等腰三角形的应用(人教版)(含答案)

合集下载

人教版八年级上册数学《等腰三角形》同步训练含答案

人教版八年级上册数学《等腰三角形》同步训练含答案

八年级数学上册《13.3等腰三角形》同步达标测评一.选择题(共8小题,满分32分)1.等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°2.已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°3.如图,△ABC中,DE∥BC,FB,FC分别平分∠ABC和∠ACB,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30B.32C.34D.364.如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10B.20C.15D.255.如图,为了加固屋顶的钢架,焊上等长的钢条(P1P2、P2P3等).若∠A=15°,AP1=P1P2,则这样的钢条最多只能焊上()条.A.4B.5C.6D.76.如图,AB=BC=CD=DE=EF=FG,则∠A的范围是()A.0°<∠A<15°B.0°<∠A<18°C.0°<∠A<20°D.0°<∠A<22.5°7.如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2021B2021A2022的边长为()A.4044B.4046C.22020D.220218.如图,直线AB⊥CD,垂足为O,点P在∠BOC的平分线上,点E在直线AB上,且△EOP是等腰三角形,则这样的点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分)9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.12.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.13.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.14.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.15.如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN 于P,连P A,则∠APN=.三.解答题(共9小题,满分60分)16.如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB﹣∠B).请说明理由.17.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.18.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.19.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.求证:AF⊥BC.20.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.21.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.22.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.23.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE 交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.24.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.2.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个角度数为40°,100°.故选:D.3.解:∵DE∥BC,∴∠BFD=∠FBC,∠EFC=∠BCF,∵FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠BCF,∴∠BFD=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵△ADE的周长=AD+AE+DE,DE=DF+EF,∴△ADE的周长=AD+BD+AE+EC=AB+AC,∵AB=18,AC=16,∴△ADE的周长=34.故选:C.4.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠BP5P4=100°,∴∠P3P5P4=80°,∴∠A=20°.故选:B.5.解:∵∠A=∠P1P2A=15°∴∠P2P1P3=30°,∠P1P3P2=30°∴∠P1P2P3=120°∴∠P3P2P4=45°∴∠P3P2P4=45°∴∠P2P3P4=90°∴∠P4P3P5=60°∴∠P3P5P4=60°∴∠P3P4P5=60°∴∠P5P4P6=75°∴∠P4P6P5=75°∴∠P4P5P6=30°∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.解:采用排除法:①∵AB=BC=CD=DE=EF=FG,当∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠FGE=∠GEF=∠EFD+∠A=60°+15°=75°,即此时符合;①当∠A=18°时,同法求出∠FEG=∠FGE=90°,此时△FEG不存在,此时不符合,同样,当∠A取大于18°的角都不符合,当∠A=小于18°的数时,△FEG存在,即选项A、C、D错误,只有选项B正确;故选:B.7.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A2021B2021A2022的边长为22020.故选:C.8.解:如图,①当OP=OE时,这样的点E由2个,②当PE=OE时,这样的点E由1个,③当OP=PE时,这样的点E由1个,∴这样的点P有4个,故选:D.二.填空题(共7小题,满分28分)9.解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.10.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为211.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.12.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.13.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.14.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.15.解:∵△ABM和△ACN都是等边三角形,∴AB=AM,AN=AC,∠BAM=∠CAN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠BAN,在△ABN与△AMC中,,∴△ABN≌△AMC(SAS),∴∠ANP=∠ACP,又∵∠AEN=∠PEC(对顶角相等),∵∠AEP=∠NEC(对顶角相等),∴∠APN=∠ACN=60°.故答案为:60°.三.解答题(共9小题,满分60分)16.证明:∵EF⊥AD,AD平分∠BAC,∴∠1=∠2,∠APE=∠APF=90°,又∵∠AEF=180°﹣∠1﹣∠APE,∠AFE=180°﹣∠2﹣∠APF,∴∠AEF=∠AFE,∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM,∵∠AEF=∠B+∠M,∠MFC=∠ACB﹣∠M,∴∠B+∠M=∠ACB﹣∠M,即:∠M=(∠ACB﹣∠B).17.证明:延长BD至F,使DF=BC,连接EF,∵EC=ED,∴∠ECD=∠EDC,∴∠ECB=∠EDF,∴△ECB≌△EDF(SAS),∴BE=EF,∠B=60°,∴△BEF为等边三角形,∴BE=BF,∵AE=BD,∴DF=AB,BC=DF,∴AB=BC,∴△ABC是等边三角形.18.证明:连接AD.则△ABC的面积=△ABD的面积+△ACD的面积,AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG.19.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C,∴AB=AC,∵点F为BC中点,∴AF⊥BC.20.证明:∵AB=AC,∴∠ABC=∠SCB,∵BD平分∠ABC,∴∠ABD=∠CBD,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠E+∠CDE=2∠DBC,∴∠DBC=∠E,∴△BDE为等腰三角形,BD=ED,∵DH垂直于BE,∴H为BE中点(三线合一).21.证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.22.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.23.(1)证明:作DF∥AB交BC于F,如图所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵DF∥AB,∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,∴△CDF是等边三角形,∴CD=DF,∵点P为DE中点,∴PD=PE,在△PDF和△PEB中,,∴△PDF≌△PEB(AAS),∴DF=BE,∴CD=BE;(2)解:∵DE⊥AC,∴∠ADE=90°,∴∠E=90°﹣∠A=30°,∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,∴BP=BE,由(1)得:CD=BE,∴BP=BE=CD,设BP=x,则BE=CD=x,AD=12﹣x,∵AE=2AD,∴12+x=2(12﹣x),解得:x=4,即BP的长为4.24.(1)证明:如图,过P做PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD ∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴△APF是等边三角形;∵AP=PF,AP=CQ,∴PF=CQ∴△PFD≌△QCD,∴PD=DQ.(2)△APF是等边三角形,∵PE⊥AC,∴AE=EF,△PFD≌△QCD,∴CD=DF,DE=EF+DF=AC,∵AC=1,DE=.。

人教版八年级数学上册等腰三角形1课题学习最短路径问题(含答案)

人教版八年级数学上册等腰三角形1课题学习最短路径问题(含答案)

13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF 和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP 长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③解析:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB.∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DBF,∠FCE=∠FCB.∴∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC.∴△ADE的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB,∴BD=CE.∵AB=AC,∴∠B=∠C.∵BE=CF,∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°.∵△BDE≌△CEF,∴∠BDE=∠CEF.∴∠DEF=180°-∠BED-∠CEF=180°-∠BED-∠BDE=∠B=70°.(3)不能.∵∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°.∴∠EDF+∠EFD=120°.3.解:(1)△ABC,△ABD,△ADE,△EDC.(2)AD与BE垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE ,∴△ABE 沿BE 折叠,一定与△DBE 重合.∴A 、D 是对称点.∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE=DE .在Rt △ABE 和Rt △DBE 中,AE =DE BE =BE ⎧⎨⎩,, ∴Rt △ABE ≌Rt △DBE (HL ).∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°,∴∠C=45°.又∵ED⊥BC,∴△DCE为等腰直角三角形.∴DE=DC.即AB+AE=BD+DC=BC=10.4.6 解析:连接OD,∵PO=PD,∴OP=DP=OD.∴∠DPO=60°.∵△ABC是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA-60°.∴△OPA≌△PDB.∵AO=3,∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知12秒时M 、N 两点重合,恰好在C 处,如图②,假设△AMN 是等腰三角形,∴AN=AM .∴∠AMN=∠ANM .∴∠AMC=∠ANB .∵AB=BC=AC ,∴△ACB 是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN .∴CM=BN.设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y-12,NB=36-2y,CM=NB.y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B关于a的对称点B′与A的连线的交点F,煤气分管道的连接点是点A关于b的对称点A′与B的连线的交点C.故选A.8.解:如图,作点B关于公路的对称点B′,连接AB′,交公路于点C,则这个基地建在C处,才能使它到这两个超市的距离之和最小.。

等腰三角形存在性问题(两圆一线)(人教版)(含答案)

等腰三角形存在性问题(两圆一线)(人教版)(含答案)

学生做题前请先回答以下问题问题1:已知线段AB是等腰三角形的一条边,则对应两圆一线中的“两圆”与“一线”的操作方法是什么?问题2:两圆一线的分类标准是什么?分别对应什么操作?等腰三角形存在性问题(两圆一线)(人教版)一、单选题(共6道,每道14分)1.已知:如图,线段AB的端点A在直线上,AB与的夹角为60°,请在直线上另找一点C,使△ABC是等腰三角形.这样的点有( )A.1个B.2个C.3个D.4个答案:B解题思路:要使△ABC是等腰三角形,先分析点,定点是A,B,动点是C,那么AB是定线段,AB可以当这个等腰三角形的腰,也可以当这个等腰三角形的底.①当AB为腰时,此时作两圆,如图,②当AB为底时,此时作一线,如图,综上,使△ABC是等腰三角形的上的点C有2个.故选B试题难度:三颗星知识点:等腰三角形的存在性2.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的点C有( )个.A.3B.4C.7D.8答案:D解题思路:如图所示,当AB为等腰三角形的腰时,分别以A,B为圆心,AB长为半径作圆;当AB为等腰三角形的底时,作AB的垂直平分线;综上,满足条件的点C共有8个.故选D试题难度:三颗星知识点:两圆一线构造等腰三角形3.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA长为半径作圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C试题难度:三颗星知识点:等腰三角形的存在性4.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( )个.A.8B.9C.10D.11答案:B解题思路:如图,若点A为等腰三角形顶点,则以点A为圆心、以AB长为半径作圆,与正方形网格的格点交于点;若点B为等腰三角形顶点,则以点B为圆心、以AB长为半径作圆,与正方形网格的格点交于点(其中与A,B共线,故舍去).故选B试题难度:三颗星知识点:两圆一线构造等腰三角形5.如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运动,若△BPQ是以BQ为腰的等腰三角形,则满足题意的点P有( )A.2个B.3个C.4个D.5个答案:B解题思路:如图,当BQ为等腰三角形的腰时,分别以点B,Q为圆心,以BQ长为半径作圆,与线段AD有三个交点.此时等腰△BPQ的腰长都为5,符合题意.综上,满足题意的点P有3个.故选B试题难度:三颗星知识点:两圆一线构造等腰三角形6.如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( )A.1个B.3个C.5个D.无数多个答案:C解题思路:点P在对称轴上,使得△PAB,△PBC均为等腰三角形;∵对称轴垂直平分BC,点P在对称轴上,∴△PBC是等腰三角形;如图,当AB为等腰三角形的腰时,分别以A,B为圆心,AB长为半径作圆,与交于点P;如图,当AB为等腰三角形的底时,作AB的垂直平分线,与交于点P;综上,满足条件的点P共有5个.故选C试题难度:三颗星知识点:两圆一线构造等腰三角形二、填空题(共1道,每道16分)7.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有____个.答案:5解题思路:如图所示,当BP为等腰三角形的腰时,分别以B,P为圆心,BP长为半径作圆,与正方形交于点;当BP为等腰三角形的底时,作BP的垂直平分线,交正方形于点;特别说明::点是以点B为圆心,BP为半径作圆得到的,此时,因为∠PBC=60°,所以是等边三角形,且;:过点P作PE⊥AB于点E,延长EP交CD于点F;在Rt△BEP中,∠EBP=90°-60°=30°,BP=4得PE=2∵EF=AD=6∴PF=4∴点F即为点;综上,满足条件的点P共有5个.试题难度:知识点:两圆一线构造等腰三角形。

人教版数学八年级下册小专题(十) 运用分类讨论求解等腰三角形相关的多解问题

人教版数学八年级下册小专题(十) 运用分类讨论求解等腰三角形相关的多解问题

小专题(十)运用分类讨论求解等腰三角形相关的多解问题类型1针对腰长和底边长进行分类方法归纳:在解答已知等腰三角形边长的问题时,当题目中的条件没有指明已知的这条边是腰长还是底边长时,就要分类讨论,按腰和底边两种情况分类.若涉及边的长度,应运用三角形的三边关系进行辨别取舍.1.(武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A)A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(B)A.7个B.6个C.5个D.4个3.若实数x,y满足|x-5|+y-10=0,则以x,y的值为边长的等腰三角形的周长为25.类型2针对顶角和底角进行分类方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.4.等腰三角形有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.故所求的一腰上的高与底边的夹角为26°或38°.5.如果等腰三角形中的一个角是另一个角度数的一半,求该等腰三角形各内角的度数.解:设∠A ,∠B ,∠C 是该等腰三角形的三个内角,且∠A =12∠B. 设∠A =x °,则∠B =2x °.①若∠B 是顶角,则∠A ,∠C 是底角,于是有∠C =∠A =x °.∵∠A +∠B +∠C =180°,∴x +2x +x =180.解得x =45,故∠A =∠C =45°,∠B =90°;②若∠B 是底角,∵∠A ≠∠B ,∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180.解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形的各内角分别为45°、45°、90°或36°、72°、72°.类型3 针对锐角、直角和钝角三角形进行分类方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角或钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高的交点在这个三角形的内部;直角三角形腰上的高的交点为两直角边的交点;钝角三角形腰上的高的交点在这个三角形的外部,因此在解答时需要分类讨论.6.已知△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交成50°的角,求底角的度数.解:由题意可判断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论: ①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,则∠A =40°,所以∠B =∠C =70°;②如图2,垂直平分线DE 与腰AC 的反向延长线相交,且∠AED =50°,则∠EAD =40°,∠BAC =140°,所以∠B =∠C =20°.综上可知,等腰三角形的底角为70°或20°.7.一个等腰三角形一边上的高等于另一边的一半,则等腰三角形底角的度数是多少?解:设∠A 为顶角,则∠ABC 、∠ACB 为底角.(1)若∠A 为锐角,如图1,作BD ⊥AC 于点D ,。

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。

人教版初中数学八年级上册《等腰三角形》复习试题(配套练习附答案)

人教版初中数学八年级上册《等腰三角形》复习试题(配套练习附答案)
6.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=___.
【答案】44°
【解析】
【分析】
根据等腰三角形两底角相等求出∠BAC,再根据两直线平行,内错角相等解答.
详解】∵AB=AC,∠ABC=68°,
∴∠BAC=180°﹣2×68°=44°,
∵AB∥CD,
∴∠ACD=∠BAC=44°.
(1)写出y与x之间的函数表达式;
(2)画出此函数的图像.
22.如图,在平面直角坐标系xOy中,直线y=-- x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
23.如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,﹣10).
13.已知y+1与2﹣x成正比,且当x=﹣1时,y=5,则y与x的函数关系是____________.
14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7=_____.
15.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是_____.
16.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则kb的值为______.
故选C
考点:等腰三角形三线合一
2.如图,在△ABC中,AB=AD=DC,∠B=70°ห้องสมุดไป่ตู้则∠C的度数为( )
A.35°B.40°C.45°D.50°
【答案】A
【解析】
∵AB=AD, ∴∠ADB=∠B=70°.
∵AD=DC,

人教版八年级数学上册《等腰三角形》课时练习题(含答案)

人教版八年级数学上册《等腰三角形》课时练习题(含答案)

人教版八年级数学上册《等腰三角形》课时练习题(含答案)一、单选题1.如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E ∠=,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm 2.如图,等边ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15︒B .20︒C .45︒D .60︒ 3.如图,在ABC 中,,AB AC AD =是ABC 的角平分线,过点D 分别作,DE AB DF AC ,垂足分别是点E ,F ,则下列结论错误..的是( )A .90ADC ∠=B .DE DF =C .AD BC = D .BD CD =4.等腰三角形两边长为3,6,则第三边的长是( )A .3B .6C .12D .3或65.如图,AB //CD ,△ACE 为等边三角形,∠DCE =45°,则∠EAB 等于( )A .40°B .30°C .20°D .15°6.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ; (2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是( )A .BAD CAD ∠=∠B .△BCD 是等边三角形C .AD 垂直平分BCD .ABDC S AD BC =二、填空题 7.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则CAD ∠的度数为_____.8.如图,等腰三角形ABC 的面积为24,底边6BC =,腰AC 的垂直平分线EF 分别交边AC 、AB 于E 、F 两点,点M 为线段EF 上一动点,点D 为BC 的中点,连接CM 、DM .在点M 的运动过程中,△CDM 的周长存在最______值(填入“大”或“小”),最值为______.9.如图,在△ABC 中,∠B 、∠C 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,下列结论:①△BDF ,△ADE 都是等腰三角形;②DE =BD +CE ;③△ADE 的周长等于AB +AC ;④BF =CF ;⑤若∠A =80°,则∠BFC =130°,其中正确的有_________10.已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.三、解答题11.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.12.如图,点D ,E 在ABC 的边BC 上,AB AC =,AD AE =.求证:BD CE =.13.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.14.如图,在△ABC 和△DCB 中,∠A =∠D =90°,AC =BD ,AC 与BD 相交于点O ,限用无刻度直尺完成以下作图:(1)在图1中作线段BC 的中点P ;(2)在图2中,在OB 、OC 上分别取点E 、F ,使EF ∥BC .参考答案1.B2.A3.C4.B5.D6.D7.50︒##50度8. 小 119.②③⑤10.100°,70°,40°或者10°11.解:(1)根据三角形的三边关系定理可得3-2<c <3+2, 即1<c <5;(2)∵第三边c 为奇数,∴c=3,∵a=2,b=3,∴b=c ,∴△ABC 为等腰三角形.12.证明:∵AB AC =,AD AE =,∴B C ∠=∠,ADE AED ∠=∠,∵∠ADB =180°-∠ADE ,∠AEC =180°-∠AED ,∴ADB AEC ∠=∠,在ABD △和ACE △中,AB AC B C ADB AEC =⎧⎪∠=∠⎨⎪∠=∠⎩∴ABD ACE ≅(AAS ),∴BD =CE ;13.证明:∵AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点, DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠, B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.14.解:(1)如图1,点P 为所作,理由如下:∵∠A =∠D =90°,AC =BD ,BC=CB , ∴△ABC ≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC ,OB=OC∴Q,O 在BC 的垂直平分线上,∴延长QO 交BC 于P ,就有P 为线段BC 的中点;(2)如图2,EF为所作.理由如下:∵△ABC≌△DCB ∴AB=DC,又∵∠ABC=∠DCB,BP=PC ∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC ∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.。

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

人教版八年级数学上册第13章等腰三角形(讲义)➢ 课前预习1. 已知:如图,在△ABC 中,AB =AC .(1)若∠1=∠2,则BD ____DC (填“>”,“<”或“=”); (2)若BD =CD ,则AD ____BC (填“⊥”或“∥”); (3)若AD ⊥BC ,则∠1____∠2(填“>”,“<”或“=”).D CB A 212. 已知等腰三角形的两边长分别为5和8,则这个三角形的周长为_________.➢ 知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________. 5. “三线合一”模块书写:已知:如图,在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于点D .求证:BD =CD . 证明:➢ 精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.CB C B C B AAA108°60°2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.D CB ADCBAEDCBA第2题图第3题图3. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,BD =BE ,∠A =100°,则∠DEC =________.4. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.CD B AABCE第4题图第5题图5. 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,则∠CDE =________.6. 如图,在△ABC 中,已知AB =AC ,AD ⊥BC 于点D ,过点D 作DE ∥AB 交AC 于点E .求证:AE =ED .7. 已知:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD于点D ,12CD BC.求证:∠ACD =∠B . E CB AAB CD8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.11.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.12.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.13.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢课前预习1.(1)=(2)⊥(3)=2.18或21➢知识点睛1.有两边相等2.轴对称,三线合一,对称轴3.相等,等边对等角相等,等角对等边4.相等,60°5.证明:如图∵AB=AC,AD平分∠BAC∴D为BC的中点(等腰三角形三线合一)∴BD=CD➢精讲精练1.60°,60°;45°,45°;36°,36°2.80°3.100°4.108°5.25°6.证明略提示:根据等腰三角形三线合一可得∠BAD=∠CAD,再由平行可以得到∠CAD=∠BAD=∠ADE,从而AE=DE7.证明略提示:过点A作AE⊥BC于点E,根据等腰三角形三线合一可得BE=CD,再证△ABE≌△ACD即可.8.∠E=60°提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE9.3cm10.40°或100°11.50°或130°12.这样的点能找4个,作图略13.这样的点能找2个,作图略等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.CDB 2.已知等腰三角形的周长为28cm,其中一边长为10cm,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .【参考答案】1. 20°2. 10cm 或8cm3. 证明略提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD等腰三角形(习题)➢ 例题示范E DCB A例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】 ① 读题标注:② 梳理思路:由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点∴12BE BC =∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点 ∴AE ⊥BC ∴∠AEB =90° ∵CD ⊥AD ∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中 AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL ) ∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .【思路分析】ACDEA B C D A CD等腰三角形一边长为5cm ,这一边可能是底,也可能是腰,故需分类讨论: ① 如果5cm 为底,则根据周长为12cm ,可知腰长为3.5cm .此时两边之和大于第三边,这个三角形存在.② 如果5cm 为腰,则根据周长为12cm ,可知底边长为2cm .此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm 或2cm . ➢ 巩固练习1. 已知:如图,在△ABC 中,AB =AC ,∠A =80°,求∠C 的度数.2. 如图,在△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =______.第2题图第3题图3. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.4. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线相交于点E ,过点E作MN ∥BC ,交AB 于点M ,交AC 于点N .若BM +CN =9,则线段MN 的长为()CBAED CB ADB AA .6B .7C .8D .95. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE .求证:BD =CE .N M EC BADCBAPA B CD E7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.➢思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】➢巩固练习 1.50° 2.50° 3.36° 4. D5. 证明略提示:利用等腰三角形三线合一的性质,得AD 垂直平分BC ,从而得到PB =PC6. 证明略提示:根据等边对等角可得∠B =∠C ,∠ADE =∠AED ,进而可得∠BAD =∠CAE ,从而证明△ABD ≌△ACE ,根据全等三角形对应边相等,可得BD =CE7. 20 D C B A8.80°或40°9.这样的点能找4个,作图略➢思考小结1.①全等②等腰2.等边,=,12,12,一半。

人教版 八年级数学 13.3 等腰三角形 针对训练 (含答案)

人教版 八年级数学 13.3 等腰三角形 针对训练 (含答案)

人教版八年级数学13.3 等腰三角形针对训练一、选择题1. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2 B.5.2 C.7.8 D.82. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°3. 如图,在△ABC中,AB=AC,AD⊥BC于点D,下列结论不正确的是()A.∠B=∠C B.BD=CDC.AB=2BD D.AD平分∠BAC4. 下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 107. 如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE ∥BC交AB于点E.若△AED的周长为16,则边AB的长为()A.6 B.8 C.10 D.128. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.309. 如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E,D.若AC=3,AB=4,则DE的长为()A.6 B.7 C.8 D.910. 如图所示,在三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的点E处,那么下列等式成立的是()A. AC=AD+BDB. AC=AB+CDC. AC=AD+CDD. AC=AB+BD二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 如图,在△ABC中,AB=AC,∠BAC=40°,AD是中线,BE是高,AD与BE交于点F,则∠BFD=________°.13. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.14. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.15. 如图,在△ABC中,∠B=20°,∠A=105°,点P在△ABC的三边上运动,当△P AC为等腰三角形时,顶角的度数是__________.三、解答题16. 如图所示,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD 于点Q,PQ=3,PE=1,求AD的长.17. 如图所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC 于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.18. 如图①,在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F.探究一:猜想图①中线段EF 与BE ,CF 间的数量关系,并证明. 探究二:设AB =8,AC =6,求△AEF 的周长.探究三:如图②,在△ABC 中,∠ABC 的平分线BO 与△ABC 的外角平分线CO 交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F.猜想这时EF 与BE ,CF 间又是什么数量关系,并证明.19. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.20. 已知△ABC中,AB=AC,D是△ABC外一点(点A,D在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD交BC于点F.(1)求证:AD⊥BC;(2)如图①,当点E在线段AB上且不与点B重合时,求证:DE=AE;(3)如图②,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.人教版八年级数学13.3 等腰三角形针对训练-答案一、选择题1. 【答案】B[解析] 根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于 6.2. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.3. 【答案】C4. 【答案】D[解析] 有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.5. 【答案】D[解析] 由∠BAD+∠B=∠CAD+∠C可得∠ADB=∠ADC,又∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,又BD=DC,由垂直平分线的性质可得AB=AC.由等式的性质,根据AB-BD=AC-CD,AB+BD=AC+CD,又BD=CD,均可得AB=AC.选项D不能得到AB=AC.6. 【答案】C【解析】∵AB=AC,AD平分∠BAC,∴根据等腰三角形三线合一性质可知AD⊥BC,BD=CD,在Rt△ABD中,AB=5,AD=3,由勾股定理得BD=4,∴BC=2BD=8.7. 【答案】C[解析] ∵BD平分∠ABC,∴∠EBD=∠CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EBD=∠EDB.∴BE=DE.∵△AED的周长为16,∴AE+DE+AD=AE+BE+AD=AB+AD=16.∵AD=6,∴AB=10.8. 【答案】B[解析] ∵△ABC为等边三角形,∴∠A=∠B=∠C=60°.∵DE∥BC,∴∠ADE=∠B=60°,∠AED=∠C=60°.∴△ADE为等边三角形.∵AB =10,BD=6,∴AD=AB-BD=10-6=4.∴△ADE的周长为4×3=12.9. 【答案】B[解析] 由题意得∠EBC=∠ABE,∠ACD=∠DCB.根据平行线的性质得∠DCB=∠ADC,∠EBC=∠AEB,所以∠ADC=∠ACD,∠ABE=∠AEB.所以AD=AC,AB=AE.所以DE=AD+AE=AC+AB=3+4=7.10. 【答案】D二、填空题11. 【答案】36[解析] 过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=12AB=12×12=6.∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】7013. 【答案】30[解析] ∵MN ∥BC ,∴∠MOB =∠OBC.∵∠OBM =∠OBC , ∴∠MOB =∠OBM. ∴MO =MB.同理NO =NC.∴△AMN 的周长=AM +MO +AN +NO =AM +MB +AN +NC =AB +AC =30.14. 【答案】85或14 [解析] ①当∠A 为顶角时,等腰三角形两底角的度数为180°-80°2=50°, ∴特征值k =80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.15. 【答案】105°或55°或70° [解析] (1)如图①,点P 在AB 上时,AP =AC ,顶角∠A =105°.(2)∵∠B =20°,∠BAC =105°, ∴∠ACB =180°-20°-105°=55°.点P 在BC 上时,如图②,若AC =PC ,则顶角∠C =55°.如图③,若AC =AP ,则顶角∠CAP =180°-2∠C =180°-2×55°=70°. 综上所述,顶角为105°或55°或70°.三、解答题16. 【答案】[解析] 由已知条件易知△ABE ≌△CAD ,从而BE =AD ,只需求PB 的长即可,由BQ ⊥AD 知,若在Rt △BPQ 中有∠PBQ =30°就可以求出BP 的长,于是求证∠BPQ =60°是解决问题的突破口. 解:∵△ABC 为等边三角形, ∴∠BAC =∠C =60°,AB =CA. 又AE =CD ,∴△ABE ≌△CAD. ∴∠ABE =∠CAD ,BE =AD.∴∠BPQ =∠BAP +∠ABE =∠BAP +∠CAD =∠BAC =60°. 又BQ ⊥AD ,∴∠PBQ =30°. ∴PB =2PQ =6.∴BE =PB +PE =7.∴AD =BE =7.17. 【答案】证明:如图所示,过点D 作DG ∥AC 交BC 于点G ,则∠GDF =∠E ,∠DGB =∠ACB. 在△DFG 和△EFC 中,⎩⎨⎧∠DFG =∠EFC ,DF =EF ,∠GDF =∠E ,∴△DFG ≌△EFC(ASA).∴GD =CE.∵BD =CE ,∴BD =GD.∴∠B =∠DGB.∴∠B =∠ACB.∴AB =AC ,即△ABC 是等腰三角形.18. 【答案】解:探究一:猜想:EF =BE +CF.证明如下: ∵BO 平分∠ABC ,∴∠ABO =∠CBO. ∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠ABO =∠EOB.∴BE =OE.同理:OF =CF ,∴EF =OE +OF =BE +CF.探究二:C △AEF =AE +EF +AF =AE +(OE +OF)+AF =(AE +BE)+(AF +CF)=AB +AC =8+6=14. 探究三:猜想:EF =BE -CF.证明如下:∵BO 平分∠ABC , ∴∠EBO =∠CBO.∵EF ∥BC ,∴∠EOB =∠CBO. ∴∠EBO =∠EOB.∴BE =OE. 同理:OF =CF ,∴EF =OE -OF =BE -CF.19. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.20. 【答案】解:(1)证明:∵AB =AC , ∴点A 在BC 的垂直平分线上.∵DB =DC ,∴点D 在BC 的垂直平分线上. ∴直线AD 是BC 的垂直平分线.∴AD ⊥BC. (2)证明:∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD.∵DE ∥AC ,∴∠EDA =∠CAD. ∴∠BAD =∠EDA.∴DE =AE. (3)DE =AC +BE.理由:同(2)得∠BAD =∠CAD.∵DE∥AC,∴∠EDA=∠CAD.∴∠BAD=∠EDA.∴DE=AE.∵AB=AC,∴DE=AB+BE=AC+BE.。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等腰三角形的判定及性质,等边对等角、等角对等边;三线合一等,以此为载体考查同学们几何学习的有序操作能力.一、单选题(共10道,每道10分)1.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对答案:C解题思路:此题仅告诉我们等腰三角形的一个内角为70°,并没有确定是顶角还是底角,所以需分两种情况考虑.①当70°为顶角时,另外两个角是底角,度数相等,为(180°-70°)÷2=55°,②当70°为底角时,另外一个底角也是70°,顶角是180°-140°=40°.综上,另两个内角度数为55°,55°或70°,40°.故选C.试题难度:三颗星知识点:等腰三角形的性质2.一个等腰三角形的两边长分别为2和5,则它的周长为( )A.7B.9C.12D.9或12答案:C解题思路:求等腰三角形的周长,即是确定等腰三角形的腰与底的长,题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还需应用三角形的三边关系验证能否组成三角形.①若2为腰长,5为底边长,由于2+2<5,则三角形不存在;②若5为腰长,2为底边长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C试题难度:三颗星知识点:三角形的三边关系3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个答案:A解题思路:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD,CE分别是∠ABC,∠BCD的角平分线,∴,,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,∴△EBC,△ABD是等腰三角形;∵∠BDC=∠BCD,∠CED=∠CDE,∴△BCD,△CDE是等腰三角形,∴图中的等腰三角形有5个.故选A试题难度:三颗星知识点:等腰三角形的判定及性质4.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中正确的有( )A.2个B.3个C.4个D.5个答案:D解题思路:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一);故AD所在直线可以看成△ABC的对称轴,再根据角平分线的性质、垂直平分线的性质可得①②③④⑤都正确.故选D试题难度:三颗星知识点:全等三角形的判定与性质5.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③;④△ABD一定是正三角形.请写出正确结论的序号是( )A.①②B.①③C.②④D.①②③答案:B解题思路:①∵AB=AC=AD,AC平分∠DAB∴AC垂直平分BD,①正确;②由①可知DC=CB,DE=BE,∠DEC=90°,∴DC>DE∴BC>DE,②错误;③在Rt△BCE中,∠DBC=90°-∠ACB,在等腰△ABC中,∠BAC=180°-2∠ACB,即∠DAC=180°-2∠ACB,∴,③正确;④△ABD是等腰三角形,但不一定是等边三角形,而且根据题中条件也推导不出△ABD是等边三角形,④错误.正确的为①③,故选B试题难度:三颗星知识点:等腰三角形的判定与性质6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A.6cmB.9cmC.10cmD.12cm答案:B解题思路:∵BP,CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE.∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴PD+DE+PE=BD+DE+EC=BC=9,即△PDE的周长为9cm.故选B试题难度:三颗星知识点:等腰三角形的判定及性质7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC的度数为( )A.60°B.65°C.70°D.75°答案:C解题思路:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵BO平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故选C试题难度:三颗星知识点:等腰三角形的性质8.如图,在等腰三角形ABC中,AB=AC=8,,点D为底边BC上一动点(不与点B,C重合),DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF的长为( )A.2B.3C.4D.5答案:C解题思路:连接AD,∵AB=AC=8,∴DE+DF=4.故选C试题难度:三颗星知识点:等腰三角形的性质9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有( )A.4个B.6个C.8个D.10个答案:C解题思路:已知A,B两个定点,再寻找点C使得△ABC为等腰三角形,可知需要利用“两圆一线”解题,即:分别以A,B为圆心,以AB的长为半径画圆;作线段AB的垂直平分线.再来判断点C 的个数.如图所示,图中的10个格点均在圆或垂直平分线上,但是点M,N与A,B在同一直线上,构不成等腰三角形,故舍去,所以有8个点.故选C试题难度:三颗星知识点:等腰三角形的存在性10.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,可知需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA的长为半径画圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C.试题难度:三颗星知识点:等腰三角形的存在性。

2023学年八年级数学上册高分突破必练专题(人教版)-等腰三角形分类讨论问题综合应用(解析版)

2023学年八年级数学上册高分突破必练专题(人教版)-等腰三角形分类讨论问题综合应用(解析版)

等腰三角形分类讨论问题综合应用类型一:腰和底不明时需讨论类型二:顶角和底角不明时需讨论类型三:涉及中线高位置的讨论类型四:等腰三角形个数的讨论类型五:动点引起的分类讨论【考点1 腰和底不明时需分类】【典例1】等腰三角形的两边长分别为4和8 则这个等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B【解答】解:①若4是腰则另一腰也是4 底是8 但是4+4=8 故不构成三角形舍去.②若4是底则腰是8 8.4+8>8 符合条件.成立.故周长为:4+8+8=20.故选:B【变式1-1】等腰三角形的一条边长为4cm另一条边长为6cm则它的周长是.【答案】14cm或16cm【解答】解:当4cm为腰时三边为4cm4cm6cm可以构成三角形∴周长为:4+4+6=14(cm);当6cm为腰时三边为为6cm6cm4cm可以构成三角形∴周长为:6+6+4=16(cm);综上周长为14cm或16cm.故答案为:14cm或16cm.【考点2 顶角和底角不明时需讨论】【典例2】等腰三角形的一个角是50°则它的底角是()A.50°B.50°或65°C.80°D.65°【答案】B【解答】解:当底角为50°时则底角为50°当顶角为50°时由三角形内角和定理可求得底角为:65°所以底角为50°或65°故选:B.【变式2-1】等腰三角形的一个角是100°则其底角是()A.40°B.100°C.80°D.100°或40°【答案】A【解答】解:当100°为顶角时其他两角都为40°40°当100°为底角时等腰三角形的两底角相等由三角形的内角和定理可知底角应小于90°故底角不能为100°所以等腰三角形的底角为40°40°.故选A(2020秋•慈溪市期中)已知在等腰△ABC中一个外角的度数为100°则【变式2-2】∠A的度数不能取的是()A.20°B.50°C.60°D.80°【答案】C【解答】解:当100°的角是顶角的外角时顶角的度数为180°﹣100°=80°另外两个角的度数都为50°;当100°的角是底角的外角时两个底角的度数都为180°﹣100°=80°顶角的度数为180°﹣2×80°=20°;故∠A的度数不能取的是60°.故选:C.【考点3 涉及中线高位置的讨论】【典例3】(2020秋•鄞州区期末)等腰三角形一腰上的高与另一腰的夹角为25°则顶角的度数为()A.65°B.105°C.55°或105°D.65°或115°【答案】D【解答】解:①如图1 当等腰三角形的顶角是钝角时腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+25°=115°;②如图2 当等腰三角形的顶角是锐角时腰上的高在其内部故顶角是90°﹣25°=65°.故选:D.【变式3-1】(2021春•南海区校级月考)等腰三角形一腰上的高与另一腰的夹角等于30°则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【答案】D【解答】解:当高在三角形内部时如图1∵∠ABD=30°BD⊥AC∴∠A=60°;∴顶角是60°;当高在三角形外部时如图2∵∠ABD=30°BD⊥AC于D∴∠BAD=60°∴∠BAC=180°﹣60°=120°∴顶角是120°.故选:D.【变式3-2】(2021春•浦东新区期末)等腰三角形一腰上的高与另一腰的夹角为60°那么这个等腰三角形的底角为.【答案】75°或15°【解答】解:根据题意得:AB=AC BD⊥AC如图(1)∠ABD=60°则∠A=30°∴∠ABC=∠C=75°;如图(2)∠ABD=60°∴∠BAD=30°∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.【典例4】如图在△ABC中AB=AC AC边上的中线BD把△ABC的周长分成12cm和15cm两部分求△ABC各边的长.【解答】解:∵BD是AC边上的中线∴AD=CD=AC∵AB=AC∴AD=CD=AB设AD=CD=xcm BC=ycm分两种情况:当时即解得:∴△ABC的各边长为8cm8cm11cm;当时即解得:∴△ABC的各边长为10cm10cm7cm;综上所述:△ABC各边的长为8cm8cm11cm或10cm10cm7cm.【变式4】(2021春•浦东新区期中)已知等腰三角形的底边长为6 一条腰上的中线把三角形的周长分为两部分其中一部分比另外一部分长2 则三角形的腰长是.【答案】8或4【解答】解:等腰三角形一条腰上的中线把三角形的周长分为两部分这两部分的差即是腰与底的差的绝对值∵其中一部分比另外一部分长2∴腰比底大2或底比腰大2∴腰为8或4.故答案为:8或4.【考点4 等腰三角形个数的讨论】【典例5】如图网格中的每个小正方形的顶点称作格点图中A B在格点上则图中满足△ABC为等腰三角形的格点C的个数为()A.7B.8C.9D.10【答案】B【解答】解:如图所示:分三种情况:①以A为圆心AB长为半径画弧则圆弧经过的格点C1C2C3即为点C的位置;②以B为圆心AB长为半径画弧则圆弧经过的格点C3C4C5C6C7C8即为点C的位置;③作AB的垂直平分线垂直平分线没有经过格点;∴△ABC为等腰三角形的格点C的个数为:8故选:B.【变式5-1】如图△ABC中直线l是边AB的垂直平分线若直线l上存在点P使得△P AC△P AB均为等腰三角形则满足条件的点P的个数共有()A.1B.3C.5D.7【答案】C【解答】解:分三种情况:如图:当AP=AC时以A为圆心AC长为半径画圆交直线l于点P1P2当CA=CP时以C为圆心CA长为半径画圆交直线l于点P3P4当P A=PC时作AC的垂直平分线交直线l于点P5∵直线l是边AB的垂直平分线∴直线l上任意一点(与AB的交点除外)与AB构成的三角形均为等腰三角形∴满足条件的点P的个数共有5个故选:C.【变式5-2】如图已知Rt△ABC中∠C=90°∠A=30°在直线BC上取一点P使得△P AB是等腰三角形则符合条件的点P有()A.1个B.2个C.3个D.4个【答案】B【解答】解:分三种情况如图:∵∠ACB=90°∠BAC=30°∴∠ABC=90°﹣∠BAC=60°当BA=BP时以B为圆形BA长为半径画圆交直线BC于P1P2两个点∵BA=BP2∠ABC=60°∴△ABP2是等边三角形∴AB=BP2=AP2当AB=AP时以A为圆形AB长为半径画圆交直线BC于P2当P A=PB时作AB的垂直平分线交直线BC于P2综上所述在直线BC上取一点P使得△P AB是等腰三角形则符合条件的点P有2个故选:B.【考点5 动点引起的分类】【典例6】如图所示在△ABC中AB=AC=2 ∠B=40°点D在线段BC上运动(D 不与B C重合)连结AD作∠ADE=40°DE交线段AC于点E.(1)当∠BDA=115°时∠BAD=;点D从B向C运动时∠BDA逐渐变(填“大”或“小”).(2)当DC的长为多少时△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中△ADE的形状也在改变请判断当∠BDA等于多少度时△ADE是等腰三角形.(直接写出结论不说明理由.)【解答】解:(1)∵∠B=40°∠BDA=115°∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣115°﹣40°=25°由图形可知∠BDA逐渐变小故答案为:25°;小;(2)当DC=2时△ABD≌△DCE理由如下:∵AB=2∴AB=DC∵AB=AC∴∠C=∠B=40°∴∠DEC+∠EDC=140°∵∠ADE=40°∴∠ADB+∠EDC=140°∴∠ADB=∠DEC在△ABD和△DCE中∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时△ADE是等腰三角形当DA=DE时∠DAE=∠DEA=70°∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时∠AED=∠ADE=40°∴∠DAE=100°此时点D与点B重合不合题意;当EA=ED时∠EAD=∠ADE=40°∴∠BDA=∠DAE+∠C=40°+40°=80°综上所述当∠BDA的度数为110°或80°时△ADE是等腰三角形.【变式6】如图在△ABC中AB=AC=2 ∠B=∠C=40°点D在线段BC上运动(点D不与点B C重合)连接AD作∠ADE=40°DE交线段AC于点E.(1)当∠BDA=110°时∠EDC=°∠DEC=°;点D从B向C的运动过程中∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时△ABD≌△DCE请说明理由;(3)在点D的运动过程中求∠BDA的度数为多少时△ADE是等腰三角形.【解答】解:(1)当∠BDA=110°时∠EDC=180°﹣110°﹣40°=30°∴∠DEC=180°﹣∠EDC﹣C=180°﹣30°﹣40°=110°∵点D从B向C的运动过程中∠BAD逐渐变大∴∠BDA逐渐变小故答案为:30 110 小;(2)当DC=2时△ABD≌△DCE理由如下∵∠ADC=∠B+∠BAD∠ADC=∠ADE+∠CDE∠B=∠ADE=40°∴∠BAD=∠CDE∵AB=CD=2 ∠B=∠C=40°∴△ABD≌△DCE(ASA);(3)若AD=DE时∵AD=DE∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时∵AE=DE∠ADE=40°∴∠ADE=∠DAE=40°∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°由题意知AD=AE不可能综上所述:当∠BDA=80°或110°时△ADE的形状可以是等腰三角形.1.(2019秋•海安市期中)用一条长为18cm的细绳围成一个等腰三角形若其中有一边的长为5cm则该等腰三角形的腰长为()cm.A.5B.6.5C.5或6.5D.6.5或8【答案】C【解答】解:5cm是腰长时底边为18﹣5×2=8∵5+5>8∴5cm5cm8cm能组成三角形;5cm是底边时腰长为(18﹣5)=6.5cm5cm 6.5cm 6.5cm能够组成三角形;综上所述它的腰长为6.5或5cm.故选:C.2.(2021•碑林区校级开学)若等腰三角形的一个内角比另一个内角大30°则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°【答案】C【解答】解:在△ABC中设∠A=x∠B=x+30°分情况讨论:当∠A=∠C为底角时2x+(x+30°)=180°解得x=50°底角∠A=50°;当∠B=∠C为底角时2(x+30°)+x=180°解得x=40°底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.3.(2020秋•渝北区校级月考)等腰三角形一腰上的高与另一腰的夹角为25°则其底角为()A.65°B.32.5°C.32.5°或57.5°D.32.5°或65°【答案】C【解答】解:①如图1 当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和可得顶角是90°+25°=115°则其底角为(180°﹣115°)÷2=32.5°;②如图2 当等腰三角形的顶角是锐角时腰上的高在其内部故顶角是90°﹣25°=65°则其底角为(180°﹣65°)÷2=57.5°.故选:C.4.(2021春•淮阳区校级期末)某等腰三角形的周长是21cm一条腰上的中线把其周长分成两部分的差为3cm该三角形的腰长是cm.【答案】8或6【解答】解:设等腰三角形的腰长是xcm底边长是ycm根据题意得或解得或∵8 8 5与6 6 9都能组成三角形∴该三角形的腰长为8cm或6cm.故答案是8或6.5.若△ABC中刚好有∠B=2∠C则称此三角形为“可爱三角形”并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”那么聪明的同学们知道这个三角形的“可爱角”应该是()A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°【答案】C【解答】解:①设三角形底角为α顶角为2α则α+α+2α=180°解得:α=45°②设三角形的底角为2α顶角为α则2α+2α+α=180°解得:α=36°∴2α=72°∴三角形的“可爱角”应该是45°或72°故选:C.6.如图所示的正方形网格中网格的交点称为格点已知A B是两格点如果C也是图中的格点且使得△ABC为等腰三角形则符合条件的点C的个数是()A.9B.8C.7D.6【答案】B【解答】解:如图:分三种情况:当AB=AC时以点A为圆心以AB长为半径作圆则点C1C2C3即为所求;当BA=BC时以点B为圆心以BA长为半径作圆则点C4C5C6即为所求;当CA=CB时作AB的垂直平分线则点C7C8即为所求;综上所述:符合条件的点C的个数是8故选:B.7.如图在△ABC中AB=AC=2 ∠B=∠C=40°点D在线段BC上运动(点D 不与点B C重合)连接AD作∠ADE=40°DE交线段AC于点E.(1)点D从B向C的运动过程中∠BDA逐渐变(填“大”或“小”);(2)在点D的运动过程中当∠BDA的度数是时△ADE是等腰三角形.【解答】解:(1)点D从B向C的运动过程中∠BDA逐渐变小故答案为:小;(2)分三种情况:当AD=AE时∴∠ADE=∠AED=40°∵∠AED是△DEC的外角∴∠AED>∠C此种情况不存在当DA=DE时∵∠ADE=40°∴∠DAE=∠DEA=70°∵∠C=40°∴∠BDA=∠DAE+∠C=110°当EA=ED时∴∠EAD=∠ADE=40°∵∠C=40°∴∠BDA=∠EAD+∠C=80°综上所述:∠BDA的度数是110°或80°故答案为:110°或80°.8.(秋•宝应县期末)如图△ABC中AB=AC=2 ∠B=∠C=40°.点D在线段BC上运动(点D不与B C重合)连接AD作∠ADE=40°DE交线段AC于E.(1)当∠BAD=20°时∠EDC=°;(2)当DC等于多少时△ABD≌△DCE?试说明理由;(3)△ADE能成为等腰三角形吗?若能请直接写出此时∠BAD的度数;若不能请说明理由.【答案】(1)20 (2)当DC=2时△ABD≌△DCE(3)当∠BAD=30°或60°时△ADE能成为等腰三角形【解答】解:(1)∵∠BAD=20°∠B=40°∴∠ADC=60°∵∠ADE=40°∴∠EDC=60°﹣40°=20°故答案为:20;(2)当DC=2时△ABD≌△DCE;理由:∵∠ADE=40°∠B=40°又∵∠ADC=∠B+∠BAD∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中.∴△ABD≌△DCE(ASA);(3)能当∠BAD=30°或60°时△ADE能成为等腰三角形.理由:①当∠BAD=30°时∵∠B=∠C=40°∴∠BAC=100°∵∠ADE=40°∠BAD=30°∴∠DAE=70°∴∠AED=180°﹣40°﹣70°=70°∴DA=DE∴△ADE为等腰三角形;②当∠BAD=60°时∵∠B=∠C=40°∴∠BAC=100°∵∠ADE=40°∠BAD=60°∠DAE=40°∴EA=ED∴△ADE为等腰三角形.综上所述当∠BAD=30°或60°时△ADE能成为等腰三角形。

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)试卷简介:测试学生对于常见的等腰直角三角形的思考角度,从边、角、特殊的线、周长、面积等角度分别如何思考,初步体会结构化思考的意识。

一、单选题(共10道,每道10分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC.若∠1=20°,则∠2的度数为( )A.25°B.65°C.70°D.75°答案:B解题思路:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=65°,∵a∥b,∴∠2=∠ACE=65°.故选B.试题难度:三颗星知识点:等腰直角三角形2.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=( )A.38°B.30°C.28°D.26°答案:C解题思路:在Rt△ABC中,AB=AC,AD⊥BC,∴BD=CD,∠ADB=∠ADC=90°,∵∠BAC=90°,∴BD=AD=CD,∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DFB=∠AED,∵∠AED=62°∴∠DFB=62°,∴∠DBF=28°.故选C.试题难度:三颗星知识点:等腰直角三角形3.将一副三角板按如图所示方式叠放在一起,若AB=8,则阴影部分的面积是( )A.4B.6C.8D.10答案:C解题思路:在Rt△ABC中,∠B=30°,∠ACB=90°,AB=8,∴.∵BC⊥AE,DE⊥AE∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=4.故.故选C.试题难度:三颗星知识点:等腰直角三角形4.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC 于F.若,则AB的长为( )A.3B.6C.9D.18答案:B解题思路:如图,连接BD.∵在等腰直角三角形ABC中,D为AC边上中点,∴BD=CD=AD,∠ABD=45°,BD⊥AC,∴∠C=45°,∴∠ABD=∠C,又∵DE⊥DF,∴∠FDC=∠EDB,∴△EDB≌△FDC(ASA),∴∴∴AB=6,故选B.试题难度:三颗星知识点:等腰直角三角形5.如图,在△ABC中,∠ACB=90°,CA=CB,点D为△ABC外一点,且点D在AC的垂直平分线上.若∠BCD=30°,则∠ABD的值为( )A.25°B.30°C.35°D.45°答案:B解题思路:∵在△ABC中,∠ACB=90°,CA=CB,∴△ABC为等腰直角三角形,∴∠ACB=90°,∠CAB=∠CBA=45°,∵∠BCD=30°,∴∠ACD=60°,∵D在AC的垂直平分线上,∴CD=AD,∴△ACD为等边三角形,∴AC=CD=AD,∴DC=AC=BC,∴∠CBD=∠CDB=75°,∴∠ABD=∠CBD-∠CBA=30°.故选B试题难度:三颗星知识点:等腰直角三角形6.已知在平面上有不重合的两个点A和B,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出( )A.2个B.4个C.6个D.8个答案:C解题思路:如图所示,可作不同位置的等腰直角三角形6个.故选C.试题难度:三颗星知识点:等腰直角三角形7.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE.则下列结论:①∠ECA=165°;②BE=BC;③AD⊥BE;④.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④答案:D解题思路:①∵∠CAD=30°,AC=BC=AD,∴,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°,①正确.②∵CE⊥CD,∠ECA=165°,∴∠BCE=∠ECA-∠ACB=165°-90°=75°,∴△ACD≌△BCE(SAS),∴BE=BC,②正确.③如图,延长AD交BE于点F.∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC-∠CAD=45°-30°=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=75°,∴∠AFB=90°,∴AD⊥BE.③正确.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,AC=AD∴,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°-∠ACD=15°,∠MDC=90°-∠ACD=15°,∴△CMD≌△DNC,∴,∴CN=BN.∵DN⊥BC,∴BD=CD.④正确.所以4个结论都正确.故选D.试题难度:三颗星知识点:等腰直角三角形8.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,BD⊥AH于D,CH⊥AH于H,HE,DF分别平分∠AHC和∠ADB.则下列结论中:①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF.其中正确的结论有( )A.①③④B.①C.①②③D.①②③④答案:D解题思路:①∵∠BAC=90°,BD⊥AH,CH⊥AH,∴∠AHC=∠BDA=90°,∴∠CAH+∠BAD=90°,∠ABD+∠BAD=90°,∴∠CAH=∠ABD又∵AC=AB∴△AHC≌△BDA(AAS),①正确;②如图,延长BD与AC相交于点M,延长FD,HE交于点G.∵∠CHD+∠HDM=90°+90°=180°,∴CH∥BM∵DF平分∠ADB∴DG平分∠HDM又∵HE平分∠AHC∴∠HGD=90°∴DF⊥HE,②正确;③又∵∠CHA=∠ADB∴∠EHA=∠FDB又∵∠EAH=∠FBD,AH=BD∴△EHA≌△FDB∴DF=HE,∴③正确④∵△EHA≌△FDB∴AE=BF,④正确.故选D.试题难度:三颗星知识点:等腰直角三角形9.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为( )A.30°B.45°C.55°D.60°答案:B解题思路:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBE=∠ABC-∠ABE=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=45°.故选B.试题难度:三颗星知识点:等腰直角三角形10.如图,在△ABC中,∠ACB=90°,AD⊥AB,AD=AB,BE⊥DC于点E,CA的垂线AF交EB的延长线于点F,连接CF,则∠ACF的度数为( )A.30°B.40°C.45°D.60°答案:C解题思路:∵∠ACB=90°,∴BC⊥AC,∵AF⊥AC,∴BC∥AF,∴∠EBC=∠AFB,∵EF⊥DE,∠ACB=90°,∴∠DCA+∠ECB=90°,∠ECB+∠EBC=90°,∴∠DCA=∠EBC,∴∠DCA=∠AFB,∵AD⊥AB,AF⊥AC,∴∠DAC=∠BAF,∴△DAC≌△BAF(AAS),∴AC=AF,∵AF⊥AC,∴∠ACF=45°.故选C.试题难度:三颗星知识点:等腰直角三角形。

人教版八年级上册13.3.1《等腰三角形》

人教版八年级上册13.3.1《等腰三角形》

《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。

◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。

2、会运用等腰三角形的概念和性质解决有关问题。

3、观察等腰三角形的对称性、发展形象思维。

4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。

2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。

4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。

2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。

2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。

【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。

培养学生勤观察,肯思考的学习习惯。

人教版四年级数学下册典型例题系列之第五单元《等腰三角形的实际应用》》专项练习(原卷版)

人教版四年级数学下册典型例题系列之第五单元《等腰三角形的实际应用》》专项练习(原卷版)

人教版四年级数学下册典型例题系列之第五单元:等腰三角形的实际应用专项练习(原卷版)1.已知一个等腰三角形中的一个内角是50°,那么这个三角形的另外两个内角可能是多少度?2.一个三角形它有两个角都是60°,它的一条边长是16cm。

另一个等腰三角形的周长与它相等,已知这个等腰三角形的底边长22cm,它的腰长是多少cm?3.有一根铁丝长1.9dm,把它做成一个等腰三角形,腰的长度为0.6dm。

那么它的底边长是多少dm?(接头处忽略不计)4.在一个等腰三角形中,一个角的度数是另一个角的2倍,求这个三角形的顶角和底角各是多少度。

5.一个等腰三角形中有两边的长度分别是5厘米,7厘米,这个等腰三角形的周长是多少?6.—个等腰三角形的顶角是48°,那么它的一个底角是多少度?7.一根铁丝长60厘米。

(1)用这根铁丝围成一个腰长为24厘米的等腰三角形,这个三角形的底边是多少厘米?(2)用这根铁丝围成一个等边三角形,这个三角形的底边是多少厘米?8.有一块等腰三角形的菜地,它的底角是49°,它的顶角是多少度?9.李大伯家有一块等腰三角形的菜园,底边长10米,腰长20米,要在菜园的边上围篱笆,篱笆的长是多少米?10.用一根长26厘米的铁丝圈一个等腰三角形,测的一条边的长度为10厘米,另外两边分别长多少厘米?11.我们的红领巾(等腰三角形),它的最大角是120°,它的另外两个角分别是多少度?12.下面图形是等腰三角形,先求出∠1和∠2的度数,再画出三角形指定底边上的高。

13.一根铁丝可围成边长是6厘米的正方形。

如果围成一个等边三角形,它的边长是多少厘米?14.一个等腰三角形,它的一个底角度数是35°,那么它的顶角是多少度?15.一个风筝的形状是等腰三角形,已知一个底角是42°,你能求出其他两个角的度数吗?16.用一根两米长的铁丝围成一个等边三角形框架后,剩下20厘米。

人教版八年级数学上册等腰三角形(含答案)

人教版八年级数学上册等腰三角形(含答案)

等腰三角形一、选择题1.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°2.以下说法中,正确的命题是()(1)等腰三角形的一边长为4 cm,一边长为9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3) B.(1)(3)(5)C.(2)(4)(5) D.(4)(5)3.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25° B.40° C.25°或40° D.不能确定4.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°5.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2B.4C.5D.无数6.在平面直角坐标系xoy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个 B.2个 C.3个 D.4个二、填空题7.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为 .8.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).9.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是.10.如图,已知AB=AB,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4= 度.1三、解答题11.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.12.已知,如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为参考答案1.B2.D3.C4.答案为:D.5.C.6.D7.答案为:30°或150°.8.答案为:45.9.答案为:36°或90°.10.答案为:10.11.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.12.证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.。

初二数学等腰三角形性质的应用[人教版](201911新)

初二数学等腰三角形性质的应用[人教版](201911新)
等腰三角形性质的应用
临海中学初二备课组
教学目标:
1、掌握等腰三角形的性质,并能灵活应用他们。 并让学生获得“如何作辅助线”的体验
2、培养学生观察分析图形和发散思维解决问题的 能力。
3、渗透对立统一,以不变应万变的辨证唯物主义 思想方法和转化的数学思想。
本节重点: 灵活掌握等腰三角形的性质
本节难点: 如何添加辅助线
证明:
D
过C点做DE的平Βιβλιοθήκη 行线,交BA的延A
长线于R点
图5
(证明略) E
B
C
已知:如图,在△ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。
求证:DE⊥DC。
O 证明:
过D点做BC的延 长线,交CA的延 长线于O点,并 延长DE交BC于F 点
(证明略)
B
D A
E
C F
已知:如图,在△ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。
图3
E C
F
证明:
过B点做AC的平 行线,交DE的延 长线于G点
(证明略)
G
已知:如图,在△ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连结DE。
Q
求证:DE⊥DC。
证明: 过B点做DE的平 行线,交CA的延 长线于Q点
(证明略)
D
A
图4
E
B
C
已知:如图,在△ABC中,AB=AC,E在AC上,D 在BA的延长线上,AD=AE,连R 结DE。 求证:DE⊥DC。
复习: 1、等腰三角形的性质 2、两条线段垂直的判断方法。
;/ 高压水射流除锈 喷砂除锈工程 环保除锈
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的应用(人教版)
一、单选题(共10道,每道10分)
1.若等腰三角形的一个内角为40°,则它的底角度数为( )
A.40°
B.50°
C.40°或50°
D.40°或70°
答案:D
解题思路:
试题难度:三颗星知识点:等腰三角形的性质
2.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( )
A.30°
B.40°
C.45°
D.60°
答案:B
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质
3.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为( )
A.30°
B.36°
C.40°
D.45°
答案:B
解题思路:
试题难度:三颗星知识点:等腰三角形的性质
4.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径的圆弧,
交AC于点D,连接BD,则∠ABD=( )
A.30°
B.45°
C.60°
D.90°
答案:B
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质
5.已知等腰三角形的两边长分別为a,b,且a,b满足,则此等腰三角形的周长为( )
A.7或8
B.6或10
C.6或7
D.7或10
答案:A
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质
6.如图,在△ABC中,AB=AC,点D,E在BC上,连接AD,AE,如果只添加
一个条件使∠DAB=∠EAC,则添加的条件不能为( )
A.BD=CE
B.AD=AE
C.DA=DE
D.BE=CD
答案:C
解题思路:
试题难度:三颗星知识点:等腰三角形的性质
7.如图,∥,△ABC的顶点B在直线上,其中,AB=AC,∠A=60°,∠1=20°,则∠2的度数为( )
A.60°
B.45°
C.40°
D.30°
答案:C
解题思路:
试题难度:三颗星知识点:等边三角形的性质
8.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是( )
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
答案:D
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质
9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )
A. B.2cm
C.3cm
D.4cm
答案:C
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质
10.已知∠AOB=30°,点P在∠AOB内部,与P关于OB对称,与P关于OA对称,则,O,三点所构成的三角形是( )
A.直角三角形
B.钝角三角形
C.等腰三角形
D.等边三角形
答案:D
解题思路:
试题难度:三颗星知识点:等腰三角形的判定及性质。

相关文档
最新文档