用等差数列求和公式得到答案.【小问1详解】因为()()**1122n n n n a a n a a n ++=+∈⇒-=∈N N ,故{}n a 为公差为2的等差数列,所以()()12112121n a a n n n =+-=+-=-,又1b ,2b ,31b -成等差数列,故21321b b b =+-,设{}n b 的公比为q ,其中22b =,则2421q q =+-,解得2q =或12,当2q =时,11b =,此时1112n n n b b q --==,为递增数列,满足要求,当12q =时,14b =,此时31112n n n b b q --⎛⎫== ⎪⎝⎭,为递减数列,舍去,综上,21n a n =-,12n n b -=;【小问2详解】212log 1322n n c n n -=+--=,则13n n c c +-=,故{}n c 为公差为3的等差数列,故()2121323143222n n n n n n T c c c n +--=+++=+++-== .16.记ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos 1.a C b =+(1)求证:2;C B =(2)若3cos 4B =,6c =,求ABC 的面积.【答案】(1)证明见解析(2)4【解析】【分析】(1)利用正弦定理以及两角和与差的正弦公式可证2C B =;(2)由正弦定理及三角形面积公式可得答案.【小问1详解】由正弦定理sin sin a b A B =,知sin sin a A b B =,所以2cos 1a C b =+,即为sin 2cos 1sin A C B =+,所以sin 2sin cos sin A B C B =+,即()sin 2sin cos sin B C B C B +=+,所以()sin sin cos cos sin sin .B BC B C C B =-+=-因为0πB <<,ππC B -<-<,所以B C B =-或()πB C B +-=,即2C B =或πC =(舍去);【小问2详解】由2C B =,得21cos cos22cos 18C B B ==-=,所以52cos 14a C b =+=,即5.4a b =由余弦定理,得2222cos c a b ab C =+-,即22225513621648b b b =+-⨯⨯,解得=4,所以 5.a =又由1cos 8C =,可得π0<2<C ,得37sin 8C ==,所以ABC V 的面积1137157sin 54.2284S ab C ==⨯⨯⨯=17.如图,在四棱锥P ABCD -中,底面四边形ABCD 是直角梯形,224,AD AB BC AB ===⊥,,AD AB BC E ⊥是AD 的中点,PC BE ⊥.(1)证明:BE ⊥平面PAC .(2)若PA PC ==B PA D --的正弦值.【答案】(1)证明见解析(2).7【解析】【分析】(1)连接CE ,通过四边形ABCE 是正方形,得到BE AC ⊥,进而可求证;(2)作BH PA ⊥,垂足为H ,连接,EH PE .先证明PA ⊥平面BEH ,得到BHE ∠是二面角B PA D --的平面角,在判断四棱锥P ABCE -为正四棱锥,求得2EH BH ==,再由余弦定理即可求解.【小问1详解】证明:连接CE .因为E 是AD 的中点,所以2AD AE =.分因为224AD AB BC ===,且,AB AD AB BC ⊥⊥,所以四边形ABCE 是正方形,则BE AC ⊥.因为,,PC BE PC AC ⊥⊂平面PAC ,且PC AC C ⋂=,所以BE ⊥平面PAC .【小问2详解】解:作BH PA ⊥,垂足为H ,连接,EH PE .由(1)可知BE ⊥平面PAC .又PA ⊂平面PAC ,所以PA BE ⊥.因为,BH BE ⊂平面BEH ,且BH BE B = ,所以PA ⊥平面BEH .因为EH ⊂平面BEH ,所以PA EH ⊥,则BHE ∠是二面角B PA D --的平面角.记AC BE O =I ,连接OP ,则O 是AC 的中点.因为PA PC =,且O 是AC 的中点,所以OP AC ⊥.因为BE ⊥平面PAC ,且OP ⊂平面PAC ,所以BE OP ⊥.连接PE .因为,AC BE ⊂平面ABCE ,且AC BE O =I ,所以OP ⊥平面ABCE ,则四棱锥P ABCE -为正四棱锥,故PA PB PE ===.因为PAB 的面积1122S AB PA BH ==⋅,即11222BH ⨯=⨯,所以2BH =.同理可得2EH BH ==.在BEH △中,由余弦定理可得2221cos 27BH EH BE BHE BH EH +-∠==-⋅,则sin 7BHE ∠=,即二面角B PA D --的正弦值为718.已知函数()e xx f x =.(1)求()f x 在区间[]22-,上的最大值和最小值;(2)若0x =是函数()()()sin g x f a f x x =⋅+的极值点.(ⅰ)证明:2ln20a -<<;(ⅱ)讨论()g x 在区间()π,π-上的零点个数.【答案】(1)最大值为1e -,最小值为22e -;(2)(ⅰ)证明见解析;(ⅱ)2【解析】【分析】(1)求导得到导函数,根据导函数的正负确定在[]22-,上的性,再计算最值得到答案;(2)(ⅰ)计算得到1()cos e ea x a x g x x -'=⋅+,确定e 0a a +=,设()e x F x x =+,根据函数的单调性结合()01F =,()2ln 20F -<得到证明;(ⅱ)求导得到导函数,考虑()π,0x ∈-,0x =,∈0,π三种情况,构造()e sin xF x x x =-,确定函数的单调区间,根据()00F =,()00F x >,()π0F <得到零点个数.【小问1详解】()e x x f x =,1()e xx f x -'=,令1()0e x x f x -'==得到1x =,当()2,1x ∈-时,′>0,函数单调递增,当()1,2x ∈时,′<0,函数单调递减,又()22222e e f ---==-,()1111e e f -==,()22222e ef -==,故()f x 在区间[]22-,上的最大值为1e -,最小值为22e -;【小问2详解】(ⅰ)()()()sin sin e e a xa x g x f a f x x x =⋅+=⋅+,1()cos e e a xa x g x x -'=⋅+,(0)10e a a g '=+=,故e 0a a +=,设()e x F x x =+,函数单调递增,()010F =>,()2ln 212ln 2e 2ln 2ln 404F --=-=-<.根据零点存在定理知2ln 20a -<<;(ⅱ)()sin e x x g x x =-+,()00g =,1()cos e x x g x x -'=+,设1()cos e x x h x x -=+,2()sin e xx h x x -'=-,当()π,0x ∈-时,20,sin 0e x x x -><,故()0h x '>,()g x '单调递增,()()0110g x g <=-+'=',故函数()g x 单调递减,()()00g x g >=,故函数在()π,0-上无零点;当∈0,π时,()1()sin e sin e e x x x x g x x x x =-+=-,设()e sin x F x x x =-,()()esin cos 1x F x x x =+-',设()()esin cos 1x k x x x =+-,则()2e cos x k x x '=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=>,当π,π2x ⎛⎫∈ ⎪⎝⎭时,()2e cos 0x k x x '=<故()k x 在π0,2⎛⎫ ⎪⎝⎭单调递增,在π,π2⎛⎫ ⎪⎝⎭上单调递减,()00k =,π2πe 102k ⎛⎫=-> ⎪⎝⎭,()ππe 10k =--<,故存在0π,π2x ⎛⎫∈ ⎪⎝⎭使()00k x =,当∈0,0时,()0k x >,单调递增;当()0,πx x ∈时,()0k x <,单调递减.()00F =,故()00F x >,()ππ0F =-<,故函数在()0,πx 上有1个零点.综上所述:()g x 在区间()π,π-上的零点个数为2.【点睛】关键点点睛:本题考查了利用导数解决函数的单调性和极值,根据极值求参数,零点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中分类讨论是解题的关键,三角函数的有界性和正负交替是经常用到的关键思路.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N 阶“曼德拉数列”是等比数列,求该数列的通项n a(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N 阶“曼德拉数列”是等差数列,求该数列的通项n a (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k -=--(2)()()*1,211n n a n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k =-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101k k a q a a a q -++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

上海市七宝中学2024-2025学年高三上学期期中考试数学试题(含答案)

七宝中学2024-2025学年高三上学期期中考试数学试题一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.函数的定义域为______.2.计算______.3.已知是1与9的等比中项,则正实数______.4.在的展开式中,的系数为______(用数字作答).5.在复平面内,复数对应的点位于第______象限。

6.已知,则______.7.已知集合,其中可以相同,用列举法表示集合中最小的4个元素所构成的集合为______.8.已知是函数的导函数,若函数的图象大致如图所示,则的极大值点为______(从中选择作答).9.已知函数.在中,,且,则______.10.如图,线段相交于,且长度构成集合,则的取值个数为______.11.抛物线的焦点为,准线为是拋物线上的两个动点,且满足.设线段y =(4log =a a =4(x -2x 2ii-π1sin 42θ⎛⎫+= ⎪⎝⎭πcos 4θ⎛⎫-= ⎪⎝⎭{}22,,A a a x y x y ==+∈N ,x y A ()f x '()f x ()f x y e '=()f x ,,,a b c d ()22cos 2xf x x =+ABC △()()f A f B =a b ≠C ∠=,AD BC O ,,,AB AD BC CD {}1,3,5,,90x ABO DCO ∠=∠=︒x 24y x =F ,,l A B π3AFB ∠=AB的中点在准线上的投影为,则的最大值是______.12.平面上到两个定点距离之比为常数的动点的轨迹为圆,且圆心在两定点所确定的直线上,结合以上知识,请尝试解决如下问题:已知满足,则的取值范围为______.二、选择题(本大题共4题,满分20分)13.已知是非零实数,则下列不等式中恒成立的是( )A .B .C .D14.已知直线,动直线,则下列结论正确的为()A .不存在,使得的倾斜角为B .对任意的与都不垂直C .存在,使得与重合D .对任意的与都有公共点15.一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是( )A .5B .6C .7D .816.若,有限数列的前项和为,且对一切都成立.给出下列两个命题:①存在,使得是等差数列;②对于任意的,都不是等比数列.则( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题三、解答题(本大题共有5题,满分76分)17.如图,为正方体,动点在对角线上(不包含端点),记.M l N MNAB(0,1)λλλ>≠,,a b c 1,2,1a c b a b ===⋅=1122c a c b ++-a 1a a>2211a a a a+≥+12a a+>-≥-1:10l x y --=()()2:10l k x ky k k +-+=∈R k 2l π21,k l 2l k 1l 2l 1,k l 2l 3n ≥12,,,n a a a k k S 1k k S S +>11k n ≤≤-3n ≥12,,,n a a a 3n ≥12,,,n a a a 1111ABCD A B C D -P 1BD 11D PD Bλ=(1)求证:;(2)若异面直线与所成角为,求的值.18.已知点是坐标原点.(1)若,求的值:(2)若实数满足,求的最大值.19.英语学习中学生喜爱用背单词"神器"提升自己的英文水平,为了解上海中学生和大学生对背单词“神器”的使用情况,随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款背单词“神器”,结果如下:百词斩扇贝单词秒词邦沪江开心词场中学生80604020大学生30202010假设大学生和中学生对背单词“神器”的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用“百词斩”的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用“扇贝单词”的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为;样本中的大学生最喜爱使用这四款背单词“神器”的频率依次为,其方差为的方差为.写出的大小关系.(结论不要求证明)20.在平面直角坐标系中,分别是椭圆的左右焦点,设不经过的直线与椭圆交于两个不同的点,焦点到直线的距离为.(1)求该粗圆的离心率;(2)若直线经过坐标原点,求面积的最大值;(3)如果直线的斜率依次成等差数列,求的取值范围.21.若斜率为的两条平行直线,曲线满足以下两条性质:(Ⅰ)分别与曲线至少有两个切点;(Ⅱ)曲线上的所有点都在之间或两条直线上.则称直线为曲线的一对“双夹线”,把“双夹线”之间的距离称为曲线在“方向上的宽度”,记为.已知曲线1AP B C ⊥AP 11D B π3λ()())1,1,1,1,,A B CO θθ-BC BA -=sin2θ,m n π,0,2mOA nOB OC θ⎛⎫+=∈ ⎪⎝⎭22(3)m n ++1234,,,x x x x 21s 1234,,,y y y y 2212341234;,,,,,,,s x x x x y y y y 23s 222123,,s s s 12,F F 22143x y +=1F l ,A B 2F l d l 2F AB △11,,AF l BF d k 12,l l ():C y f x =12,l l C C 12,l l 12,l l C C k ()d k.(1)判断时,曲线是否存在“双夹线”,并说明理由;(2)若,试问:和是否是函数的一对“双夹线”?若是,求此时的值;若不是,请说明理由.(3)对于任意的正实数,函数是否都存在"双夹线"?若是,求的所有取值构成的集合;若不是,请说明理由.2025届七宝中学高三(上)期中考试参考答案一、填空题1、; 2、; 3、3; 4.18; 5、四;6.;7、; 8、a ; 9、;10、4;11、1; 12、10、【答案】412、【答案】二、选择题13~16、BDBC三、解答题17、(1)证明:如图,连接.由已知可得,平面平面,所以,又是正方形,所以,又平面平面,所以平面,又动点在对角线上,所以平面,所以平面,所以.():sin C f x mx n x =+0,1m n ==C 1,1m n ==-1:1l y x =+2:1l y x =-()y f x =()d k ,m n ()y f x =()d k ()1,+∞3412{}0,1,2,4π311,BC AD AB ⊥111,BCC B B C ⊂11BCC B 1AB B C ⊥11BCC B 11B C BC ⊥1BC ⊂11,ABC D AB ⊂111,ABC D AB BC B = 1B C ⊥11ABC D P 1BD P ∈11ABC D AP ⊂11ABC D 1AP B C ⊥(2)以点为坐标原点,分别以所在的直线为轴,如图建立空间直角坐标系,设,则,则.由已知,可得,设点,则,所以,所以,即,所以,.又异面直线与所成角为,所以,即,解得或0,因为,所以满足条件.18、【答案】(1); (2)16.19、【答案】(1); (2); (3)20.【答案】(1); (2 (3).21、【答案】(1)存在;(2)是,3)是,C 1CD CB CC 、、x y z 、、1CD =()()()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,0,1,0,1,1,1,1,0C D B C D B A ()11111,1,0,D B D B =-=11D PD Bλ=11D P D B λ= ()000,,P x y z ()10001,,1D P x y z =-- 00011x y z λλλ-=-⎧⎪=⎨⎪-=-⎩00011x y z λλλ=-+⎧⎪=⎨⎪=-+⎩()1,,1P λλλ-+-+(),1,1AP λλλ=---+AP ==AP 11D B π311π1cos ,cos 42AP D B 〈==〉 11cos ,2AP D 1λ=01λ<<45λ=12-320[]34E X =222231s s s <<12()d k =()0)d k n =>。

上海市某重点高中2013届高三上学期期中考试数学(文)试题 Word版含答案

上海市某重点高中2013届高三上学期期中考试数学(文)试题 Word版含答案

上海市某重点中学2012-2013学年度第一学期高三数学期中考试卷(文)(满分150分,120分钟完成.答案一律写在答题纸上.)一、填空题:(本大题共14小题,每小题4分,共56分)1. 设集合A ={x │x 2-2x ≤0,x ∈R },则集合A ∩Z 中有_____________个元素. 【答案】3【解析】集合A ={x │x 2-2x ≤0,x ∈R }= A ={x │0≤x ≤2,x ∈R },所以A ∩Z={0,1,2},共有3个元素。

2. 方程2lg 2x =的解为_____________. 【答案】10±【解析】因为22lg 2lg100,100,x x x ====所以所以3. 数列{}n a (*n N ∈)满足lim[(23)]1n n n a →∞-=,则lim()n n na →∞=_____________.【答案】12【解析】因为l i m (23)n n →∞-=∞,所以由lim[(23)]1n n n a →∞-=,得l i m 0n n a →∞=。

又l i m [(23)]l i m (23)2l i m nn n n n n n n nn a n a a n aa →∞→∞→∞→∞-=-=-=,所以1lim()2n n na →∞=。

4. 已知一个扇形的圆心角的弧度数是1弧度,半径为1cm ,则此扇形的周长为_____________cm. 【答案】3【解析】扇形的弧长1l r cm α==,所以扇形的周长为23l r cm +=。

5. 若33cos ()52x x ππ=-<< ,则x 的值等于_____________.【答案】3arccos 5π+【解析】因为333,cos ,arccos 255x x x πππ<<=-=+所以。

6. 等差数列{}n a 中,公差1d =,341a a +=,则=++++20642a a a a _____________. 【答案】80 【解析】因为1d =,341a a +=,所以12a =-,所以=++++20642a a a a 22010()10(1219)8022a a +--+==。

【高三】福建省师大附中届高三上学期期中考试数学(文)试题

【高三】福建省师大附中届高三上学期期中考试数学(文)试题

【高三】福建省师大附中届高三上学期期中考试数学(文)试题试卷说明:福建师大附中20-学年第学期考试卷高数学满足,则= ( *** ) A. B. C . D. 2. 命题“存在实数,使> 1”的否定是( *** )A. 对任意实数, 都有 > 1 B. 不存在实数,使 1 C. 对任意实数, 都有 1 D. 存在实数,使 13. 设,则( *** )A. B. C. D. 4. 若,且,则下列不等式中,恒成立的是( *** ) A. B. C. D. 5. 若不等式的解集为,则的值为( *** )A.-10 B.10 C. -14 D. 146. 已知为等差数列,且则=( *** )A. B. C.D. 7. 已知的三个内角所对的边为,满足,则的形状是( *** )A.正三角形 B.等腰三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形8.已知数列的通项公式为,设为数列的前项和公式,则( *** ) A. -100 B.100 C. -150 D. 1509.平面内有三个向量,其中与夹角为,与的夹角为,且,若,()则( ***)A. B. C. D. 10.函数的图象先向下移一个单位,再把纵坐标伸长到原来的2倍(横坐标不动)得到新函数,则( *** )A. B. C. D. 11.某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要 ( kg)供应量(kg)布料A布料B红441400绿631800已知生产每匹布料A、B的利润分别为120元、80元. 那么公司每月应怎么安排生产两种布料A和B的匹数,才能够产生最大的利润,最大利润为( *** )元.A. 38000 B. 32000 C. 28000 D. 4800012.设为平面向量组成的集合,若对任意正实数和向量,都有,则称为“正则量域”.据此可以得出,下列平面向量的集合为“正则量域”的是( *** )A. B. C . D. 二、填空题(每小题4分,共16分)13.已知向量满足,且,则向量与的夹角为___***___;14.已知正实数满足,则的最小值是___***_____15.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_____***___16. 某种平面分形如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为;……;依此规律得到级分形图,则级分形图中所有线段的长度之和为_____***_____.三、解答题:(本大题共6题,满分74分)17.(本小题满分1分)的公比,前3项和.(Ⅰ)求数列的通项公式;(Ⅱ)若函数在处取得最大值,且最大值为,求函数解析式.18.(本小题满分1分)(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)若函数在内有零点,求实数k的取值范围.19.(本小题满分1分)已知定义在上的函数,其中为常数.,恒成立,求实数的取值范围;(Ⅱ)若,在处取得最大值,求正数的取值范围.本小题满分1分),宽设计为多少米时,才能使围成的网箱中筛网总长度最小;(Ⅱ)若大网箱的面积为160平方米,网衣的造价为112元/米,筛网的造价为96元/米,且大网箱的长与宽都不超15米,则小网箱的长、宽分别为多少米时,可使网衣和筛网的合计造价最低?21.(本小题满分1分)作曲线的切线,切点为,设点在轴上的投影是点,又过点作曲线的切线,切点为,设点在轴上的投影是点,…依此下去,得到点列记它们的横坐标构成数列.(Ⅰ)求与的关系式;(Ⅱ)令求数列的前项和.22.(本小题满分1分),(Ⅰ)求函数的最小值.(Ⅱ)当时,求证:福建师大附中20-学年第学期考试卷高数学,6,,(2)由(1)可知函数的最大值为3,时,取得最大值,,又,函数18.解:(1)单调区间为,最小正周期为,(2)19.解:(1),,恒成立令,当或,得(2)若时,对,恒成立,故在区间上为增函数,在处取到最大值.若时,在上为减函数,上为增函数,则综上所述:若,在处取得最大值,正数的取值范围20.解:(Ⅰ)由已知得,,网箱中筛网的总长度。

山东省滕州市第五中学2015届高三上学期期中考试数学(文)试题 Word版含答案

山东省滕州市第五中学2015届高三上学期期中考试数学(文)试题 Word版含答案
数学(文)试题参考答案
1~10DBBB A D B A B D
11. 12. 13. 14. 15.②④
16.(本小题满分12分)
解: 为真: ,……………………3分
为真: ……………………6分
因为 或 为真, 且 为假, p,q一真一假
当p真q假时, ……………………8分
当p假q真时, ……………………11分
A. B.
C. D.
7.已知 ,则向量 与 的夹角为
A. B. C. D.
8.若 ,且 ,则
A. B. C. D.
9.已知函数 的导函数图象如下图所示,若 为锐角三角形,则一定成立的是
A. B.
C. D.
10.对任意实数a,b定义运算“ ”: 设 ,若函数 恰有三个零点,则实数k的取值范围是
A. B. C. D.
19.(本小题满分12分)
如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的小矩形绿化区,这三块绿化区四周和绿化区之间均设有1米宽的走道,已知三块绿化区的总面积为200平方米,求该矩形区域ABCD占地面积的最小值。
20.(本小题满分13分)
已知数列 , 满足条件: , .
(I)求证数列 是等比数列,并求数列 的通项公式;
解 (I)因为f(x)=sin+sinx
=cosx+sinx=2
=2sin,………………………4分
所以f(x)的最小正周期为2π.………………………5分
(II)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,
∴g(x)=f=2sin[+]
=2sin.………………………7分
∵x∈[0,π],∴x+∈,………………………8分

河南省焦作市普通高中2024届高三上学期期中考试数学试题

河南省焦作市普通高中2024届高三上学期期中考试数学试题

河南省焦作市普通高中2024届高三上学期期中考试数学试题一、单选题1.已知集合{}|10M x x =+≥,{}|21x N x =<,则下列V enn 图中阴影部分可以表示集合{}|10x x -≤<的是( )A .B .C .D .2.复数z 满足21i i 34i z z ++=+,则z =( )A .22i --B .22i -+C .22i -D .22i +3.已知等比数列{}n a 的前n 项积为n T ,116a =,公比12q =,则n T 取最大值时n 的值为( ) A .3 B .6 C .4或5 D .6或74.在ABC V 中,13BD BC =,点E 是AD 的中点,记AB a =u u u r r ,AC b =u u u r r ,则BE =u u u r ( ) A .1133a b -+r r B .2136a b -+r r C .1133a b --r r D .2136a b -r r 5.在边长为1的小正方形组成的网格中,ABC V 如图所示,则tan A =( )A .74B .1C .53D 6.已知O 为坐标原点,直线l 过抛物线()2:20D y px p =>的焦点F ,与D 及其准线依次交于,,A B C 三点(其中点B 在,A C 之间),若4AF =,2BC BF =,则OAB △的面积是( )ABC.D7.l 、l '为两条直线,,αβ为两个平面,满足:,l l O l '⋂=与l '的夹角为π,//,,6l αβαα⊥与β之间的距离为2.以l 为轴将l '旋转一周,并用,αβ截取得到两个同顶点O (点O 在平面α与β之间)的圆锥.设这两个圆锥的体积分别为12、V V ,则12V V +的最小值为( ) A .3π B .23π C .9π D .29π 8.设[]x 表示不超过x 的最大整数(例如:[]3.53=,[]1.52-=-),则[][][][]2222log 1log 2log 3log 2046++++=L ( )A .10928⨯-B .11928⨯-C .10922⨯+D .11922⨯+二、多选题9.有一组样本数据12,,,n x x x L 的平均数为x ,方差为2s ,则下列说法正确的是( ) A .设a ∈R ,则样本数据1ax ,2ax ,…,n ax 的平均数为axB .设a ,b ∈R ,则样本数据1ax b +,2ax b +,…,n ax b +的标准差为22a sC .样本数据21x ,22x ,…,2n x 的平均数为2xD .22211n i i s x x n ==-∑ 10.已知0,0m n >>,且2m n mn +=,则下列结论中正确的是( )A .1mn ≥ B.m n +≤C .222m n +≥ D.23m n +≥+11.(多选)在平面直角坐标系xOy 中,由直线4x =-上任一点P 向椭圆22143x y +=作切线,切点分别为A ,B ,点A 在x 轴的上方,则( )A .APB ∠恒为锐角B .当AB 垂直于x 轴时,直线AP 的斜率为12C .||AP 的最小值为4D .存在点P ,使得()0PA PO OA +⋅=u u u r u u u r u u u r 12.已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为(02)r r <<,设圆台的体积为V ,则下列选项中说法正确的是( )A .当1r =时,V =B .V 存在最大值C .当r 在区间(0,2)内变化时,V 逐渐减小D .当r 在区间(0,2)内变化时,V 先增大后减小三、填空题13.某市高三年级男生的身高X (单位:cm )近似服从正态分布()2175,N σ,已知()1751800.2P X ≤<=,若()[]0.3,0.5P X a ≤∈.写出一个符合条件的a 的值为.14.已知圆22:4cos 4sin 0C x y x y θθ+--=,与圆C 总相切的圆D 的方程是.15.组合数学常应用于计算机编程,计算机中著名的康威生命问题与开关问题有相似的地方.下图为一个开关阵列,每个开关只有“开”和“关”两种状态,按其中一个开关一次,将导致自身和周围所有相邻的开关改变状态,例如,按(2,2)将导致(1,2),(2,1),(2,3),(3,2)改变状态.如果要求只改变(1,1)的状态,则需按开关的最少次数为.16.机器学习是人工智能和计算机科学的分支,专注于使用数据和算法来模仿人类学习的方式.在研究时需要估算不同样本之间的相似性,通常采用的方法是计算样本间的“距离”,闵氏距离是常见的一种距离形式.两点()()1122,,,A x y B x y 的闵氏距离为()()11212,p p p p D A B x x y y =-+-,其中p 为非零常数.如果点M 在曲线e x y =上,点N 在直线1y x =-上,则()1,D M N 的最小值为.四、解答题17.已知数列{}n a 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取11a =,接着复制该项粘贴在后面作为2a ,并添加后继数2作为3a ;再复制所有项1,1,2并粘贴在后面作为4a ,5a ,6a ,并添加后继数3作为7a ,…依次继续下去.记n b 表示数列{}n a 中n 首次出现时对应的项数.(1)求数列{}n b 的通项公式;(2)求12363a a a a ++++L .18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足6cos 2C c b +=,3a =.(1)证明:ABC V(2)若()2222211ABC S t a b c ≤++V 恒成立,求实数t 的取值范围. 19.为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该较10名学生进行体质测试,得到如下表格:记这10名学生体质测试成绩的平均分与方差分别为x ,2s ,经计算()102111690i x x =-=∑,102133050i i x==∑.(1)求x ;(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩不合格的人数为X ,求X 的分布列;(3)经统计,高中生体质测试成绩近似服从正态分布()2,N μσ,用x ,2s 的值分别作为μ,2σ的近似值,若监测中心计划从全市抽查100名高中生进行体质测试,记这100名高中生的体质测试成绩恰好落在区间[]30,82的人数为Y ,求Y 的数学期望()E Y .附:若()2,N ξμσ:,则()0.6827P μσξμσ-≤≤+≈,(22)0.9545P μσξμσ-≤≤+≈,330.9()973P μσξμσ-≤≤+≈. 20.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角P ABC -,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理; (2)如图2,平行六面体1111ABCD A B C D -中,平面11AAC C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒,①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DAC ?若存在,求出点P 的位置;若不存在,说明理由.21.我们给予圆锥曲线新定义:动点到定点的距离,与它到定直线(不通过定点)的距离之比为常数e (离心率).我们称此定点是焦点,定直线是准线.已知双曲线22:324360E x y x --+=.(1)求双曲线E 的准线;(2)设双曲线E 的右焦点为F ,右准线为l .椭圆C 以F 和l 为其对应的焦点及准线过点F 作一条平行于y x =的直线交椭圆C 于点A 和B .已知C 的中心P 在以AB 为直径的圆内,求椭圆C 的离心率e 的取值范围.22.已知函数23()e 232xa x f x x ax =---. (1)当0a =,求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若()f x 在[0,)+∞上单调递增,求a 的取值范围;(3)若()f x 的最小值为1,求a .。

2024届黑龙江哈尔滨九中高三上学期期中数学试题及答案

2024届黑龙江哈尔滨九中高三上学期期中数学试题及答案

哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2 B. ()1,2- C. (],4∞- D. (]1,4-2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2iB. 2i- C. 2- D. 23. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 294. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-6.设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 中点,点M 为边BC 上一动点,则MD MC ⋅的最小值为( )A 27B. 0C. 716-D. 916-8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设的.某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35B. 42C. 49D. 56二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列D. {}n a 的前n 项和115344n n S +=⨯-10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++=,则AOC 与AOB 的面积之比为3511. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,则30,2ω⎛⎤∈ ⎥⎝⎦12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax xx f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根在C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.14. 已知ABC的面积S =,3A π∠=,则AB AC ⋅=________;15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.的的哈九中2024届高三上学期期中考试数学试卷(考试时间:120分钟 满分:150分)Ⅰ卷一、单选题:本题共有8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=( )A. ()0,2B. ()1,2- C. (],4∞- D. (]1,4-【答案】D 【解析】【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2. 若复数z 满足i 2i z =+,则z 的共轭复数的虚部为( )A. 2i B. 2i- C. 2- D. 2【答案】D 【解析】【分析】先求出复数z ,得到z 的共轭复数,即可得到答案.【详解】因为复数z 满足i 2i z =+,所以2i12i iz +==-,所以z 的共轭复数12i z =+.其虚部为:2.故选:D3. 在等差数列{}n a 中,若26510,9a a a +==,则10a =( )A. 20 B. 24C. 27D. 29【答案】D 【解析】【分析】求出基本量,即可求解.【详解】解:2642=10a a a +=,所以45a =,又59a =,所以544d a a =-=,所以510592029a d a +=+==,故选:D 4. “26k πθπ=+,Z k ∈”是“1sin 2θ=”的( )A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】26k πθπ=+,Z k ∈时,1sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,526k πθπ=+,Z k ∈时,551sin sin 2sin 662k ππθπ⎛⎫=+== ⎪⎝⎭,所以“26k πθπ=+,Z k ∈”是“1sin 2θ=”的充分而不必要条件,故选:A .5. 下列命题中,真命题的是( )A. 函数sin ||y x =的周期是2π B. 2,2x x R x ∀∈>C. 函数2()ln 2x f x x +=-是奇函数. D. 0a b +=的充要条件是1ab=-【答案】C 【解析】【分析】选项A ,由sin ||sin |2|33πππ-≠-+可判断;选项B ,代入2x =,可判断;选项C ,结合定义域和()()f x f x -=-,可判断;选项D ,由1ab=-得0a b +=且0b ≠,可判断【详解】由于5sin |||2|sin()333ππππ-=-+==,所以函数sin ||y x =的周期不是2π,故选项A 是假命题;当2x =时22x x =,故选项B 是假命题;函数2()ln2x f x x+=-的定义域(2,2)-关于原点对称,且满足()()f x f x -=-,故函数()f x 是奇函数,即选项C 是真命题;由1a b =-得0a b +=且0b ≠,所以“0a b +=”的必要不充分条件是“1ab=-”,故选项D 是假命题故选:C6. 设0,0,lg a b >>lg 4a 与lg 2b 的等差中项,则21a b+的最小值为( )A. B. 3C. 9D. 【答案】C 【解析】【分析】根据等差中项的定义,利用对数的运算得到21a b +=,然后利用这一结论,将目标化为齐次式,利用基本不等式即可求最小值.【详解】解:0,a b >>Q 是lg 4a 与lg 2b 的等差中项,2lg4lg2,lg 2lg 2b a a b +∴=+∴=,即222a b +=,即21a b +=,则212122(2)559a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22a b b a=,即13a b ==时取等号.故选C .【点睛】本题主要考查利用基本不等式求最值中的其次化方法,涉及等差中项概念和对数运算,难度中等.当已知a b k αβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0m nm n a b+>,为常数)的最小值时常用()1m n m n a b a b k a b αβ⎛⎫+=++ ⎪⎝⎭方法,展开后对变量部分利用基本不等式,从而求得最小值;已知k abαβ+=(,,,,a b k αβ都是正实数,且,,k αβ为常数),求(,0ma nb m n +>,为常数)的最小值时也可以用同样的方法.7. 已知ABC 中,5AB AC ==,6BC =,点D 为AC 的中点,点M 为边BC 上一动点,则MD MC⋅的最小值为( )A. 27 B. 0C. 716-D. 916-【答案】D 【解析】【分析】根据图形特点,建立直角坐标系,由题设数量关系得出A ,B ,C 的坐标,再设出点M 的坐标,将所求问题转化为函数的最小值即可.【详解】解:以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,如图所示 ,由题意可知,()0,4A ,()3,0C ,3,22D ⎛⎫⎪⎝⎭,设(),0M t ,其中[]3,3t ∈- ,则3,22MD t ⎛⎫=- ⎪⎝⎭,()3,0MC t =- ,故()22399993222416MD MC t t t t t ⎛⎫⎛⎫⋅=-⨯-=+=--⎪ ⎪⎝⎭⎝⎭ ,所以当94t = 时,MD MC ⋅ 有最小值916-.故选:D.8. 在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( )A. 35 B. 42C. 49D. 56【答案】B【解析】【分析】根据题意列出方程,利用等比数列的求和公式计算n 轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n 轮传染,则每轮新增感染人数为0nR ,经过n 轮传染,总共感染人数:1200000111n nR R R R R +-++++=- ,∵0R 3=,∴当感染人数增加到1000人时,113=100013n +--,化简得3=667n ,由563243,3729==,故得6n ≈,又∵平均感染周期为7天,所以感染人数由1个初始感染者增加到1000人大约需要6742⨯=天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得50分,部分选对的得2分.9. 数列{}n a 满足:11a =,1310n n a a +--=,N n *∈,下列说法正确的是( )A. 数列1{}2n a +为等比数列 B. 11322n n a =⨯-C. 数列{}n a 是递减数列 D. {}n a 的前n 项和115344n n S +=⨯-【答案】AB 【解析】【分析】推导出1113()22n n a a ++=+,11322a +=,从而数列1{}2n a +为首项为32,公比为3的等比数列,由此利用等比数列的性质能求出结果.【详解】解: 数列{}n a 满足:11a =,1310n n a a +--=,*n ∈N ,131n n a a +∴=+,1113(22n n a a +∴+=+,11322a +=,为∴数列1{}2n a +为首项为32,公比为3的等比数列,故A 正确;113133222n n n a -+=⨯=⨯,∴11322n n a =⨯-,故B 正确;数列{}n a 是递增数列,故C 错误;数列1{}2n a +的前n 项和为:13(13)3132(31)313444n n n n S +-'==-=⨯--,{}n a ∴的前n 项和1111332424n n n S S n n +'=-=⨯--,故D 错误.故选:AB .10. 下列说法中正确的是( )A. 在ABC 中,AB c = ,BC a = ,CA b = ,若0a b ⋅> ,则ABC 为锐角三角形B. 非零向量a 和b满足1a = ,2=+= b a b,则a b -= C. 已知()1,2a = ,()1,1b = ,且a 与a b λ+ 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭D. 在ABC 中,若2350OA OB OC ++= ,则AOC 与AOB 的面积之比为35【答案】BD 【解析】C 为钝角,从而否定A ;利用向量的和、差的模的平方的关系求得26a b -= ,进而判定B ;注意到a 与a b λ+ 同向的情况,可以否定C ;延长AO 交BC 于D ,∵,AO OD共线,利用平面向量的线性运算和三点共线的条件得到58BD BC = ,进而35CD DB =,然后得到35ODC ADC OBD ABD S S S S == ,利用分比定理得到35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,从而判定D.【详解】0a b ⋅> 即0BC CA ⋅> ,∴0CB CA ⋅< ,∴C 为钝角,故A 错误;2222222810a b a b a b -++=+=+= ,2224a b +== ,21046a b -=-=,a b -=B 正确;(1,2)a b λλλ+=++r r,当0λ=时,a 与a b λ+ 同向,夹角不是锐角,故C 错误;∵2350OA OB OC ++=,∴3522AO OB OC =+ ,延长AO 交BC 于D ,如图所示.∵,AO OD共线,∴存在实数k ,3522k k OD k AO OB OC ==+ ,∵,,D B C 共线,∴35122k k +=,∴14k =,∴3588OD OB OC =+ ,∴555888BD OD OB OB OC BC =-=-+= ,∴35CD DB =.∴35ODC ADC OBD ABD S S S S == ,∴35AOC ODC ADC AOB OBD ABD S S S S S S -==- ,故D 正确.故选:BD.11. 已知函数()()[]()2cos 0,0,πf x x ωϕωϕ=+>∈,则()A. 若()0f =,则π3ϕ=B. 若函数()y f x =为偶函数,则2cos 1ϕ=C. 若()f x [],a b 上单调,则π2b a ω-≤D. 若2ϕπ=时,且()f x在π3⎡-⎢⎣上单调,则30,2ω⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】将0x =代入()f x 求出函数值,根据ϕ的范围即可判断选项A ;根据偶函数的性质即可判断选项B ;根据()f x 在[],a b 上单调,则2Tb a ≥-即可判断选项C ;根据整体思想以及正弦函数的性质即可判断选项D.【详解】对于选项A ,若()0f =,则2cos ϕ=cos ϕ=,∵[]0,πϕ∈,∴π6ϕ=,则A错误;对于选项B ,若函数()y f x =为偶函数,则0ϕ=或πϕ=,即2cos 1ϕ=,则B 正确;对于选项C :若()f x 在[],a b 上单调,则π2T b a ω-≤=,但不一定小于π2ω,则C错误;在对于选项D :若2ϕπ=,则()2sin f x x ω=-,当ππ,34x ⎡⎤∈-⎢⎥⎣⎦时,ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦,∵()f x 在ππ,34⎡⎤-⎢⎥⎣⎦上单调,∴ππ32ππ42ωω⎧-≥-⎪⎪⎨⎪≤⎪⎩ ,解得30,2ω⎛⎤∈ ⎥⎝⎦,则D 正确.故选:BD .12. 已知()[)()[]sin 0,6π3π1cos 6π,7πax x x f x a x x ⎧-∈⎪=⎨-∈⎪⎩,若()0f x ≥恒成立,则不正确的是( )A. ()f x 的单调递增区间为()0,6πB. 方程()f x m =可能有三个实数根C. 若函数()f x 在0x x =处的切线经过原点,则00tan x x =D. 过()f x 图象上任何一点,最多可作函数()f x 的8条切线【答案】ABC 【解析】【分析】A 选项,根据()0f x ≥,得到1a ≥,画出函数图象,可得单调区间;B 选项,结合函数图象得到方程()f m =的根的个数;C 选项,分[0,6π)x ∈和[]6π,7πx ∈两种情况,得到00tan x x =或0001cos sin x x x -=;D 选项,设()f x 上一点()111,sin M x ax x -,分M 为切点和不是切点,结合函数图象可得过()f x 图象上任何一点,最多可作函数()f x 的8条切线.【详解】A 选项,因为函数()0f x ≥,[6π,7π]x ∈时,由于1cos 0x -≥恒成立,故3π(1cos )y a x =-要想恒正,则要满足0a ≥,[0,6π]x ∈时,sin 0y ax x =-≥恒成立,cos y a x '=-,当1a ≥时,cos 0y a x '=-≥在[)0,6π恒成立,故sin y ax x =-在[)0,6π单调递增,又当0x =时,0y =,故sin 0y ax x =-≥在[)0,6π上恒成立,满足要求,当01a <<时,令cos 0y a x '=-=,故存0π0,2x ⎛⎫∈ ⎪⎝⎭,使得0cos a x =,当()00,x x ∈时,0'<y ,当0π,2x x ⎛⎫∈ ⎪⎝⎭时,0y '>,故sin y ax x =-在()00,x x ∈上单调递减,又当0x =时,0y =,故()00,x x ∈时,sin 0y ax x =-<,不合题意,舍去,综上:1a ≥,当6πx →时,sin 6πy ax x a =-→,(6)3π[1cos(6π)]0f a π=-=,且(7π)3π[1cos(7π)]6πf a a =-=,画出函数图象如下,故()f x 的单调递增区间为(0,6π),(6π,7π),A 错误;B 选项,可以看出方程()f x m =最多有两个实数解,不可能有三个实数根,B 错误;C 选项,当[)0,6πx ∈时,()cos f x a x '=-,则()00cos f x a x '=-,则函数()f x 在0x x =处的切线方程为()()()0000sin cos y ax x a x x x --=--,将()0,0代入切线方程得()()0000sin cos ax x x a x --=--,解得00tan x x =,当[]6π,7πx ∈时,()3πsin f x a x '=,则()003πsin f x a x '=,则函数()f x 在0x x =处的切线方程为()()0003π1cos 3πsin y a x a x x x --=-⎡⎤⎣⎦,将()0,0代入切线方程得,0001cos sin x x x -=,其中06πx =满足上式,不满足00tan x x =,故C 错误;D 选项,当[)0,6πx ∈时,设()f x 上一点()111,sin M x ax x -,()cos f x a x '=-,当切点为()111,sin M x ax x -,则()11cos f x a x '=-,在故切线方程为()()()1111sin cos y ax x a x x x --=--,此时有一条切线,当切点不为()111,sin M x ax x -时,设切点为()222,sin N x ax x -,则()22cos f x a x '=-,此时有()2211221sin sin cos ax x ax x a x x x ---=--,即12212sin sin cos x x x x x -=-,其中1212sin sin x x t x x -=-表示直线MN 的斜率,画出cos ,[0,6π)y x x =∈与y t =的图象,最多有6个交点,故可作6条切线,[]6π,7πx ∈时,当切点不为()111,sin M x ax x -时,设切点为()()22,3π1cos N x a x -,则()3πsin f x a x '=,()223πsin f x a x '=,()7π3πsin 7π0f a '==,()6π3πsin 6π0f a '==,13π13π3πsin 3π22f a a ⎛⎫⎪==⎭'⎝,结合图象可得,存在一个点()()22,3π1cos N x a x -,使得过点()()22,3π1cos N x a x -的切线过[)0,6πx ∈上时函数的一点,故可得一条切线,当M 点在[]6π,7πx ∈时的函数图象上时,由图象可知,不可能作8条切线,综上,过()f x 图象上任何一点,最多可作函数f(x)的8条切线,D 正确.故选:ABC【点睛】应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 已知斜率k 求切点()()11,A x f x ,即解方程()1f x k '=;(3) 已知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,A x f x ,利用()()()10010f x f x k f x x x -=='-求解.Ⅱ卷三、填空题:本题共有4个小题,每小题5分,共20分.13. 已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则数列{}n a 的通项公式n a =______.【答案】12n -【解析】【分析】当1n =时求得1a ;当2n ≥时,利用1n n n a S S -=-可知数列{}n a 为等比数列,利用等比数列通项公式可求得结果.【详解】当1n =时,1121a a =-,解得:11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,12n n a a -∴=,则数列{}n a 是以1为首项,2为公比的等比数列,11122n n n a --∴=⨯=.故答案为:12n -.14. 已知ABC 的面积S =,3A π∠=,则AB AC ⋅=________;【答案】2【解析】【分析】由三角形的面积可解得4bc =,再通过数量积的定义即可求得答案【详解】由题可知1sin 2S bc A =3A π∠= ,所以解得4bc =由数量积的定义可得1cos 422AB AC bc A ⋅==⨯= 【点睛】本题考查三角形的面积公式以及数量积的定义,属于简单题.15. 若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________.【答案】19-【解析】【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案.【详解】2sin 63πα⎛⎫+= ⎪⎝⎭ ,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭,1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-16. ()123,,,,n A a a a a =⋅⋅⋅,{}{}1,0,11,2,3,,i a i n ∈-=⋅⋅⋅为一个有序实数组,()f A 表示把A 中每个-1都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,例如:()1,0,1A =-,则()()1,0,1,1,0,1f A =--.定义()1k k A f A +=,1,2,3,k =⋅⋅⋅,若()11,1A =-,n A 中有n b 项为1,则{}n b 的前2n 项和为________.【答案】21223n +-【解析】【分析】设n A 中有n c 项为0,其中1和1-的项数相同都为n b ,由已知条件可得()111222n n n b c n ---+=≥①,()112n n n b b c n --=+≥②,进而可得()1122n n n b b n --+=≥③,再结合12n n n b b ++=④可得()11122n n n b b n -+--=≥,分别研究n 为奇数与n 为偶数时{}n b 的通项公式,运用累加法及并项求和即可求得结果.【详解】因为()11,1A =-,依题意得,()21,0,0,1A =-,()31,0,1,1,1,1,0,1A =---,显然,1A 中有2项,其中1项为1-,1项为1,2A 中有4项,其中1项为1-,1项为1,2项为0,3A 中有8项,其中3项1-,3项为1,2项为0,由此可得n A 中共有2n 项,其中1和1-的项数相同,设n A 中有n c 项为0,所以22nn n b c +=,11b =,从而()111222n n n b c n ---+=≥①,因为()f A 表示把A 中每个1-都变为1-,0,每个0都变为1-,1,每个1都变为0,1所得到的新的有序实数组,为则()112n n n b b c n --=+≥②,①+②得,()1122n n n b b n --+=≥③,所以12nn n b b ++=④,④-③得,()11122n n n b b n -+--=≥,所以当n 为奇数且3n ≥时,()()()324122411222122211143n n n n n n n n n b b b b b b b b ------+=-+-+⋅⋅⋅+-+=++⋅⋅⋅++=+=-,经检验1n =时符合,所以213n n b +=(n为奇数),当n 为偶数时,则n 1-为奇数,又因为()1122n n n b b n --+=≥,所以111121212233n n n n n n b b ----+-=-=-=,所以2+1,321,3n n n n b n ⎧⎪⎪=⎨-⎪⎪⎩为奇数为偶数,当n 为奇数时,+112121233n n n n n b b ++-+=+=,所以{}n b 的前2n 项和为21211352112345621222422()()()()2+2+2++2143n n n n n b b b b b b b b -+---⨯-++++++++===- .故答案为:21223n +-.【点睛】本题的解题关键是根据题目中集合的变换规则找到递推式,求出通项公式,再利用数列的特征采取分组求和解出.四、解答题:本题共有6个小题,共70分.17.设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I )若.a b x =求的值;(II )设函数()()·,.f x a b f x =求的最大值【答案】(I )6π(II )max 3()2f x =【解析】【详解】(1)由2a =x )2+(sin x )2=4sin 2x ,2b =(cos x )2+(sin x )2=1,及a b =r r,得4sin 2x =1.又x ∈0,2π⎡⎤⎢⎥⎣⎦,从而sin x =12,所以x =6π.(2) ()·=f x a b =x ·cos x +sin 2xsin 2x -12cos 2x +12=sin 26x π⎛⎫- ⎪⎝⎭+12,当x ∈0,2π⎡⎤⎢⎥⎣⎦时,-6π≤2x -6π∴当2x -6π=2π时,即x =3π时,sin 26x π⎛⎫-⎪⎝⎭取最大值1.所以f (x )的最大值为32.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠= ,PD ⊥平面ABCD ,1PD AD ==,且点,E F 分别为AB 和PD 中点.(1)求证:直线//AF 平面PEC ;(2)求PB 与平面PAD 所成角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取PC 的中点M ,根据题意证得//AE MF 且AE MF =,得到四边形AEMF 为平行四边形,从而得到//AE ME ,结合线面平行的判定定理,即可得证;(2)以D 为坐标原点,建立空间直角坐标系,求得向量1,1)2PB =- 和平面PAD 的一个法向量n =,结合向量的夹角公式,即可求解.【小问1详解】证明:取PC 的中点M ,连接,MF EM ,在PCD 中,因为,M F 分别为,PC PD 的中点,可得//MF CD 且12MF CD =,又因为E 为AB 的中点,所以//AE CD 且12AE CD =,所以//AE MF 且AE MF =,所以四边形AEMF 为平行四边形,所以//AE ME ,因为ME ⊂平面PCE ,AF ⊄平面PCE ,所以//AF 平面PCE .【小问2详解】解:因为底面ABCD 是菱形,且60DAB ∠= ,连接BD ,可得ABD △为等边三角形,又因为E 为AB 的中点,所以DE AB ⊥,则DE DC ⊥,又由PD ⊥平面ABCD ,以D 为坐标原点,以,,DE DC DP 所在的直线分别为,x y 和z 轴建立空间直角坐标系,如图所示,因为底面ABCD 是菱形,且60DAB ∠= ,1PD AD ==,可得11(0,0,0),,0),,0),(0,0,1)22D A B P -,则11,1),,0),(0,0,1)22PB DA DP =-=-=,设平面PAD 的法向量为(,,)n x y z =,则1020n DA x y nDP z ⎧⋅=-=⎪⎨⎪⋅==⎩ ,取x =,可得3,0y z ==,所以n =,设直线PB 与平面PAD 所成的角为θ,则sin cos ,n PB n PB n PB θ⋅==== ,所以直线PB 与平面PAD19. 已知数列{}n a 满足11a =,且()1111n n a a n n n n +-=++.(1)求{}n a 通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,且312n n S -=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =- (2)1133n n n T -+=-【解析】的【分析】(1)利用累加法求出na n,进而得n a ;(2)求得1213n n n b --=,利用错位相减法可求出答案.【小问1详解】因为()1111111n n a a n n n n n n +-==-+++,所以11221111221n n n n n a a a a a a a a n n n n n ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 1111111121212n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-+=- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以21n a n =-.【小问2详解】因为312n n S -=,所以当1n =时,1111a S b ==,得11b =;当2n ≥时,1113131322n n n n n n n a S S b -----=-=-=,所以1213n n n b --=(1n =时也成立).因为012135333n T =++++ 所以12311352133333n nn T -=++++ ,所以1012111121222212133121333333313n n n nnn n T --⎛⎫- ⎪--⎝⎭=++++-=+⨯-- 112122112333n n nn n --+=+--=-,故1133n n n T -+=-.20. 在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为ABC S .已知①2ABC BC S ⋅=;②()()()sin sin sin sin sin sin sin B A B A C C A +-=+;③()2cos cos c a B b C +=-,从这三个条件中任选一个,回答下列问题.(1)求角B ;(2)若b =.求22a c +的取值范围.【答案】(1)2π3B = (2)[)8,12【解析】【分析】(1)选①时:利用面积和数量积公式代入化简即可;选②时:利用正弦定理代入,结合余弦定理得到;选③时:正弦定理进行边角转换,结合角度的范围即可确定角B .(2)结合(1)的角度,和边的大小,用余弦定理进行代换,结合基本不等式即可得到最终范围.【小问1详解】2ABC BC S ⋅=可得:1cos 2sin sin 2B ac B ac B =⋅=,故有sin tan cos BB B ==又∵()0,πB ∈,∴2π3B =;选②,∵()()()sin sin sin sin sin sin sin B A B A C C A +-=+,由正余弦定理得222c ac b a +=-,∴2221cos 22a cb B ac +-==-,又()0,πB ∈,∴2π3B =;选③,∵()2cos cos c a B b C +=-,由正弦定理可得()sin 2sin cos sin cos C A B B C +=-,∴()2sin cos sin cos sin cos sin sin A B B C C B C B A =--=-+=-,∵()0,πA ∈,∴sin 0A ≠,∴1cos 2B =-,又()0,πB ∈,∴2π3B =.【小问2详解】由余弦定理得2222cos 12c a b ac B ac +=+=-∵0ac >,∴2212a c +<.又有222222122c a c a ac c a +=++≤++,当且仅当2a c ==时取等号,可得228c a +≥.即22a c +的取值范围是[)8,12.21. 已知等差数列{}n a 满足212a a =,且1a ,32a -,4a 成等比数列.(1)求{}n a 的通项公式;(2)设{}n a ,{}n b 的前n 项和分别为n S ,n T .若{}n a 的公差为整数,且()111nn n nS b S +-=-,求n T .【答案】(1)25n a n =或2n a n =(N n +∈) (2)当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+【解析】【分析】(1)设出公差d ,根据已知条件列出相应的等式即可求解.(2)由题意可以先求出{}n b 的通项公式,再对n 进行讨论即可求解.【小问1详解】设等差数列{}n a 的公差为d ,∵2112a a a d ==+,∴1a d =,∵1a ,32a -,4a 成等比,∴()21432a a a =-,即()()2111322a a d a d +=+-,得()22432d d =-,解得25d =或2d =,∴当125d a ==时,25n a n =;当12d a ==时,2na n =;∴25n a n =或2n a n =(N n +∈).【小问2详解】因为等差数列{}n a 的公差为整数,由(1)得2n a n =,所以()()2212n n n S nn +==+,则()()112n S n n +=++,∴()()()()()()()12121111111111nn n n n n n b n n n n n n n ⎡⎤++-+⎛⎫=-=--=-++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦.①当n 为偶数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++--+++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++----+++-+ 1111n =-++1n n =-+.②当n 为奇数时1231n n nT b b b b b -=+++++ 1111111111111111111223344511n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++++-+++++-+++-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111111111111223344511n n n n =---+++---+++-+++----+ 1111111n n n =-+---+231n n +=-+.所以当n 为正偶数时,1n nT n =-+,当n 为正奇数时,231n n T n +=-+.22. 已知函数()ln ,f x x mx m =+∈R .(1)当3m =-时,求()f x 的单调区间;(2)当()1,x ∈+∞时,若不等式()mf x x <恒成立,求m 的取值范围;(3)设*n ∈N ,证明:()22235212ln 11122n n n n++<++⋅⋅⋅++++.【答案】(1)递增区间为10,3⎛⎫ ⎪⎝⎭,递减区间为1,3⎛⎫+∞ ⎪⎝⎭(2)1,2⎛⎤-∞- ⎥⎝⎦(3)证明见解析【解析】【分析】(1)求定义域,求导,由导函数的正负求出单调区间;(2)转化为1ln 0x m x x ⎛⎫+-< ⎪⎝⎭在()1,x ∈+∞上恒成立,令()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,分0m ≥和0m <两种情况,求导,结合导函数特征,再分类讨论,求出m 的取值范围;(3)在(2)基础上得到12ln x x x<-,赋值得到211212ln 1n n n n n n n n n +++<-=++,利用累加法得到结论.【小问1详解】当3m =-时,()ln 3,0f x x x x =->,则()1133x f x x x-'=-=,令()0f x ¢>,得103x <<;令()0f x '<,得13x >,所以()f x 的单调递增区间为10,3⎛⎫ ⎪⎝⎭,单调递减区间为1,3⎛⎫+∞ ⎪⎝⎭.【小问2详解】由()m f x x <,得1ln 0x m x x ⎛⎫+-< ⎪⎝⎭,设()()1ln ,1,g x x m x x x ⎛⎫=+-∈+∞ ⎪⎝⎭,当()1,x ∈+∞时,1ln 0,0x x x>->,所以当0m ≥时,()0g x >,不符合题意.当0m <时,()2111g x m x x ⎛⎫=++ ⎝'⎪⎭22mx x m x ++=,设()()2,1,h x mx x m x =++∈+∞,其图象为开口向下的抛物线,对称轴为12x m=-0>,当112m ->,即102m -<<时,因为()1210h m =+>,所以当11,2x m ⎛⎫∈-⎪⎝⎭时,()0h x >,即()0g x '>,此时()g x 单调递增,所以()()10g x g >=,不符合题意.当1012m <-≤,即12m ≤-时,()h x 在()1,+∞上单调递减,所以()()1210h x h m <=+≤,所以()0g x '<,所以()g x 在()1,+∞上单调递减,所以()()10g x g <=,符合题意.综上所述,m 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.【小问3详解】由(2)可得当1x >时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,即12ln x x x<-,令*1,n x n n+=∈N ,则211212ln 1n n n n n n n n n +++<-=++,所以22223351212ln ,2ln ,,2ln 111222n n n n n++<<⋅⋅⋅<+++,以上各式相加得22223135212lnln ln 121122n n n n n++⎛⎫++⋅⋅⋅+<++⋅⋅⋅+ ⎪+++⎝⎭,即22223135212ln 121122n n n n n ++⎛⎫⨯⨯⋅⋅⋅⨯<++⋅⋅⋅+⎪+++⎝⎭,所以()22235212ln 11122n n n n++<++⋅⋅⋅++++.【点睛】导函数证明数列相关不等式,常根据已知函数不等式,用关于正整数的不等式代替函数不等式中的自变量,通过多次求和(常常用到裂项相消法求和)达到证明的目的,此类问题一般至少有两问,已知的不等式常由第一问根据特征式的特征而得到.。

山东省滨州阳信一中高三上学期期中考试数学试题(文科含答案)

山东省滨州阳信一中高三上学期期中考试数学试题(文科含答案)

阳信一中高三上学期期中考试数学试题(文科)09.11时间:120分钟 总分:150分一、选择题(每题5分,共60分)D1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限( )C2.下列命题正确的是 ( ) A .若→a ∥→b ,且→b ∥→c ,则→a ∥→cB .两个有共同起点且相等的向量,其终点可能不同C .向量的长度与向量的长度相等D .若非零向量与是共线向量,则A 、B 、C 、D 四点共线C3.若函数()sin()f x x ωϕ=+的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-==C4.如果0,a b >>0c d >>,则下列不等式中不正确...的是 ( ) A .a d b c ->- B .a bd c> C . a d b c +>+ D . ac bd > B5.已知数列{a n }的通项公式是249n a n =-,则S n 达到最小值时,n 的值是( )A .23B .24C .25D .26A6. 等比数列{}n a 中,首项1a =8,公比q =21,那么它的前5项和5S 的值等于( ).A . 15.5B .20C .15D . 20.75A7. 已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B . 060C . 030D . 90oB8.已知tan(α+β)=25,tan(α+4π)=322, 那么tan(β-4π)的值是( )A .15B .14C .1318D .1322C9.一个首项为正数的等差数列中,前3项的和等于前11项的和,当这个数列的前n 项和最大时,n 等于 ( )A .5B .6C .7D .8D10. 已知25≥x ,则4254)(2-+-=x x x x f 有 ( )A .最大值45 B .最小值45C .最大值 1D .最小值1D11.设x ,y 满足约束条件:⎪⎩⎪⎨⎧≤-≥≥120y x y x x ,则z=3x+2y 的最大值是 ( )A. 9B. 6C. 4D. 5C12.从2005年到2008年期间,甲每年6月1日都到银行存入a 元的一年定期储蓄。

北京市通州区2024届高三上学期期中质量检测数学试题(含解析)

北京市通州区2024届高三上学期期中质量检测数学试题(含解析)

通州区2023—2024学年第一学期高三年级期中质量检测数学试卷2023年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交国.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则()A. B. C. D. 2. 已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知向量,,,则下列结论中正确的是()A B.C. D. 与的夹角为120°4. 已知函数,则()A. 当且仅当,时,有最小值B. 当且仅当时,有最小值2C. 当且仅当时,有最小值D. 当且仅当时,有最小值.25. 下列命题中假命题是()A. ,B. ,.的{}02A x x =≤<{}1,0,1,2B =-A B = {}1{}0,1{}0,2{}0,1,21iiz -=z ()2,0a =- ()1,2b =(c = a b ∥ 2a b ⋅= 2b c = a c()()1104f x x x x=++>12x =()f x 3212x =()f x 1x =()f x 321x =()f x x ∀∈R 102x⎛⎫> ⎪⎝⎭x ∃∈R 12x x>C , D. ,6. 已知,,,则()A. B. C.D.7. 在平面直角坐标系中,角以为始边,则“角的终边过点”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 下列函数中,在区间上单调递减的是()A. B. C. D. 9. 已知函数是奇函数,且,将的图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象对应的函数为,则()A. B. C. D. 10. 已知数列的前项和为,且,则下列四个结论中正确的个数是()①;②若,则;③若,则;④若数列是单调递增数列,则的取值范围是.A. 1B. 2C. 3D. 4第二部分(非选择题共110分).x ∀∈R ||21x >x ∃∈R tan 1x >12log 3a =1ln 2b =1213c ⎛⎫= ⎪⎝⎭b ac <<a b c <<a c b <<b c a<<xOy αOx α()1,2-tan 2α=-()0,∞+()()31f x x =-()||2x f x -=()2log f x x =-()12log f x x=()()()cos 20,πf x A x A ϕϕ=+><3π14f ⎛⎫=- ⎪⎝⎭()f x ()g x ()sin g x x =()sin g x x=-()πcos 4g x x ⎛⎫=+ ⎪⎝⎭()πcos 4g x x ⎛⎫=- ⎪⎝⎭{}n a n n S 21n n S S n ++=22n n a a +-=10a =501225S =11a =501224S ={}n a 1a 11(,44-二、填空题共5小题,每小题5分,共25分.11. 已知函数,则的定义域为____________.12. 已知数列是等比数列,,,则数列的通项公式________;数列的前9项和的值为__________.13. 已知实数a ,b 满足关于x 的不等式的解集为,且满足关于的不等式的解集为,则满足条件的一组a ,b 的值依次为______.14. 在等腰中,,,则____________;若点满足,则的值为___________.15. 已知函数,,给出下列四个结论:①函数在区间上单调递减;②函数的最大值是;③若关于的方程有且只有一个实数解,则的最小值为;④若对于任意实数a ,b ,不等式都成立,则的取值范围是.其中所有正确结论的序号是_______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16已知函数,.(1)当时,若,求的值域(2)若有两个零点,分别为,,且,求的取值范围.17. 已知函数..()()1lg 2f x x x=++()f x {}n a 22a =-34a ={}n a n a ={}n a 9S (),axb a b >∈R (),1-∞-y 230y y b ++>R ABC 2AB AC ==2BA BC ⋅=BC =P 122CP CA CB =- PA PB ⋅()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩m ∈R ()21x g x x =+()f x 1,2⎛⎫+∞ ⎪⎝⎭()g x 12x ()()0f x g x -=m 12()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦()23f x x ax a =--+a ∈R 2a =[]0,3x ∈()f x ()f x 1x 2x 120x x >a ()2cos 2sin 1f x x x x =-+(1)求的值;(2)求最小正周期及单调区间;(3)比较与的大小,并说明理由.18. 已知的内角A ,B ,C 所对的边分别为a ,b ,c ,其中,,再从下面给出的条件①,条件②、条件③这三个条件中选择一个作为已知,使存在且唯一.(1)求的值;(2)求的面积.条件①:;条件②:③:.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.19. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值;(3)若对于任意,不等式恒成立,求实数的取值范围.20. 已知函数,,.(1)求的值;(2)求在区间上的最大值;(3)当时,求证:对任意,恒有成立.21. 已知数列的各项均为正数,且满足(,且).(1)若;(i )请写出一个满足条件的数列的前四项;的5π4f ⎛⎫⎪⎝⎭()f x π5f ⎛⎫- ⎪⎝⎭7π8f ⎛⎫⎪⎝⎭ABC 2a =π3B =ABC c ABC cos =A b =b =()2e 2xf x x =-()y f x =()()0,0f ()f x x ∈R ()()2e 1f x x m >-+m ()e 2x f x x -=()1ln g x a x x =-a ∈R ()1f '()g x []1,21a =()0,x ∈+∞()()cos xf xg x x>-{}n a 112n n n a a a -++≥*n ∈N 2n ≥12a a >{}n a(ii )求证:存在,使得成立;(2)设数列的前项和为,求证:.()t t ∈R ()*1n a a nt n ->∈N {}n a n n S ()()2212n n n S n n a n n a ++--≥通州区2023—2024学年第一学期高三年级期中质量检测数学试卷2023年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交国.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,则()A. B. C. D. 【答案】B 【解析】【分析】根据题意,由交集的运算,即可得到结果.【详解】因为集合,,则.故选:B 2. 已知复数,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】【分析】根据复数除法运算化简即可求解.【详解】,故对应的点为,在第三象限,故选:C3. 已知向量,,,则下列结论中正确的是()A. B. {}02A x x =≤<{}1,0,1,2B =-A B = {}1{}0,1{}0,2{}0,1,2{}02A x x =≤<{}1,0,1,2B =-{}0,1A B = 1iiz -=z ()()()1i i 1i 1i i i i z ---===---()1,1--()2,0a =- ()1,2b=(c = a b ∥ 2a b ⋅=C. D. 与的夹角为120°【答案】D 【解析】【分析】利用向量平行,向量数量积,向量模,向量夹角的坐标表示验证各选项正误即可得答案.【详解】A 选项,因,则与平行,故A 错误;B 选项,因,故B 错误;C 选项,,又,则,故C 错误;D 选项,,又,则,即与的夹角为120°,故D 正确.故选:D.4. 已知函数,则()A. 当且仅当,时,有最小值B. 当且仅当时,有最小值2C. 当且仅当时,有最小值D. 当且仅当时,有最小值.2【答案】B 【解析】【分析】根据题意,由基本不等式,代入计算,即可得到结果.【详解】因为,则,当且仅当时,即时,等号成立,所以当且仅当时,有最小值2.故选:B5. 下列命题中的假命题是()2b c = a c ()2210-⨯≠⨯a b202a b ⋅=-+=-b ==2c == 2b c ≠ 21cos ,222a c a c a c⋅-===-⨯ [],0,180a c ∈︒︒ ,120a c =︒ a c()()1104f x x x x=++>12x =()f x 3212x =()f x 1x =()f x 321x =()f x 0x >()11124f x x x =++≥+=14x x =12x =12x =()f xA. ,B. ,C. ,D. ,【答案】C 【解析】【分析】对于A ,根据指数的值域为可判断;对于B ,取可判断;对于C ,取可判断;对于D ,取可判断.【详解】对于A ,因为指数函数的值域为,所以,,A 对;对于B ,当时,,B 对;对于C ,当时,,C 错;对于D ,当时,,D 对.故选:C.6. 已知,,,则()A. B. C.D.【答案】B 【解析】【分析】利用对数函数的单调性可得,,又,从而可得.【详解】因为,所以,即,因为,所以,即,而,所以.故选:B.x ∀∈R 102x⎛⎫> ⎪⎝⎭x ∃∈R 12x x>x ∀∈R ||21x >x ∃∈R tan 1x >()0,∞+14x =0x =π3x =()0,∞+x ∀∈R 102x⎛⎫> ⎪⎝⎭14x =1122111424x ⎛⎫==> ⎪⎝⎭0x =||0212x ==π3x =πtan tan 13x ==>12log 3a =1ln 2b =1213c ⎛⎫= ⎪⎝⎭b ac <<a b c <<a c b <<b c a<<21a -<<-10b -<<12103c ⎛⎫=> ⎪⎝⎭121123422--⎛⎫⎛⎫=<<= ⎪ ⎪⎝⎭⎝⎭2111122211log log 3log 22--⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭21a -<<-11e 12-<<11lne ln ln12-<<10b -<<12103c ⎛⎫=> ⎪⎝⎭a b c <<7. 在平面直角坐标系中,角以为始边,则“角的终边过点”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据三角函数的定义即可判断.【详解】当角的终边过点时,根据三角函数的定义,可得,充分性成立;当时,为第二象限角或第四象限角,若为第四象限角,则角的终边不过点,必要性不成立.所以“角的终边过点”是“”的充分不必要条件.故选:A.8. 下列函数中,在区间上单调递减的是()A. B. C. D. 【答案】C 【解析】【分析】求导可判断A ,根据指数函数以及对数函数的单调性即可判定BC ,根据函数图象即可判定D.【详解】对于A, ,所以在上单调递增,故A 错误,对于B ,由于,所以在上单调递增,B 错误,对于C ,,故在上单调递减,C 正确,对于D ,的图象如下所示:故在单调递减,在单调xOy αOx α()1,2-tan 2α=-α()1,2-tan 2α=-tan 2α=-ααα()1,2-α()1,2-tan 2α=-()0,∞+()()31f x x =-()||2x f x -=()2log f x x =-()12log f x x=()()2310f x x '=-≥()()31f x x =-()0,∞+()220,xx x f x -=>=()||2x f x -=()0,∞+()220,log log x f x x x >=-=-()2log f x x =-()0,∞+()12log f x x =()12log f x x =()0,1()1,+∞递增,故D 错误,故选:C9. 已知函数是奇函数,且,将的图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象对应的函数为,则()A. B. C. D. 【答案】A 【解析】【分析】根据三角函数的性质及图象变换计算即可.【详解】由题意可知,,所以或,由因为,所以,即,故.故选:A .()()()cos 20,πf x A x A ϕϕ=+><3π14f ⎛⎫=- ⎪⎝⎭()f x ()g x ()sin g x x =()sin g x x=-()πcos 4g x x ⎛⎫=+ ⎪⎝⎭()πcos 4g x x ⎛⎫=- ⎪⎝⎭()ππZ 2k k ϕ=+∈π<ϕπ2ϕ=π2ϕ=-3π3π1cos 142f A ϕ⎛⎫⎛⎫=-=+=- ⎪ ⎪⎝⎭⎝⎭3π0cos 02A ϕ⎛⎫>⇒+< ⎪⎝⎭π,12A ϕ=-=()πcos 2sin 22f x x x ⎛⎫=-= ⎪⎝⎭()sin g x x =10. 已知数列的前项和为,且,则下列四个结论中正确的个数是()①;②若,则;③若,则;④若数列是单调递增数列,则的取值范围是.A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由,可得,两式相减得到,进而可得,可判断①,根据的值可判断是否为等差,再根据等差数列得前项和公式即可求解②③;根据条件得,,再根据数列单调递增,则必有,且,求解即可得出的取值范围.【详解】因为,当,,两式相减得,所以,两式相减得,故①错误,当时,令,则,,得,所以,令,则,,得,所以,则,所以,故奇数项是以为首项,2为公差的等差数列,偶数项是以为首项,2为公差的等差数列,则,所以②正确;当时,令,则,,得,所以,{}n a n n S 21n n S S n ++=22n n a a +-=10a =501225S =11a =501224S ={}n a 1a 11(,44-21n n S S n +=-+21(1)n n S S n -=-+-121(2)n n a a n n ++=-≥22(2)n n a a n +-=≥1a {}n a n 21221n a n a =--21122+=+n a n a {}n a 22212n n n a a a ++>>21a a >1a 21n n S S n +=-+2n ≥21(1)n n S S n -=-+-121(2)n n a a n n ++=-≥122(1)121+++=+-=+n n a a n n 22(2)n n a a n +-=≥10a =1n =211S S =-+1211a a a +=-+2121a a =-+21a =2n =324S S =-+112324a a a a a ++=--+312122422=--+=+a a a a 32a =312a a -=22n n a a +-={}n a 10a =21a =50123495013492450()()S a a a a a a a a a a a =+++++=+++++++ 25242524(2502)(2512)122522⨯⨯=⨯+⨯+⨯+⨯=11a =1n =211S S =-+1211a a a +=-+2121a a =-+21a =-令,则,,得,故偶数项是以为首项,2为公差的等差数列,奇数项从第二项开始以为首项,2为公差的等差数列,则,所以③正确;由于,,,则,又数列单调递增,则必有,且,所以,且,解得,所以的取值范围是,所以④正确.故选:C .第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 已知函数,则的定义域为____________.【答案】【解析】【分析】依题意可得,,求解即可.【详解】依题意可得,,解得且,所以的定义域为.故答案为:.12. 已知数列是等比数列,,,则数列的通项公式________;数列2n =324S S =-+112324a a a a a ++=--+3122244a a a =--+={}n a 21a =-34a =50123495013492450()()S a a a a a a a a a a a =+++++=+++++++ ()242325241(2442)2512122422⨯⨯⎡⎤=+⨯+⨯+⨯-+⨯=⎢⎥⎣⎦22(2)n n a a n +-=≥2121a a =-+3122=+a a 2222222442211()()()2(1)21221n n n n n a a a a a a a a n a n a ---=-+-++-+=--+=-- 2121212123533311()()()2(1)222222n n n n n a a a a a a a a n a n a n a ++---=-+-++-+=-+=-++=+ {}n a 22212n n n a a a ++>>21a a >111222122221n a n a n a +-->+>--1112->a a 11144a -<<1a 11(,44-()()1lg 2f x x x=++()f x ()()2,00,-⋃+∞020x x ≠⎧⎨+>⎩20x x ≠⎧⎨+>⎩2x >-0x ≠()f x ()()2,00,-⋃+∞()()2,00,-⋃+∞{}n a 22a =-34a ={}n a n a =的前9项和的值为__________.【答案】 ①. ②. 171【解析】【分析】根据等比数列基本量的计算即可求解,,进而根据公式即可求解.【详解】由,可得,,所以,,故答案为:,17113. 已知实数a ,b 满足关于x 的不等式的解集为,且满足关于的不等式的解集为,则满足条件的一组a ,b 的值依次为______.【答案】故答案为:(答案不唯一,只要满足就行)【解析】【分析】利用一元一次不等式的解集和二次不等式恒成立列不等式即可求解.【详解】因为关于x 的不等式的解集为,所以,又关于的不等式的解集为,所以,解得,所以满足条件的一组a ,b 的值依次为,(答案不唯一,只要满足就行)故答案为:(答案不唯一,只要满足就行)14. 在等腰中,,,则____________;若点满足,则的值为___________.【答案】 ①.②. 【解析】【分析】利用余弦定理、平面向量及其线性运算、平面向量数量积的定义及运算分析运算即可得解.{}n a 9S ()12n --2q =-11a =22a =-34a =2q =-11a =()1112n n n a a q --==-()()991217112S --==--()12n --(),ax b a b >∈R (),1-∞-y 230y y b ++>R 3,3a b =-=94b a =->(),ax b a b >∈R (),1-∞-0a b a <⎧⎨=-⎩y 230y y b ++>R 2340b -<94b >3,3a b =-=94b a =->3,3a b =-=94b a =->ABC 2AB AC ==2BA BC ⋅=BC =P 122CP CA CB =- PA PB ⋅224【详解】解:如上图,由题意等腰中,,则,∵,,∴,∴,即,∵由余弦定理得,∴,即,又因边长,∴.∴是等边三角形,则,,∵,∴,,∴.ABC 2AB AC ==2BA =2BA BC ⋅=,=∠ BA BC B cos 2cos 2⋅===BA BC BA BC B BC B cos 1=BC B cos 1⋅=BC B 2222cos AC AB BC AB BC B =+-⋅⋅244221=+-⨯⨯BC 24BC =0BC >2BC =ABC π3A B C ===2C C B A ==122CP CA CB =- 122=-=+ PA CA CP CA CB 132=-=- PB CB CP CB CA 2211312362224⎛⎫⎛⎫⋅=+⋅-=⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭PA PB CA CB CB CA CA CB CA CB CA CB222211116cos 62424=⋅-+=-+CA CB CA CB CA CB C CA CB 221112226224224=⨯⨯⨯-⨯+⨯=故答案为:;.15. 已知函数,,给出下列四个结论:①函数区间上单调递减;②函数的最大值是;③若关于的方程有且只有一个实数解,则的最小值为;④若对于任意实数a ,b ,不等式都成立,则的取值范围是.其中所有正确结论的序号是_______.【答案】①②③【解析】【分析】对于①,由二次函数开口向下,对称轴为,得到①正确;对于②,先得到函数的奇偶性,求导得到函数的单调性,画出的图象,数形结合得到的最大值;对于③,转化为有且只有一个交点,在同一坐标系画出与的图象,数形结合得到不等式,求出;对于④,先由得到,考虑时,两函数在处的切线相同,结合两函数图象得到满足要求,故④错误.【详解】对于①,当时,,二次函数开口向下,对称轴为,故在区间上单调递减,①正确;对于②,定义域为R ,且,故为奇函数,当时,,当时,,单调递减,当时,,单调递增,在224()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩m ∈R ()21x g x x =+()f x 1,2⎛⎫+∞ ⎪⎝⎭()g x 12x ()()0f x g x -=m 12()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦12x =()21xg x x =+()g x ()(),f x g x ()f x ()g x 12m ≥()()00f g ≤0m ≤0m =0x =0m =1,2x ⎛⎫∈+∞ ⎪⎝⎭()221124f x x x m x m ⎛⎫=-++=--++ ⎪⎝⎭12x =1,2⎛⎫+∞ ⎪⎝⎭()21xg x x =+()()21x g x g x x --==-+()21xg x x =+0x >()()22211x g x x-'=+1x >()0g x '<()21xg x x =+01x <<()0g x '>()21xg x x =+且,时,时,画出的图象如下:由图象可得的最大值是,②正确;对于③,关于的方程有且只有一个实数解,即有且只有一个交点,在同一坐标系画出与的图象,要想有且只有一个交点,则,故的最小值为,③正确;对于④,由题意得,,即,当时,,,()112g =0x >()0g x >0x <()0g x <()21x g x x =+()g x 12x ()()0f x g x -=()(),f x g x ()23,1,1log ,1,2x x m x f x x x ⎧-++<⎪=⎨--≥⎪⎩()g x ()(),f x g x 12m ≥m 12()()00f g ≤0m ≤0m =()2f x x x =-+()00f =,,此时在处的切线方程为,而,故在处的切线方程为,画出两函数图象如下:此时满足对于任意实数a ,b ,不等式都成立,故的取值范围不是,D 错误.故答案为:①②③【点睛】函数零点问题:将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 已知函数,.(1)当时,若,求的值域(2)若有两个零点,分别为,,且,求的取值范围.【答案】(1)()21f x x '=-+()01f '=()2f x x x =-+0x =y x =()01g '=()21xg x x =+0x =y x =()()f a g b ≤m 3,4⎛⎤-∞- ⎥⎝⎦()23f x x ax a =--+a ∈R 2a =[]0,3x ∈()f x ()f x 1x 2x 120x x >a []0,4(2)【解析】【分析】(1)由题意可得在上单调递减,在上单调递增,从而可求解;(2)根据题意可得,进而可求解.【小问1详解】当时,的对称轴为,且开口向上,所以在上单调递减,在上单调递增,所以,又,所以,所以当,的值为;【小问2详解】的两个零点分别为,且,,即,解得或,故取值范围为.17. 已知函数.(1)求的值;(2)求的最小正周期及单调区间;(3)比较与的大小,并说明理由.【答案】(1(2),递增区间为,递减区间为的(,6)(2,3)-∞- ()f x [)0,1(]1,312Δ00x x >⎧⎨>⎩2a =()()22211f x x x x =-+=-1x =()f x [)0,1(]1,3()()min 10f x f ==()()01,34f f ==()max 4f x =[]0,3x ∈()f x []0,4()f x 12,x x 120x x >12Δ00x x >⎧∴⎨>⎩24(3)030a a a ⎧--+>⎨-+>⎩6a <-23a <<a (,6)(2,3)-∞- ()2cos 2sin 1f x x x x =-+5π4f ⎛⎫⎪⎝⎭()f x π5f ⎛⎫- ⎪⎝⎭7π8f ⎛⎫⎪⎝⎭πT =πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦(3),理由见解析【解析】【分析】(1)根据二倍角的正余弦公式和两角和的正弦公式化一,从而可求解;(2)根据周期公式可求周期,令,求解可得增区间,令,求解可得减区间;(3)由周期可得,再利用单调性即可求解.小问1详解】,所以;【小问2详解】的最小正周期,令,解得;令,解得,所以的单调递增区间为,单调递减区间为.小问3详解】,理由如下:由(2)可知的最小正周期,所以,由(2)可知,在上单调递增,又,所以,即.【【π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭πππ2π22π,Z 262k x k k -+≤+≤+∈ππ3π2π22π,Z 262k x k k +≤+≤+∈7ππ88f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭()1π2cos 222cos 22sin 226f x x x x x x ⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎭5π5π44ππ2sin 22cos 66f ⎫⎛⎫⨯+=⎛ = ⎝⎝⎭⎪⎭=⎪()f x 2ππ2T ==πππ2π22π,Z 262k x k k -+≤+≤+∈ππππ,Z 36k x k k -+≤≤+∈ππ3π2π22π,Z 262k x k k +≤+≤+∈π2πππ,Z 63k x k k +≤≤+∈()f x πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦π2ππ,π,Z 63k k k ⎡⎤++∈⎢⎥⎣⎦π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭()f x 2ππ2T ==7ππ88f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭()f x ππ,36⎡⎤-⎢⎥⎣⎦ππππ3586-<-<-<ππ85f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭π7π58f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭18. 已知的内角A ,B ,C 所对的边分别为a ,b ,c ,其中,,再从下面给出的条件①,条件②、条件③这三个条件中选择一个作为已知,使存在且唯一.(1)求的值;(2)求的面积.条件①:;条件②:③:.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)(2【解析】【分析】(1)若选①,先求出,然后利用正弦定理可求;若选条件②,由余弦定理可检验是否存在;若选条件③,由余弦定理可求;(2)结合三角形面积公式即可求解.【小问1详解】若选①,又因为,所以,所以,由正弦定理得,所以;若选条件②由余弦定理得,整理得,此时方程无解,即这样的三角形不存在,所以条件②不能选;ABC 2a =π3B =ABC c ABC cos =A b =b =3c =sin C c c c cos =A 0πA <<sin A ==1sin sin()sin cos cos sin 2C AB A B A B =+=+=+=sin sin a cA C=sin 3sin a C c A ===b =22227414cos ,224c a c b B acc+-+-==24890c c -+=若选条件③,由余弦定理得,整理得,解得或(舍去),所以.小问2详解】由(1)可知,所以.19. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值;(3)若对于任意,不等式恒成立,求实数的取值范围.【答案】(1)(2)极小值为,无极大值(3)【解析】【分析】(1)求导,即可得斜率,进而可求直线方程,(2)求导,根据导数求解单调性,即可求解极值,(3)将恒成立问题参数分离,构造函数即可求导求解最值求解.【小问1详解】由得,又,所以在切线为【小问2详解】令,则,故在单调递增,当时,单调递减,【b =2222147cos ,224a c b c B ac c+-+-==2230c c --=3c =1c =-3c =3c=11sin 2322ABC S ac B ==⨯⨯=()2e 2xf x x =-()y f x =()()0,0f ()f x x ∈R ()()2e 1f x x m >-+m 1y =()01f =0m <()2e 2e ,xg x x =-()2e 2xf x x =-()22e 2x f x '=-()()00,01f f ='=()y f x =()0,11y =()22e 20xf x '=->0x >()f x ()0,∞+0x <()()0,f x f x '<所以当时,取极小值,无极大值,【小问3详解】由得,故,构造函数则,令,则,故当时,,单调递增,时,单调递减,故当取极小值也是最小值,,所以,即20. 已知函数,,.(1)求的值;(2)求在区间上的最大值;(3)当时,求证:对任意,恒有成立.【答案】(1)(2)时,,时,时,,(3)证明见解析【解析】【分析】(1)求导即可代入求解,(2)分类讨论,即可根据导数求解函数的单调性并求解最值,(3)将问题转化为,对分类讨论,构造函数,求0x =()f x ()01f =()()2e 1f x x m >-+()22e e 21xx m x ->+-2e 2e x m x ->()2e 2e ,xg x x =-2()2e 2e x g x '=-2()2e 2e>0x g x '=-1>2x 1>2x ()0g x '>()g x 12x <()()0,g x g x '<()1,2x g x =1e e 02g ⎛⎫=-= ⎪⎝⎭()min m g x <0m <()e 2x f x x -=()1ln g x a x x =-a ∈R ()1f '()g x []1,21a =()0,x ∈+∞()()cos xf xg x x>-()12f '=1a ≤-()max 1g x =-112a -<<-()max 1ln g x a aa ⎛⎫=-+ ⎪⎝⎭12a -≤()max 1ln 22g x a =-ln e cos 1x x x x <+-x ()=e cos ln 1xh x x x x +--导确定函数的单调性,即可利用单调性求解最值求证.【小问1详解】由得,所以,【小问2详解】由得,当时,,故在区间上单调递增,所以,当时,令,则,令,则,故在上单调递减,在上单调递增,当时,,此时在区间上单调递减,所以,当时,,此时在区间上单调递增,所以,当时,,此时在区间上单调递增,在单调递减,综上可得:时,,时,时,,【小问3详解】要证,即证,即证明,当时,,而,所以()e 2x f x x-=()2e e 2x x x f x x -+'=()12f '=()1ln g x a x x=-()2211a ax g x x x x +'=+=0a ≥()0g x '>()g x []1,2()()max 12ln 22g x g a ==-0a <()0g x '<1x a >-()0g x '>10x a<<-()g x 1x a >-10x a <<-1a ≤-11a-≤()g x []1,2()()max 11g x g ==-102a -≤<12a -≥()g x []1,2()()max 12ln 22g x g a ==-112a -<<-112a <-<()g x 11,a ⎡⎤-⎢⎥⎣⎦1,2a ⎛⎤- ⎥⎝⎦()max 11ln g x g a aa a ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭1a ≤-()max 1g x =-112a -<<-()max 1ln g x a aa ⎛⎫=-+ ⎪⎝⎭12a -≤()max 1ln 22g x a =-()()cos x f x g x x >-1e cos ln x x x x x ++<ln e cos 1x x x x <+-01x <≤ln 0x x <e cos 11cos 1cos cos10x x x x +->+-=≥>,当时,记,则,记,由于,所以当单调递增,所以,故在单调递增,故,故,综上,对任意,恒有【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形;(2)构造新的函数;(3)利用导数研究的单调性或最值;(4)根据单调性及最值,得到所证不等式.21. 已知数列的各项均为正数,且满足(,且).(1)若;(i )请写出一个满足条件的数列的前四项;(ii )求证:存在,使得成立;(2)设数列的前项和为,求证:.【答案】(1)(i )(答案不唯一)(ii )见解析(2)见解析【解析】【分析】(1)根据不等式的性质证明不等式;(2)根据累加法与不等式的性质证明结论.【小问1详解】(i )∵即,ln e cos 1x x x x <+-1x >()=e cos ln 1x h x x x x +--()=e sin ln 1xh x x x '---()()()1==e sin ln 1,=e cos x xm x h x x x m x x x''-----()111,=e cos e 1e 110xx x m x x x x'>-->-->-->()1,x h x '>()()1e sin110h x h ''>=-->()h x 1x >()()1e cos110h x h >=+->ln e cos 1x x x x <+-()0,x ∈+∞()()cos xf xg x x>-()h x ()h x {}n a 112n n n a a a -++≥*n ∈N 2n ≥12a a >{}n a ()t t ∈R ()*1n a a nt n ->∈N {}n a n n S ()()2212n n n S n n a n n a ++--≥12342,1,7,15a a a a ====112n n n a a a -++≥11n n n n a a a a +--≥-又,则,∴满足条件的数列的前四项可以为:.(ii )∵(,且),∴,,,,累加得,则,则,∵,∴,不妨令,故存在,使得成立;【小问2详解】由(1)知:,同理∵即,∴,,,∴,则则,12a a >210a a -<{}n a 12342,1,7,15a a a a ====11n n n n a a a a +--≥-*n ∈N 2n ≥121n n n n a a a a -----≥1223n n n n a a a a -----≥-⋅⋅⋅4332a a a a -≥-3221a a a a -≥-()()2212n a a n a a ≥---()()121212n a a n a a a a -≥--+-()()()()12121211n a a n a a n a a a a -≥--=---210a a -<()121n a a n a a ->-()21t a a =-()t t ∈R ()*1n a a nt n ->∈N ()()1211n a a n a a -≥--112n n n a a a -++≥11n n n n a a a a +--≥-121q q q q a a a a -----≥1223q q q q a a a a -----≥-⋅⋅⋅211k k k k a a a a +++-≥-()()1q k k k a a q k a a +-≥--()()1q k k k a a q k a a +-≥--()()1q n n n a a q n a a +-≥--,,,,累加得:,故:.()()111n n n a a n a a +-≥--()()212n n n a a n a a +-≥--⋅⋅⋅()11n n n n a a a a -+-≥--0n n a a -≥()()112n nn n n n S na a a +--≥--()()2212n n n S n n a n n a ++--≥。

山东省德州市2024-2025学年高三上学期期中考试数学试题

山东省德州市2024-2025学年高三上学期期中考试数学试题

山东省德州市2024-2025学年高三上学期期中考试数学试题一、单选题1.已知集合{}13A x x =-≤,{}28xB x =<,则A B = ()A .[]2,4-B .(]2,4-C .[]2,3-D .[)2,3-2.以下有关不等式的性质,描述正确的是()A .若a b >,则11a b<B .若22ac bc <,则a b <C .若0a b c <<<,则a a cb b c+<+D .若0a >,0b >,4a b +<,4ab <,则2a <,2b <3.已知向量()1,2a =- ,(),1b m = ,若a b +与3a b - 平行,则m =()A .12-B .14-C .32D .724.已知等差数列{}n a 的前n 项和为n S ,3136a a +=,1517a =,则22S =()A .180B .200C .220D .2405.已知p :x a ≤,q :1202xx -≤+,若p 是q 的充分不必要条件,则a 的取值范围是()A .2a <-B .2a ≤-C .12a <D .12a ≤6.已知关于x 的函数()212log 1y x ax a =++-在[]3,2--上单调递增,则实数a 的取值范围是()A .4a ≤B .4a <C .3a ≤D .3a <7.已知函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭,若方程()12f x =在区间()0,2π上恰有3个实数根,则ω的取值范围是()A .2531,2424⎛⎫⎪⎝⎭B .3137,2424⎛⎤ ⎥⎝⎦C .3147,2424⎛⎤ ⎥⎝⎦D .3161,2424⎛⎫ ⎪⎝⎭8.已知函数()122ln ,282x f x x x ≤<=⎨⎪≤≤⎪⎩,若函数()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是()A .ln 21,4e ⎡⎫⎪⎢⎣⎭B .ln 21,42e ⎡⎫⎪⎢⎣⎭C .ln 21,22e ⎛⎤⎥⎝⎦D .ln 21,2e ⎛⎤⎥⎝⎦二、多选题9.下列结论正确的是()A .1cos 2cos x x+≥B .()0,3x ∀∈,()934x x -≤C .若0x >,0y >,2x yy x +≥D[)2,+∞10.已知函数()()221f x x x =-,则()A .函数()f x 有两个零点B .13x =是()f x 的极小值点C .11,55f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭是()f x 的对称中心D .当34x <<时,()()123f x f x +>-11.已知数列{}n a 的各项均为负数,其前n 项和n S 满足()11,2,4n n a S n ⋅==⋅⋅⋅,则()A.214a =B .1n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等比数列D .{}n a 存在大于11000-的项三、填空题12.已知正三角形ABC 的边长为2,O 为BC 中点,P 为边BC 上任意一点,则AP AO ⋅=.13.设()2π2sin cos 2sin 4f x x x x ⎛⎫=-- ⎪⎝⎭,当ππ,62x ⎛⎫∈ ⎪⎝⎭时,()13f x =-,则cos 2x =.14.已知函数()f x 的定义域为R ,()()()113f x f x f -++=,()22f x -+为偶函数,且312f ⎛⎫= ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭,()20251112k k f k =⎛⎫+-=⎪⎝⎭∑.四、解答题15.已知ABC V 中的三个角,,A B C 的对边分别为,,a b c,且满足sin cos a B A =.(1)求A ;(2)若A 的角平分线AD 交BC 于D ,2AD =,求ABC V 面积的最小值.16.某企业计划引入新的生产线生产某设备,经市场调研发现,销售量()q x (单位:台)与每台设备的利润x (单位:元,0x >)满足:()25252250,225x q x a x x <≤=-<≤⎨⎪>⎪⎪⎩(a ,b 为常数).当每台设备的利润为36元时,销售量为360台;当每台设备的利润为100元时,销售量为200台.(1)求函数()q x 的表达式;(2)当x 为多少时,总利润()f x (单位:元)取得最大值,并求出该最大值.17.在数列{}n a 中,11a =,其前n 项和为n S ,且()()1111n n n n nS S n S a ----=-+(2n ≥且*n ∈N ).(1)求{}n a 的通项公式;(2)设数列{}n b 满足213n n n b a ⎛⎫=-⨯ ⎪⎝⎭,其前n 项和为n T ,若()()23931n n n T n n λ-≤+⨯-恒成立,求实数λ的取值范围.18.已知函数()()()12ln 1e x f x x ax a +=+-∈R .(1)当1a =时,求函数()f x 在点()()0,0f 处的切线方程;(2)当0a <时,求()f x 的单调区间;(3)若函数()f x 存在正零点0x ,求a 的取值范围.19.已知数列{}n a ,从中选取第1i 项、第2i 项、…第m i 项()12m i i i <<⋅⋅⋅<,顺次排列构成数列{}k b ,其中k k i b a =,1k m ≤≤,则称新数列{}k b 为{}n a 的长度为m 的子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的子列.(1)写出2,8,4,7,5,6,9的三个长度为4的递增子列;(2)若数列{}n a 满足31n a n =-,*n ∈N ,其子列{}k b 长度4m =,且{}k b 的每一子列的所有项的和都不相同,求12341111b b b b +++的最大值;(3)若数列{}n a 为等差数列,公差为d ,0d ≠,数列{}k b 是等比数列,公比为q ,当1a d为何值时,数列{}k i 为等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料唐玲出品2015-2016学年度第一学期高三级(文科)数学期中考试试卷本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上.2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁和平整.第一部分选择题(共 60 分)一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合{|6}A x N x =∈≤,{|22}B x R x =∈->,则A B =( )A .{}0,5,6 B .{5,6}C .{4,6}D .{|46}x x <≤2.若复数12izi=-+,则z 的虚部为( )A.15i - B .15- C .15i D. 15 3.已知角α的终边上的一点的坐标为3455(,),则cos 21sin 2αα=+( ) A.17- B.17 C.7- D.74.正四面体的棱长为46,顶点都在同一球面上,则该球的表面积为( )A.36πB.72πC. 144πD.288π5. 阅读程序框图,若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是 ( )A .5i> B .6i > C .7i > D .8i >6.从椭圆22221x y a b+=(0)a b >>上一点P 向x 轴作垂线,垂足恰好为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y轴正半轴的交点,且OP AB //(O 是坐标原点),则该椭圆的离心率是( )A .24B .12C .22 D .32第57.设函数11()sin()3cos()22f x x x θθ=+-+(||)2πθ<的图象关于y 轴对称,则角θ=( )A .6π-B .6πC .3π-D .3π8.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x++=的取值范围是[3,5],则a =( )A .4B .3C .2D .1 9.下列说法中,正确的是( ) A .命题“若a b <,则22ambm <”的否命题是假命题;B .设α,β为两个不同的平面,直线α⊂l ,则“β⊥l ”是“βα⊥”成立的充分不必要条件;C .命题“存在R x ∈,20x x ->”的否定是“对任意R x ∈,02<x x -”;D . 设p :32()21f x x x mx =+++是R 上的单调增函数,q :43m ≥,则p 是q 的必要不充分条件.10. 已知函数2()1f x ax =-的图象在点(1,(1))A f 处的切线l 与直线820x y -+=平行,若数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2015S 的值为( )A. 20152016B. 20144029C. 40304031D. 20154031 11.已知抛物线2:4C y x =的焦点为F ,直线3(1)y x =-与C 交于A 、B (A 在x 轴上方)两点,若AF mFB =,则实数m 的值为( )A .3 B .32C .2D .3 12.已知 ABC ∆中,角,,A B C 对边分别为,,,a b c AH为BC 边上的高,以下结论:① sin AH AC c BAH⋅=⋅②()222cos BC AC AB b c bc A ⋅-=+-⋅② ()AH AB BC AH AB ⋅+=⋅ ④2AH AC AH ⋅=其中所有正确的是:( )A .① ② ③B .① ② ③ ④C . ② ③ ④D .① ④第二部分非选择题 (共 90 分)二.填空题:本大题共4小题, 每小题5分, 共20分. 把答案填在答卷的相应位置 13.设n S 是数列{}n a 的前n 项和,43nn a S =-,则4S =14. 一个几何体的三视图如图所示,则该几何体的体积是 _ 15. 将一颗骰子投掷两次分别得到点数a ,b ,则直线0ax by -=与圆22(2)2x y -+=有公共点的概率为16.已知函数22()lg ( 1 ),f x x x x =+++若()f a M =,则()f a -等于三.解答题:必做大题共5小题,共60分;选做大题三选一,共10分;解答应写出文字说明、证明过程或演算步骤 17.(本题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为c b a 、、,且满足A b B a cos 3sin =。

(1) 求角A 的大小; (2)若4=a ,求ABC ∆周长的最大值。

18.(本题满分12分)如图,正三棱柱111C B A ABC -中,E 是AC 中点.(1)求证:平面111A ACC BEC ⊥;(2)若21=AA ,AB=2,求点A 到平面1BEC 的距离.19.(本题满分12分)某花店每天以每枝5元的价格从农场购进若干枝郁金香,然后以每枝10元的价格出售.如果当天卖不完,剩下的郁金香做垃圾处理.(1)若花店一天购进17枝郁金香,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式. (2)花店记录了100天郁金香的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数10201616151310(i)假设花店在这100天内每天购进17枝郁金香,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝郁金香,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.20.(本题满分12分)已知椭圆C :)0(12222>>=+b a by a x 的离心率与双曲线222=-y x 的离心率互为倒数,且以抛物线x y 42=的焦点F 为右焦点.(1)求椭圆C 的标准方程; (2)过右焦点F 作斜率为22-的直线l 交曲线C 于M 、N 两点,且0OM ON OH ++=,又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由. 21.(本题满分12分)设函数x t e x f x ln )(2-=.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当tt t x f t2ln2)(0+≥>时,请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号. 22. (本小题满分10分)【选修4-1:几何证明选讲】如图,P 为圆外一点,PD 为圆的切线,切点为D ,AB 为圆的一条直径,过点P 作AB 的垂线交圆于C 、E 两点(C 、D 两点在AB 的同侧),垂足为F ,连接AD 交PE 于点G . (1)证明:PG=PD ;(2)若AC=BD ,求证:线段AB 与DE 互相平分.23.(本小题满分10分)【选修4-4:坐标系与参数方程选讲】已知曲线C 1的参数方程是为参数)θθθ(sin 22cos 2⎩⎨⎧+==y x ,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程是θρcos 4-=.(1)求曲线C 1与C 2交点的极坐标;(2)A 、B 两点分别在曲线C 1与C 2上,当|AB|最大时,求OAB ∆的面积(O 为坐标原点)24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数a x x g x x f +=+=||)(,|12|)((1)当0=a时,解不等式)()(x g x f ≥;(2)若存在x R ∈,使得)()(x g x f ≤成立,求实数a 的取值范围.2015-2016学年第一学期 高三级(文科)数学期中考试答案1B 2D 3A 4C 5A 6C 7A 8C 9B 10D 11D 12B10D ∵f ′(x )=2ax ,∴f (x )在点A 处的切线斜率为f ′(1)=2a ,由条件知2a =8,∴a =4,∴f (x )=4x 2-1, ∴1()f n =14n 2-1=12n -1·12n +1=12⎝⎛⎭⎫12n -1-12n +1∴数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和S n =12()1-13+12()13-15+…+12⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1,∴. 2015S =2015403113.2027 14.80 15.71216.22a M - 17.解:(1)依正弦定理BbA a sin sin =可将A b B a cos 3sin =化为 又因为在ABC ∆中,0sin >B 所以有 A B B A cos sin 3sin sin =0sin >B 3tan cos 3sin ==∴A A A ,即∵ π<<A 03π=∴A(2)因为ABC ∆的周长c b c b a ++=++=4, 所以当c b +最大时,ABC ∆的周长最大.解法一:316)(3)(cos 21622222-+=∴-+=-+==c b bc bcc b A bc c b a 4)(2c b bc +≤且 864)(4)(316)(222≤+∴≤+∴+≤-+∴c b c b c b c b (当且仅当4==c b 时等号成立)所以ABC ∆周长的最大值1218.解答证明:(1)∵ABC ﹣A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC ,ABC BE 平面⊂∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 中点,∴BE ⊥AC ,A AC AA = 1,ABC AA 平面⊂1ABC AC 平面⊂∴BE ⊥平面ACC1A1.∴BE ⊂平面BEC1∴平面BEC1⊥平面ACC1A1(2)由题意知,点A 到平面BEC 1的距离即点C 到平面BEC 1的距离 由(1)知平面BEC 1⊥平面ACC 1A 1,过点C 作CH ⊥C 1E 于点H ,则CH ⊥平面BEC 1,∴CH 为点C 到平面BEC 1的距离 在直角△CEC 1中,CE=1,CC 1=,C 1E=, ∴由等面积法可得CH=∴点A 到平面BEC 1的距离为19.解答:(1)当日需求量17n ≥时,利润y =85;当日需求量17n <时,利润1085y n =-,∴y 关于n 的解析式为1085,17,()85, 17,n n y n N n -<⎧=∈⎨>⎩;(2)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为1(5510652075168554)100⨯+⨯+⨯+⨯=76.4; (ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为0.160.160.150.130.10.7p =++++=20.解答:(1)∵双曲线x 2﹣y 2=2的离心率为,∴椭圆C 的离心率e==.∵抛物线y 2=4x 的焦点F (1,0)为椭圆的右焦点,∴c=1. 解得a=,∴b 2=a 2﹣c 2=1.∴椭圆C 的标准方程为=1.(2)设M (x 1,y 1),N (x 2,y 2),H (x 0,y 0),G (﹣x 0,﹣y 0). 直线l 的方程为:,联立,化为2x 2﹣2x ﹣1=0,可得x 1+x 2=1,x 1x 2=﹣.∴y 1+y 2==.可得线段MN 的垂直平分线为:,化=0.∵++=0,∴x 1+x 2+x 0=0,y 1+y 2+y 0=0,解得x 0=﹣1,y 0=﹣,即H.∴G.线段GH 垂直平分线的方程为y=﹣x .联立,解得,∴r==.因此M 、G 、N 、H 四点是共圆,圆心坐标为,半径r=.21.解答:(I )()f x 的定义域为)0(2)(),,0(2'>-=+∞x xtex f x. ;)(,0)(,0''没有零点当x f x f t >≤当0>t 时,因为xe 2单调递增,xt-单调递增,所以()f x '在()0,+∞单调递增 又,012)(2'>-=te t f当b 满足0<b <4t 且b <14时,()0f b '〈,故当t <0时()f x '存在唯一零点.(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0; 当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值为()0f x ,由于.tt t t t tx x t x f x t e x2ln 22ln 22)(,0200000+≥++=∴=-由于02020x a ex -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当tt t x f t 2ln 2)(0-≥>时,.22 解答: 证明:(1)∵PD 为圆的切线,切点为D ,AB 为圆的一条直径, ∴∠PDA=∠DBA ,∠BDA=90°,∴∠DBA+∠DAB=90°, ∵PE ⊥AB ∴在Rt △AFG 中,∠FGA+∠GAF=90°,即∠FGA+∠DAB=90°,∴∠FGA=∠DBA . ∵∠FGA=∠DGP ,∴∠DGP=∠PDA ,即∠DGP=∠PDG ,∴PG=PD ; (2)连接AE ,则∵CE ⊥AB ,AB 为圆的一条直径,AE AG AFE AFG EG CG =∴∆≅∆∴=∴∴AE=AC=BD ∴∠EDA=∠DAB , ∵∠DEA=∠DBA ,∴△BDA ≌△EAD ,∴DE=AB , ∴DE 为圆的一条直径,∴线段AB 与DE 互相平分. 23 解:(1)由,得,两式平方作和得:x 2+(y ﹣2)2=4,即x 2+y 2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x 2+y 2=﹣4x .两式作差得:x+y=0,代入C 1:x 2+y 2﹣4y=0得交点为(0,0),(﹣2,2). 其极坐标为(0,0),();(2)如图,由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB|最大. 此时|AB|=1221||r r C C ++=,直线AB 的方程为y=x+2,O 到AB 的距离为d=.∴△OAB 的面积为S d AB ||21==.24.解:(1)当0=a 时,由)()(x g x f ≥得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为 (﹣∞,﹣1]∪[﹣,+∞)(2)由)()(x g x f ≤得|||12|x x a -+≥ 令|||12|)(x x x h -+=,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<<-+-≤--=0,1021,1321,1)(x x x x x x x h 当21)(211)(]21,(--=∴--=--∞∈取得最小值为时,单调递减,时,x h x x x h x 当21)21()(13)()0,21[-=-≥+=-∈h x h x x h x 单调递增,时, 当1)0()(1)(),0[=≥+=+∞∈h x h x x h x 单调递增,时,故21)21()(min -=-=h x h ,故可得到所求实数a 的范围为[﹣,+∞)。

相关文档
最新文档