浅谈ZPW-2000站内电码化装置及维护简介

合集下载

ZPW2000车站闭环电码化电路-举例设计汇报

ZPW2000车站闭环电码化电路-举例设计汇报

XN
2600-1 S4 2000-1 S6
ZPW2000车站闭环电码化电路举例设计汇报
弯出发车转频
1700Hz 2300Hz 2000Hz 2600Hz
X
2000-1 S5
5G 1700-1 X5 3G IG
2600-1 S3
1700-2 SI 2000-2 SII
2300-1 X3
1700-2 XI 1700-2+25.7
检测设备说明
检测盘端子定义(正线、侧线检测盘相同定义)
①SIN1、GIN∼SIN8、GIN:轨道区段检测信息的输入 ②F1∼F8:载频选择的输出 ③FCIN1∼FCIN8:对应轨道区段载频的输入 ④1G、1GH ∼8G、8GH:对应轨道区段检查的输出
⑤2J、2JH ∼8J、8JH:对应轨道区段检查电源的输入
ZPW2000车站闭环电码化电路举例设计汇报
咽喉区正向发车进路闭环电码化检测电路构成
检测电路
Z24C GJ TJD SNLXJ SNJMJ SNZXJ SNBJJ XILXJ XIFMJ XIZTJ JC
发送、检测通道
SNJMJ
A1G B1G
C1G D1G E1G
A1GQMJ
SNJMJ
编码电路及发送
ZPW2000车站闭环电码化电路举例设计汇报 a.电码化区段长度不超过300 m不需设置补偿电容。
b. 发送 1700-1 、 1700-2 、 2000-1 、 2000-2 载频的区段 ,补偿电容采用80μ F。
c. 发送 2300-1 、 2300-2 、 2600-1 、 2600-2 载频的区段 ,补偿电容采用60μ F。 2.12.电缆使用原则 a.电缆采用内屏蔽电缆。 b.同频的发送线对与接收线对不能同四芯组。 c.同频的两发送线对或两接收线对不能同四芯组。

浅谈ZPW—2000A型站内电码化常见故障及处理方法

浅谈ZPW—2000A型站内电码化常见故障及处理方法

浅谈ZPW—2000A型站内电码化常见故障及处理方法文章着重以测量ZPW-2000A系统的发送通道、检测盘、系统发生器等设备电压为依据,针组成和功能特点,对ZPW-2000A电码化电路中常出现的一些故障进行判断、分析,从而提升处理故障的能力,大力压缩电码化故障延时。

标签:电码化;故障;处理方法随着列车速度的快速提升,机车信号的重要性愈加明显,如何才能确保ZPW-2000A型站内电码化的可靠工作以及缩短电码化故障延时显得至关重要。

文章着重针对ZPW-2000A电码化的组成及其功能特点,分析电码化运行中常见的一些故障,并且提出一系列有效措施。

1 ZPW-2000A型站内电码化的组成及特点ZPW-2000A闭环电码主要由室内设备和室外设备两部分组成,其中室内设备主要包括电码化发送器、发送调整器、发送检测器、防雷单元、闭环检测设备、轨道调整变压器、轨道及编码继电器以及室内隔离变压器等;室外设备主要包括数字电缆通道、轨道变压器、隔离盒、抗流连接线、钢轨通道以及电阻器。

ZPW-2000A电码化特点:不中断的电码化信息,主要运用预发码技术,运行前方区段以及本区段都在同一个时间发码,电码化在信息在时间上不会中断;对于轨道电路的影响较小,ZPW-2000A电码化信息主要是叠加与25Hz相敏的轨道线路上面,当ZPW-2000A站内码相关设备出现故障的时候,仅仅只是影响机车信号中发送信息,对于相敏轨道没有产生太大的影响;ZPW-2000A电码化主要采用冗余技术,当室内的发码设备出现故障时,发码报警以及控制台将会自动导入进N+1发码器。

2 ZPW-2000A型站内电码化常见的故障ZPW-2000A电码化主要分布于室内和室外,因此对于电码化故障分析可以利用室内和室外的差异性来进行判别,判断时所使用的仪表主要为ZPW-2000A 专用的数字表。

室内、室外故障的快速界定,要在分线盘处运用ZPW-2000A专用仪表进行测试,通常情况下电压的范围在3~110V之间,着重判断上、下行方向有无载频,其中是否有低频频率来进行界定。

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍一、技术标准1、二元二位轨道继电器:北京全路通信信号研究设计院“ZPW-2000 系列站内电码化预发码技术”介绍:轨道继电器电压:15~18V有效值,调整电压18~26V。

据有的电务段介绍:调整状态时,轨道继电器线圈上的有效电压应不小于18V。

结合《维规》调整表对于电压参考范围:股道:18~21V;小于200m的无岔区段:15.5~18V;一送多受道岔区段:16~18V最大不超过20V。

(相关电务段有要求的按电务段有要求调)2、残压。

用0.06Ω标准分路线在轨道送受端分路时,轨道继电器残压≤7.4v。

3、轨道电路的限流电阻:(1)送电端限流电阻(Rx):一送一受区段,送受均设扼流变压器:Rx=4.4Ω一送一受区段,送受均无扼流变压器:Rx=0.9Ω一送多受道岔区段,送受均设扼流变压器:Rx=4.4Ω一送多受道岔区段,送受均无扼流变压器:Rx=1.6Ω(2)受电端限流电阻(Rs):一送多受道岔区段设扼流变压器时用:Rs=4.4Ω,无扼流变压器的区段不用限流电阻。

4、入口电流:在电码化轨道区段,于机车入口端用0.15Ω标准分路线分路时的短路电流,1700Hz、2000Hz、2300Hz不小于500ma,2600Hz不小于450ma。

5、轨道电路长度大于350m时,应设补偿电容。

载频1700Hz、2000Hz补偿电容容量80uf,载频2300Hz、2600Hz补偿电容容量60uf。

补偿电容间距为100m,均匀设置,补偿电容设置:以股道长度1010m 为例,电容个数11个,等距离长度△=L/Nc=1010/11=92m ,股道两头△/2=46m 。

二、25Hz相敏轨道电路调整一)室外轨道变压器采用BG2-130/25:1、变压器和钢轨间有扼流变压器,送、受电端变压器一、二次侧输出电压固定在一定电压档:一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2、Ⅰ3(220V档),二次侧使用Ⅲ1、Ⅲ3 (15.84V档)。

四线制ZPW-2000站内及闭环电码化应用分析

四线制ZPW-2000站内及闭环电码化应用分析

第一章基本原理概述1.1 站内电码化的概念列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。

当列车通过车站时,机车信号将无法正常工作。

为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。

站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。

站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。

1.2 站内电码化的分类目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。

在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。

所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。

当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。

因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。

机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。

为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。

1.3 站内电码化的范围及技术要求1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。

1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍一、技术标准1、二元二位轨道继电器:北京全路通信信号研究设计院“ZPW-2000 系列站内电码化预发码技术”介绍:轨道继电器电压:15~18V有效值,调整电压18~26V。

据有的电务段介绍:调整状态时,轨道继电器线圈上的有效电压应不小于18V。

结合《维规》调整表对于电压参考范围:股道:18~21V;小于200m的无岔区段:15.5~18V;一送多受道岔区段:16~18V最大不超过20V。

(相关电务段有要求的按电务段有要求调)2、残压。

用0.06Ω标准分路线在轨道送受端分路时,轨道继电器残压≤7.4v。

3、轨道电路的限流电阻:(1)送电端限流电阻(Rx):一送一受区段,送受均设扼流变压器:Rx=4.4Ω一送一受区段,送受均无扼流变压器:Rx=0.9Ω一送多受道岔区段,送受均设扼流变压器:Rx=4.4Ω一送多受道岔区段,送受均无扼流变压器:Rx=1.6Ω(2)受电端限流电阻(Rs):一送多受道岔区段设扼流变压器时用:Rs=4.4Ω,无扼流变压器的区段不用限流电阻。

4、入口电流:在电码化轨道区段,于机车入口端用0.15Ω标准分路线分路时的短路电流,1700Hz、2000Hz、2300Hz不小于500ma,2600Hz不小于450ma。

5、轨道电路长度大于350m时,应设补偿电容。

载频1700Hz、2000Hz补偿电容容量80uf,载频2300Hz、2600Hz补偿电容容量60uf。

补偿电容间距为100m,均匀设置,补偿电容设置:以股道长度1010m 为例,电容个数11个,等距离长度△=L/Nc=1010/11=92m ,股道两头△/2=46m 。

二、25Hz相敏轨道电路调整一)室外轨道变压器采用BG2-130/25:1、变压器和钢轨间有扼流变压器,送、受电端变压器一、二次侧输出电压固定在一定电压档:一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2、Ⅰ3(220V档),二次侧使用Ⅲ1、Ⅲ3 (15.84V档)。

ZPW—2000原理

ZPW—2000原理

轨道电路在满足规定的传输条件下,道碴电最低时,主 轨道接收工作电压应不小于240 mV,在道碴电阻无穷 大时,主轨道内用0.15Ω分路电阻分路时,接收工作电 压应不大于140 mV;调谐区接收工作电压应不小于 750 mV,不大于850 mV。调谐区内发送调谐单元处 用0.15Ω分路电阻分路时,调谐区接收工作电压应不大 于170mV。 采用集中供电方式,电源采用DC48 V±0.5V,区间每个 信号点最大功耗不大于180W。站内电码化发送设备最 大功耗每个区段不大于100W。在道碴电阻为1.0Ω·Km 、0.8Ω·Km、0.6Ω·Km,分路电阻为0.15Ω时,在满足 规定的调整和分路工作状况,送受端电缆长度为10km 、12km、13.5km、15km条件下,轨道电路的工程传 输长度见表1.5.2.19,。轨道电路补偿电容的容值和布 局见轨道电路调整表。
2600Hz(F1) 2600Hz(F2)
2601.4 2598.7
1.低频调制频率:10.3Hz、11.4Hz、12.5Hz、 13.6Hz、14.7Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、 20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、 25.7Hz、26.8Hz、27.9Hz、29Hz共18种。
ZPW-2000R型无绝缘移频自动闭塞系统 的特点
1、用DSP数字信号处理技术,对接收的主轨道和调谐区信 号进行高精度的幅度运算,来实现调谐区死区检查(就防 护信号机而言其内方死区长度不大于5m,全程无死区)、 轨道电路全程断轨检查、BA断线检查。 2、运用DSP技术对频率信号的高精度分辨能力,实现载频 频率交错设计(F1、F2型)的方法,提高系统的安全性。 3、运用DSP频域分析的方法解决电化谐波拍频干扰使接收 设备错误动作的问题。 4、运用DSP技术的实现有选频接收的解调方式,对非18个 低频之外的低频信息有防护能力,提高接收设备的安全性。

ZPW—2000R移频自动闭塞及站内电码化调试方法

ZPW—2000R移频自动闭塞及站内电码化调试方法

ZPW—2000R移频自动闭塞及站内电码化调试方法摘要:随着我国社会的进步和经济的发展,我国的交通运输业也得到了长足的发展。

我国的交通运输主要是依靠铁路、飞机、汽车三种不同的交通形势来进行的。

其中铁路在我国的交通运输方式当中应用的最早,并且目前的覆盖率也最高,可以说铁路已经成为我国长途运输中最为常用的一种交通运输方式。

铁路的经济性能良好,在三种不同交通运输工具当中铁路的运输成本是最低的,并且在效率和稳定性方面都有着不错的表现。

我国铁路技术的发展很快,并且对于一些先进设备的引入也是不遗余力的,对于设备的应用也是比较迅速的,不过在ZPW—2000R一拼自动闭塞及站内电码化调试方面始终还有着一定的问题。

关键词:移频自动闭塞站内电码调试方法我国的铁路普,线路总长度是世界第一的。

而我国的火车之多也是世所罕见的,作为我国最重要的交通工具之一,火车在我国各个城市和乡村的站点数量已经达到了一个惊人的数量,这样一个数量对其进行调度工作室极为困难和复杂的,尽管调度工作是分为各个不同区域的并非同一调度,因此更加灵活但是其调度难度也相当之高。

而ZPW-2000R无绝缘移频自动闭塞是辅助调度来进行地面线路行车许可信息、实现列车占用检查的设备,其是否可以平稳安全的运行直接影响到调度的效率及火车的安全性,因此它是非常重要的。

但是目前我国对于ZPW—2000R移频自动闭塞及站内电码化调试方法研究的还不够透彻,造成了许多不必要的麻烦,今天笔者就通过本文和大家来谈一谈关于ZPW—2000R移频自动闭塞及站内电码化的调试方法。

1、ZPW—2000R移频自动闭塞及站内电码化系统的作用ZPW—2000R移频自动闭塞及站内电码化系统其本身是由我国从法国引进而来的,该系统是为了我国的高铁建设而引进的,它可以在最大程度上对我国铁路运输的高效、高速、高安全性进行保障。

ZPW—2000R移频自动闭塞及站内电码化系统是一套在国际上也处在优势地位的先进的列车运行指挥系统,其不仅具有着其他列车运行指挥系统所具备的优点,还可以实现对整个列车行驶过程中的电气折断进行检查,以防止各类因为电气原因引起的安全事故,并且其对于分路死区的检查精确到了5M。

2000R使用和维护

2000R使用和维护

故障预防和日常测试方法
以 10 分钟为单位进行辅助分析曲线查看,发现主、调接入电压异常波动 不放过,进行详细查找。 对每次维护机预、报警信息进行原因确认,可与我公司客服部人员联系, 天窗施工前在维护机进行天窗设定。 利用天窗时间,在设备稳定运用期间,进行发送、接收分线盘测试,作为 今后故障时对比依据。可按照季节规律每年安排 4-5 次集中测试。 对道床恶劣,无法一次性调整的区段严密监控,制定对应的针对性调整办 法。 补偿电容(含塞钉头)测试,可利用试验车数据。 钢包铜线塞钉测试。 调谐区隔离度测试。 室外测试 调谐单元(BA)测试。状态,进行清理。
玉泉站662轨列车过后,主轨道断轨
前方区段调接入 变化情况 662断轨前方区段调 接入、本区段主接 入变化情况
中继区段,过车遗留红光带。(列车过后主接入电压未恢复到占用前的90%以上,轨道继电器不吸起。
前方区段调接入 变化情况
本方区段主 接入变化超 过90%


电源 功出自检 功率调节
※ ※
备用
ZPW-2000R型移频自动闭塞系统
使用和维护

系统组成及工作过程; 调谐区布置; 区段间隔离方式; 列车通过过程中主接入、调接入电压变化 规律。
图1:系统结构示意图(下行离去区段,以20个补偿电容为例)
D1G(2300Hz) 室外 轨道 及调 谐区 设备 调谐区信号2300Hz D2G(1700Hz) 主轨道信号1700Hz D3G(2300Hz) 调谐区信号1700Hz
横向防雷单元

4498(L邻)
※ ※ ※
4498(L邻)









防雷地

【201707-1】ZPW-2000A系统设备简介

【201707-1】ZPW-2000A系统设备简介

空心线圈平衡牵引回流 示意图
第二章 设备结构、使用及原理说明
空心线圈技术指标
序号 1
项 目 指标及范围 电感 33.5μH±1μ
备 注 测试频率:1592 电 流 : 2A±0.05A
H
电阻 18.5mΩ±5.
2
5mΩ
第二章 设备结构、使用及原理说明
3、机械绝缘节空芯线圈(XKJD) 用在车站与区间衔接的机械绝缘处,结构特征与空芯线圈一致,按频率分为四 种,与相应频率调谐单元相并联,可获得与电气绝缘节阻抗相同的效果。 工作原理
补偿电容
补偿电容用途:
为抵消钢轨电感对移频信号传输的影响,采取在轨道电路中,分段加装补偿电容的
方法,使钢轨对移频信号的传输趋于阻性,接收端能够获得较大的信号能量。另外,加
装补偿电容能够实现钢轨断轨检查。在钢轨两端对地不平衡条件下,能够保证列车分路T数字电缆
主机与并机频率选择 均在接收器上进行。 主机+24V取自+24端子 并级+24V取自(+24) 端子
主机小轨道继电器XG
主机小轨道检查条件XGJ
发送接收报警接点
接收电源
第二章 设备结构、使用及原理说明
五、发送器 ZPW· F
安装在机械
第二章 设备结构、使用及原理说明
一、调谐区(电气绝缘节)
电气绝缘节由空芯线圈、29米长钢轨及调谐单元组成,实现相邻两轨道电路的电气 隔离。
调 谐 单 元
空芯线圈
调 谐 单 元
F1
F2
29m
电气绝缘节原理图
第二章 设备结构、使用及原理说明
电气绝缘节原理介绍
电气绝缘节原理图
第二章 设备结构、使用及原理说明

ZPW—2000K轨道电路结构、维护及故障分析

ZPW—2000K轨道电路结构、维护及故障分析

ZPW-2000K轨道电路只选用一种25μf电容 ,测试的容值一般
为27.5-22.5 μf (±10%)
六、轨道电路测试
2、室外测试 塞钉与钢轨接触电阻的测试:
用移频表电压表笔测试A、B点的电压,用钳形表测试 引接线的电流,所得到的就是塞钉与钢轨的接触电阻。
B B
A’ A 引接线 塞钉式 引接线
BPLN
单频衰耗冗余 控制器 RS-K
匹配单元 BPLN
带适配器 扼流变压器 BES(K)-1000/ZPW
四、器材作用
1、发送器
产生18种低频、8种载频的高精度、高稳定的移频信号; 产生足够功率的移频信号; 调整轨道电路; 对移频信号进行自检测,故障时向监测维护主机发出报 警信息。
调整端子 V1 E1
U1铜板端子
V3 V1 调 谐 部 分 A 电感 B U2 铜板端子 V2
匹配部分 E1
E2
V2
E2
站内匹配单元
调谐匹配单元
六、轨道电路测试
2、室外测试 补偿电容容值在线测试:
选用移频表补偿电容测试档,然后选择本区段的载频档位, 用电压表笔测补偿电容两端塞钉电压,同时用电流钳夹到补偿电 容引出线上测试电流,此时移频表显示的有补偿电容两端的电压 值、电流值及补偿电容的在线容值。
A’ A
膨胀螺栓式
七、轨道电路故障分析
(一)轨道电路红光带
由于ZPW-2000K轨道电路小轨不参与联锁,所以小轨故障 轨道电路不红光带,只有主轨故障时轨道电路出红光带。但是 通过判断小轨是否故障,可以协助判断故障点。
1、本区段主轨、小轨均故障 本区段主轨、小轨均故障说明故障点在发送设备。首先观 察是否有移频报警,如有移频报警则说明柜内有发送器(主、 备)故障,更换相应的发送器。如果没有移频报警则在分线盘 测试发送电压,进而确定故障点在室内或者室外,具体方法如 下: (1)分线盘发送电压正常说明室内发送设备正常,故障在 室外发送设备,室外分别测量匹配变压器电压、调谐单元电缆、 调谐单元、等阻线);

四线制ZPW-2000站内及闭环电码化应用分析

四线制ZPW-2000站内及闭环电码化应用分析

第一章基本原理概述1.1 站内电码化的概念列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。

当列车通过车站时,机车信号将无法正常工作。

为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。

站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。

站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。

1.2 站内电码化的分类目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。

在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。

所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。

当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。

因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。

机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。

为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。

1.3 站内电码化的范围及技术要求1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。

1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。

站内轨道电路预叠加ZPW一2000A电码化

站内轨道电路预叠加ZPW一2000A电码化

站内轨道电路预叠加ZPW一2000A电码化一、叠加在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。

所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。

传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。

二、预叠加随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。

目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。

“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。

三、预叠加原理电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。

侧线区段为占用发码叠加发码。

图LC9-3 预叠加原理我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码的应用原理。

接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。

图l中粗线表示的是站内电码化范围。

与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。

发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连B、D、F、H区段的CJ.⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。

直到列车进入D股道,DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。

列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备I路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。

ZPW-2000讲义

ZPW-2000讲义

ZPW-2000讲义一、ZPW-2000工作原理简介:1、无绝缘轨道电路的含义及原理:含义:所谓“无绝缘”就是取消信号设备延用的轨道电路绝缘(轨端、槽型绝缘及绝缘管垫等)而采用电气绝缘实行隔离。

原理:电气绝缘是用电容、电感、电阻(调谐单元、空心线圈以及钢轨钢包铜线等)组成电路,利用频率谐振点使电路发生串联谐振或并联谐振,当发生串联谐振时,电路呈阻性,电阻为几微欧姆,相当于短路,阻隔邻区段的移频信号串入;当发生并联谐振时,电路呈阻性,电阻为极阻抗(2欧姆),相当于开路,使本区段的信号能顺利通过。

2、小轨道的含义及作用:含义:“小轨道”就是电气绝缘,长29m,它是主轨道区段的延续。

作用:实现全过程的断轨检查。

二、ZPW-2000设备的组成及简介:1、设备框图:(见下页)2、各部简介:⑴FS盒:通用型,低频编码、载频、功出电平等利用勾线来实现,用N+1冗余实现热备;⑵JS盒:通用型,用于信号的接受、处理,有3个信号:本区段的主轨信号、小轨道信号以及邻区段的小轨信号;0.5+0.5冗余实现热备。

⑶电缆模拟网络盒:实现电缆长度的补偿、补偿原则为10km,用勾线完成;⑷衰耗盒:用于主轨道、小轨道的调整,给出发送、接收工作及轨道占用指示,有12个测试孔:a.发送电源:直流24+0.5V;b.接收电源:直流24+0.5V;c.发送功出:功出电压,85—165V之间设计给出;d.轨入:有2种信号:本区段主轨信号(大于240mv)和邻区段小轨信号(大于42mv);e.轨出1:经过调整的主轨道信号(大于336mv;调整在700~800mv);f.轨出2:经过调整的小轨道信号(110~130mv);g.GJ(Z):大于20V的直流电压;h.GJ(B):大于20V的直流电压;i.GJ:大于20V的直流电压;j.XGJ(Z):大于20V的直流电压;k.XGJ(B):大于20V的直流电压;l.XGJ:大于20V的直流电压.⑸匹配变压器:为1:9的升压变压器,室内向钢轨侧为1:9,钢轨向室内为9:1;⑹调谐单元、空心线圈:与钢轨一起实行串、并联谐振,达到电气绝缘的目的;⑺补偿电容:实现电路补偿,延长传输距离(规格:区间为400μf、460μf、500μf、550μf;站内为60μf、80μf)。

客专ZPW—2000A维护与故障处理

客专ZPW—2000A维护与故障处理

客专ZPW—2000A维护与故障处理近年来,中国高速铁路迅速发展,随着京津城际,京沪高铁,武广高铁,京武客专等一系列高速客运专线的开通运营,人们的出行越来越便利,旅程也变得更加快捷,舒适。

高铁列车的安全运行离不开高铁信号设备的保障。

客运专线ZPW-2000A型无绝缘移频轨道电路做为高铁信号地面设备的重要组成部分,广泛应用于在各高铁线路的区间和站内。

客运专线ZPW-2000A轨道电路是中国列车运行控制系统中必不可少的组成部分。

因此,做好客运专线ZPW-2000A轨道电路的维护工作和故障发生时的处理工作,才能保证高铁列车安全高效的运行。

标签:高速铁路;ZPW-2000A;故障处理1 客运专线ZPW-2000A轨道电路的功能和组成客运专线ZPW-2000A轨道电路的主要功能是轨道列车占用检查、轨道断轨检查、向列车传送信息和行车凭证,是区间信号自动闭塞系统、列车运行控制系统和车站信号联锁系统必不可少的基础地面设备。

客运专线ZPW-2000A轨道电路根据使用的处所分为三种类型:区间和站内股道、站内无岔区段轨道电路和道岔区段轨道电路。

区间采用无绝缘的电气绝缘节,轨旁设备使用调谐匹配单元(PT)和空心线圈(XKD),站内轨道电路采用机械绝缘,轨旁设备使用站内匹配单元(BNLN)和机械绝缘节空心线圈(XKD),以上设备均需在机械室设置备用器材,使用时做好区分,区间和站内不能混用。

2 客运专线ZPW-2000A与既有ZPW-2000A轨道电路的不同客运专线ZPW-2000A轨道电路是在既有ZPW-2000A轨道电路的基础上改进而来,主要有以下区别:(1)编码方式不同。

客运专线ZPW-2000A轨道电路是通过列控中心计算机以CAN总线的方式控制发送器发码;既有ZPW-2000A轨道电路使用继电器编码方式,需要使用大量的编码继电器,电路相对复杂。

(2)冗余备用结构不同。

客运专线ZPW-2000A轨道电路移频柜内发送器采用的是1+1冗余结构,每区段单个发送器故障不影响使用;既有ZPW-2000A 轨道电路发送器采用的是N+1冗余结构。

ZPW-2000站内预叠加电码化

ZPW-2000站内预叠加电码化

站内25HZ相敏轨道电路预叠加ZPW-2000A电码化一预叠加电码化的范围(一)自动闭塞区段1、正线正线正方向:电码化范围包括正线接车进路和正线发车进路正线反方向:电码化范围仅为反方向正线接车进路。

2、侧线侧线电码化范围仅为股道占用发码。

(二)半自动闭塞区段站内电码化范围:正线接车进路。

侧线接车时电码化范围仅为股道。

二、发送器发送范围复线自动闭塞站内电码化正线发送器发码范围为XJM下行正线接车进路、XFM下行正线发车进路、SJM上行正线接车进路、SFM上行正线发车进路、XFJM下行反向正线接车进路、SFJM上行反向正线接车进路。

侧线股道发送器上下行方向各设一个发送器每一股道设置使用两个发送器。

下行I道接车时,XJM发送器移频信息经过FTU1-U匹配单元后分两路、分别向IAG、1DG、7DG、IG发送移频信息。

下行I道发车时,XFM发送器经过FTU1-U匹配单元后分两路别向4DG、2-8DG、IBG发送移频信息。

电码化发码简图(三)电码化电路原理1、下行接车电码化电路当下行I道接车时,下行接车进路X进站信号开放XLXJ↑ XZXJ ↑开通正线XJMJ↑列车进入三接近时X3JGJ↓---1AG的GCJ↑后1AG 预先发码,当列车进入1AG时1DG的GCJ↑后1DG预先发码,当列车进入1DG时7DG的GCJ↑后7DG预先发码的同时断开1AG的GCJ 电路并停止向1AG发码…………当列车占用本区段的接近区段时本区段预先发码当列车进入本区段时下一区段预先发码,并停止接近区段发码复原接近区段发码电路。

当列车完全到达股道后,XJMJ以及进路上所有的GCJ恢复原状。

X行接车正线发车正线示意图2、下行发车电码化电路当下行一道发车X1开放出站信号时X1LXJ↑.列车占用1道 1GJ ↓..XFMJ↑--4DG的GCJ↑后4DG预先发码,当列车出发进入4DG时2-8DG的GCJ↑后2-8DG预先发码, 当列车进入2-8DG时1BG的GCJ ↑后1BG预先发码的同时断开4DG的GCJ电路并停止向4DG发码。

ZPW-2000A移频站内电码设备维护

ZPW-2000A移频站内电码设备维护

ZPW-2000A移频站内电码设备维护发布时间:2022-11-04T09:40:51.745Z 来源:《建筑实践》2022年第13期作者:柳育国[导读] 自2011年以来,集通铁路为适应快速发展和运输经营的需要柳育国内蒙古集通铁路(集团)有限责任公司大板综合维修段内蒙古赤峰市 025150摘要:自2011年以来,集通铁路为适应快速发展和运输经营的需要,不断的加快更新改造的步伐。

随着集通的发展,信号设备也逐渐更新换代,区间闭塞设备慢慢由ZPW-2000A移频自动闭塞取代64D、64F闭塞设备而即将成为管内区间闭塞设备的主体,站内设备也由480轨道电路叠加8信息移频设备而更新为25HZ轨道电路叠加ZPW-2000A移频站内电码化设备。

本论文主要从ZPW-2000A移频站内电码化的设备组成和作用、频率设置及工作原理、设备现场测试指标及调整、故障处理等方面介绍了ZPW-2000A电码化设备的现场维护。

本人在集通复线开通运营的过程中先后参加了多个站的ZPW-2000A移频站内电码化站改的验收、试验及开通工作,在工作过程中不断对ZPW-2000A站内设备原理进行学习,对ZPW-2000A设备的电气特性也有所掌握。

由于此设备管内近几年才开始逐渐开通,还没有过多的运用,希望本文能对ZPW-2000A型电码化设备的现场维护带来帮助。

关键词:ZPW-2000A设备;铁路信号第一章ZPW2000站内电码化的设备构成及作用ZPW-2000A站内电码化设备分为室内和室外两部分,下面对室内和室外设备分别介绍。

室内设备:1、发送器:用于产生高精度、高稳定移频信号,采用N+1冗余设计。

故障时,通过FBJ接点转至“+1”FS。

2、发送检测器:用于对发送器的载频、低频、功出等电气指标进行检测,如不合格时使FBJ落下,转至“+1”FS。

一台电码化发送检测器可检测2台发送器。

3、防雷单元:对室外电缆引入的雷害进行防护,以免雷害击坏设备。

ZPW-2000型四线制电码化出入口电流调整解决方案优化

ZPW-2000型四线制电码化出入口电流调整解决方案优化

ZPW-2000型四线制电码化出入口电流调整解决方案优化2.中国铁路呼和浩特局集团有限公司电务部内蒙古呼和浩特 010000摘要:不具备出入口电流调整的ZPW-2000型四线制电码化设备,存在出入口电流超标的问题,同时也会造成邻线电码化干扰电流超标的问题。

本文以旧型号ZPW-2000型四线制电码化设备改造为例,从便于现场实施入手对电码化改造方案进行了研究及试验。

关键词:ZPW-2000型电码化;电流调整包兰线有部分车站使用的是25Hz轨道电路叠加ZPW-2000型四线制电码化设备,由于建设年限较早,该型号电码化电路在设计上不具备出入口电流调整的功能。

这些车站股道电码化入口电流最大的达到3.55A、出口电流最大的达到7.6A,对邻线电码化干扰多处干扰电流超标,存在邻线机车错误接收电码化信息的隐患。

为解决这一隐患,针对该型号ZPW-2000型四线制电码化出入口电流无法调整的现状,对既有电码化电路进行了研究,同时进行了多次现场的调查、测试,将存在的问题与设计院和设备厂家进行了探讨。

一、旧型号ZPW-2000四线制电码化电路的组成以及分析如图1所示,旧型号ZPW-2000四线制电码化电路构成如下:1. 发送器ZPW.F;2. 防雷匹配单元组合ZBPU-1B,内部是匹配变压器、电阻R(阻值120Ω)、防雷元件;图1:25Hz相敏轨道电路预叠加ZPW-2000型四线制电码化原理图3. 匹配盒HBP-A。

对电路中各个器材功能进行分析:1. 预叠加电码化要求具备两路相同的输出,发送器ZPW.F固定使用2-5和5-9端子。

由于电路中防雷匹配单元ZBPU-1B使用的匹配变压器不具备双路输出功能,而且预叠加电码化电路要求有两路同样的输出,所以发送器ZPW.F是固定使用2-5和5-9端子,发送电压不可调整,现场测量发送电压U25=U59=78V;2. 匹配变压器:一对一输出,1、2为输入端,3、4、5为输出端。

变压器变比为:U12/U35=1.0/1.5,U12/U34=1.0/1.34。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈ZPW-2000站内电码化装置及维护简介作者:袁旭
来源:《科技创新导报》2011年第18期
摘要:本文论述了ZPW-2000站内电码化的设备装置,对维护中需要注意的问题进行了分析。

关键词:站内电码化ZPW-2000设备装置
中图分类号:TM7 文献标识码:A 文章编号:1674-098X(2011)06(c)-0042-01
在焦柳铁路提速进程中,以ZPW-2000A型无绝缘轨道电路为基础构成的双线双向四显示自动闭塞,获得了迅速发展。

1 ZPW-2000站内电码化简介
电码化是指由轨道电路转发或叠加机车信号信息技术的总称。

因为站内轨道电路不能发送机车信号信息,所以为了保证机车信号不断码和满足提速要求,站内正线及股道均已实现ZPW-2000电码化。

电码化大致分为六种类型:固定切换、脉动切换、叠加移频、预叠加移频、车站接发车进路、闭环电码化。

ZPW-2000站内电码化属于预叠加移频电码化,即列车行驶到本区段时,本区段和下一区段冗余发码;ZPW-2000站内电码化范围包括,下行线正线正向接车进路、下行线正线正向发车进路、下行线正线反向发车车进路的所有区段;上行线正线正向接车进路、上行线正线正向发车进路、上行线正线反向发车车进路的所有区段;侧线,仅限于股道。

2 ZPW-2000站内电码化的设备设置
ZPW-2000站内电码化设备由发码设备和配套设备两部分构成。

发码设备有发送柜、发送器、发送检测器;配套设备有防雷单元、室内隔离盒、室外隔离盒、防护盒、轨道变压器等。

发送器的设置方案:下(上)行正线接车进路设一个X(S)JM发送器,下行正线发车进路与反向接车进路和用,设一个X(S)FM/SN(XN)JM发送器。

以下行为例,XJM发送器的作用:向下行正线接车进路各区段发送与XⅠ出站信号显示相应的信号。

XFM/SNJM发送器的作用:(1)向下行正线发车进路各区段发送与2LQ通过信号显示相应的信息;(2)向下行正线反向接车进路发送与SⅠ出站信号显示相应的信息。

原理框图如图1所示。

3 ZPW-2000站内电码化的维护经验
首先,我们要检查室内外设备配线正确;当没有发现异常时,办理接发车进路,在电码化受电端分路,确认ZPW-2000移频信号已发送到钢轨,测试轨道电路分路残压满足规定值;其次,用钳型表测试电码化入口电流和出口电流是否满足要求,2600HZ>0.45A,其他大于
0.5A;最后,测试电码化预叠加逻辑正确。

4 结语
总之,随着铁路的进一步提速,机车信号主体化已势在必行,这对地面信息发送设备提出了更高的要求,尤其是站内轨道电码化。

目前使用中的站内电码化设备,是一种单方向的信息发送设备,机车信号信息是否确实发送到了轨道上,或是否被机车可靠接收,并未得到有效的检测,给机车信号“掉码”问题的分析带来困难。

参考文献
[1] 傅世善.铁路信号显示[M].北京:中国铁道出版社.。

相关文档
最新文档