21.5一元二次方程的应用
八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制
八年级数学下册21.5二元二次方程和方程组教学设计沪教版五四制一. 教材分析《沪教版八年级数学下册》21.5节主要讲述二元二次方程和方程组的概念、性质及其解法。
通过本节课的学习,学生能够理解二元二次方程和方程组在实际问题中的应用,掌握求解二元二次方程组的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程和方程组的相关知识,具备了一定的数学思维能力。
但部分学生对二次项的理解和运用还不够熟练,对于如何将实际问题转化为二元二次方程组可能还存在一定的困难。
三. 教学目标1.知识与技能:理解二元二次方程和方程组的概念,掌握求解二元二次方程组的方法。
2.过程与方法:通过实例分析,培养学生将实际问题转化为二元二次方程组的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:二元二次方程和方程组的概念、性质及其解法。
2.难点:如何将实际问题转化为二元二次方程组,以及求解过程中的计算和分析。
五. 教学方法采用问题驱动法、案例分析法、合作学习法和引导发现法进行教学。
通过设置问题情境,引导学生主动探究,合作交流,发现和总结二元二次方程和方程组的解法,提高学生解决实际问题的能力。
六. 教学准备1.教学PPT:制作包含二元二次方程和方程组概念、性质、解法及相关实例的PPT。
2.练习题:准备一定数量的练习题,用于巩固所学知识。
3.教学素材:收集一些实际问题,用于引导学生将问题转化为二元二次方程组。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出二元二次方程和方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示二元二次方程和方程组的概念、性质,并通过实例进行分析,让学生理解二元二次方程组在实际问题中的应用。
3.操练(10分钟)让学生分组合作,解决一些简单的二元二次方程组问题,培养学生的团队合作意识和解决问题的能力。
(完整word版)冀教版初中数学目录
(完整word版)冀教版初中数学目录七 上 第一章有理数1.1 正数和负数1.2 数轴1.3 绝对值与相反数1。
4 有理数的大小1.5 有理数的加法1.6 有理数的减法1.7 有理数的加减混合运算1.8 有理数的乘法1.9 有理数的除法1.10 有理数的乘方1。
11 有理数的混合运算1。
12 计算器的使用第二章几何图形的初步认识2.1 从生活中认识几何图形2.2 点和线2。
3 线段的长短2.4 线段的和与差2。
5角以及角的度量2.6角的大小2.7角的和与差2。
8 平面图形的旋转第三章代数式3。
1 用字母表示数3.2 代数式3.3 代数式的值第四章整式的加减4。
1 整式4.2 合并同类型4.3 去括号4。
4 整式的加减第五章一元一次方程5.1 一元一次方程5。
2 等式的基本性质5。
3 解一元一次方程5.4 一元一次方程的应用综合与实践一:田径场跑道的计算和设计综合与实践二:古老的传说今日的思索七下第六章二元一次方程组6.1 二元一次方程组(完整word版)冀教版初中数学目录6.2 二元一次方程组的解法6。
3 二元一次方程组的应用6.4 简单的三元一次方程组数学活动:一元一次方程的“试位解法”第七章相交线与平行线7。
1 命题7.2相交线7。
3平行线7。
4 平行线的判定7。
5 平行线的性质7。
6 图形的平移第八章整式的乘法8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法8.4 整式的乘法8。
5 乘法公式8。
6 科学记数法第九章三角形9。
1 三角形的边9。
2 三角形的内角和外角9。
3 三角形的家平分线、中线和高第十章一元一次不等式和一元一次不等式组10。
1 不等式10。
2 不等式的基本性质10。
3 解一元一次不等式10.4 一元一次不等式的应用10。
5 一元一次不等式组第十一章因式分解11。
1 因式分解11。
2 提公因式法11.3 公式法数学活动:拼图与分解因式综合与实践一:透过现象看本质综合与实践二:蓄水池建在哪里较好八上第十二章分式和分式方程12.1 分式12.2 分式的乘除12.3 分式的加减12。
一元二次方程及其应用
一元二次方程及其应用
一元二次方程是只含有一个未知数,并且未知数的最高次数为2的整式方程。
一元二次方程的一般形式是 $ax^2 + bx + c = 0$,其中 $a \neq 0$。
一元二次方程的解法包括直接开平方法、配方法、公式法和因式分解法。
一元二次方程的应用非常广泛,包括解决实际问题、数学建模、物理问题等。
例如,在解决几何问题时,常常需要用到一元二次方程来求解面积、周长等。
在解决代数问题时,一元二次方程也是非常重要的工具,例如求解线性方程组的解、求解不等式等。
在解决物理问题时,一元二次方程也经常被用来描述物理现象,例如求解物体的运动轨迹、求解电路中的电流等。
总之,一元二次方程是数学中非常重要的概念之一,它不仅在数学中有广泛的应用,而且在其他领域中也具有非常重要的意义。
沪教版6-9年级数学新教材目录(改版后)
六-九年级全套新教材目录本套教材包括六至九年级共计八册,总课时预计为436个,其中数与代数173个课时,图形与几何144个课时,统计与概率23个课时,综合与实践72个课时,机动课时24个.六上(57课时)1有理数(16课时)1.1有理数的意义1.1.1正数和负数1.1.2数轴1.1.3相反数1.1.4绝对值1.1.5有理数的大小比较1.2有理数的加法和减法1.2.1有理数的加法法则1.2.2加法的运算律1.2.3有理数的减法法则1.3有理数的乘法和除法1.3.1有理数的乘法法则1.3.2乘法运算律1.3.3有理数的除法法则1.4有理数的乘方1.5有理数的混合运算1.5.1有理数的混合运算1.5.2有理数运算的应用本章小结2用字母表示数(9课时) 2.1用字母表示数2.2代数式2.2.1代数式的概念2.2.2求代数式的值2.3一次式2.3.1一次式2.3.2一次式的同类项2.3.3一次式的加减2.3.4数与一次式相乘本章小结3一元一次方程(13课时) 3.1方程和列方程3.2方程的解3.3一元一次方程及其解法3.3.1一元一次方程的概念3.3.2等式性质3.3.3去括号解方程3.3.4一元一次方程解法的综合运用3.4一元一次方程的应用本章小结4线段与角的认识(8课时)4.1线段的认识4.1.1点与线4.1.2线段的比较和度量4.1.3画线段的和、差与线段的中点4.2角的认识4.2.1角的概念与表示4.2.2角的比较和度量4.2.3画角的和、差与角的平分线4.2.4余角、补角本章小结综合与实践(8课时)小小营养师神奇的密码金融小课堂上海主题一日游攻略机动课时(3课时)六下(56课时)5比和比例(14课时)5.1比和比例5.1.1比的意义5.1.2比的基本性质5.1.3比例5.2百分比5.2.1百分比的意义5.2.2百分比的应用本章小结6圆和扇形(9课时)6.1圆6.2圆的周长与弧长6.2.1圆的周长6.2.2弧长6.3圆与扇形的面积6.3.1圆的面积6.3.2扇形的面积本章小结7可能性与统计图表(5课时)7.1随机现象的可能性7.2数据的收集、整理与表达7.3百分数的统计意义本章小结8立体图形初步(7课时)8.1直棱柱及其侧面展开图8.2圆柱及其侧面展开图8.3圆锥及其侧面展开图本章小结9二元一次方程组(8课时)9.1认识二元一次方程组9.2二元一次方程组的解法9.3二元一次方程组的应用9.4三元一次方程组及其解法本章小结综合与实践(10课时)绘制太阳系行星示意图齿轮中的数学中国的能源生产和消费包装盒的设计音乐与比例机动课时(3课时)七上(58课时)10整式的加减(7课时)10.1整式10.1.1整式10.1.2升幂排列与降幂排列10.2同类项10.3整式的加减本章小结11整式的乘除(16课时)11.1整式的乘法11.1.1同底数幂的乘法11.1.2幂的乘方11.1.3积的乘方11.2乘法公式11.3整式的除法11.3.1同底数幂的除法11.3.2单项式除以单项式11.3.3多项式除以单项式本章小结12因式分解(8课时)12.1因式分解的意义12.2因式分解的基本方法12.3二次三项式的因式分解12.4因式分解方法的综合运用本章小结13分式(9课时)13.1分式13.1.1分式13.1.2分式的基本性质13.2分式的运算13.2.1分式的乘除13.2.2分式的加减13.2.3整数指数幂13.3分式方程本章小结14图形的位置与运动(8课时) 14.1用数对表示点14.2平移14.3旋转14.4轴对称14.4.1图形的翻折与轴对称图形14.4.2轴对称14.5中心对称本章小结综合与实践(7课时)无法归类的艺术家:埃舍尔制订“阅读之星”的评选方案对称的世界、对称的美机动课时(3课时)七下(54课时)15一元一次不等式(10课时) 15.1不等式及性质15.1.1不等式的意义15.1.2不等式性质(1)15.1.3不等式性质(2)15.2一元一次等式15.2.1不等式的解和解集15.2.2解一元一次不等式15.2.3一元一次不等式的应用15.3一元一次等式组本章小结16相交线、平线(12课时) 16.1相交线16.1.1对顶角16.1.2垂线16.2平行线16.2.1平行公理16.2.2平行线的判定与性质16.3命题与证明16.3.1命题16.3.2证明本章小结17三角形(16课时)17.1三角形的有关概念17.1.1三角形的概念17.1.2三角形的分类17.1.3三角形的高、中线与角平分线17.2三角形的内角和17.2.1三角形的内角和定理17.2.2三角形外角及其性质17.3全等三角的概念与性质17.4三角形全等的判定17.4.1三角形全等的判定方法——“边边边”17.4.2三角形全等的判定方法——“边角边”17.4.3三角形全等的判定方法——“角边角”17.4.4三角形全等的判定方法——“角角边”本章小结18等腰三角形(课时)18.1等腰三角形的性质18.2等腰三角形的判定18.3等边三角形本章小结综合与实践(7课时)探秘三角形的稳定性叠积木的游戏田径比赛中的数学机动课时(3课时)八上(60课时)19实数(10课时)19.1实数与数轴19.1.1无理数的存在19.1.2实数与数轴19.1.3平方根与开平方19.1.4实数的绝对值和大小比较19.2实数的运算19.2.1实数的运算19.2.2立方根和开平方19.3实数的近似计算19.3.1近似数19.3.2实数的近似计算19.3.3科学记数法本章小结20二次根式(7课时)20.1二次根式20.1.1二次根式20.1.2二次根式的化简20.2二次式的运算20.2.1二次根式的加减20.2.2二次根式的乘除20.2.3混合运算本章小结21一元二次方程(16课时)21.1一元二次方程21.2一元二次方程的解法21.2.1特殊的一元二次方程的解法21.2.2一般的一元二次方程的解法21.2.3一元二次方程的求根公式21.3一元二次方程的判别式21.4一元二次方程的根与系数关系21.5一元二次方程的应用21.5.1二次三项式的因式分解21.5.2列方程解应用题本章小结22直角三角形(7课时)22.1直角三角形22.1.1直角三角形的性质22.1.2直角三角形全等的判定22.2勾股定理本章小结23尺规作图(8课时)23.1尺规作图23.1.1尺规作图23.2线段的垂直平分线23.2.1线段的垂直平分线的性质与判定23.2.2与线段的垂直平分线相关的尺规作图23.3角的平分线23.3.1角的平分线的性质与判定23.3.2作已知角的平分线23.4其他尺规作图问题举例23.4.1尺规作三角形23.4.2尺规作图举例本章小结综合与实践(9课时)“勾股定理”证明中的中国智慧细胞膜的“秘密”向日葵惊人的“数学天赋”折纸与数学机动课时(3课时)八下(50课时)24四边形(15课时)24.1多边形24.1.1多边形的内角和24.1.2多边形的外角和24.1.3四边形24.2平行四边形24.3中位线与重心24.4矩形、菱形与正方形24.4.1矩形24.4.2菱形24.4.3正方形本章小结25平面直角坐标系(8课时)25.1平面直角坐标系25.1.1平面直角坐标系的引入25.1.2简单图形的坐标表示25.1.3物体位置的坐标表示25.2两点间的距离公式25.3平移、轴对称与位似25.3.1平移25.3.2轴对称25.3.3位似本章小结26一次函数(12课时)26.1变量与函数26.1.1变量与函数26.1.2函数的图像26.2正比例函数26.2.1正比例函数的概念26.2.2正比例函数的图像26.2.3正比例函数的性质26.3一次函数26.3.1一次函数的概念26.3.2一次函数的图像26.3.3一次函数的性质26.3.4一次函数、方程与不等式26.4一次函数的应用本章小结27反比例函数(5课时)27.1反比例函数27.2反比例函数的图像与性质27.3反比例函数的应用本章小结综合与实践(7课时)蜡烛的燃烧探秘七巧板从自制杠杆看不法商贩如何“短斤缺两”机动课时(3课时)九上(54课时)28二次函数(13课时)28.1二次函数28.2二次函数的图像和性质28.2.1二次函数=B2的图像与性质28.2.2形如=o+p2+的二次函数的图像与性质28.2.3二次函数=B2+B+的图像与性质28.3二次函数表达式的确定28.3.1已知二次函数图像上的三点28.3.2已知二次函数图像的顶点或对称轴28.4二次函数与一元二次方程28.5二次函数的简单应用本章小结29相似三角形(12课时)29.1比例线段29.1.1比例线段29.1.2平行线分线段成比例29.2相似三角形29.3相似多边形本章小结30锐角的正弦、余弦与正切(8课时) 30.1锐角的正弦、余弦与正切30.1.1正弦与余弦30.1.2正切30.1.3求给定锐角的正弦、余弦与正切值30.2解直角三角形30.2.1解直角三角形30.2.2解直角三角形的应用本章小结31投影与视图(7课时)31.1投影31.1.1中心投影31.1.2平行投影31.2三视图31.3立体模型的制作本章小结综合与实践(11课时)探寻高度的测量方法“揭秘”天坛回音壁台球的瞄准秘籍渐渐觉醒的城市标识一一城市原点机动课时(3课时)九下(47课时)32圆(13课时)32.1圆的基本性质32.1.1点和圆的位置关系32.1.2圆的确定32.1.3弧、弦、圆心角32.1.4垂径定理32.1.5圆周角32.2直线与圆的位置关系32.2.1直线与圆的位置关系、切线的判定32.2.2切线的性质*32.2.3切线的画法与切线长定理32.2.4三角形的内心与内切圆32.3多边形和圆32.3.1圆内接四边形32.3.2正多边形和圆本章小结33抽样与数据分析(10课时)33.1总体和样本33.2表示数据集中趋势的量33.2.1平均数与加权平均数33.2.2中位数、众数33.3数据的分布33.3.1频数分布直方图33.3.2四分位数和箱线图33.3.3数据分布的趋势33.4表示数据离散程度的量33.4.1方差与离差平方和(1)33.4.2方差与离差平方和(2)33.4.3离差平方和与数据分组本章小结34概率初步(8课时)34.1随机现象及其发生的可能性34.1.1随机现象和随机事件34.1.2事件发生的可能性大小34.2事件的概率34.2.1事件的概率34.2.2用列举法求事件概率34.3用频率估计概率本章小结综合与实践(13课时)水资源真的用之不竭吗?正n边形的尺规作图碳足迹——无所不在的二氧化碳排放血型的秘密如何测量体育课运动强度机动课时(3课时)。
上海初中化学沪科版教材
上海初中化学沪科版教材篇一:沪科版初中数学教材目录(全六册)沪科版初中数学教材目录(全六册)七年级上册第1章有理数1.1正数和负数1.2数轴1.3有理数的大小1.4有理数的加减1.5 有理数的乘除1.6有理数的乘方1.7近似数第2章整式加减2.1用字母表示数2.2代数式2.3整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2二元一次方程组3.3消元解方程组3.4用一次方程(组)解决问题第4章直线与角4.1多彩的几何图形4.2线段、射线、直线4.3线段的长短比较4.4角的表示与度量4.5角的大小比较4.6作线段与角第5章数据收集与整理5.1数据的收集5.2数据的整理5.3统计图的选择5.4从图表中获取信息七年级下册第6章实数6.1平方根、立方根6.2实数第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组第8章整式乘除与因式分解8.1幂的运算8.2 整式乘法8.3 平方差公式与完全平方公式8.4 整式除法8.5 因式分解第9章分式9.1分式及其基本性质9.2分式的运算9.3 分式方程第10章相交线、平行线与平移 10.1相交线10.2平行线的判定10.3 平行线的性质10.4 平移第11章频数分布11.1频数与频率11.2频数分布八年级上册第12章平面直角坐标系12.1平面上点的坐标12.2图形在坐标系中的平移第13章一次函数13.1函数13.2一次函数13.3一次函数与一次方程、一次不等式13.4二元一次方程组的图象解法第14章三角形中的边角关系 14.1三角形中的边角关系14.2命题与证明第15章全等三角形15.1全等三角形15.2三角形全等的判定第16章轴对称图形与等腰三角形 16.1轴对称图形16.2线段的垂直平分线16.3等腰三角形16.4角的平分线八年级下册第17章勾股定理17.1勾股定理17.2勾股定理的逆定理第18章二次根式18.1二次根式18.2二次根式的运算第19章一元二次方程 19.1一元二次方程19.2一元二次方程的解法篇二:最新沪科版初中数学课本目录沪科版初中数学教材目录七年级上册第1章有理数1.1 正数和负数 1.2 数轴1.3 有理数的大小 1.4 有理数的加减 1.5 有理数的乘除 1.6 有理数的乘方 1.7 近似数第2章整式加减2.1 代数式 2.2 整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2一元一次方程组的应用 3.3二元一次方程组及其解法3.4二元一次方程组的应用 3.5三元一次方程组的应用 3.6一次方程组与CT课件第4章直线与角4.1几何图形4.2线段、射线、直线 4.3线段的长短比较 4.4角4.5角的比较与补(余)角4.6用尺规作线段与角第5章数据收集与整理5.1数据的收集 5.2数据的整理5.3用统计图描述数据5.4综合与实践浪费水资源现象七年级下册第6章实数6.1平方根、立方根 6.2实数第7章一元一次不等式与不等式组7.1 不等式及其基本性质 7.2一元一次不等式7.3一元一次不等式组 7.4综合与实践排队问题第8章整式乘除与因式分解8.1幂的运算(14.1.1同底数幂的乘法) (14.1.2 幂的乘方) (14.1.3积的乘方)(14.1.4单项式乘单项式) (14.1.5同底数幂的除法) (14.1.6多项式乘多项式)8.2 整式乘法8.3完全平方公式与平方差公式 8.4 因式分解8.5 综合与实际纳米材料的奇异特性第9章分式9.1分式及其基本性质9.2分式的运算9.3 分式方程第10章相交线、平行线与平移10.1相交线10.2平行线的判定 10.3 平行线的性质10.4 平移八年级上册第11章平面直角坐标系12.1平面上的点坐标12.2图形在坐标中的平移第12章一次函数12.1函数12.2一次函数12.3一次函数与二元一次方程 13.4综合与实践一次函数模型的应用第13章三角形中的边角关系13.1 三角形中的边角关系 13.2 命题与证明第14章全等三角形14.1全等三角形14.2三角形全等的判定第15章轴对称图形与等腰三角形15.1轴对称图形(13.1.1轴对称) (13.2.1画轴对称图形) 15.2线段的垂直平分线15.3等腰三角形15.4角的平分线八年级下册第16章二次根式16.1 二次根式16.2二次根式的运算第17章一元二次方程17.1 一元二次方程17.2一元二次方程的解法17.3一元二次方程的根的判别式 17.4一元二次方程的根与系数的关系17.5 一元二次方程的应用第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 多边形(来自: 小龙文档网:上海,初中化学,沪科版,教材)内角和 19.2平行四边形19.3 矩形菱形正方形 19.4 中心对称图形 19.5梯形第20章数据的初步分析 20.1数据的频数分布20.2数据的集中趋势与离散程度 20.3综合与实践体重指数九年级上册第21章二次函数与反比例函数21.1二次函数21.2二次函数的图象与性质21.3二次函数与一元二次方程21.4二次函数的应用21.5反比例函数21.6综合与实践获得最大利润第22章相似形22.1比例线段22.2相似三角形的判定22.3相似三角形的性质 22.4图形的位似变换22.5综合与实践测量与误差第23章解直角三角形23.1锐角的三角函数23.2解直角三角形及其应用九年级下册第24章圆24.1 旋转24.2 圆的对称性 24.3 圆周角24.4 直线与圆的位置关系 24.5 三角形的内切圆 24.6 正多边形与圆 24.7 弧长与扇形面积24.8 进球路线与最佳射门角第25章投影与视图25.1 投影 25.2 三视图第26章概率初步26.1 随机事件26.2 等可能情况下的概率计算26.3 用频率估计概率26.4 概率在遗传学中的应用初中数学王桂兵整理篇三:上海高中化学教材目录上海市使用的化学教材跟人教版教材不一样,而很多老师是人教版或其他版本教材出身,加之教材在教学中的作用不容忽视,因此将初三到高三的教材目录罗列如下:九年级上册第一章化学的魅力第二章空气第三章溶液第四章碳九年级下册第五章酸、碱第六章盐、金属第七章化学与生活一、高中化学教材介绍(上海科学技术出版社)高中一年级第一学期1、打开原子世界的大门1.1 从葡萄干面包原子模型到原子结构的行星模型1.2 原子结构和相对原子质量1.3 揭开原子核外电子运动的面纱2、开发海水中的卤素资源2.1 以食盐为原料的化工产品2.2 海水中的氯2.3 从海水中提取溴和碘3、探索原子构建物质的奥秘3.1 原子间的相互作用3.2 离子键3.3 共价键4、剖析物质变化中的能量变化4.1 物质在溶解过程中有能量变化吗4.2 化学变化中的能量变化高中一年级第二学期5、评说硫、氮的“功”与“过”5.1 从黑火药到酸雨5.2 认识物质的量浓度5.3 硫酸5.4 化学肥料中的主角6、揭示化学反应速率和平衡之谜6.1 化学反应为什么有快有慢6.2 反应物如何可能转变成生成物6.3 化工生产能否做到又快又多7、探究电解质溶液的性质7.1 电解质的电离7.2 研究电解质在溶液中的化学反应7.3 盐溶液的酸碱性7.4 电解质溶液在通电情况下的变化高中二年级第一学期8、走进精彩纷呈的金属世界8.1 应用广泛的金属材料——钢铁8.2 铝和铝合金的崛起9、初识元素周期律9.1 元素周期律9.2 元素周期表10、学习几种定量测定方法 10.1 测定1mol气体的体积10.2 结晶水合物中结晶水含量的测定 10.3 酸碱滴定高二年级第二学期11、认识碳氢化合物的多样性 11.1 碳氢化合物的宝库——石油 11.2 石油化工的龙头——乙烯 11.3 煤化工和乙炔11.4 一种特殊的碳氢化合物——苯12、初识生活中的一些含氧有机化合物 12.1 杜康酿酒话乙醇12.2 醋和酒香12.3 家庭装潢说甲醛13、检验一些无机化合物13.1 离子的检验13.2 混合物的检验高三年级拓展型课程1、原子结构与元素周期律1.1 原子结构1.2 元素周期律2、化学键和晶体结构2.1 化学键和分子间作用力2.2 晶体3、化学中的平衡3.1 溶解平衡3.2 化学反应中的平衡3.3 电离平衡3.4 水的电离和盐类水解4、离子互换反应和氧化还原反应4.1 离子互换反应4.2 氧化还原反应5、非金属元素5.1 非金属单质5.2 一些非金属化合物5.3 化工生产6、金属元素6.1 金属及其冶炼6.2 一些金属化合物7、烃7.1 烃的分类和同系物7.2 烃的命名和同分异构现象7.3 一些重要的烃类和石油化工8、烃的衍生物8.1 卤代烃8.2 醇和酚8.3 醛8.4 羧酸和酯9、化学实验探究9.1 常见气体的制备和净化9.2 物质的提纯和分离9.3 物质的检验9.4 定量实验。
一次函数与一元二次方程的关系
学习目标:
1、理解一次函数与二元一次方程的关系
2、理解一次函数与二元一次方程组的关系
3、应用一次函数与二元一次方程组的关系解 决实际问题
探究新知
y=3x+1这是什么?
一次 函数
二元一次 方程
这是怎 么回事?
y=3x+1
y-3x=1
探究学习一: 探究一次函数与二元一次方程的关系
7 y=x+1
6 5 4 3
2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5x
-1
结论:
以二元一次方程的解为坐标的点都在 相应的函数图象上.
反过来,一次函数图象上的点的坐标 都是相应的二元一次方程的解.
练一练
体验成功喜悦
1、以方程2x-y=1的解为坐标的点都在一次函数
y=_2_x_-_1__的图像上。
2、方程-y=1有一个解为
x=2 y=1
,则一次
函数y=x-1的图象上有一点为 (2,1)
3、一次函数y=2x-4上有一点坐标为(3,2),
则方程2x-y=4有一个解为 x=3 . y=2
探究学习二:探究一次函数与二元一次方程组的关系
x+y=1
1、解方程组
-x+y=1
2、在同一直角坐标系中画出一次函数y=x+1和 y=-x+1的图像。
体验成功喜悦
1、方程组
x-y=4 3x-y=16
的解是 yx==26,由此可知一
次函数 y=x+4 与y=-3x+16 的图像必有一个交点,
且交点坐标是
。
(6,2)
探究学习三:
第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件
1.随着我国新能源汽车的生产技术不断提升,市场 上某款新能源汽车的价格由今年 3 月份的 270 000 元/ 辆下降到 5 月份的 243 000 元/辆.若价格继续下降,且
月平均降价的百分率保持不变,则预测到今年 7 月份
该款新能源汽车的价格将会(参考数据: 0.9 ≈0.95)
() A.低于 22 万元/辆 C.超过 22 万元/辆
经检验,x=0.18 为方程的解,且符合题意.
答:电动车每行驶 1 千米所需电费为 0.18 元.
14.(2021·上海)现在 5G 手机非常流行,某公司第 一季度总共生产 80 万部 5G 手机,三个月生产情况如 图.
(1)求 3 月份生产了多少部手机? (2)5G 手机速度很快,比 4G 下载速 度每秒多 95 MB,下载一部 1 000 MB 的 电影,5G 比 4G 要快 190 秒,求 5G 手机 的下载速度.
答:5G 手机的下载速度是每秒 100 MB.
15.甲、乙两个工程队均参与某筑路工程,先由甲 队筑路 60 km,再由乙队完成剩下的筑路工程,已知乙
队筑路总长是甲队筑路总长的 4 倍,甲队比乙队多筑 3
路 20 天. (1)求乙队筑路的总长;
(2)若甲、乙两队平均每天筑路长度之比为 5∶8,
求乙队平均每天筑路多少千米.
解:设计划平均每天修建步行道的长度为 x 米,
则采用新的施工方式后平均每天修建步行道的长度为
1.5x 米,
依题意,得1
200 x
-112.50x0
=5,
解得 x=80,
经检验,x=80 是原方程的解,且符合题意.
答:计划平均每天修建步行道的长度为 80 米.
13.小马驾车从 A 地到 B 地,驾驶原来的燃油汽车
2023年9月河南省南阳市小升初数学六年级应用题冲刺二卷含答案解析
2023年9月河南省南阳市小升初六年级数学应用题冲刺二卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.小平在图书馆借了一本故事书,共336页,计划12天看完.他平均每天至少要看多少页才能按时看完?若每天多看1页,最后一天只要看多少页?2.有货物120吨,用一辆大车运15小时可以运完,用一辆小车运,40小时可以运完.如果两辆车子同时运,多少小时可以运完?3.甲、乙、丙三人现在的年龄之和是113岁.当乙的年龄是丙的年龄的一半时,甲的年龄是17岁,那么乙现在的年龄是多少岁.4.一个长方形果园,长86米,宽55米.它的面积是多少平方米?如果在果园四周围上篱笆,篱笆长多少米?5.六年级有144个人参加运动会入场式,如果排成6排,每排站多少人?如果排成9排,每排站多少人?6.李强从甲地去乙地,去时先骑自行车,途中又换乘汽车,3小时到达乙地;回来时全乘汽车,1+4/5小时就到达乙地.单乘汽车比既骑自行车又乘骑车少用的时间相当于去时骑自行车时间的3/5.那么李强从甲地到乙地全部骑车需要多少小时?7.甲乙两地铁路长822千米,一列火车于3月25日上午11时从甲城开往乙城,当日晚上7时到达.这列火车每小时行多少千米?8.一桶油连桶共重85千克,倒出24千克油,桶里的油正好还剩3/5,油桶重多少千克?9.小华搬进新居后,妈妈买了3双男式拖鞋和4双女式拖鞋,一共用去了156元,男式拖鞋每双24元,女式拖鞋每双多少元?(用方程解)10.两辆汽车同时从两地出发,相向而行,甲每小时行65km,比乙每小时少行5km,经过4.8h两车相遇.两地相距多少千米?11.王老师计划把30克85%的酒精稀释成75%的酒精,应加多少克水?12.五年级拍集体照,学生和老师共150人,分成五排站好.从第二排起,每排比前排多1人.最后一排共排多少人.13.某校招收舞蹈队的学生,已录取学生19人,男生16人,还要录取女生多少人,才能使女生占舞蹈队总人数的60%?14.一种小麦的出粉率在70%~80%之间,现要加工面粉560千克,至少需要多少千克小麦?15.有210吨黄沙要运到建筑工地,第一次运走了总数的2/7,第二次运走总数的40%,还要运多少吨才能运完?16.有830箱货物要从A城运往B城,运输公司有两种卡车,大卡车每次可运20箱,运费150元,小卡车每次运15箱,运费120元,若要一次性运走,怎样安排卡车比较节省费用?17.师徒两人合作2小时,共生产零件120个;如果分别工作5小时,师傅比徒弟多生产零件30个.师徒两人每小时各生产零件多少个?18.小麦的出粉率是85%,8吨小麦可出面粉多少吨?19.甲乙两车从相距750千米的两地同时相向而行,甲车每小时行70千米,乙车每小时行80千米,甲车在距乙车出发地多远的地方与乙车相遇?20.食堂买来大米和面粉各50千克,共花去258.5元钱,大米每千克2.9元,面粉每千克多少元?21.某小区的房价(平均价)原来是每平方米4200元,现上涨了3(1/5).(1)那么现售价为每平方米多少元?(2)买房还需交纳总房价的3/200的契税,一套120平方米的房子,按现价买应付多少元?22.三年级一共有25人参加书法兴趣小组,有19人参加数学兴趣小组,有8人两种兴趣小组都参加.参加兴趣小组的共有多少人?23.一台拖拉机耕两块地,第一块地是长方形,面积是9600平方米,用2.4小时耕完,第二块地是直角三角形,两条直角边分别是180米和140米,用了3.6小时耕完,这台拖拉机耕这两块地平均每小时耕多少平方米?24.商店有水果515千克,分装在5个大筐和5个小筐,每个大筐装水果63千克,每个小筐装水果多少千克?25.一项工程,甲独做要30天,乙独做的时间比甲少1/3.现在两人合作,最后几天乙没有参加,结果用了18天才完成任务,乙休息了几天?26.汽车以每小时70千米的速度,从甲地开往乙地,如果甲、乙两地相距840千米,汽车几小时可达甲乙两地的中点?如果从甲地开往乙地7小时到达甲、乙两地的中点,求汽车的速度.27.甲乙两地相距1578千米,一辆汽车从甲地开往乙地,每小时行60千米,行了12小时,距乙地还有多少千米?28.工程队用3天修完一段路,第一天修的是第二天的9/10,第三天修的是第二天的6/5倍,已知第三天比第一天多修270米,这段路长多少米?29.工人师傅修一段路,上午修了这段路的2/5,下午修了这段路1/5,这条路还剩下几分之几没有修?30.一块地用拖拉机耕45分耕了1(5/6)公顷,相当于这块地总面积的11/30,这块地有多少公顷?31.自行车与三轮车共有12辆,一共有29个轮子.自行车有多少辆,三轮车有多少辆?32.“世奥”小学组织四、五、六年级各80名学生去夏令营,这些学生分成两列纵队行进,四、五、六年级前后两名学生之间的距离分别是0.5米、1米、1.5米,年级之间的距离是3米,整个队伍通过一座木桥用了5分钟,已知他们每分钟行走100米.那么,这座木桥的长度是多少米?33.两个工程队要抢修一段长约201.5米的堵塞公路.甲队能每天抢修15米,乙队能每天抢修16米,两个工程队同时抢修,打通这条公路需要多少天?34.食堂买来60袋大米、40袋面粉,每袋大米和面粉都重50千克,买来大米和面粉共多少吨?35.一个长方体木块,将六个面都涂成红色后,再分成1立方厘米的小正方体,六个面都没有颜色的有5块,原来这个正方体的体积是多少立方厘米?36.一件商品打8折,可便宜30元,这件商品原价是多少元?37.102个同学们去春游,有5辆汽车,每辆汽车坐25人,这5辆汽车一次能拉完吗?38.一列货车平均每小时85千米。
二元二次方程和方程组及其解法
21.5-21.6二元二次方程和方程组及其解法知识梳理+九大例题分析+经典同步练习知识梳理一、二元二次方程1. 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点:(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.二、二元二次方程组1.概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.2. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.22ax bxy cy dx ey f o +++++=22,,ax bxy cy ,dx ey三、二元二次方程组的解法1.代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得未知数的值; ④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解;⑥写出原方程组的解.要点:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2、因式分解法 (1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解. (2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.典型例题例题1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C例题2.下列方程组中,属于二元二次方程组的为( )A.2x yx y+=ìí-=îB.123234x yx yì+=ïïíï-=-ïîC.11xx yì+=ïí+=ïîD.324xxy=ìí=î【答案】D【解析】根据一元一次方程组的定义对A进行判断;根据整式方程组的定义对B、C进行判断;根据二元二次方程组的定义对D进行判断.解:A、两个方程都是二元一次方程,所组成的方程组为二元一次方程组,所以A 选项不正确;B、两个方程都是分式方程,所组成的方程组为分式方程组,所以B选项不正确;C、有一个方程是无理方程,所组成的方程组不是二元二次方程组,所以C选项不正确;D、有一个方程是二元二次方程,另一个是一元一次方程,所组成的方程组为二元二次方程组,所以D选项正确.例题3.已知:方程组îíì-==+)2(1)1(122x y y x ,把(2)代入(1),得到正确的方程是( )x 2+2(1﹣x )=1B .x 2+2(x ﹣1)=1C .x 2+(1﹣x )2=0D .x 2+(1﹣x )2=1【答案】D【解析】运用代入消元法解方程组即可.解:把(2)代入(1)得x 2+(1﹣x )2=1四个答案中只有D 合题意.故选D .例题4.二元二次方程组îíì=-=+1522y x y x 的一个解是( )îíì-=-=21y xB .îíì=-=21y xC .îíì-==21y xD .îíì==21y x 【答案】A【解析】用代入法即可解答,把②化为x=1+y ,代入①得(1+y )2+y 2=求解即可.解:把②化为x=1+y ,代入①得(1+y )2+y 2=5,整理得,2y 2+2y ﹣4=0解得y 1=﹣2,y 2=1,分别代入②得当y 1=﹣2时,x 1=﹣1,当,y 2=1时,x 2=2,故原方程组的解为îíì-=-=2111y x ,îíì==1222y x .故选A .例题5.方程组 îíì-=--=-12122x y x y x 的实数解个数为( )A .0B .1C .2D .4【答案】C 【解析】把方程①变形成x=y+1,代入②即可求得y 的值,进而求得方程组的解,从而判断.解:îíì-=--=-)()(2121122x y x y x 由①得:x=y+1代入方程②得:2(y+1)2﹣y 2﹣(y+1)=﹣1即:y 2+3y+2=0解得:y 1=﹣1,y 2=﹣2把y=﹣1代入①得:x=0把y=﹣2代入①得:x=﹣1则方程组的解是:îíì-==10y x ,和îíì-=-=21y x 只两个解.故选C .例题6.方程组îíì==+022xy y x 的解是( )îíì==0011y x ,ïîïíì==12122y x B .îíì==2011y x ,îíì==0122y x C .îíì==2011y x ,îíì=-=0122y x D .îíì-==2011y x ,îíì==0122y x 【答案】B 【解析】由①得出y=2﹣2x ③,把③代入②得出x (2﹣2x )=0,求出x ,把x 的值分别代入③求出y 即可.解:îíì==+)(20)1(22xy y x ,由①得:y=2﹣2x ③,把③代入②得:x (2﹣2x )=0,x=0,2﹣2x=0,解得:x 1=0,x 2=1,把x 1=0,x 2=1分别代入③得:y 1=2,y 2=0,即原方程组的解为:îíì==2011y x ,îíì==0122y x .故选B .例题7.方程ïîïíì+-=-++=+yx a y x y x a y x 2)(2)(22有解但无不同的解时,a=( )A .1 B .0 C .﹣21 D .﹣1【答案】D【解析】由题意知,原方程组有解,并且有相同的解,由一元二次方程根的判别式可以知道△=0,将原方程组转化成一元二次方程就利用△=0就可以求出a=的值.解:ïîïíì+-=-++=+)2(2)()1(2)(22y x a y x y x a y x 由①﹣②,得4xy=2x4xy ﹣2x=02x (2y ﹣1)=0∴x=0或y=21(与条件不符合,∵y=21时方程①、②不相等)∴当x=0时y 2=a+2y∴y 2﹣2y ﹣a=0∴△=(﹣2)2﹣4(﹣a )=0∴4+4a=0∴a=﹣1.故D 答案正确.故选D .例题8.方程组ïîïíì=+-=+-0||||40||||422x y y y x x 在实数范围内( )1.有1组解B .有2组解C .有4组解D .有多于4组的解【答案】D【解析】根据题意,分析分别就a 、当x≥0、y≥0时;b 、当x≥0、y≤0时;c 、当x≤0、y≥0时;当x≤0、y≤0时四种情况,去掉决定值符号,分解因式联立方程,利用根据与系数的关系即是否符号题意,来判断方程组的解.解:a 、当x≥0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=+-=+-)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或 x=y+5 ③当x=﹣y 时,解得x=0,y=0,当x=y+5时,②③联立得y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.b 、当x≥0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=++=--)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或x=y+5 ③当x=﹣y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x 当x=y+5时,②③联立得 y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.c 、当x≤0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=--=++)2(04)1(0422x y y y x x ïîïíì=--=++)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x+y )=0⇒(x+y )(x ﹣y+5)=0,即x=﹣y 或x=y ﹣5 ③当x=﹣y 时,②③联立得 y 2﹣3y=0解得 îíì==00y x 或îíì=-=33y x ,当x=y ﹣5时,②③联立得 y 2﹣5y+5=0∵△=25﹣20=5>0,∴方程有两解.d 、当x≤0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=-+=-+)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x ﹣y )=0⇒(x ﹣y )(x+y ﹣5)=0,即x=y 或x=﹣y+5③当x=y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x (不合题意,舍去)当x=﹣y+5时,②③联立得 y 2+5y ﹣5=0∵△=25+20=45>0,∴方程有两解.综上所述,方程有7个解.故选D .例题9.已知,实数x ,y ,z 满足,则x 4+y 4+z 4=( )A .4B .C .D .以上都不对【答案】C【解析】根据已知条件先求出xy+xz+yz=,再求出xyz=,根据完全平方公式即可求解.解:∵,∴由(1)代入上式得:xy+xz+yz=(4),而x 3+y 3+z 3﹣3xyz=(x+y+z )(x 2+y 2+z 2﹣xy ﹣xz ﹣yz ),把(3)(4)代入上式得:xyz=(5),由(4)平方得:;把(5)代入上式得:,∴.故选C .一、单选题1.下列方程中,判断中错误的是()A .方程20316x x x +-=+是分式方程B .方程3210xy x ++=是二元二次方程C 20+=是无理方程D .方程()()226x x +-=-是一元二次方程【答案】C逐一进行判断即可.A. 方程20316x x x +-=+是分式方程,正确,故该选项不符合题意; B. 方程3210xy x ++=是二元二次方程,正确,故该选项不符合题意;C.20+=是一元二次方程,错误,故该选项符合题意;D. 方程()()226x x +-=-是一元二次方程,正确,故该选项不符合题意;故选:C .【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.2.下列方程组中,是二元二次方程组的是( )A .12x y x y +=ìí-=îB .22231310x y x y ì-=ïïíï+=ïîC .21x y xy -=ìí=îD .313x y xy y xì+=í=-î【答案】C【解析】根据二元二次方程组的定义依次判断即可.A 、是二元一次方程组,不是二元二次方程组,故本选项不符合题意;B 、是分式方程组,不是二元二次方程组,故本选项不符合题意;C 、是二元二次方程组,故本选项符合题意;D 、是二元三次方程组,不是二元二次方程组,故本选项不符合题意;故选:C.此题考查二元二次方程组的定义,熟记定义是解题的关键.3.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【答案】C【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.4.解方程组2222129x y x xy y ì-=í++=î①②的可行方法是( )A .将①式分解因式B .将②式分解因式C .将①②式分解因式D .加减消元【答案】C【解析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先因式分解组中的两个二元二次方程,再解答即可.解:∵因式分解①得: ()()1x y x y +-=,因式分解②得:()29x y +=∴3x y +=或3x y +=-,将3x y +=或3x y +=-代入()()1x y x y +-=中得到13x y -=或13x y -=-,得到方程组313x y x y +=ìïí-=ïî或313x y x y +=-ìïí-=-ïî,解得:115343x y ì=ïïíï=ïî,225343x y ì=-ïïíï=-ïî故答案为:C .【点睛】本题考查了二元二次方程组的解法,解题的关键是根据二元二次方程组的特点,进行因式分解.5.方程组2y x y x mì=í=+î有两组不同的实数解,则( )A .m ≥14-B .m >14-C .14-<m <14D .以上答案都不对【答案】B【解析】将y=x²与y=x+m 函数联立,根据解的个数求解即可.方程组2y x y x mì=í=+î有两组不同的实数解,两个方程消去y 得,20x x m --=,需要△>0,即1+4m >0,所以m >14-,故选B.【点睛】本题考查了二元二次方程,用到的知识点是加减消元法解方程组,根的判别式、解一元二次方程等知识,关键是根据根的判别式求出m 的值.6.方程组2211x y ì=í=î的实数解的个数是 ( )A .1B .2C .3D .4【答案】D【解析】根据平方根的性质,正数的平方根有两个,互为相反数即可求解.解:解21x =得1x =±,解21y =得1y =±,∴方程组的解为:11111111x x x x y y y y ===-=-ììììíííí==-==-îîîî,,,,故选D.【点睛】本题考查解二元二次方程组,二元二次方程组通常按照两个方程的组成分为“二•一”型和“二•二”型,又分别成为Ⅰ型和Ⅱ型.“二•一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二•二”型是由两个二元二次方程组成的方程.7.二元二次方程组的解是A.B.C.D.【答案】C本题可将选项中的四组答案代入检验看是否符合二元二次方程组.也可根据第一个式子,得出与的关系,代入第二个式子求解依题意得=3-∴y=(3-)=-10-2+3+10=02-3-10=0(-5)(+2)=0=5,2=-21∴方程的解为:,故选C8.已知下列四对数值不是方程的解是():A.B.C.D.【答案】A【解析】将各选项代入方程进行验证即可.解:A、当x=-5,y=-2时,左边=(-5)²+(-2)² =29≠13,左边≠右边,故A错误;B、当x=-2,y=3时,左边=(-2)²+3² =13,左边=右边,故B正确;C、当x=2,y=3时,左边=2²+3² =13,左边=右边,故C正确;D、当x=-3,y=2时,左边=(-3)²+2² =13,左边=右边,故D正确;【点睛】本题考查了二元二次方程的解的定义,掌握二元二次方程的解得定义是解题的关键.9.方程组20230x y x x y +=ìí++-=î的解的情况是( )A .有两组相同的实数解B .有两组不同的实数解C .没有实数解D .不能确定【答案】B【解析】首先运用代入法,将方程组进行变形,然后利用根的判别式即可判定.20230x y x x y +=ìí++-=î①②将①代入②,得2230x -=240423240b ac =-=+´´=△>故方程有两组不同的实数解,故选:B.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.10.如果14x y =ìí=î 是方程组x y a xy b +=ìí=î的一组解,那么这个方程组的另一组解是( )A .41x y =ìí=îB .14x y =-ìí=-îC .41x y =-ìí=-îD .41x y =ìí=-î【答案】A将14x y =ìí=î代入方程组x y a xy b +=ìí=î求得54a b =ìí=î,再解方程组54x y xy +=ìí=î即可得解.将14x y =ìí=î代入方程组x y a xy b +=ìí=î中得:1414a b +=ìí´=î,解得:54a b =ìí=î,则方程组变形为:54x y xy +=ìí=î,由x+y=5得:x=5-y ,将x=5-y 代入方程xy=4中可得:y 2-5y+4=0,解得y=4或y=1,将y=1代入xy=4中可得:x=4,所以方程的另一组解为:41x y =ìí=î.故选A .【点睛】本题考查了高次方程,二元一次方程组的解法,熟记解二元一次方程的解法是解题的关键.11.方程组2220x y m y x ì-=í-=î有四组不同的实数解,则m 的取值范围是( )A .14m <-B .14m >-C .104m -<>D .14m >-,且0m ¹【答案】D首先运用代入法将方程组变形,然后利用根的判别式即可得解.2220x y m y x ì-=í-=î①②由②,得2x y =③将③代入①,得420y y m --=∵方程组有四组不同的实数解,∴()()224141140b ac m m =-=--´´-=+△>且0m ¹∴14m >-,且0m ¹故选:D.【点睛】此题主要考查根据二元二次方程组的解求参数的取值范围,解题关键的利用根的判别式.12.二元二次方程组22220,4 2.x xy y x y ì+-=í+=-î的解的个数是( )A .1B .2C .3D .4【答案】B【解析】由①得x-y=0或x+2y=0,原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,然后用代入消元法求解即可.2222042x xy y x y ì+-=í+=-î①②,由①得(x-y)(x+2y)=0,∴x-y=0或x+2y=0,∴原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,由③得x=y ,把x=y 代入④得y 2+4y=-2,解得,∴1122x y ì=-ïí=-ïî2222x y ì=-+ïí=-ïî;由⑤得x=-2y ,把x=-2y 代入⑥得4y 2+4y+2=0,即2y 2+2y+1=0,∆=4-8=-4<0,∴此时方程无实数根,综上可知,方程组有两组解:1122x y ì=--ïí=-ïî,2222x y ì=-+ïí=-ïî.故选B .【点睛】本题考查了二元二次方程组的解法,熟练掌握代入消元法是解答本题的关键.二、填空题13.12x y =ìí=-î_______方程组22245x y x y -=ìí-=î的解(填“是”或“不是”).【答案】不是【解析】把12x y =ìí=-î代入原方程组的两个方程即可得到答案.解:把12x y =ìí=-î代入原方程组22245x y x y -=ìí-=î中的225x y -=中,方程左边=221(2)143--=-=-¹右边,所以12x y =ìí=-î不是原方程组的解.故答案为:不是.【点睛】本题考查的是方程组的解的含义,掌握方程组的解满足方程组的每一个方程是解题的关键.14.像22121x y x y ì+=-í+=î这样的二元二次方程组,是由一个________方程和一个_________方程组成,可以用________法解这个方程.【答案】二元二次二元一次 代入 【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,可以用代入法求解.由题意,得该方程组是由一个二元二次方程和一个二元一次方程组成,可以用代入法求解,故答案为:二元二次;二元一次;代入.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.15.已知12x y =ìí=-î是方程组x y m x y n +=ìí×=î的一个解,那么这个方程组的另一个解是__________.【答案】21x y =-ìí=î.【解析】将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,所以原方程组是12x y xy +=-ìí=-î,再解此方程组即可.解:将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,∴原方程组是12x y xy +=-ìí=-î①②,由①,得x=-y-1③,把③代入②式,化简得y 2+y-2=0,解之,得y 1= -2,y 2= 1.把y 1=-2代入x=-y-1,得x 1=1,把y 2=1代入x=-y-1,得x 2=-2.∴原方程组的解为:121212,21x x y y ==-ììíí=-=îî.故答案为:21x y =-ìí=î.【点睛】本题考查了解二元二次方程组,熟练掌握运算法则是解题的关键.16.解方程组24221x y xy +=ìí=-î①② 的解为_______________【答案】121237,7322x x y y =-=ììïïíí==-ïïîî【解析】由①得出x=4-2y ③,把③代入②得:2(4-2y )y=-21,求出y 1 = 72 ,y 2 = - 32,分别代入③,求出x 即可.解: 24221x y xy +=ìí=-î①②由①得:x=4-2y ③,把③代入②得:2(4-2y )y=-21,解得:y 1 =72 ,y 2 = - 32 , 把y 1 = 72代入③得:x 1 =-3, 把y 2 =- 32代入③得:x 2 =7, 即原方程组的解是 121237,7322x x y y =-=ììïïíí==-ïïîî .【点睛】本题考查了解高次方程组的应用,解此题的关键是能正确消元,即把二元变成一元.17.解方程组224422032110x xy y x y x y ì-++--=í+-=î的解为_______________【答案】21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【解析】首先把方程②变形为y=1132x -,然后利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.解:224422032110x xy y x y x y ì-++--=í+-=î①②,由②得:y=1132x -③ 把③代入①得:x 2-4(113)2x x -+4(1132x -)2+x-2(113)2x --2=0. 整理得:4x 2-21x+27=0∴x 1=3 x 2=94. 把x=3代入③ 得:y=1把x=94代入④ 得:y=178. ∴原方程组的解为: 21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【点睛】本题考查了二元二次方程组的解法,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.18.二元二次方程()()23320x y +-=有__________个解.【答案】无数【解析】根据()()23320x y +-=可得230x +=或320y -=,从而得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,确定方程有无数个解.解:∵()()23320x y +-=∴230x +=或320y -=∴32x =-或23y =,当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,∴方程有无数个解,故答案为:无数.【点睛】本题考查了方程的因式分解解法,解题的关键是得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数.19.解方程组224915235x y x y ì-=í-=î时,采用“_________”的方法,将二元二次方程224915x y -=化为_________方程,这是一种“__________”的策略.【答案】因式分解二元一次 消元降次【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,其中二元二次方程可以进行因式分解化为二元一次方程,这是采用了“消元降次”的策略.由题意,得该方程组可采用因式分解的方法,将二元二次方程224915x y -=化为二元一次方程,这是一种消元降次策略,故答案为:因式分解;二元一次;消元降次.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.20.如果222461461,461a a b c b b c a c c a b ì++=+ï++=+íï++=+î,那么a b c ++的值为_________________.【答案】32-【解析】方程组的三个方程轮循环对称,可把组中的三个方程相加,利用完全平方公式和非负数的和先求出a 、b 、c 的值,再计算a b c ++.解:222461461461a a b c b b a c c c a b ì++=+ï++=+íï++=+î①②③①+②+③,得222461461461a a b b c c b c a c a b ++++++++=+++++,整理,得2224414414410a ab bc c ++++++++=所以222(441)(441)(441)0a ab bc c ++++++++=即222(21)(21)(21)0a b c +++++=因为2(21)0a +…,2(21)0b +…,2(21)0c +…,所以210a +=,210b +=,210c +=所以12a =-,12b =-,12c =-,所以32a b c ++=-.故答案为:32-【点睛】本题考查了完全平方公式、非负数的和等知识点.观察题目,发现三个方程的特点是解决本题的关键.三、解答题21.解方程组:22449(1)6(2)x xy y x y ì++=í-=î.【答案】33x y =ìí=-î或51x y =ìí=-î【解析】先降次转化成两个一次方程组,解方程组即可求解.解:224496x xy y x y ì++=í-=î①②,由方程①可得x +2y =﹣3或x +2y =3,则方程组可变为236x y x y +=-ìí-=î或236x y x y +=ìí-=î,解得33x y =ìí=-î或51x y =ìí=-î.【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.22.解方程组:222220560x y x xy y ì+=í-+=î.【答案】1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî【解析】由22560x xy y -+=得()()230x y x y --=,从而得到20x y -=或30x y -=,即2x y =或3x y =;再将2x y =或3x y =分别代入到2220x y +=,通过求解即可得到答案.由22560x xy y -+=得:()()230x y x y --=∴20x y -=或30x y -=∴2x y =或3x y=将2x y =代入2220x y +=,得:22420y y +=∴2y =±∴1142x y =ìí=î,2242x y =-ìí=-î将3x y =代入2220x y +=,得:22920y y +=∴y =∴33x y ì=ïí=ïî,44x y ì=ïí=ïî∴方程组的解是:1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî.【点睛】本题考查了二元二次方程、因式分解、二次根式的知识;解题的关键是熟练掌握因式分解、二元二次方程的性质,从而完成求解.23.解方程组:2220326x xy x xy y ì+=í-+=î①②【答案】11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î【解析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.解:2220326x xy x xy y ì+=í-+=î①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.24.2222560112x xy y x x y y ì-+=í++-=î【答案】112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î【解析】根据二元二次方程组的解法进行求解即可.解:2222560112x xy y x x y y ì-+=í++-=î①②,由①得:23x y x y=ìí=î,当x=2y 时,代入②可得:25920y y --=,解得:121,25y y =-=,∴122,45x x =-=;当x=3y 时,代入②可得:210820y y --=,解得:341,15y y =-=,∴343,35x x =-=,综上所述:方程组的解为112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î.【点睛】本题主要考查二元二次方程方程组的解法,熟练掌握二元二次方程组的解法是解题的关键.25.解方程组:22312230x y x xy y +=ìí--=î【答案】1162x y =ìí=î;2266x y =-ìí=î【解析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.解:22312230x y x xy y +=ìí--=î①②由②得()()30x y x y -+=30x y -=或0x y +=原方程组可化为31230x y x y +=ìí-=î;3120x y x y +=ìí+=î解得1162x y =ìí=î;2266x y =-ìí=î所以原方程组的解是1162x y =ìí=î;2266x y =-ìí=î【点睛】本题考查高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.26.解下列方程(组)(1)33(2019)(2018)1x x -+-=;(2)22222293,19293,19293.192x y xy z yz x z ì=ï+ïï=í+ïï=ï+î【答案】(1)2019或2018;(2)111(,,)333或(0,0,0)【解析】(1)运用换元法的思想令2019,2018m x n x =-=-,联立方程组可得m 和n 的等式,再利用完全平方公式的变形即可得出答案;(2)根据条件易得x=0,y=0,z=0时方程成立,当,,x y z 不为0时,把三个方程相加222111(1)(1)(1)0333x y z-+-+-=,然后根据平方数的非负性可得三个式子分别为零,即可求出结果.解:(1)令2019,2018m x n x =-=-;则3311m n m n +=ìí+=î;∴222()31-+=+-=m mn n m n mn ;∴0mn =即0m =或n=0;∴2019x =或2018;(2)易知(,,)(0,0,0)x y z = 为一组解;若,,x y z 不为0;则222121,93121,93121.93x y yz zx ì+=ïïï+=íïï+=ïî相加得222111(1)(1)(1)0333x y z -+-+-=;∴111(,,)(,,333x y z =;综上:111(,,)(,,333x y z =或()0,0,0.【点睛】本题主要考查方程的解法,灵活利用换元法、乘法公式变形及分类讨论思想是解题的重要环节.27.解下列方程组:(1)222220560x y x xy y ì+=í-+=î(2)217,11 1.x y x y x y x yì-=ï+-ïíï+=-ï+-î 【答案】(1)3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)112512x y ì=ïïíï=ïî【解析】(1)把原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î再分别解这两个方程组可得答案.(2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案.解:(1)因为222220560x y x xy y ì+=í-+=î把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î因为222020x y x y ì+=í-=î把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =ìí=î 或42x y =-ìí=-î同理解222030x y x y ì+=í-=î得方程组的解是x y ì=ïí=ïî或x y ì=ïí=ïî所以原方程组的解是:3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)因为217,111.x y x y x y x yì-=ï+-ïíï+=-ï+-î①②所以①+②得:36x y=+,所以12x y +=,把12x y +=代入②得:13x y -=-,所以1213x y x y ì+=ïïíï-=-ïî,解得:112512x y ì=ïïíï=ïî 经检验112512x y ì=ïïíï=ïî是原方程组的解,所以原方程的解是112512x y ì=ïïíï=ïî【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.28.某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如下表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?【答案】(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元【解析】(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,根据第一、二次两种货车运货情况表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用a辆甲种货车,b辆乙种货车,根据货物的总重量为20吨且每辆货车都满载,即可得出关于a,b的二元一次方程,结合a,b均为非负整数,即可得出各租车方案;(3)设甲种货车每辆需运费m元,租用甲种货车n辆,则乙种货车每辆需运费1.4m元,租用乙种货车(n)1-辆,根据总费用=每辆车所需费用´租用该种车的辆数,即可得出关于m,n的二元二次方程组,解之即可得出结论.解:(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,依题意,得:2313 5628 x yx y+=ìí+=î,解得:23 xy=ìí=î.答:甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物.(2)设租用a 辆甲种货车,b 辆乙种货车,依题意,得:2320a b +=,3102a b \=-.a Q ,b 均为非负整数,b \为偶数,\当0b =时,10a =;当2b =时,7a =;当4b =时,4a =;当6b =时,1a =.\共有4种租车方案,方案1:租用10辆甲种货车;方案2:租用7辆甲种货车,2辆乙种货车;方案3:租用4辆甲种货车,4辆乙种货车;方案4:租用1辆甲种货车,6辆乙种货车.(3)设甲种货车每辆需运费m 元,租用甲种货车n 辆,则乙种货车每辆需运费1.4m 元,租用乙种货车(n )1-辆,依题意,得:8001.4(1)980mn m n =ìí-=î,解得:1008m n =ìí=î,1.4140m \=.答:甲种货车每辆需运费100元,乙种货车每辆需运费140元.【点睛】本题考查了二元一次方程组的应用、二元一次方程的应用以及二元二次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)找准等量关系,正确列出二元二次方程组.。
安徽初中数学教材版本
安徽初中数学教材版本篇一:2015.4.29安徽初中数学教材目录高中数学教材目录1.1 正数和负数1.2 数轴、相反数和绝对值 1.3 有理数的大小 1.4 有理数的加减 1.5 有理数的乘除 1.6 有理数的乘方 1.7 近似数本章复习与测试第2章整式加减 2.1 代数式 2.2 整式加减本章复习与测试第3章一次方程与方程组 3.1 一元一次方程及其解法 3.2 一元一次方程的应用 3.3 二元一次方程组及其解法 3.4 二元一次方程组的应用 3.5 三元一次方程组及其解法3.6 综合与实践一次方程组与CT技术本章复习与测试第4章直线与角4.1 几何图形4.2 线段、射线、直线 4.3 线段的长短比较 4.4 角4.5 角的比较与补(余)角 4.6 用尺规作线段与角本章复习与测试第5章数据的收集与整理 5.1 数据的收集 5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践水资源浪费现象的调查本章复习与测试沪科版数学七年级下册(新)第6章实数6.1 平方根、立方根 6.2 实数本章复习与测试第7章一元一次不等式与不等式组 7.1 不等式及其基本性质8.1 幂的运算 8.2 整式乘法8.3 完全平方公式与平方差公式 8.4 因式分解8.5 综合与实践纳米材料的奇异特性本章复习与测试第9章分式9.1 分式及其基本性质 9.2 分式的运算 9.3 分式方程本章复习与测试第10章相交线、平行线与平移 10.1 相交线10.2 平行线的判定 10.3 平行线的性质 10.4 平移本章复习与测沪科版数学八年级上册(新)第11章平面直角坐标系 11.1 平面内点的坐标11.2 图形在坐标系中的平移本章复习与测试第12章一次函数 12.1 函数 12.2 一次函数12.3 一次函数与二元一次方程12.4 综合与实践一次函数模型的应用本章复习与测试第13章三角形中的边角关系、命题与证明 13.1 三角形中的边角关系 13.2 命题与证明本章复习与测试第14章全等三角形 14.1 三角形全等14.2 三角形全等的判定本章复习与测试第15章轴对称图形与等腰三角形 15.1 轴对称图形15.2 线段的垂直平分线 15.3 等腰三角形 15.4 角的平分线本章复习与测试16.1 二次根式16.2 二次根式的运算本章复习与测试第17章一元二次方程 17.1 一元二次方程17.2 一元二次方程的解法17.3 一元二次方程的根的判别式 17.4 一元二次方程的根与系数的关系 17.5 一元二次方程的应用本章复习与测试第18章勾股定理 18.1 勾股定理18.2 勾股定理的逆定理本章复习与测试第19章四边形19.1 多边形内角和 19.2 平行四边形19.3 矩形菱形正方形19.4 综合与实践多边形的镶嵌本章复习与测试第20章数据的初步分析 20.1 数据的频数分布20.2 数据的集中趋势与离散程度 20.3综合与实践体重指数本章复习与测试沪科版数学九年级上册(新)第21章二次函数与反比例函数 21.1 二次函数21.2 二次函数的图象和性质 21.3 二次函数与一元二次方程21.4 二次函数的应用 21.5 反比例函数21.6 综合与实践获取最大利润本章复习与测试第22章相似形 22.1 比例线段22.2 相似三角形的判定 22.3 相似三角形的性质 22.4 图形的位似变换22.5 综合与实践测量与误差本章复习与测试第23章解直角三角形沪科版数学九年级下册(新)第24章圆 24.1 旋转24.2 圆的基本性质 24.3 圆周角24.4 直线与圆的位置关系 24.5 三角形的内切圆 24.6 正多边形与圆 24.7 弧长与扇形面积24.8 综合与实践进球线路与最佳射门角本章复习与测试第25章投影与视图 25.1 投影25.2 三视图本章复习与测试第26章概率初步 26.1 随机事件26.2 等可能情形下的概率计算 26.3 用频率估计概率26.4 综合与实践概率在遗传学中的应用本章复习与测试综合内容与测试人教A版数学高一上必修一第一章集合与函数的概念 1.1 集合1.2 函数及其表示 1.3 函数的基本性质本章复习与测试第二章基本初等函数(I) 2.1 指数函数 2.2 对数函数 2.3 幂函数本章复习与测试第三章函数的应用 3.1 函数与方程3.2 函数模型及其应用本章复习与测试综合内容与测试人教A版数学高一上必修四第一章三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)的图象 1.6 三角函数模型的简单应用本章复习与测试第二章平面向量2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积2.5 平面向量应用举例本章复习与测试第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换本章复习与测试综合内容与测试人教A版数学高一下必修五第一章解三角形1.1 正弦定理和余弦定理 1.2 应用举例 1.3 实习作业本章复习与测试第二章数列2.1 数列的概念与简单表示法 2.2 等差数列2.3 等差数列的前n项和 2.4 等比数列2.5 等比数列的前n项和本章复习与测试第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题 3.4 基本不等式本章复习与测试综合内容与测试人教A版数学高一下必修三1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例本章复习与测试第二章统计 2.1 随机抽样2.2 用样本估计总体 2.3 变量间的相关关系本章复习与测试第三章概率3.1 随机事件的概率 3.2 古典概型 3.3 几何概型本章复习与测试综合内容与测试人教A版数学高二上必修二第一章空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积本章复习与测试第二章点、直线、平面之间的位置关系 2.1 空间点、直线、平面之间的位置关系 2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质本章复习与测试第三章直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式本章复习与测试第四章圆与方程 4.1 圆的方程4.2 直线、圆的位置关系 4.3 空间直角坐标系本章复习与测试综合内容与测试(理科)人教A版数学高二上选修2-1第一章常用逻辑用语 1.1命题及其关系1.2充分条件与必要条件 1.3简单的逻辑联结词本章复习与测试第二章圆锥曲线与方程 2.1曲线与方程 2.2椭圆 2.3双曲线2.4抛物线本章复习与测试第三章空间向量与立体几何3.1空间向量及其运算 3.2立体几何中的向量方法本章复习与测试综合内容与测试,(理科)人教A版数学高二下选修2-2第一章导数及其应用 1.1变化率与导数 1.2导数的计算1.3导数在研究函数中的应用 1.4生活中的优化问题举例 1.5定积分的概念 1.6微积分基本定理 1.7定积分的简单应用本章复习与测试第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明 2.3数学归纳法本章复习与测试第三章数系的扩充与复数的引入 3.1数系的扩充和复数的概念 3.2复数代数形式的四则运算本章复习与测试综合内容与测试,(理科)人教A版数学高二下选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合1.3二项式定理本章复习与测试第二章随机变量及其分布 2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差 2.4正态分布本章复习与测试第三章统计案例3.1回归分析的基本思想及其初步应用本章复习与测试综合内容与测试(文科)人教A版数学高二上选修1-1第一章常用逻辑用语 1.1 命题及其关系1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词本章复习与测试第二章圆锥曲线与方程 2.1 椭圆 2.2 双曲线 2.3 抛物线本章复习与测试第三章导数及其应用 3.1 变化率与导数 3.2 导数的计算3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例本章复习与测试综合内容与测试(文科)人教A版数学高二下选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用本章复习与测试第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明本章复习与测试第三章数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算本章复习与测试第四章框图 4.1 流程图4.2 结构图本章复习与测试综合内容与测试篇二:初中数学各省使用版本教材统计2012初中数学教材版本统计篇三:初中数学各个版本教材目录人教版初中数学目录:七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程第四章图形认识初步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状.七年级下册第五章相交线与平行线5.1 相交线5.2 平行及其判定5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解.8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法举例第九章实际问题与一元一次不等式9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述 10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上册第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第13章实数13.1 平方根13.2 立六根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等. 14.4 课题学习选择方案第15章整式的乘除与因式分解 15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级下册第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习体质健康测试中的数据分析九年级上册第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第22章一元二次方程22.1 一元二次方程22.2 降次——一元二次方程的解. 22.3 再探实际问题与一元二次方程第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第24章圆24.1 圆24.2 点、直线、圆和圆的位置关系 24.3 正多边形和圆24.4 弧长和扇形面积第25章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习键盘上字母的排列规律九年级下册第26章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程 26.3实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型北京课改版初中数学目录:七年级上册第一章走进数学世界1.1 生活中的图形1.2 我们周围的“数”1.3 计算工具的发展1.4 科学计算器的使用第一章复习第二章对数的认识的发展2.1 负数的引入2.2 用数轴上的点表示有理数2.3 相反数和绝对值2.4 有理数的加法2.5 有理数的减法2.6 有理数加减法的混合运算2.7 有理数的乘法2.8 有理数的除法2.9 有理数的乘方2.10 有理数的混合运算2.11 有效数字和科学记数法2.12 用计算器做有理数的混合运算第二章复习第三章一元一次方程3.1 字母表示数3.2 同类项与合并同类项3.3 等式与方程3.4 等式的基本性质3.5 一元一次方程3.6 列方程解应用问题第三章复习第四章简单的几何图形4.1 平面图形与立体图形4.2 某些立体图形的展开图4.3 从不同方向观察立体图形4.4 点、线、面、体4.5 直线4.6 射线4.7 线段4.8 角及其表示4.9 角的分类4.10 角的度量4.11 用科学计算器进行角的换算4.12 角平分线4.13 两条直线的位置关系4.14 相交线与平行线4.15 用计算机绘图第四章复习七年级下册第五章一元一次不等式和一元一次不5.1不等式5.2不等式的基本性质5.3不等式的解集5.4一元一次不等式及其解法5.5一元一次不等式组及其解法单元综合第六章二元一次方程组6.1二元一次方程和它的解6.2二元一次方程组和它的解6.3用代入消元法解二元一次方程组6.4用加减消元法解二元一次方程组6.5二元一次方程组的应用单元综合第七章整式的运算7.1整式的加减法7.2幂的运算7.3整式的乘法7.4乘法公式7.5整式的除法单元综合第八章观察、猜想与证明8.1观察8.2实验8.3归纳8.4类比8.5猜想8.6证明8.7几种简单几何图形及其推理单元综合第九章因式分解9.1因式分解9.2提取公因式法9.3运用公式法单元综合八年级上册第十章数据的收集与表示10.1总体与样本10.2数据的收集与整理10.3数据的表示。
一元二次方程的应用
一元二次方程的应用一元二次方程是高中数学中的重要内容,也是实际问题求解中常用的工具之一。
它的应用涉及到多个领域,如物理学、经济学和工程等。
本文将通过实际案例,介绍一元二次方程的应用。
1. 抛物线运动假设一个物体从离地面h高度抛出,初速度为v,抛物线运动的路径可以用一元二次方程表示。
设物体从时间t=0开始运动,那么物体在t时刻的高度可以用以下方程表示:h = -gt^2 + vt + h0其中g为重力加速度,h0为起始高度。
这就是一元二次方程的典型应用之一。
2. 经济学中的应用在经济学中,一元二次方程可以用来描述生产成本、销售收入等与产量之间的关系。
例如,假设某企业生产某种产品的成本函数为C(x)= ax^2 + bx + c,其中x为产量,a、b和c分别为常数。
通过求解这个二次方程,可以找到产量与成本之间的最优关系,帮助企业制定最佳的生产计划。
3. 工程中的应用在工程领域,一元二次方程也有广泛的应用。
例如,考虑一个抛物线形状的拱桥,为了确定拱桥的形状和尺寸,需要利用一元二次方程求解。
通过分析桥墩高度、跨度等因素,可以建立一元二次方程模型,求解该方程可以得到最优的桥墩高度和跨度,以保证拱桥的坚固和美观。
4. 声音传播的应用在声学中,一元二次方程可以用来描述声音在空气中的传播过程。
假设一个声源位于坐标原点,声音的传播距离为d,传播时间为t,声音的速度为v。
根据声音传播的基本原理,可以得到以下一元二次方程:d = vt - at^2通过求解这个方程,可以推导出声音传播的速度、时间和距离之间的关系。
综上所述,一元二次方程在物理学、经济学和工程等领域中有着广泛的应用。
通过求解一元二次方程,可以解决实际问题,帮助人们做出正确的决策和计划。
因此,掌握一元二次方程的应用是非常重要的。
希望本文的介绍能够对读者有所帮助,进一步加深对一元二次方程的理解和应用能力。
沪科版数学教材目录(新)
沪科版数学七年级上册(新)第1章有理数1.1正数和负数1.2数轴、相反数和绝对值1.3有理数的大小1.4有理数的加减1.5有理数的乘除1.6有理数的乘方1.7近似数本章复习与测试第2章整式加减2.1 代数式2.2 整式加减本章复习与测试第3章一次方程与方程组3.1一次方程及其解法3.2一次方程的应用3.3二元一次方程及其解法3.4二元一次方程组的应用3.5三元一次方程组及其解法3.6综合与实践一次方程组与CT技术本章复习与测试第4章直线与角4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角本章复习与测试第5章数据的收集与整理5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践水资源良妃现象的调差本章复习与测试沪科版数学七年级下册(新)第6章实数6.1 平方根、立方根6.2 实数本章复习与测试第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2 一元一次不等式7.3 一元一次不等式组本章复习与测试第8章整式乘法与因式分解8.1 幂的运算8.2 整式乘法8.3 完全平方公式与平方差公式8.4 因式分解8.5 综合实践纳米材料的奇异特性本章复习与测试第9章分式9.1 分式及其基本性质9.2 分式的运算9.3 分式方程第10章相交线、平行线与平移10.1 相交线10.2 平行线的运算10.3 平行线的性质10.4 平移本章复习与测试沪科版数学八年级上册(新)第11章平面直角坐标系11.1 平面内的坐标11.2 图形在坐标系中的平移本章复习与测试第12章一次函数12.1 函数12.2 一次函数12.3 一次函数与二元一次方程12.4 综合实践一次函数模型的应用本章复习与测试第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系13.2 命题与证明本章复习与测试第14章全等三角形14.1 三角形全等14.2 三角形全等的判定本章复习与测试第15章轴对称图形与等腰三角形15.1 轴对称图形15.2 线段的垂直平分线15.3 等腰三角形15.4 角的平分线本章复习与测试沪科版数学八年级下(新)第17章二次根式16.1 二次根式16.2 二次根式的运算本章复习与测试第17章一元二次方程17.1 一元二次方程17.2 一元二次方程的解法17.3 一元二次方程的根的判别式17.4 一元二次方程的根与系数的关系17.5 一元二次方程的应用本章复习与测试第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理本章复习与测试第19章四边形19.1 多边形内角和19.2 平行四边形19.3 矩形、菱形、正方形19.4 综合实践多边形的镶嵌本章复习与测试第20章数据的初步分析20.1 数据的频数分布20.2 数据的集中趋势与离散程度20.3 综合与实践体重指数本章复习与测试沪科版数学九年级上册(新)第21章二次函数与反比例函数21.1 二次函数21.2 二次函数的图像和性质21.3 二次函数与一元二次方程21.4 二次函数的应用21.5 反比例函数21.6 综合实践获取最大利润本章复习与测试第22章相似形22.1 比例线段22.2 相似三角形的判定22.3 相似三角形的性质22.4 图形的位似变换22.5 综合实践测量与误差本章复习与测试第23章解直角三角形23.1 锐角三角函数23.2 解直角三角形及其应用本章复习与测试沪科版数学九年级下册(新)第24章圆24.1 旋转24.2 圆的基本性质24.3 圆周角24.4 直线与圆的位置管你西24.5 三角形的内切圆24.6 正多边形与圆24.7 弧长与扇形面积24.8 综合实践进球线路与最佳射门角本章复习与测试第25章投影与视图25.1 投影25.2 三视图本章复习与测试本章复习与测试第26章概率初步26.1 随机事件26.2 等可能情形下的概率计算26.3 用频率估计概率26.4 综合实践概率在遗传学中的应用本章复习与测试。
一元二次次方程实际应用
一元二次次方程实际应用
一元二次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。
下面我们将通过一个具体的例子来说明如何使用一元二次方程来解决实际问题。
问题:一个农场主想要种植某种作物,他计划在一块长为100米,宽为80米的土地上种植这种作物。
为了最大化产量,他想知道应该种植多少棵这种作物。
假设农场主在这块土地上种植了 x 棵这种作物。
每棵作物需要一定的空间来生长,假设每棵作物需要一个长为 a 米,宽为 b 米的空间。
根据题目,我们可以建立以下方程:
1. 土地的总面积是100 × 80 = 8000 平方米。
2. 每棵作物的占地面积是a × b 平方米。
3. 所有作物的占地面积是x × a × b 平方米。
用数学方程,我们可以表示为:
x × a × b = 8000
现在我们要来解这个方程,找出 x 的值。
计算结果为:x 的可能值为 [8000/a2]
所以,为了最大化产量,农场主应该在土地上种植 8000/a2 棵这种作物。
安徽初中数学教材目录高中数学教材目录
沪科版数学七年级上册(新)第1章有理数1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4 有理数的加减1.5 有理数的乘除1.6 有理数的乘方1.7 近似数本章复习与测试第2章整式加减2.1 代数式2.2 整式加减本章复习与测试第3章一次方程与方程组3.1 一元一次方程及其解法3.2 一元一次方程的应用3.3 二元一次方程组及其解法3.4 二元一次方程组的应用3.5 三元一次方程组及其解法3.6 综合与实践一次方程组与CT技术本章复习与测试第4章直线与角4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角本章复习与测试第5章数据的收集与整理5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践水资源浪费现象的调查本章复习与测试沪科版数学七年级下册(新)第6章实数6.1 平方根、立方根6.2 实数本章复习与测试第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2 一元一次不等式7.3 一元一次不等式组本章复习与测试第8章整式乘法与因式分解8.1 幂的运算8.2 整式乘法8.3 完全平方公式与平方差公式8.4 因式分解8.5 综合与实践纳米材料的奇异特性本章复习与测试第9章分式9.1 分式及其基本性质9.2 分式的运算9.3 分式方程本章复习与测试第10章相交线、平行线与平移10.1 相交线10.2 平行线的判定10.3 平行线的性质10.4 平移本章复习与测沪科版数学八年级上册(新)第11章平面直角坐标系11.1 平面内点的坐标11.2 图形在坐标系中的平移本章复习与测试第12章一次函数12.1 函数12.2 一次函数12.3 一次函数与二元一次方程12.4 综合与实践一次函数模型的应用本章复习与测试第13章三角形中的边角关系、命题与证明13.1 三角形中的边角关系13.2 命题与证明本章复习与测试第14章全等三角形14.1 三角形全等14.2 三角形全等的判定本章复习与测试第15章轴对称图形与等腰三角形15.1 轴对称图形15.2 线段的垂直平分线15.3 等腰三角形15.4 角的平分线本章复习与测试沪科版数学八年级下册(新)第16章二次根式16.1 二次根式16.2 二次根式的运算本章复习与测试第17章一元二次方程17.1 一元二次方程17.2 一元二次方程的解法17.3 一元二次方程的根的判别式17.4 一元二次方程的根与系数的关系17.5 一元二次方程的应用本章复习与测试第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理本章复习与测试第19章四边形19.1 多边形内角和19.2 平行四边形19.3 矩形菱形正方形19.4 综合与实践多边形的镶嵌本章复习与测试第20章数据的初步分析20.1 数据的频数分布20.2 数据的集中趋势与离散程度20.3综合与实践体重指数本章复习与测试沪科版数学九年级上册(新)第21章二次函数与反比例函数21.1 二次函数21.2 二次函数的图象和性质21.3 二次函数与一元二次方程21.4 二次函数的应用21.5 反比例函数21.6 综合与实践获取最大利润本章复习与测试第22章相似形22.1 比例线段22.2 相似三角形的判定22.3 相似三角形的性质22.4 图形的位似变换22.5 综合与实践测量与误差本章复习与测试第23章解直角三角形23.1 锐角的三角函数23.2 解直角三角形及其应用本章复习与测试综合内容与测试沪科版数学九年级下册(新)第24章圆24.1 旋转24.2 圆的基本性质24.3 圆周角24.4 直线与圆的位置关系24.5 三角形的内切圆24.6 正多边形与圆24.7 弧长与扇形面积24.8 综合与实践进球线路与最佳射门角本章复习与测试第25章投影与视图25.1 投影25.2 三视图本章复习与测试第26章概率初步26.1 随机事件26.2 等可能情形下的概率计算26.3 用频率估计概率26.4 综合与实践概率在遗传学中的应用本章复习与测试综合内容与测试人教A版数学高一上必修一第一章集合与函数的概念1.1 集合1.2 函数及其表示1.3 函数的基本性质本章复习与测试第二章基本初等函数(I)2.1 指数函数2.2 对数函数2.3 幂函数本章复习与测试第三章函数的应用3.1 函数与方程3.2 函数模型及其应用本章复习与测试综合内容与测试人教A版数学高一上必修四第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)的图象1.6 三角函数模型的简单应用本章复习与测试第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例本章复习与测试第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换本章复习与测试综合内容与测试人教A版数学高一下必修五第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业本章复习与测试第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和本章复习与测试第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式本章复习与测试综合内容与测试人教A版数学高一下必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例本章复习与测试第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系本章复习与测试第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型本章复习与测试综合内容与测试人教A版数学高二上必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积本章复习与测试第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质本章复习与测试第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式本章复习与测试第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系本章复习与测试综合内容与测试(理科)人教A版数学高二上选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词本章复习与测试第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线本章复习与测试第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法本章复习与测试综合内容与测试,(理科)人教A版数学高二下选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用本章复习与测试第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法本章复习与测试第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算本章复习与测试综合内容与测试,(理科)人教A版数学高二下选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理本章复习与测试第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布本章复习与测试第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用本章复习与测试综合内容与测试(文科)人教A版数学高二上选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词本章复习与测试第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线本章复习与测试第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例本章复习与测试综合内容与测试(文科)人教A版数学高二下选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用本章复习与测试第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明本章复习与测试第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算本章复习与测试第四章框图4.1 流程图4.2 结构图本章复习与测试综合内容与测试。
沪教版(五四制)八年级数学下册 21.5 列方程(组)解应用题讲义(无答案)
板块一:列整式方程解应用题【例题1】 【基础、提高】某商厦今年一月的销售额为60万元,二月份由于经营不善,销售额下降10%,后来改进了管理,大大激发了员工的积极性,月销售销大幅度上升,到四月份销售额猛增到96万元,求三、四月平均每月增长的百分率(精确到0.1%)【尖子】某人将人民币20000元按一年的定期储蓄存入银行,到期后支取10000元作为消费,将剩下的10000元以及所得利息又全部按一年定期再存入银行,若存款利率不变,到期后得本利和共10918元,求一年期定期存款的年利率.【例题2】 容器里盛满60升纯酒精,倒出若干升后用水加满,然后倒出比上一次多14升的溶液,再用水加满,如果这时容器里纯酒精和水各一半,问第一次倒出的纯酒精是多少升?第五讲 列方程解应用题【例题3】【基础、提高】某商店从厂家以每件21元的价格购进了一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350-10a)元,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元?【尖子】求四个连续整数,其中一个数的立方等于其余三个数的立方和.板块二:列分式方程解应用题【例题4】某水果店店主用300元钱以相同的单价购进一批水果,发现其中10千克已烂掉,其余苹果按原价每千克加2元作零售价出售,卖剩20千克后按零售价六折出售,全部卖完后共赚110元,问店主进货时苹果的单价是多少元?【例题5】【基础、提高】甲、乙两人绕湖而行,甲绕湖一周需3时,现两人同时背向出发,乙自遇甲后再行4时才能到达出发点,求乙绕湖一周所需的时间.【尖子】小明和小莉两人分别从甲、乙两地同时出发同向而行,小明经过乙地,再经过3时12分在丙地追上小莉,这时两个所走的路程和为36千米,而甲、丙两地的距离等于小莉走5时的路程,求甲、乙两地距离.【例题6】甲杯中装有含盐20%的盐水40千克,乙杯中装有含盐4%的盐水60千克,现在从甲杯中取出一些盐水放入丙杯,再从乙杯中取出一些盐水放入丁杯,然后将丁杯盐水全部倒入甲杯,把丙杯盐水全部倒入乙杯,结果甲乙两杯成为含盐浓度相同的两杯盐水,若已知从乙杯取出并倒入丁杯的盐水重量是从甲杯取出并倒入丙杯盐水重量的6倍,试确定从甲杯取出倒入丙杯的盐水为多少千克?【例题7】【基础、提高】为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?【尖子】今年入夏以来,河北部分地区旱情严重,为了缓解甲、乙两地旱情,某水库计划向甲、乙两地送水.甲地需水量为180万立方米,乙地需水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水84万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米.问:完成往甲地、乙地送水任务还各需多少天?板块三:列无理方程解应用题【例题8】【基础、提高】已知:点P在x轴上,点A(3,1)、点B(0,2),且PA PB+=P 的坐标.【尖子】如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=2千米,BC=3千米,在B村的正北方向有一个D村,测得∠ADC=45°.将△ADC区域规划为开发区,除其中4平方千米的水塘(阴影部分)外,均作为绿化用地,试求绿化用地的面积是多少平方千米?DC B A【例题9】 在△ABC 中,正方形DEFG 的两个顶点E 、F 在BC 边上,另两个顶点D 、G 分别在AB 、AC上,△ADG 和△CFG 的面积均为1,△BDE 的面积为3,求正方形DEFG 的面积.GF E D C B A【例题10】 如图,梯子AB 斜靠在墙上,∠ACB =90°,AB =5米,BC =4米,当点B 下滑到点B ′时,点A向左平移到点A ′.设BB ′=x 米(0<x <4),AA ′=y 米.(1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?BB'A板块四:列方程组解应用题【例题11】今年二月份甲乙两厂的生产总值分别为160万元、150万元,从三月份起,甲、乙两厂每月比上一月各自都增长相同的百分率,结果三月份甲厂的生产总值比乙厂多20万元,四月份甲厂的生产总值比乙厂多34万元,求三月份起甲乙两厂的生产总值的月增长率各是多少?【例题12】【基础、提高】商场计划销售一批运动衣,能获利润12000元,经过市场调查后,进行了促销活动,由于降低了售价,每套运动衣少获利润10元,但是销售数量比计划增加了400套,使得总利润比计划多4000元,实际销售运动衣多少套?每套运动衣的实际利润多少元?【尖子】一个工程队挖通一段隧道要14天,如果增加4名队员,每人每天多工作1时,那么这个工程可以在10天内完成;如果工程队再增加6名队员,每人每天再多工作1时,那么全部工程只需7天就能完成,问工程队原来有队员多少人?原来每人每天工作多少时?【例题13】 如图,正方形ABCD 的边长为1,点M 、N 分别在CD 、BC 上,使△CMN 的周长为2,求△MAN的面积的最小值.MN D CB A【练习1】 某商场在“五一”节期间实行让利销售,全部商品一律按9折销售,这样每天所获得的利润恰是销售收入的20%,第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元,求(1)第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率.【练习2】甲、乙两城间的铁路路程为2400千米,经过技术改造,列车实施提速,提速后比提速前速度增加40千米/时,列车从甲城到乙城的行驶时间减少2时,这条铁路在现在条件下安全行驶速度不得超过250千米/时,请你用学过的数学知识说明在这条铁路的现有条件下列车还可以再次提速吗?【练习3】某工程若由甲、乙两队合作6天完成,厂家需付甲、乙两队共8700元;若由乙、丙两队合作10天完成,厂家需付乙、丙两队共9500元;若由甲、丙两队合作,5天完成全部工程的23,厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由.【练习4】年上海为实行轨道交通12号线开通,某工程队承担了铺设一段长3千米的地铁轨道的光荣任务,铺设600米后,该工程队改进技术,每天比原来多铺设10米,结果共用了80天完成任务,试问,该工程队改进技术后每天铺设轨道多少米?【练习5】某商厦进货员在A市发现一种应季服装,预料能畅销市场,就用80000元购进所有服装,但还急需2倍这种服装,经人介绍又在B设用176000元购进所需服装,只是单价比A市贵4元,商厦按每件58元销售,销路很好,最后剩下的150件按8折销售,很快售完,问商厦在这笔生意中盈利多少元?【练习6】有一种书包的批发价格是每个40元,当每个标价50元进行销售时,估计能卖出500个,但是售价每提高1元,销售量就会减少10个,另外,商店经营应按销售利润的10%缴纳销售税,商店希望通过销售这种书包能净赚纳税后利润7200元,又能让顾客得益,求每个书包应该定价为多少元?。
山西省2020年中考数学试题(解析版)
山西省2020年中考数学试题第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算的结果是( )1(6)3⎛⎫-÷- ⎪⎝⎭A. B. C. D. 18-2182-【答案】C【解析】【分析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.【详解】解:(-6)÷(-)=(-6)×(-3)=18.13故选:C .【点睛】本题考查了有理数的除法,熟练掌握运算法则是解题的关键.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念判断即可.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、是轴对称图形;故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.3.下列运算正确的是( )A. B. C. D. 2325a a a +=2842a a a -÷=()32628a a -=-3264312a a a ⋅=【答案】C【解析】【分析】利用合并同类项、单项式除法、幂的乘方、单项式乘法的运算法则逐项判定即可.【详解】解:A. ,故A 选项错误;325a a a +=B. ,故B 选项错误;2842a a a -÷=-C. ,故C 选项正确;()32628a a -=-D. ,故D 选项错误.3254312a a a ⋅=故答案为C .【点睛】本题考查了合并同类项、单项式除法、积的乘方、单项式乘法等知识点,灵活应用相关运算法则是解答此类题的关键.4.下列几何体都是由个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是( )4A. B. C. D.【答案】B【解析】【分析】分别画出四个选项中简单组合体的三视图即可.【详解】、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;A、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;B 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D故选B .【点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
专题21-5一元二次方程的根与系数的关系(原卷版)【人教版】
2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题21.5一元二次方程的根与系数的关系【名师点睛】根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q,反过来可得p=-(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【典例剖析】【例1】(2022•丰台区一模)已知关于x的一元二次方程x2﹣(m+2)x+m+1=0.(1)求证:该方程总有两个实数根;(2)若该方程的两个实数根互为相反数,求m的值.【变式】(2021秋•攸县期末)已知关于x的一元二次方程x2﹣2x+k﹣1=0.(1)若方程有实数根,求k的取值范围;(2)若方程有两个实数根为x1和x2,且x12﹣x1x2=0,求k的值.【满分训练】一.选择题(共10小题)1.(2022•碑林区校级模拟)若关于x的方程x2﹣5x+a=0有一个根是2,则另一个根是()A.6B.3C.﹣3D.﹣72.(2022春•眉山期中)下列一元二次方程中,有两个实数根的和为2是()A.x2﹣2x+2=0B.x2﹣2x+2022=0C.x2﹣2x﹣2022=0D.x2+2x﹣2=03.(2020•潮阳区一模)已知x1、x2是一元二次方程x2﹣4x﹣1=0的两个根,则x1•x2等于()A.4B.1C.﹣1D.﹣44.(2021•潮南区校级一模)设a,b是方程x2+x﹣2021=0的两个不相等的实数根,则a2+2a+b的值为()A.0B.1C.2021D.20205.(2022春•西湖区校级期中)已知m,n是一元二次方程2x2+4x﹣2021=0的两个实数根,则代数式2m2+5m+n 的值等于()A.2019B.2018C.2021D.20206.(2022•叙永县模拟)设a,b是方程x2﹣x﹣2021=0的两个实数根,则a2+b的值为()A.2022B.2021C.2020D.20197.(2022•金平区一模)若p、q是一元二次方程x2+4x﹣9=0的两个根,则p2+3p﹣q的值是()A.6B.9C.12D.138.(2022•姑苏区一模)如图,已知四边形ABCD是菱形,菱形的两边AB、BC的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根,则m的值为()A.﹣1B.1C.﹣2D.29.(2022春•东阳市校级月考)若关于x的一元二次方程(k+1)x2﹣2x+3=0有实数根,则k的取值范围是()A.B.C.k<﹣且k≠﹣1D.k≤﹣且k≠﹣110.(2021•泸县模拟)已知一元二次方程a(x﹣x1)(x﹣x2)=0(a≠0,x1≠x2)与一元一次方程dx+e=0有一个公共解x=x1,若一元二次方程a(x﹣x1)(x﹣x2)+(dx+e)=0有两个相等的实数根,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x2﹣x1)2=d二.填空题(共6小题)11.(2022•景德镇模拟)设m、n分别为一元二次方程x2+2x﹣13=0的两个实数根,则m+n的值为.12.(2022•秦淮区二模)写出一个一元二次方程,使它的两根之和是4,并且两根之积是2:.13.(2022•南京二模)设x1、x2是方程x2﹣mx=0的两个根,且x1+x2=﹣3,则m的值是.14.(2022•赣州模拟)已知x1、x2是方程x2﹣mx+2=0的两个根x1=2,则2m﹣5x1•x2=.15.(2021•娄底模拟)若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.16.(2021•通州区模拟)若x1,x2是方程x2=2x+2021的两个实数根,则代数式x1(x12﹣2x1)+2021x2的值为.三.解答题(共4小题)17.(2022春•大观区校级期中)已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+2x1x2=3,求m的值.18.(2022春•开福区校级期中)已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且,求m的值.19.(2021秋•麦积区期末)已知关于x的一元二次方程x2+(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)若此方程的两实数根x1,x2满足(x1﹣x2)2+m2=13,求m的值.20.(2021秋•宜宾期末)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)若x1+x2=6﹣x1x2,求m的值.。
专题21.5解一元二次方程因式分解法(限时满分培优测试)-【拔尖特训】2024-2025学年九年级数
【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题【人教版】专题21.5解一元二次方程:因式分解法(限时满分培优测试)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•靖西市期中)解方程2(4x﹣3)2=3(4x﹣3)最适当的方法是()A.直接开方法B.配方法C.公式法D.分解因式法2.(2023•河东区二模)方程x2﹣4x﹣5=0的根是()A.x1=﹣1,x2=5B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=﹣53.(2023•武山县一模)一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=34.(2023•邯郸模拟)已知一元二次方程的两根分别为x1=3,x2=﹣4;则这个方程为()A.(x﹣3)(x+4)=0B.(x+3)(x﹣4)=0C.(x+3)(x+4)=0D.(x﹣3)(x﹣4)=05.(2023春•蜀山区期末)方程2x2﹣3x+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定6.(易错题)(2022秋•益阳期末)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2﹣8x+15=0的一个实数根,则该三角形的面积是()A.12或4√5B.6或2√5C.6D.2√57.(易错题)(2023春•肇源县期中)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个三角形的周长是()A.12B.15C.12或15D.18或98.(培优题)(2021秋•洪湖市校级月考)设m是方程x2+5x=0的一个较大的根,n是方程x2﹣x﹣6=0的一个较小的根,则m+n的值是()A .﹣4B .﹣3C .﹣2D .29.(创新题)(2021•南沙区二模)对于实数m ,n ,先定义一种新运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时,n 2+m +n ,当m <n 时,若x ⊗(﹣2)=10,则实数x 等于( ) A .3 B .﹣4 C .8 D .3或810.(创新题)(2021•菏泽二模)给出一种运算:对于函数y =x n ,规定y '=n ×x n ﹣1.若函数y =x 4,则有y '=4×x 3,已知函数y =x 3,则方程y '=9x 的解是( )A .x =3B .x =﹣3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023•宝鸡二模)方程x (x +4)=0的解是 .12.(2023•利州区一模)若x 2+x =5+√5,则x 的值是 .13.(2023•槐荫区一模)若菱形的两条对角线长是方程x 2﹣7x +12=0的两个根,则该菱形的周长等于 .14.(易错题)(2022秋•林州市期末)对关于x 的一元二次方程:x 2=ax ,下列是小聪的求解过程:解:两边都减a 2,得x 2﹣a 2=ax ﹣a 2;①两边分别分解因式,得(x +a )(x ﹣a )=a (x ﹣a );②两边都除以x ﹣a ,得x +a =a ;③两边都减a ,得x =0.④以上解题过程中,开始出现错误的那一步对应的序号是 .15.(易错题)(2022•杭州模拟)对于实数a ,b ,定义运算“⊗”:a ⊗b ={ab −b 2(a ≥b)a 2−ab(a <b),例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣6x +5=0的两个根,则x 1⊗x 2= .16.(压轴题)(2023春•上城区期末)有学者认为,阿拉伯数学家花拉子米的《代数学》关于一元二次方程的几何求解法与中国古代数学的“出入相补原理”相近,可能受到中国传统数学思想的影响.花拉子米关于x 2+10x =39的几何求解方法如图1,在边长为x 的正方形的四个边上向外做边长为x 和52的矩形,再把它补充成一个边长为x +5的大正方形,我们得到大正方形的面积为(x +5)2=x 2+10x +25=39+25=64(因为x 2+10x =39).所以大正方形边长为x +5=8,得到x =3.思考:当我们用这种方法寻找x 2+6x =7的解时,如图2中间小正方形的边长x 为 ;阴影部分每个正方形的边长为.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣2)(x﹣5)=2;(2)2(x﹣3)2=x2﹣9.18.选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4(2x+3);(3)x2﹣2x=12.(4)x2+5x+6=0.19.用因式分解法解一元二次方程:(1)x2﹣2x=0;(2)4x2﹣4x+1=0;(3)4(x﹣2)2﹣9=0;(4)(x+1)2﹣4(2x﹣1)2=0.20.(2023•白城模拟)下面是小勇解一元二次方程的过程,请认真阅读并完成相应的任务.解:2x2+4x﹣6=0,二次项系数化为1,得x2+2x﹣3=0.…第一步,移项,得x2+2x=3.…第二步,配方,得x2+2x+4=3+4,即(x+2)2=7.…第三步,由此,可得x+2=±√7⋯第四步,x1=2+√7,x2=2−√7⋯第五步.任务:(1)上面小勇同学的解法中运用“配方法”将该一元二次方程化为两个一元一次方程,体现的数学思想是(填“消元”或“降次”);其中配方法依据的一个数学公式是;(2)“第二步”变形的依据是;(3)上面小勇同学的解题过程中,从第步开始出现错误,直接写出正确的解.21.(易错题)(2023春•滨江区校级期中)下面是小明解一元二次方程2x(x﹣5)=3(5﹣x)的过程:解:原方程可化为2x(x﹣5)=﹣3(x﹣5),……第一步方程两边同除以(x﹣5)得,2x=﹣3,……第二步系数化为1得x=−3 2.小明的解答是否正确?若正确,请说明理由;若不正确,请指出从第几步开始出现错误,分析出现错误的原因,并写出正确的解答过程.22.(培优题)(2023•裕华区校级模拟)在实数范围内定义新运算“△”,其规则为:a△b=a2﹣ab,根据这个规则,解决下列问题:(1)求(x+2)△5=0中x的值;(2)证明:(x+m)△5=0中,无论m为何值,x总有两个不同的值.23.(压轴题)(2023•天元区模拟)定义:如果关于x的方程a1x2+b1x+c1=0(a1≠0,a1、b1、c1是常数)与a2x2+b2x+c2=0(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则称这两个方程互为“对称方程”.例如:方程2x2﹣3x+1=0的“对称方程”是﹣2x2﹣3x﹣1=0,请根据上述内容,解决以下问题:(1)直接写出方程x2﹣4x+3=0的“对称方程”;(2)若关于x的方程3x2+(m﹣1)x﹣n=0与﹣3x2﹣x=﹣1互为“对称方程”,求m、n的值及3x2+(m ﹣1)x﹣n=0的解.。
人教版数学九年级上学期课时练习- 一元二次方程解法-直接开平方法(人教版)
专题21.5 一元二次方程解法-直接开平方法(专项练习)一、单选题1.方程24x =的解是( ) A .x=2B .x=﹣2C .x1=1,x2=4D .x1=2,x2=﹣22.方程2(1)4x +=的解是( ) A .12x =,22x =- B .1233x x ==-,C .1213x x ==-, D .1212x x ==-,3.若()222a =-,则a 是( ) A .-2B .2C .-2或2D .44.方程(x +1)2=0的根是( ) A .x 1=x 2=1B .x 1=x 2=﹣1C .x 1=﹣1,x 2=1D .无实根5.一元二次方程()2x 616+=可转化为两个一元一次方程,其中一个一元一次方程是x 64+=,则另一个一元一次方程是( )A .x 64-=-B .x 64-=C .x 64+=D .x 64+=-6.如果代数式3x 2-6的值为21,则x 的值为( ) A .3B .±3C .-3D .7.方程 x 2=(x ﹣1)0 的解为( ) A .x=-1B .x=1C .x=±1D .x=08.若2x+1与2x -1互为倒数,则实数x 为( )A.x=12±B .x =±1C .D .9.若a ,b ,c 满足0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(a 0)++=≠ax bx c 的解是( )A .1,0B .-1,0C .1,-1D .无实数根10.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为( ) A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =2311.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( ) A .3125x x +=- B .31(25)x x +=-- C .31(25)x x +=±-D .3125x x +=±-12.如图,是一个简单的数值运算程序,则输入x 的值为( )A 1B .1C 1或1D .无法确定13.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-14.如图,正方形 ABCD 的边长为 5,点 M 是边 BC 上的点,DE⊥AM 于点 E ,BF⊥DE ,交 AM 于点 F .若E 是 AF 的中点,则 DE 的长为( )AB .C .4D 二、填空题15.方程x 2-3=0的根是__________.16.方程x 2的两根为x 1=__________,x 2=__________.17.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2﹣b 2,根据这个规则,方程(x +1)﹡3=0的解为_____.18.方程的()()222134x x -=+解是_______________.19.若实数,a b 满足()()2211a b a b ++-=,则a b +=___________________. 20.方程22(1)2020x -=的根是__________.21.若实数a 、b 满足()22229a b +-=,则22a b +的值为___________.22.若一元二次方程ax 2=b (ab >0)的两个根分别是2m +与25m -,则ba=________.23.如果关于x 的方程(m ﹣1)x 3﹣mx 2+2=0是一元二次方程,那么此方程的根是_____. 24.已知关于x 的方程a (x +m )2+b =0(a ,b ,m 均为常数,且a ≠0)的两个解是x 1=3,x 2=7,则方程21402a x m b ⎛⎫++=⎪⎝⎭的解是________. 25.已知2222(2)(2)5a b a b +++-=,那么22a b +=_____. 4224009999x x x --=26.方程的解是27.如图,是一个简单的数值运算程序,则输入x 的值为______.2(1)(3)27x x −−→-−−→⨯-−−→-输入输出三、解答题 28.解方程:(1)23270x -=; (2)2(5)360x --=; (3)21(2)62x -=; (4)()()4490+--=y y .参考答案1.D解:x 2=4,x =±2. 故选D.【点拨】本题利用方程左右两边直接开平方求解. 2.C解:⊥(x +1)2=4,⊥x +1=±2, 解得x 1=1,x 2=﹣3. 故选C. 3.C 【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可. 解:()2224a =-=2a ∴=±故选C【点拨】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.4.B 【分析】根据平方根的意义,利用直接开平方法即可进行求解. 解:(x +1)2=0, 解: x +1=0,所以x1=x2=﹣1, 故选B.【点拨】本题主要考查一元二次方程的解法,解决本题的关键是要熟练掌握一元二次方程的解法.5.D解:将()2x 616+=两边开平方,得x 64+=±,则则另一个一元一次方程是x 64+=-.故选D .6.B解:根据题意得:3x2﹣6=21,即x2=9,解得:x=±3,故选B.【点拨】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.7.A【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x2=1,确定x的值即可.解:⊥(x-1)0有意义,⊥x-1≠0,即x≠1,⊥x2=(x﹣1)0⊥x2=1,即x=±1⊥x=-1.故选A.【点拨】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.8.C解:根据2x+1与2x﹣1互为倒数,列方程得:(2x+1)(2x﹣1)=1;整理得:4x2﹣1=1,移项得:4x2=2,系数化为1得:x2=12;开方得:x故选C.9.C解:【分析】由方程组得到a+c=0, 即a=-c,b=0,再代入方程可求解.因为a+b+c=0——⊥;a-b+c=0——⊥且a≠0,联立两式⊥+⊥得a+c=0, 即a=-c,b=0,代入ax²+bx+c=0得:ax²-a=0解得x=1或x=-1故选C【点睛】本题考核知识点:一元二次方程.解题关键点:由方程组推出a,b,c 的特殊关系. 10.D 【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12, 解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827, 所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点拨】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.11.C 【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-, 故选:C .【点拨】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.12.C 【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.解:由题意得:()2319x --=-,()213x -=,1-=x ,1x =±即1x =或1x =, 故选:C .【点拨】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键. 13.D 【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.解:⊥根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②,⊥-⊥=40b =,得0b =, ⊥+⊥=820a c +=, ⊥解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得,⊥240ax bx a +-=, 240ax a -= 24ax a =⊥2x =± 故选:D .【点拨】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.14.B 【分析】因为AF =AE +EF ,则可以通过证明ABF ⊥DAE ,从而得到AE =BF ,便得到了AF =BF +EF ,再利用勾股定理求出DE 的长即可.解:⊥四边形ABCD 是正方形,⊥AD =AB ,⊥BAD =90° ⊥DE ⊥AG ,⊥⊥DEM =⊥AED =90° ⊥⊥ADE +⊥DAE =90°又⊥⊥BAF +⊥DAE =⊥BAD =90°, ⊥⊥ADE =⊥BAF . ⊥BF ⊥DE ,⊥⊥AFB =⊥DEG =⊥AED . 在ABF 与DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ⊥ABF ⊥DAE (AAS ). ⊥BF =AE ,⊥BF ⊥DE ,⊥AED =90° ⊥⊥AFB =90°, ⊥E 是AF 的中点, ⊥AE =EF , 又⊥BF =AE , ⊥BF =EF =AE , 设BF 为x ,则AF 为2x , ⊥AB 2=AF 2+BF 2, ⊥52=(2x )2+x 2,解得x=, ⊥AF =2x= ⊥DE =AF , ⊥DE= 故选:B .【点拨】此题主要考查学生对正方形的性质及全等三角形的判定的掌握情况,解题的关键是熟练掌握全等三角形的判定方法以及正方形的各种有关性质.15.x1x 2.解:试题分析:移项得x 2=3,开方得x 1=,x 2= -.考点:解一元二次方程. 16. -【分析】先移项,然后用直接开平方法,即可求出两根. 解:移项得28x =,解得:12x x ==-故答案为-【点拨】本题考查了解一元二次方程,熟练掌握解题方法是解题的关键. 17.x=2、-4 【分析】先根据新定义得到()22130x +-=,再移项得()219x +=,然后利用直接开平方法求解. 解:(x+1)﹡3=0,∴()22130x +-=, ∴()219x +=,13x +=±,所以2x =、4-. 故答案为:2x =、4-.【点拨】本题考查了解一元二次方程-直接开平方法:如果方程化成2x p =的形式,那么可得x p =±,如果方程能化成()2nx m p +=(0p ≥)的形式,那么nx m p +=±.18.1235,5x x =-=-【分析】运用直接开平方法求解即可. 解:()()222134x x -=+开方得:2134x x -=+,()2134x x -=-+1235,5x x ∴=-=-【点拨】此题主要考查了解一元二次方程—直接开平方法,熟练掌握一元二次方程的求解方法是解答此题的关键.19.1或12-【分析】根据题意设a+b=x ,根据()()2211a b a b ++-=,得出x (2x -1)=1,解方程即可. 解:设a+b=x ,则x (2x -1)=1,则有(x -1)(2x+1)=0,解得x=1或12-,即a b +=1或12-.故答案为: 1或12-.【点拨】本题考查解一元二次方程,熟练掌握换元法解一元二次方程即把某个式子看作一个整体,用一个字母去代替它,实行等量替换是解题的关键.20.122021,2019x x ==- 【分析】利用直接开平方法进行求解一元二次方程即可. 解:()2212020x -=12020x -=±,解得:122021,2019x x ==-; 故答案为122021,2019x x ==-.【点拨】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21.5 【分析】利用平方根的含义求解2223,a b +-=±再利用非负数的性质可得答案.解:()22229ab +-=,2223,a b ∴+-=±225a b ∴+=或221a b +=-,又220,a b +≥22 5.a b ∴+=故答案为:5.【点拨】本题考查的是非负数的性质,利用平方根的含义解方程,掌握以上知识是解题的关键.22.9解:分析:本题利用直接开平方法求出解互为相反数,从而解出m 的值,得出所求的值即可.解析:2,b x x a == 所以这两个解互为相反数,即2m ++25m -=0,解得m=1,⊥这两个根为±3,所以b a=9. 故答案为9.23.【分析】直接利用一元二次方程的定义得出m 的取值范围,再代入方程解方程即可.解:由题意得:10{0m m -=-≠, ⊥m=1,原方程变为:﹣x 2+2=0,x=故答案为【点拨】此题主要考查了一元二次方程的定义,正确把握二次项系数不为零是解题关键.24.32或72【分析】首先根据一元二次方程解的定义求出m 和b a的值,然后代入所求方程整理求解即可. 解:⊥方程()20a x m b ++=的解为:x 1=3,x 2=7,⊥()()223070a m b a m b ⎧++=⎪⎨++=⎪⎩, 解得:54m b a=-⎧⎪⎨=-⎪⎩, ⊥21402a x m b ⎛⎫++= ⎪⎝⎭,0a ≠, ⊥21402b x m a ⎛⎫++= ⎪⎝⎭, ⊥254402x ⎛⎫--= ⎪⎝⎭, ⊥32x =或72, 故答案为:32或72. 【点拨】本题考查解一元二次方程的拓展应用,掌握解一元二次方程的基本方法是解题关键.25.3.【分析】把22a b +看成一个整体设为x ,再解一元二次方程舍去负值即可.解:设22a b x +=,则原方程化为:()()225x x +-=,29x =,3x =±,220a b +>,223a b ∴+=,故答案为:3.【点拨】本题考查的是解方程,关键是将22a b +看成一个整体,即整体思想的应用,易错点是要注意22a b +的非负性,注意根的取舍.26.﹣9或11解:由题意可得:x 4﹣2x 2﹣400x=9999(x 2+1)2=(2x+100)2⊥当x 2+1=2x+100时,经化简可得(x ﹣1)2=100解得x=﹣9或x=11.⊥当x 2+1=﹣2x ﹣100时,经化简可得(x+1)2=﹣100,此方程无解,因此x 的值应该是﹣9或11.故答案是:﹣9或11.【点睛】本题中正确的将9999进行拆分以配合前面的式子组成熟悉的公式是解题的关键.27.4或2-【分析】根据运算程序可得关于x 的方程,解方程即得答案.解:根据题意得:2(1)(3)27x -⨯-=-,化简得2(1)9x -=,13x ∴-=±,解得4x =或2x =-.故答案为:4或2-.【点拨】本题考查了一元二次方程的解法,正确理解题意、熟练掌握直接开平方法是解题的关键.28.(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.解:(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=, 2(2)12x -=,2x -=2x -=-,2x =或2x =-,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点拨】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.。
武汉二中广雅中学人教版初中七年级数学上册第三章《一元一次方程》模拟检测题(答案解析)
一、选择题1.(0分)[ID :68199]下列方程中,解为x=-2的方程是( )A .2x+5=1-xB .3-2(x -1)=7-xC .x -5=5-xD .1-14x=34x 2.(0分)[ID :68195]定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x =D .4x = 3.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -= B .4083.6x =- C . 3.6840x x -= D . 3.6408x x -= 4.(0分)[ID :68185]如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 5.(0分)[ID :68184]方程2424x x -=-+的解是 ( ) A .x =2B .x =−2C .x =1D .x =0 6.(0分)[ID :68168]下列变形中,正确的是( ) A .变形为 B .变形为 C .变形为 D .变形为7.(0分)[ID :68167]一元一次方程的解是( )A .B .C .D .8.(0分)[ID :68159]古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋9.(0分)[ID :68158]甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 10.(0分)[ID :68253]把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 11.(0分)[ID :68250]若三个连续偶数的和是24,则它们的积为( ) A .48 B .240 C .480D .120 12.(0分)[ID :68235]关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .3 13.(0分)[ID :68230]若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( )A .8cmB .6cmC .5cmD .10cm 14.(0分)[ID :68217]如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2 15.(0分)[ID :68208]若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n二、填空题16.(0分)[ID :68355]解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-; ③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x -=,得352x x -=. 以上变形过程正确的有_____.(只填序号)17.(0分)[ID :68342]请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.18.(0分)[ID :68314]某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.19.(0分)[ID :68295]在方程431=-x 的两边同时_________,得x =___________. 20.(0分)[ID :68290]完成下列的解题过程:用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________.系数化为1,得_______________.21.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.22.(0分)[ID :68267](1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 23.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.24.(0分)[ID :68278]要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 25.(0分)[ID :68276]如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.26.(0分)[ID :68272]在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人. 27.(0分)[ID :68263]我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.三、解答题28.(0分)[ID:68416]解方程:32122 234xx⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.29.(0分)[ID:68405]小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?30.(0分)[ID:68393]检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1);(2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0).【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B 2.D 3.C 4.C5.A 6.B7.A 8.A9.B10.B11.C12.B13.C14.D15.A二、填空题16.无【分析】①方程x系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程17.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x﹣1)求解【详解】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有118.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题19.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x=-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况20.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x-3=12-4x-12移项合并同类21.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数22.减去2x等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(123.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点24.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本25.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为226.3【解析】【分析】设调往甲处的人数为x则调往乙处的人数为20-x根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=327.【解析】【分析】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织布8x尺第五天织布16x尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x尺则第二天织布2x尺第三天织布4x尺第四天织三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】将x=-2代入方程,使方程两边相等即是该方程的解.【详解】将x=-2代入,A.左边≠右边,故不是该方程的解;B.左边=右边,故是该方程的解;C. .左边≠右边,故不是该方程的解;D. .左边≠右边,故不是该方程的解;故选:B.【点睛】此题考查一元一次方程的解使方程左右两边相等的未知数的值即是方程的解,熟记定义即可解答.2.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.C解析:C【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可.【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得:3.6840x x -= 故选:C.【点睛】列方程解应用题的关键是找出题目中的相等关系. 4.C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.5.A解析:A【分析】利用等式的性质解方程即可解答.【详解】解:移项得:2+2x4+4x=合并同类项得:48x=系数化为1得:2x=故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.6.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.7.A解析:A【解析】【分析】先移项,再合并同类项,把x的系数化为1即可;【详解】原式=;=故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.8.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.10.B解析:B【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断.【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.11.C解析:C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键. 12.B解析:B【解析】由已知得413m -= ,解得m=1;故选B. 13.C解析:C【解析】试题分析:原来正方形的边长为x ,则=39,解得:x=5.考点:一元一次方程的应用 14.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 15.A解析:A【分析】要比较m 、n 、k 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m =0无解,∴m >0.(2)∵|3x−4|+n =0有一个解,∴n =0.(3)∵|4x−5|+k =0有两个解,∴k <0.∴m >n >k .故选:A .【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.二、填空题16.无【分析】①方程x 系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程解析:无.【分析】①方程x 系数化为1求出解,即可做出判断;②方程移项得到结果,即可做出判断;③方程去分母得到结果,即可做出判断;④方程去分母得到结果,即可做出判断.【详解】①由2316x =-,得1623x =-;②由342x -=,得324x =+;③由0.221 1.530.1x x -+=+,得3660 4.5x x +=-+; ④由253x x -=,得3530x x -=. 则以上变形过程正确的有无,故答案为:无【点睛】本题考查等式的基本性质,掌握等式的基本性质,对等式进行变形是解答此题的关键. 17.10【分析】本题涉及两种分配方法关键是不管怎么分配鸦的总数是不变的可设树有x 棵即可列方程:4x+5=5(x ﹣1)求解【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有1解析:10【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x 棵,即可列方程:4x+5=5(x ﹣1)求解.【详解】解:设树有x 棵依题意列方程:4x+5=5(x ﹣1)解得:x =10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10【点睛】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.18.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.19.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x =-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:乘3- -12【解析】【分析】根据等式的性质2,方程的两边乘3-即可.【详解】 方程431=-x 的两边同时乘3-得:x =-1, 故答案为:乘3-;-12.【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.20.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x -3=12-4x -12移项合并同类解析:3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--, 9312412x x -=--, 133x =, 313x = 【解析】【分析】解一元一次方程的一般步骤是:去分母,去括号,移项合并同类项,系数化1,但步骤也并不是固定不变的,要灵活掌握.【详解】 两种方法解方程:11(31)1(3)43x x -=-+ 解法1:去分母,得3(31)124(3)x x -=-+.去括号,得9x -3=12-4x -12移项、合并同类项,得13x=3.系数化为1,得313x =. 解法2:去括号,得31111443x x -=--去分母,得9312412x x -=--移项、合并同类项,得13x=3系数化为1,得313x =故答案为:(1) 3(31)124(3)x x -=-+(2) 9312412x x -=--(3) 133x = (4) 313x =(5) 31111443x x -=-- (6) 9312412x x -=--(7) 133x = (8) 313x =. 【点睛】本题考查解方程,熟练掌握解方程的步骤及计算法则是解题关键.21.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.22.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1 解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2.【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.23.632【解析】【分析】设甲队胜了x 场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x 场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点解析:6, 3, 2【解析】【分析】设甲队胜了x 场,则平了12x 场,负了112x -场,根据一场得3分,平一场得1分,负一场得0分,共得了21分,可列方程求解.【详解】设甲队胜了x 场,则平了12x 场,负了112x -场, 根据题意可得: 1131102122x x x ⎛⎫+⨯+-⨯= ⎪⎝⎭, 解得:x =6, 所以132x =,1122x -=, 故答案为:6,3,2.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系.24.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】因为代数式154t+与15()4t-的值互为相反数,所以154t++15()4t-=0,解得:t=1 10,【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 25.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg,则一个果冻质量为2xg,再根据图②列出关于x的方程求解即可.【详解】解:由图①设一块巧克力质量为xg,则一个果冻质量为2xg,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.26.3【解析】【分析】设调往甲处的人数为x则调往乙处的人数为20-x根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x ,则调往乙处的人数为20-x ,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x 人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.27.【解析】【分析】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织布8x 尺第五天织布16x 尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织 解析:531【解析】【分析】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据题意可得:x+2x+4x+8x+16x =5, 解得:5x 31=, 即该女子第一天织布531尺, 故答案为531. 【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.三、解答题28.8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:去括号,得1324x x ---=,移项、合并同类项,得364x -=, 系数化为1,得8x =-.【点睛】本题考查了一元一次方程的解法,属于常考题型,熟练掌握解一元一次方程的方法是解题的关键.29.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.30.(1)是;(2)否.【分析】(1)先求出一元一次方程的解,然后进行判断即可;(2)先求出一元一次方程的解,然后进行判断即可;【详解】解:(1)25103x x +=-,∴88x -=-,∴1x =,∴括号内的数是方程的解; (2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+,∴5x =-;∴括号内的数不是方程的解.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3.某商品原来单价96元,厂 家对该商品进行了两次降价, 每次降低的百分数相同,现 单价为54元,求平均每次降 价的百分数?
练1:
• 青山村种的水稻2001年平均 每公顷产7200,2003年平均 每公顷产8460,求水稻每公 顷产量的年平均增长率.
练2
• 某银行经过最近的两次降息, 使一年期存款的年利率由 2.25%降至1.96%,平均每次 降息的百分率是多少?(结果 精确到0.01﹪)
(1 x) 3000 可列出方程: 2500
2
1、增长率问题的有关公式 : 增长数=基数╳增长率
实际数=基数+增长数
原始量╳(1+增加的百分数)增长次数 =后来 的量 原始量╳(1-减少的百分数)降低次数 =后来的量
2、解这类问题的方程,用直接开平方 法做简便。
二、增长率、降低率问题
• 例2某印刷厂一月份印刷书籍 50万册第一季度共印175万 册,2、3月份平均每月的增 长率是多少?
Байду номын сангаас3 • 两年前生产1吨甲种药品的成本是 5000元,生产1吨乙种药品的成本 是6000元,随着生产技术的进步, 现在生产1吨甲种药品的成本是 3000元,生产1吨乙种药品的成本 是3600元,哪种药品成本的年平 均下降率较大?(精确到0.001)
某商场二月份的销售额为 100 万元, 三月份的销售额下降了20%,商场从 四月份起改进经营措施,销售额稳步 增长,五月份销售额达到 135.2 万元, 求四、五两个月的平均增长率。
解:设四、五两个月的平均增长率为x, 根据题意,得:
1 x 1.3 整理得 (1 x) 2 1.69 x1 0.3 30% x2 2.3 0不合题意, 舍去。
100(1 20%)(1 x) 135.2
2
21.5一元二次方程的应用
•传播与增长率 问题
21.2.5一元二次方程的应用 一、传播问题
例1:有一人患了流感,经过 两轮传染后共有121人患了流 感,每轮传染中平均一个人传 染了几个人?
练1
某种植物的主干长出若干数目 的支干,每个支干又长出同 样数目的小分支,主干、支 干和小分支的总数是91,求 每个支干长出多少小分支?
练2
单循环比赛
学校组织了一次篮球单循环比 赛(每两队之间都进行了一次 比赛),共进行了15场比赛, 那么有几个球队参加了这次比 赛?
练3
双循环比赛
• 参加一次足球联赛的每两个 队之间都进行两次比赛(双 循环比赛),共要比赛90场, 共有多少个队参加比赛?
达标检测
• 1.生物兴趣小组的学生,将自己收集的标 本向本组其他成员各赠送一件,全组共互 赠了182件,如果全组有x名同学,那么根 据题意列出的方程是( ) • A.x(x+1)=182 B.x(x-1)=182 • C.2x(x+1)=182 D.x(1-x) =182×2 • 2.一个小组若干人,新年互送贺卡,若全 组共送贺卡72张,则这个小组共( ). • A.12人 B.18人 C.9人 D.10人
• 3.某次会议中,参加的人员 每两人握一次手,共握手 190次,求参加会议共有多 少人?
问题探究
[问题]一商店一月份的利润是2500元, 三月份的利润达到3000元,这二个月 的平均月增长的百分率是多少? 思考:若设这二个月的平均月增长 的百分率是x,则二月份的利润是: 2500(1+x) _____________ 元; 2 2500 (1 x) 元. 三月份的利润为:___________