一元二次方程及其应用
一元二次方程的解法及其应用
一元二次方程的解法及其应用一元二次方程是指只含有一个未知数的二次方程,其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知实数且a ≠ 0。
解法:一元二次方程的解法主要有两种:因式分解法和求根公式法。
1. 因式分解法:当一元二次方程的形式可以直接因式分解时,使用因式分解法可以快速求得其解。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x + 2)(x + 3) = 0。
根据零乘法,当一个乘积等于零时,其中一个或多个因子必须为零。
因此,我们得到x + 2 = 0或x + 3 = 0,从而解得x = -2或x = -3。
这两个解是方程的根,即方程的解集为{-2, -3}。
2. 求根公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,可以使用求根公式法求得其解。
根据求根公式:x = (-b ± √(b^2 - 4ac)) / (2a),我们可以直接计算出方程的解。
例如,对于方程2x^2 + 5x - 3 = 0,根据求根公式,我们有x = (-5 ±√(5^2 - 4*2*(-3))) / (2*2)。
计算得x = (-5 ± √(25 + 24)) / 4,进一步化简得x = (-5 ± √49) / 4,即x = (-5 ± 7) / 4。
因此,方程的解为x = (-5 + 7) / 4或x = (-5 - 7) / 4,简化得x = 1/2或x = -3/2。
解集为{1/2, -3/2}。
应用:一元二次方程的解法在数学中有着广泛的应用。
以下是一些常见的应用场景:1. 几何问题:一元二次方程的解法可以应用于几何问题中,例如求解二次函数的零点,即方程y = ax^2 + bx + c = 0的解,可以帮助我们确定函数的图像与x轴的交点,从而求得抛物线的顶点、焦点等信息。
2. 物理问题:在物理学中,一元二次方程的解法可以用于解决与运动和力有关的问题。
数学知识点:一元二次方程及其应用_知识点总结
数学知识点:一元二次方程及其应用_知识点总结
数学知识点:一元二次方程及其应用一元二次方程的定义:
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
一元二次方程的应用:
建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
一元二次方程的根与系数的关系:
如果方程的两个实数根是,那么。
命题的概念:
1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:
1、并不是所有的语句都是命题,高考物理,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
一元二次方程的实际应用
一元二次方程的实际应用一元二次方程是高中数学的重要内容之一,通过求解一元二次方程,我们可以得到方程的解,从而解决一些实际生活中的问题。
在本文中,我们将探讨一些实际应用中使用一元二次方程的案例。
一、物体自由下落物体自由下落是我们日常生活中经常遇到的情境之一。
在没有空气阻力的情况下,物体自由下落的运动可以用一元二次方程来描述。
设一个物体从某个高度h0自由下落,下落的时间为t秒,则根据物体自由下落的公式,我们可以得到:h = h0 - 0.5gt^2其中,h为物体下落的高度,g为重力加速度。
通过将h设为0,即可求解出物体自由下落的时间。
此时,我们可以将方程转化为一元二次方程进行求解:-0.5gt^2 + h0 = 0通过求解出这个一元二次方程,我们就可以知道物体自由下落所需的时间。
二、抛物线的轨迹抛物线是一种常见的曲线形态,其运动轨迹可以用一元二次方程来描述。
在很多实际应用中,抛物线的轨迹被广泛应用。
例如,当我们抛出一个物体,以一定的初速度和角度进行抛射时,物体的轨迹就是一个抛物线。
抛物线的方程可以表示为:y = ax^2 + bx + c其中,a、b、c为常数,x和y分别代表抛物线上的点的坐标。
通过求解一元二次方程,我们可以确定抛物线的方程中的参数a、b、c的值,从而获得抛物线的具体形状和特征。
这对于工程设计、物体抛射等实际问题具有重要的意义。
三、最大值和最小值问题在许多实际应用中,我们常常需要确定一个函数的最大值或最小值。
而求解函数的最大值或最小值问题,可以转化为求解一元二次方程的实根问题。
考虑一个抛物线函数 y = ax^2 + bx + c,其中a不等于0。
当a大于0时,抛物线开口向上,此时函数的最小值为抛物线的顶点坐标。
当a小于0时,抛物线开口向下,此时函数的最大值为抛物线的顶点坐标。
通过将函数求导,我们可以求解出函数的极值点,进而确定函数的最大值或最小值。
而求解函数的极值点的过程,实际上就是求解一元二次方程的实根。
一元二次方程的解法及其实际应用
。
例 3 已知 关 于 x 的 一元 二 次 方 程 ax2 bx c 0a 0 的 系 数 满 足 a c b , 则 此 方 程 必 有 一 根
为
。
针对练习:
★1、已知方程 x2 kx 10 0 的一根是 2,则 k 为
,另一根是 kx 2 0 的一个解与方程 x 1 3 的解相同。⑴求 k 的值; ⑵方程的另一个 x 1
。
变式 3:若 x2 xy y 14 , y 2 xy x 28 ,则 x+y 的值为
。
例 3、方程 x2 x 6 0 的解为( )
A. x1 3,x 2 2 B. x1 3,x 2 2 C. x1 3,x 2 3
例 4、已知 2x 2 3xy 2 y 2 0 ,则 x y 的值为
例2、 已知 x、y 为实数,求代数式 x 2 y 2 2x 4 y 7 的最小值。
例3、 已知 x2 y 2 4x 6 y 13 0,x、y 为实数,求 x y 的值。
针对练习:
★★1、试用配方法说明 10x2 7x 4 的值恒小于 0。
★★2、已知 x2 1 x 1 4 0,则 x 1
.
x2
x
x
类型四、公式法
⑴条件: a 0,且b2 4ac 0
⑵公式: x b b2 4ac , a 0,且b2 4ac 0 2a
类型五、 “降次思想”的应用
⑴求代数式的值;
⑵解二元二次方程组。
典型例题:
例1、 已知 x2 3x 2 0 ,求代数式 x 13 x 2 1 的值。
④ x2 y2 (x y)( x y)( x y) ⑤方程 (3x 1)2 7 0 可变形为 (3x 1 7 )(3x 1 7) 0
一元二次方程的应用
一元二次方程的应用一元二次方程是中学数学中比较基础的内容之一。
在实际应用中,一元二次方程也有着广泛的适用性。
本文将介绍一元二次方程在实际中的应用,并分析其具体的数学方法和过程。
一、抛物线的应用一个抛物线可以用一元二次方程的形式表示。
其中,方程中的a、b、c分别代表抛物线关于x的二次项系数、一次项系数和常数项系数。
在实际应用中,我们经常需要利用一元二次方程来求解以下问题:(1)给定一个抛物线,求出其顶点坐标顶点坐标可以通过求解方程a(x-p)²+q得到,其中,p、q分别为顶点的横、纵坐标。
根据平面几何的知识,抛物线的顶点就是其对称轴的交点。
因此,我们可以通过求解关于x的一元二次方程来确定对称轴的位置,从而得到顶点坐标。
(2)给定一个抛物线,求出其与x轴的交点1)当抛物线在x轴下方时,交点个数为0。
2)当抛物线与x轴相切时,交点个数为1。
3)当抛物线在x轴上方时,交点个数为2。
根据以上规律,我们可以利用求根公式或配方法求解一元二次方程,从而确定交点坐标。
二、最值与最优解在实际问题中,有许多情形下需要求解一个函数的最值或最优解。
通过构建一元二次函数,我们可以通过求解其极值点来得到最值或最优解。
在解决此类问题时,我们需要用到以下定理:1)一元二次函数在x=a处取得最大值或最小值,当且仅当a为该函数的极值点。
2)一元二次函数的对称轴是该函数最大值或最小值的轴线。
通过对称轴和极值点的求解,我们可以得到一元二次函数的最优解或最值。
三、勾股定理勾股定理在平面几何中由比达赖创建。
在实际问题中,我们可以利用一元二次方程的求根公式验证勾股定理。
对于一个直角三角形,其斜边又可以表示为一元二次方程的形式。
利用求根公式,我们可以求出其两个直角边的长度。
如果其长短满足勾股定理,则该三角形是一个合法的直角三角形。
四、变速直线运动直线运动是物理学中比较基础的内容。
在实际问题中,我们可以将变速直线运动建模成一元二次函数。
一元二次方程的应用(优秀5篇)
一元二次方程的应用(优秀5篇)元二次方程篇一教学目的1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:重点:1.一元二次方程的有关概念2.会把一元二次方程化成一般形式难点:一元二次方程的含义。
教学过程设计一、引入新课引例:剪一块面积是壹五0cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程( x(x十5)=壹五0 )深入引导:方程x(x十5)=壹五0有人会解吗?你能叫出这个方程的名字吗?二、新课1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。
事实上初中代数研究的主要对象是方程。
这部分内容从初一一直贯穿到初三。
到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。
如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。
(板书一元二次方程的定义)3.强化一元二次方程的概念下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?(1)3x十2=5x—3:(2)x2=4(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
一元二次方程的应用
一元二次方程的应用一元二次方程是数学中常见且重要的概念,广泛应用于各个领域。
本文将探讨一元二次方程的应用,并分析其在实际问题中的具体应用场景。
一、物理学中的应用1. 抛体运动在物理学中,抛体运动是一种常见的物体运动形式。
通过解一元二次方程,可以求解物体的运动轨迹、落地时间和最大高度等相关参数。
例如,一个抛掷物体在抛出后的运动可以用一元二次方程表示,通过求解该方程,我们可以得到物体的落地时间和最大高度,从而更好地理解物体的运动规律。
2. 天体运动在天体物理学中,一元二次方程可以用来描述天体运动的轨迹。
例如,行星的运动可以用一元二次方程来表示。
通过解方程,可以计算行星的运行周期、离心率等重要参数。
这些参数对于研究宇宙的运行规律和天体力学有着重要的意义。
二、工程学中的应用1. 抛物线天桥设计在工程学中,抛物线天桥是一种被广泛使用的结构。
设计师可以利用一元二次方程来计算抛物线天桥的曲线形状和斜率。
通过合理的抛物线曲线设计,可以使天桥具有更好的稳定性和美观性。
2. 弹道学弹道学是研究飞行物体的轨迹和运动规律的学科。
一元二次方程广泛应用于弹道学中,用于计算弹道飞行的高度、速度和飞行时间等参数。
通过解一元二次方程,可以优化发射角度和发射速度,提高弹道导弹的命中率和射程。
三、经济学中的应用1. 供求关系在经济学中,供求关系是研究市场经济的基本规律之一。
供求关系可以用一元二次方程来描述。
通过分析供求方程的解,可以确定市场均衡点的价格和数量,了解市场供应和需求的关系,并为经济政策制定提供依据。
2. 成本和收益分析在经济决策中,成本和收益分析是一种常见的方法。
通过建立成本和收益方程,并求解一元二次方程,可以确定最大利润的产量和价格,从而指导企业的生产和经营决策。
综上所述,一元二次方程在物理学、工程学和经济学等领域有着广泛的应用。
通过解方程,我们可以得到丰富的信息和参数,从而更好地理解和分析实际问题。
在实际应用中,我们需要根据具体问题选择合适的一元二次方程,并利用解方程的方法得出准确的结果。
了解一元二次方程的应用
了解一元二次方程的应用一元二次方程是高中数学中重要的内容之一,它在实际生活中有广泛的应用。
本文将探讨一元二次方程的应用,并介绍其中的一些常见实例。
一、物理应用1. 自由落体运动自由落体运动是物理学中常见的现象之一,可以用一元二次方程来描述物体的运动。
例如,一个物体从高处自由落下,其高度h与时间t 的关系可以用方程h = -gt² + vt + h₀表示,其中g是重力加速度,v是初始速度,h₀是初始高度。
2. 弹性力的计算一元二次方程也可以描述弹性力的计算。
例如,当一个弹簧受到一定的拉伸或压缩时,其回复的力与位移之间可以用方程F = kx²表示,其中F是弹性力,k是弹性系数,x是位移。
二、经济应用1. 成本与利润在经济学中,一元二次方程可以用来描述成本与利润之间的关系。
例如,一个制造商生产某种产品的成本与产量的关系可以用方程C = ax² + bx + c来表示,其中C是成本,x是产量,a、b、c是常数。
2. 供求关系供求关系是经济学中重要的概念,一元二次方程可以用来描述供求关系的平衡点。
例如,市场上某种商品的供应量与价格之间的关系可以用方程S = ax² + bx + c表示,而需求量与价格之间的关系可以用方程D = dx² + ex + f表示,其中S和D分别是供应量和需求量。
三、工程应用1. 物体运动轨迹一元二次方程可以用来描述物体在平面上的运动轨迹。
例如,一个发射的炮弹的运动轨迹可以用方程y = ax² + bx + c来表示,其中y是垂直方向上的位移,x是水平方向上的位移,a、b、c是常数。
2. 斜抛运动斜抛运动是工程中常见的一种运动形式,可以用一元二次方程来描述。
例如,一个以一定速度和角度斜抛的物体的运动轨迹可以用方程y = -gx² / (2v₀²cos²θ) + xtanθ表示,其中g是重力加速度,v₀是初始速度,θ是斜抛角度。
一元二次方程及其应用
一元二次方程及其应用
一元二次方程是只含有一个未知数,并且未知数的最高次数为2的整式方程。
一元二次方程的一般形式是 $ax^2 + bx + c = 0$,其中 $a \neq 0$。
一元二次方程的解法包括直接开平方法、配方法、公式法和因式分解法。
一元二次方程的应用非常广泛,包括解决实际问题、数学建模、物理问题等。
例如,在解决几何问题时,常常需要用到一元二次方程来求解面积、周长等。
在解决代数问题时,一元二次方程也是非常重要的工具,例如求解线性方程组的解、求解不等式等。
在解决物理问题时,一元二次方程也经常被用来描述物理现象,例如求解物体的运动轨迹、求解电路中的电流等。
总之,一元二次方程是数学中非常重要的概念之一,它不仅在数学中有广泛的应用,而且在其他领域中也具有非常重要的意义。
一元二次方程解法及应用
1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)2.一元二次方程的解法:⑴ 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m )2=n 的形式;⑤如果n ≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵ 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0) ⑶ 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.⑶ 方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4⑷ 注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 例1、下列方程中,关于x 的一元二次方程是( )2222211.3(1)2(1) .20.0 .21A x xB x yC ax bx cD x x x +=++-=++=+=- 2、若22324x ( )x x +-与互为相反数,则的值为A .12B 、2C 、±2D 、±123、关于x 的一元二次方程22(1)2m x x m m +++-30-=,则m 的值为( )A .m=3或m=-1 B. .m=-3或m= 1C .m=-1D .m=-3一元二次方程的应用1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2.注重.解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.例、某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?一、填空题1、已知代数式4x2– 14=50, 则x的值为2、已知方程x2+kx+2=0 的一个根是- 1,则k= , 另一根为3、若关于x 的方程x2– 2 (a –1 )x = (b+2)2有两个相等的实根,则a2004+b5的值为4、如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4㎝,则EC长㎝5、已知点C为线段AB的黄金分割点,且AC=1㎝,则线段AB的长为二、选择题1、若(b - 1)2+a2 = 0 下列方程中是一元二次方程的只有()(A)ax2+5x – b=0(B)(b2– 1)x2+(a+4)x+ab=0 (C)(a+1)x – b=0 (D)(a+1)x2– bx+a=02、下列方程中,不含一次项的是()(A)3x2– 5=2x (B)16x=9x2(C)x(x –7)=0 (D)(x+5)(x-5)=03、若关于x的方程x2– 2x(k-x)+6=0无实根,则k可取的最小整数为()(A)- 5 (B)- 4 (C)- 3(D)- 24、8块相同的长方形地砖拼成面积为2400㎝2的矩形ABCD(如图),则矩形ABCD 的周长为()(A)200㎝(B)220 ㎝(C)240 ㎝(D)280㎝5、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()(A)212-(B)213-(C)215-(D)216-三、解答题:1、请尽可能地找出下列两个方程的相同点和不同点(1)x2+2x – 3=0 (2)x2+2x+3=02、已知关于x的二次方程(m+1)x2+3x+m2– 3m – 4=0的一个根为0,求m的值。
一元二次方程实际应用
一元二次方程实际应用一元二次方程实际应用方程的定义和形式•一元二次方程是指形如ax2+bx+c=0的方程,其中 a、b、c 是常数,且a≠0。
•一元二次方程可以表示为一条抛物线的方程,解是抛物线与 x 轴交点的 x 坐标。
•一元二次方程的解可以有 0 个、1 个或 2 个。
有 2 个解时,。
可以表示为解为:x=−b±√b2−4ac2a实际应用场景1.物体自由落体问题–当一个物体自由落体时,它的高度与时间之间的关系可以通过一元二次方程来表示。
–假设物体从初始高度 h0 自由落下,则物体在 t 秒的高度gt2,其中 g 是重力加速度。
可以表示为:ℎ(t)=ℎ0−12–如果要求物体何时着地,即求解 h(t)=0 的解,可以得到落地时间的解。
2.炮弹抛射问题–当一个炮弹从地面射出时,炮弹的飞行轨迹可以通过一元二次方程来表示。
–假设炮弹以角度θ 和初速度 v0 抛射,则炮弹的飞行轨迹可以表示为:y=xtanθ−gx 22v02cos2θ,其中 x 是水平方向的位移,y 是垂直方向的位移,g 是重力加速度。
–如果要求炮弹的最大高度,即求解导数为 0 的点,可以得到最大高度的解。
3.面积问题–一些形状的面积可以通过一元二次方程来表示。
–例如,一个矩形的面积可以表示为A=x(2a−x),其中a 是矩形的一条边的长度,x 是矩形的宽度。
–如果要求矩形的最大面积,即求解导数为 0 的点,可以得到最大面积的解。
4.投资问题–在某些投资问题中,一元二次方程可以用来模拟投资收益的走势。
–假设投资额为 P,年利率为 r,投资期限为 t 年,则投资收益可以表示为A=P(1+r)t。
–如果要求投资收益达到某一特定值 A0,即求解 A=P0 的解,可以得到所需的投资额。
结论一元二次方程在实际生活和工作中有广泛的应用,从物理问题到经济问题,都可以运用它来建立模型、解决实际问题。
通过理解和掌握一元二次方程的概念和解的方法,可以提高解决实际问题的能力。
一元二次方程的解法及实际应用
一元二次方程的解法及实际应用一、引言在数学中,一元二次方程是一种常见的形式,它可以用来解决很多实际生活中的问题。
本文将介绍一元二次方程的解法,并探讨一些实际应用。
二、一元二次方程的解法1. 标准形式一元二次方程的标准形式为:ax² + bx + c = 0。
其中,a、b、c分别代表方程中的系数,且a ≠ 0。
2. 利用“求根公式”解方程一元二次方程可通过求根公式来解决。
求根公式为:x = (-b ± √(b² - 4ac)) / 2a。
- 若b² - 4ac > 0,方程有两个不同实数根;- 若b² - 4ac = 0,方程有一个实数根,且为重根;- 若b² - 4ac < 0,方程无实数根,但可以有复数根。
三、实际应用1. 抛体运动在物理学中,抛体运动问题可以通过一元二次方程来建模和求解。
例如,当我们抛出一个物体时,可以通过解一元二次方程来计算物体的落地时间、最高高度等。
2. 金融领域一元二次方程在金融领域中也有实际应用。
例如,在债券定价中,可以使用一元二次方程来计算债券的到期回报率;在利润预测模型中,可以通过一元二次方程来估计销售量与利润之间的关系。
3. 工程建模在工程领域中,一元二次方程经常用于建立工程模型和解决实际问题。
例如,用于预测水位变化情况、建筑物的稳定性分析等。
4. 生活中的应用一元二次方程还广泛应用于我们的日常生活中,例如:- 菜价预测:可以使用一元二次方程拟合历史数据,预测未来的价格变动趋势;- 汽车刹车距离计算:根据实验数据构建一元二次方程,通过计算得到刹车距离;- 光学仪器矫正:利用一元二次方程来计算镜片的度数以及矫正度数;- 音乐振动学:通过一元二次方程来计算乐器的音调和共振频率。
四、结论一元二次方程作为数学中常见的形式,具有广泛的实际应用领域。
掌握一元二次方程的解法有助于我们在解决实际问题时提供更准确的结果。
一元二次方程的应用
一元二次方程的应用1.自由落体问题:自由落体是指物体在无空气阻力下由高处自由下落的运动。
设物体从高度H处自由落下,令时间为t,重力加速度为g,则根据物理学定律,物体的高度与时间的关系可以表示为H = at^2 + vt + s,其中a为加速度,v为初速度,s为初始位置。
根据题目条件,可以列出一元二次方程,通过解方程可以计算出物体下落的时间、高度等信息。
例如:一个物体从100米高的地方自由落下,加速度为10米/秒^2、求物体落地所需的时间以及落地时的速度。
设物体自由落体的时间为t秒。
根据题目条件可得方程100=10t^2+0t+0,化简为10t^2-100=0。
解这个一元二次方程得到t=±√10,由于时间不能为负数,所以t=√10,即物体落地所需的时间为√10秒。
再根据速度v=a*t,得到物体落地时的速度为10*√10米/秒。
2.弧形墙的设计:在建筑设计中,常常需要设计弧形的墙面,如半圆形门洞、北回归线石像等。
如果要设计一个半径为r的半圆形门洞,并且门洞的宽度为w米。
设门洞左边的边界为坐标轴的原点,可以根据几何关系列出一元二次方程,通过解方程可以计算出门洞的宽度w以及弧形墙面的具体形状。
例如:设计一个半径为2米的半圆形门洞,要求门洞的宽度为1米。
求门洞的具体形状。
设半圆形门洞的弧长为L米,由几何关系可知L=πr=2π。
设门洞上的任意一点(x,y),根据半圆形特点可得y=√(4-x^2),其中x的取值范围为[-r,r],即[-2,2]。
要求门洞的宽度为1米,即要求y=√(4-x^2)的解集在[-0.5,0.5]范围内。
解方程√(4-x^2)=0.5,可得x=±√(4-0.25)=±√3.75,由于x的取值范围为[-2,2],所以x=√3.75,即门洞的具体形状为y=√(4-x^2),其中x的取值范围为[-√3.75,√3.75]。
3.投射问题:投射问题是指在平面上以一定初速度和角度,将物体抛出到空中,通过解方程可以计算出物体的轨迹、最大高度、飞行时间等信息。
一元二次方程的应用
一元二次方程的应用
一元二次方程是代数学中常见且重要的内容,具有广泛的应用领域。
本文将从数学、物理和经济等方面介绍一元二次方程的应用。
一、数学应用
1. 解析几何:一元二次方程可以用于描述平面上的曲线,如抛物线。
通过求解方程,可以确定曲线的顶点、焦点等重要特征,进而进行几
何分析和解题。
2. 最值问题:一元二次方程可以用于求解最值问题,如求解抛物线
的最大值或最小值。
这种问题在最优化、经济学和物理学等领域中具
有很高的实际意义。
二、物理应用
1. 自由落体运动:当物体做自由落体运动时,其运动轨迹符合一元
二次方程。
通过求解方程,可以确定物体的运动速度、位移等重要参数,进而进行物理分析和解题。
2. 抛体运动:抛体运动也是一种常见的物体运动形式,其轨迹也是
抛物线。
一元二次方程可以用来描述抛体运动的高度、时间、速度等
相关问题。
三、经济应用
1. 成本和收益分析:在经济学中,一元二次方程可以用来建立成本和收益之间的关系。
通过求解方程,可以确定最佳利润点或成本控制的策略,对经济决策提供参考依据。
2. 市场需求预测:一元二次方程还可以用来进行市场需求的预测和分析。
通过建立需求函数,求解方程可以推测出市场规模、价格敏感度等相关指标,为企业决策提供参考依据。
综上所述,一元二次方程在数学、物理和经济等多个领域中具有广泛的应用。
通过求解方程,可以解决和分析与抛物线相关的问题,为相关学科的研究和实际应用提供支持。
对于学习者而言,掌握一元二次方程的应用,将有助于提高问题分析和解决能力,培养综合思考和创新能力。
一元二次方程及其解法应用
能使方程左右两边相等的未知数的值叫做方程的解.
5、一元二次方程分类
一般形式 缺一次项 缺常数项 缺一次项及常数项
ax2 bx c 0(a 0) ax2 c 0(a 0,b 0,c 0) ax2 bx 0(a 0,b 0,c 0) ax2 0(a 0,b c 0)
28x8x130.
0.
1.化1:把二次项系数化为1;
x2 38 x 1.
2.移项:把常数项移到方程的右边;
x2
8
x
3
4
2
1
4
2
.
3 3 3
3.配方:方程两边都加上一次项 系数绝对值一半的平方;
x
4
2
5
2
.
3 3
4.变形:方程左分解因式,右边合并同类;
x 4 5 . 5.开方:根据平方根意义,方程两边开平方;
(4)m为何值时,关于x的一元二次方程 mx2+ m2x-1= x2+x 没有一次项? 答案:m=-1
活动1
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm. 在它的四个角分别切去一个正方形,然后将四周突出 的部分折起,就能制作一个无盖方盒.如果要制作的 无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去 多大的正方形?(课件:制作盒子)
解:原方程可变形为 解:原方程可变形为
(x-5)(x+2)=0
x2+2x-8=0
(x-2)(x+4)=0
x-5=0或x+2=0
x-2=0或x+4=0
∴ x1=5 ,x2=-2
∴ x1=2 ,x2=-4
快速回答:下列各方程的根分 别是多少?
一元二次方程及其应用
一元二次方程及其应用一元二次方程及其应用因式分解法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。
以下是店铺整理的关于一元二次方程及其应用,希望大家认真阅读!一、知识要点.1. 一元二次方程的概念.只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程.2. 一元二次方程的求解.其基本解法有四种:①直接开方法;②因式分解法;③配方法;④公式法.3. 一元二次方程根的判别式.一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2-4ac,其意义在于不解方程可以直接根据△判别根的情况,①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<o时,方程无实数根.< p="">4. 一元二次方程的应用.二、例题楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的`进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价) 解:(1)由题意,得当0<x≤5时< p="">y=30.当5<x≤30时,< p="">y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=(2)当0<x≤5时,< p="">(32﹣30)×5=10<25,不符合题意,当5<x≤30时,< p="">[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.三、练习在“文化宜昌全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.(1)求2014年全校学生人数;(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)①求2012年全校学生人均阅读量;②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.【一元二次方程及其应用】。
一元二次方程知识点及其应用
一元二次方程知识点及其应用Last revision on 21 December 2020一、相关知识点1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2.正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数).(3)熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解4.列出实际问题的一元二次方程二.解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.体会不同解法的相互的联系;4.值得注意的几个问题:(1)开平方法:对于形如n x =2或)0()(2≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x =2的方程的解法:当0>n 时,n x ±=;当0=n 时,021==x x ;当0<n 时,方程无实数根。
(2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; ②“系数化1”:根据等式的性质把二次项的系数化为1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式; ④求解:若0≥n 时,方程的解为n m x ±-=,若0<n 时,方程无实数解。
(3)公式法:一元二次方程)0(02≠=++a c bx ax 的根a ac b b x 242-±-= 当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;当042=-ac b 时,方程有两个实数根,且这两个实数根相等,写为ab x x 221-==; 当042<-ac b 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42-中计算其值,判断方程是否有实数根;④若042≥-ac b 代入求根公式求值,否则,原方程无实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程及其应用
◆课前热身文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。
Word 精品文档,可以编辑修改,放心下载
1.如果2是一元二次方程x 2
+bx +2=0的一个根,那么常数b 的值为 . 2.方程042=-x x 的解______________. 3.方程240x -=的根是( ) A .2x =
B .2x =-
C .1222x x ==-,
D .4x =
4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .
【参考答案】1.-3 2.x 1=0, x 2=4 3. C 4.2
16(1)9x -=
◆考点聚焦 知识点:
一元二次方程、解一元二次方程及其应用 大纲要求:
1.了解一元二次方程的概念,会把一元二次方程化成为一般形式。
2.会用配方法、公式法、分解因式法解一元二次方程、
3.能利用一元二次方程的数学模型解决实际问题。
考查重点与常见题型:
考查一元二次方程、有关习题常出现在填空题和解答题。
◆备考兵法
(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,
注意一元二次方程一般形式中0≠a .
(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.
(4)用直接开平方的方法时要记得取正、负. ◆考点链接
1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数. 2. 一元二次方程的常用解法:
(1)直接开平方法:形如)0(2
≥=a a x 或)0()(2
≥=-a a b x 的一元二次方程,就可用
直接开平方的方法.
(2)配方法:用配方法解一元二次方程()02
≠=++a o c bx ax 的一般步骤是:①化二
次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2
()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.
(3)公式法:一元二次方程2
0(0)ax bx c a ++=≠的求根公式是
221,2
4(40)2b b ac x b ac a
-±-=-≥.
(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程
的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.
◆典例精析
例1(湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1
B .1-
C .2
D .2-
【答案】A
【解析】本题考查了一元二次方程的根。
因为x=3是原方程的根,所以将x=3代入原方程,
原方程成立,即06332
=--k 成立,解得k=1。
故选A 。
例2(湖北仙桃)解方程:2
420x x ++=
【分析】根据方程的特点, 灵活选用方法解方程.观察本题特点,可用配方法求解.
【答案】2
42x x +=-
24424x x ++=-+ 2(2)2x +=
22x +=± 22x =±-
122222x x ∴=-=--,
例3(广东省)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 【答案】解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意得: 1+()181x x x ++=,
()
2
181x +=,
19x +=或19x +=-,
18x =或210x =-(舍去),
()
()3
3
118729700x +=+=>.
答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. 【点评】解应用题的关键是把握题意,找准等量关系,列出方程.•最后还要注意求出的未知数的值,是否符合实际意义.凡不满足实际问题的解(虽然是原方程的解)一定要舍去. ◆迎考精炼 一、选择题
1.(湖北武汉)已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( ) A .3-
B .3
C .0
D .0或3
2.(内蒙古呼和浩特)用配方法解方程2
3610x x -+=,则方程可变形为( )
A .21(3)3
x -=
B .213(1)3x -=
C .2
(31)1x -=
D .22
(1)3
x -=
3.(河南)方程2x =x 的解是 ( )
A.x =1
B.x =0
C.x 1=1 x 2=0
D.x 1=﹣1 x 2=0
4.(湖南衡阳)两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( )
A .相交
B .外离
C .内含
D .外切
5.(湖北黄石)三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14
B .12
C .12或14
D .以上都不对
6.(湖北襄樊)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为 ( )
A .9%
B .10%
C .11%
D .12% 二、填空题
1.(内蒙古赤峰)已知关于x 的方程x 2
-3x+2k=0的一个根是1,则k= 2.(山东威海)若关于x 的一元二次方程2
(3)0x k x k +++=的一个根是2-,则另一个根是______.
3.(浙江温州)方程(x-1)2
=4的解是 . 4.(广西崇左)分解因式:2242x x -+= . 5.(山西)请你写出一个有一根为1的一元二次方程: .
6.(江苏省)某县农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 三、解答题
1.(山西省)解方程:2
230x x --=
2.(广西梧州)解方程: 0)3(2)3(2
=-+-x x x
3.(甘肃庆阳)某企业2006年盈利1500万元,克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到,如果该企业每年盈利的年增长率相同,求: (1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计盈利多少万元?
4.(山东潍坊)要对一块长60米、宽40米的矩形荒地ABCD 进行绿化和硬化.
(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的1
4
,求P 、Q 两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为1O 和2O ,且1O 到
AB BC AD 、、的距离与2O 到CD BC AD 、、的
距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
【参考答案】 一、选择题
1. A
2. D
3. C
4. A
5. B
6.B 解析:本题考查方程解决增长率问题,设年增长率x ,可列方程()2
10112.1x +=,解得10.110%x ==,2 2.1x =-(舍去),所以年增长率10%,故选B 。
二、填空题
1.1
2.1
3.x 1=3,x 2=-1
4.2
2(1)x - 5.答案不唯一,如21x = 6.2
7800(1)9100x += 三、解答题
1.解:移项,得223x x -=, 配方,得()2
14x -=, ∴12x -=±, ∴1213x x =-=,.
2.解:0)23)(3(=+--x x x
0)33)(3(=--x x 03=-x 或033=-x 即31=x 或12=x
3.解:(1)设每年盈利的年增长率为x ,
根据题意,得2
1500(1)2160x +=. 解得120.2 2.2x x ==-,(不合题意,舍去).
1500(1)1500(10.2)1800x ∴+=+=.
答:2007年该企业盈利1800万元. (2) 2160(10.2)2592+=. 答:预计该企业盈利2592万元.
4.解:(1)设P Q 、两块绿地周围的硬化路面的宽都为x 米,根据题意,得:
1(603)(402)60404
x x -⨯-=⨯⨯
解之,得:121030x x ==, 经检验,230x =不符合题意,舍去.
所以,两块绿地周围的硬化路面宽都为10米.
(2)设想成立.设圆的半径为r 米,1O 到AB 的距离为y 米,根据题意,得:
240
2260
y y r =⎧⎨
+=⎩ 解得:2010y r ==,.符合实际. 所以,设想成立,此时,圆的半径是10米.
可以编辑的试卷(可以删除)。