1变化率与导数学案

合集下载

变化率与导数导学案

变化率与导数导学案

④ =_________________________________
特别地,当 时,有
试一试:
求下列函数的导数(完成目标1)
(1)、 (2)、
(3)、 (4)、
【课堂探究】
题型一:利用公式直接求导
例一:求下列函数的导数
(1) (2)
(3) (4)
针对训练:
(1) (2) (3)
题型二:利用导数四则运算求导
预习课本12页至15页:
1、求以下函数的导函数。
(1) (c是常数);(2) ;
(3) ;(4) ;(5)
由(2)到(5)归纳 的导函数。(完成目标2)
函数
导函数
函数
导函数
(c是常数)
( 为实数)
(a>0,a≠1)
(a>0,a≠1)
2、常见函数的导数公式
3、导函数的四则法则

② _________________________________
【课后作业】
1、课本P18练习2、(1)(2)(3)(4);
习题4、(1)(2)(3)
2、活页《课时作业》
高二数学(理科)
变化率与导数编写人:
课题
1.2导数的计算(第一课时)
教学
目标
1、熟记公式,能熟练运用导数公式及四则运算求简单函数的导数;
2、体会归纳思想在数学研究中的应用,进一步发展学生的思维能力。
重点
难点
重点:利用导数公式及四则运算求简单函数的导数。
难点:对导函数概念的理解;导数公式的记忆和运用
【自主预习】
例二:求下列函数的导数
(1) ;(2) ;
(3) ;(4)
总结:

1.1 变化率与导数学案三份

1.1 变化率与导数学案三份

1.1 变化率与导数 §1.1.1 变化率问题1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义;一、新课导学(预习教材P 2~ P 3,找出疑惑之处)探究任务一:问题1:气球膨胀,求平均膨胀率气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=,则当体积从0L 增加到1L 时,与从1L 增加到2L 时的平均膨胀率分别是多少.问题2:高台跳水,求平均速度高台跳水中,运动员相对于水面的高度H (单位:m )与起跳后的时间t (单位:s )之间的函数关系是105.69.4)(2++-=t t t H ,则在5.00≤≤t 与21≤≤t 两个时间段里平均速度是多少?新知:平均变化率设()y f x =,1x 是数轴上的一个定点,在数轴x 上 另取一点2x ,2x 与1x 的差记为x ∆,即x ∆= ,x∆就表示从1x 到2x 的变化量或增量;相应地,函数的变化量或增量记为y ∆,即y ∆= ; 则比值yx∆∆= 就称为平均变化率......※注:(1) 平均变化率就是 的增量与 的增量的比值.(2) x∆是一个整体符号,不是△与x 相乘.※ 典型例题例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则y x∆∆=例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率:(1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]小结:※ 动手试试练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.小结:y kx b =+在区间[m ,n]上的平均变化率有什么特点?三、总结提升※ 学习小结1.函数y =()f x 的平均变化率是2.求函数y =()f x 的平均变化率的步骤:(1)求函数值的增量 ;(2)计算平均变化率 .※ 知识拓展:平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.T(月)639 123.6.8.1.在函数的平均变化率的定义中,自变量的的增量x ∆满足( )A . x ∆>0B . x ∆<0C . x ∆0≠D . x ∆=0 2.函数21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .0 3.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 4.已知函数12+=x y 的图像上一点(1,2)及邻近一点)2,1(y x ∆+∆+,则xy ∆∆等于( )A . 2B . 2xC . x ∆+2D . 2+2)(x ∆ 5.质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( ) A .6t +∆ B .96t t+∆+∆ C .3t +∆ D .9t +∆6.已知212s gt=,从3s 到3.1s 的平均速度是 .7.函数223y x x =-+在2x =附近的平均变化率是 .8. 已知函数42)(2-=x x f 的图像上一点(1,-2)及邻近一点)2,1(y x ∆+-∆+,则xy ∆∆=______.9.如果一个质点在时间t 的位移函数是3)(3+==t t f y ,当01.041=∆=t t 且时, (1)求y ∆; (2)求ty ∆∆.10.一运动物体的位移s 与时间t 的关系是23t t s -=.(1)求此物体的初速度; (2)求0=t 到2=t 的平均速度.11. 水经过吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()52t V t -=⨯(单位:3cm ),计算第一个10s 内V 的平均变化率.12.已知函数)1(||)(x x x f +=,求xf x f ∆-∆)0()(.§1.1.2 导数的概念1.掌握用极限给瞬时速度下的精确的定义;一、课前准备(预习教材P 4~ P 5,找出疑惑之处) 复习:平均变化率设()y f x =,1x 是数轴上的一个定点,在数轴x 上 另取一点2x ,2x 与1x 的差记为x ∆,即x ∆= ,x∆就表示从1x 到2x 的变化量或增量;相应地,函数的变化量或增量记为y ∆,即y ∆= ; 则比值y x∆∆= 就称为平均变化率...... 二、新课导学探究任务一:瞬时速度问题1:在高台跳水运动中,运动员在不同时刻的速度是 . 新知1——瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts ∆∆当t ∆趋近于0时的 .新知2——导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x f xx∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数..,记作0()f x '或0|x x y ='. 即 000()()()l i mx f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在.(2)在定义导数的极限式中,x ∆趋近于0,可正、可负、但不为0,而y ∆可以为0. (3)xy ∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率.(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度;气球体积V 关于半径r 的导数就是气球的瞬时膨胀率.※ 典型例题例1 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s ).(1)当t =2,Δt =0.01时,求ts ∆∆;(2)当t =2,Δt =0.001时,求ts ∆∆;(3)求质点M 在t =2时的瞬时速度.例2 已知函数2()715(08)f x x x x =-+≤≤.求)2(f '、)6(f ',并说明其意义.小结:利用导数的定义求导的步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y xx+∆∆=∆∆;第三步:取极限得导数00()limx y f x x∆→∆'=∆.※ 动手试试练1. 若23)()(lim000=∆-∆+→∆xx f x x f x ,则)(0x f '= .练2. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速度1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0limt s t∆→∆∆为( )A .从时间t 到t t +∆时,物体的平均速度;B .在t 时刻时该物体的瞬时速度;C .当时间为t ∆时物体的速度;D .从时间t 到t t +∆2. 2y x =在 x =1处的导数为( )A .2xB .2C .2x +∆D .1 3.设4)(+=ax x f ,且2)1(='f ,则a 等于( )A .2B .-2C .3D .-3 4. 在0000()()()limx f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于0 5. 给出下列结论:①函数122-=x y 在3=x 处的导数为11;②一个做直线运动的物体从时间t到t t ∆+时,物体的位移为s ∆,则ts t ∆∆→∆0lim表示时间t 时该物体的瞬时速度;③物体做直线运动时,它的运动规律可用函数)(t v v =表示,其中v 表示瞬时速度,t 表示时间,则该物体在t 时刻的加速度为tt v t t v t ∆-∆+→∆)()(lim.其中正确的结论有( )A .0个B .1个C .2个D .3个 6. 如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为 . 7. 若0()2f x '=-,则0001[]()2lim k f x k f x k→--等于 .8. 函数x x f =)(,若21)(0/=x f ,则0x 等于 .9. 高台跳水运动中,ts 时运动员相对于水面的高度是:2() 4.9 6.510h t t t =-++(单位: m),求运动员在1t s =时的瞬时速度,并解释此时的运动状况.10. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U m v=. 求物体开始运动后第5s 时的动能.11.若2)(0-='x f ,求hh x f h x f h )()(lim000--+→的值.§1.1.3 导数的几何意义通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,理解导数的概念并会运用一、课前准备(预习教材P 6~ P 7,找出疑惑之处)复习1:曲线上两点11111(,),(,)P x y P x x y y +∆+∆的连线称为曲线的割线,则斜率y k x∆==∆复习2:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变x ∆时,函数值也相应地改变y ∆= ,则平均变化率为 ;如果当x ∆ 时,平均变化率趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率......即当x ∆ 时, →l . 函数()f x 在=x 0x 处的瞬时变化率.....叫做函数()f x 在=x 0x 处的 ,记作 . 二、新课导学 ※ 学习探究探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =沿着 曲线()f x 趋近于点00(,())P x f x 时,割线的 变化趋是什么?新知1:当割线P n P 无限地趋近于某一极限 位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线. 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于 切线PT 的斜率.因此,函数()f x 在0x x = 处的导数就是切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆.新知2:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()limx f x x f x f x x∆→+∆-'=∆※ 典型例题例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.小结:例2 求双曲线1y x=在点1(,2)2处的切线的斜率,并写出切线方程.变式:函数y =-2x 2+x 在x =2处的切线的斜率是 .例3 求与曲线y=x 2相切且平行于直线y=4x-5的直线方程,并求出切点坐标.变式:求在曲线y=x 2上过哪一点的切线垂直于直线2x-6y+5=0.※ 知识拓展——导数的物理意义:如果把函数()y f x =看做是物体的运动方程(也叫做位移公式,自变量x 表示时间),那么导数0()f x '表示运动物体在时刻o x 的速度,,即在o x 的瞬时速度.即000()limx t y v f x x∆→∆'==∆.而运动物体的速度()v t 对时间t 的导数,即0()limt v v t t∆→∆'=∆称为物体运动时的瞬时加速度.1. 已知曲线22y x =上一点,则点(2,8)A 处的切线斜率为( )A . 4B . 16C . 8D . 2 2. 曲线221y x =+在点(1,3)P -处的切线方程为( )A .41y x =--B .47y x =--C .41y x =-D .47y x =+ 3.已知函数)(x f 的图像是点(0,0)和(1,0)上的一段圆弧(如图), 若1021<<<x x ,则( ) A .2211)()(x x f x x f < B .2211)()(x x f x x f =C .2211)()(x x f x x f > D .无法确定4.设)(x f 为可导函数,且12)21()1(lim 0-=∆∆--→∆xx f f x ,则过曲线)(x f y =上点))1(,1(f 处的切线斜率为( )A . 2B . -1C . 1D . -2 5.函数23x x y -=在1=x 处的切线斜率是_________________.6.若曲线p x x y +-=422与直线1=y 相切,则p =_________________. 7.曲线x x y 42-=的经过点(1,3)的切线方程是 . 8.已知曲线)(x f y =在点))1(,1(f M 处的切线方程是221+=x y ,则)1()1(f f '+=_________.9.已知曲线C :y=x 3,求曲线C 上1=x 处的切线方程.10.已知函数122+=ax y 过点)3,(a P ,求该曲线在点P 处的切线方程11.已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,直线2l 为该曲线的另一条切线,且21l l ⊥.求:(1)直线2l 的方程;(2)由直线1l ,2l 和x 轴围成的三角形的面积.。

高中数学 变化率与导数学案 新人教A版选修

高中数学 变化率与导数学案 新人教A版选修

第1节 变化率与导数、导数的计算(两课时)1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的,即)(x f '==. 2.导函数:函数y =)(x f 在区间(a, b)内的导数都存在,就说)(x f 在区间( a, b )内,其导数也是(a ,b )内的函数,叫做)(x f 的,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的.4.求导数的方法(1) 八个基本求导公式)('C =; )('n x =;(n∈Q))(sin 'x =, )(cos 'x =)('x e =, )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u =])(['x Cf =)('uv = ,)('vu =)0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '=,即x u x u y y '⋅'='.12+x 在x 0到x 0+Δx 之间的平均变化率.解 ∵Δy=11)(11)(11)(202020202020+++∆+--+∆+=+-+∆+x x x x x x x x x .11)(2,11)()(220200202020+++∆+∆+=∆∆∴+++∆+∆+∆=x x x xx x y x x x x x x变式训练1. 求y=x 在x=x 0处的导数.解 )())((lim lim lim00000000000x x x x x x x x x x x x x x x y x x x +∆+∆+∆+-∆+=∆-∆+=∆∆→∆→∆→∆ .211lim 0000x x x x x =+∆+=→∆例2. 求下列各函数的导数:(1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111x x y ++-= 解 (1)∵,sin sin 23232521x x x x x x x x y ++=++=- ∴y′.cos sin 2323)sin ()()(232252323x x x x x x x x x x -----+-+-='+'+'=(2)方法一 y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y′=3x 2+12x+11.方法二 'y =[])3)(2)(1()3()2)(1('+++++'++x x x x x x=[])2)(1()2()1('++++'+x x x x (x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛=' (4)x x x xx x x y -=+--++=++-=12)1)(1(111111 ,∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-=' 变式训练2:求y=tanx 的导数.解y′.cos 1cos sin cos cos )(cos sin cos )(sin cos sin 22222x x x x x x x x x x x =+='-'='⎪⎭⎫ ⎝⎛= 例3. 已知曲线y=.34313+x(1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y′=x 2,∴在点P (2,4)处的切线的斜率k='y |x=2=4.∴曲线在点P (2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=34313+x 与过点P (2,4)的切线相切于点⎪⎭⎫ ⎝⎛+3431,300x x A , 则切线的斜率k='y |0x x ==20x . ∴切线方程为),(343102030x x x x y -=⎪⎭⎫ ⎝⎛+-即.34323020+-⋅=x x x y ∵点P (2,4)在切线上,∴4=,343223020+-x x 即,044,0432020302030=+-+∴=+-x x x x x ∴,0)1)(1(4)1(00020=-+-+x x x x ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x-y-4=0或x-y+2=0.变式训练3:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k=.答案2或41-例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.(1)解2)(1)(b x a x f +-=',于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,32122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a,b ∈Z ,故.11)(-+=x x x f (2)证明 在曲线上任取一点⎪⎪⎭⎫ ⎝⎛-+11,000x x x .由200)1(11)(--='x x f 知,过此点的切线方程为 )()1(11110200020x x x x x x y -⎥⎦⎤⎢⎣⎡--=-+--. 令x=1,得1100-+=x x y ,切线与直线x=1交点为⎪⎪⎭⎫ ⎝⎛-+11,100x x . 令y=x ,得120-=x y ,切线与直线y=x 的交点为)12,12(00--x x .直线x=1与直线y=x 的交点为(1,1). 从而所围三角形的面积为22212211121112100000=--=----+x x x x x . 所以,所围三角形的面积为定值2.变式训练4:偶函数f (x )=ax 4+bx 3+cx 2+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式.解 ∵f(x )的图象过点P (0,1),∴e=1. ①又∵f(x )为偶函数,∴f(-x )=f (x ).故ax 4+bx 3+cx 2+dx+e=ax 4-bx 3+cx 2-dx+e.∴b=0,d=0. ②∴f(x )=ax 4+cx 2+1.∵函数f (x )在x=1处的切线方程为y=x-2,∴可得切点为(1,-1).∴a+c+1=-1. ③∵)1('f =(4ax 3+2cx)|x=1=4a+2c ,∴4a+2c=1. ④由③④得a=25,c=29-.∴函数y=f (x )的解析式为.12925)(24+-=x x x f1.理解平均变化率的实际意义和数学意义。

§1.1.1-1.1.2《变化率与导数概念》导学案

§1.1.1-1.1.2《变化率与导数概念》导学案

§1.1.1-1.1.2《变化率与导数概念》导学案第一篇:§1.1.1-1.1.2《变化率与导数概念》导学案sx-14-(2-2)-015§1.1.1-1.1.2《变化率与导数概念》导学案编写:袁再华审核:沈瑞斌编写时间:2014.4.25班级_____组名_______姓名_______【学习目标】1.通过实例,了解变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;2.掌握平均变化率的概念及其计算步骤,体会逼近的思想方法;3.在了解瞬时速度的基础上抽象出瞬时变化率,建立导数的概念,掌握用导数的定义求导数的一般方法.【学习重难点】重点:导数的概念。

难点:平均变化率、瞬时变化率的理解。

【知识链接】:请阅读本章导言【学习过程】:一、知识点一.变化率阅读教材 P2-3页内容,回答下列问题:问题1:在气球膨胀率问题中,气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是__________.如果将半径r表示为体积V的函数,那么___________.(1)当V从0增加到1时,气球半径r增加了___________.气球的平均膨胀率为___________.(2)当V从1增加到2时,气球半径增加了___________.气球的平均膨胀率为___________.由以上可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?问题2:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系为h(t)=-4.9t+6.5t+10, 计算运动员在下列各时间段的平均速度v 2(1)在0≤t≤0.5这段时间里,=_______________________________(2)在1≤t≤2这段时间里,v=__________________二、知识点二.平均变化率概念问题1:函数f(x)从x1到x2的平均变化率用式子表示为。

1.1 变化率与导数 导学案(教师版)

1.1 变化率与导数 导学案(教师版)

§1.1 变化率与导数 1.1.1 变化率问题 1.1.2 导数的概念内容要求 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程.2.了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.知识点1 函数的变化率定义实例平均变化率函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1,简记作:ΔyΔx①平均速度;②曲线割线的斜率瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是函数f (x )从x 0到x 0+Δx 的平均变化率在Δx →0时的极限,即lim x ∆→f (x 0+Δx )-f (x 0)Δx =0lim x ∆→ΔyΔx①瞬时速度:物体在某一时刻的速度;②切线斜率 若一质点的运动方程为s =t 2+1,则在时间段[1,2]中的平均速度是________. 解析 v -=(22+1)-(12+1)2-1=3.答案 3知识点2 函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ΔyΔx =0lim x ∆→ f (x 0+Δx )-f (x 0)Δx称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→Δy Δx = 0limx ∆→f (x 0+Δx )-f (x 0)Δx .【预习评价】设f (x )=2x +1,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx =0lim x ∆→ [2(1+Δx )+1]-(2×1+1)Δx =2.答案 2题型一 平均变化率【例1】 已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当Δx 越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx =-4.9Δx -3.3.①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1; ②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2; ③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx =-4.9Δx -3.3=-3.349.(2)当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.规律方法 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.【训练1】 求函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=2,Δx =0.1时平均变化率的值.解 函数f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为 f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=[3(x 0+Δx )2+2]-(3x 20+2)Δx=6x 0·Δx +3(Δx )2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.题型二 物体运动的瞬时速度【例2】 一辆汽车按规律s =2t 2+3(时间单位:s ,位移单位:m)做直线运动,求这辆汽车在t =2 s 时的瞬时速度.解 设在t =2 s 附近的时间增量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2.因为Δs Δt =8+2Δt ,0lim t ∆→ΔsΔt =0lim t ∆→(8+2Δt )=8,所以这辆汽车在t =2 s 时的瞬时速度为8 m/s.规律方法 求瞬时速度是利用平均速度“逐渐逼近”的方法得到的,其求解步骤如下:(1)由物体运动的位移s 与时间t 的函数关系式求出位移增量Δs =s (t 0+Δt )-s (t 0);(2)求时间t 0到t 0+Δt 之间的平均速度v -=ΔsΔt ,(3)求0lim t ∆→ΔsΔt 的值,即得t =t 0时的瞬时速度.【训练2】 一质点按规律s (t )=at 2+2t +1做直线运动(位移单位:m ,时间单位:s),若该质点在t =1 s 时的瞬时速度为4 m/s ,求常数a 的值. 解 ∵Δs =s (1+Δt )-s (1)=[a (1+Δt )2+2(1+Δt )+1]-(a +3) =a ·(Δt )2+(2a +2)·Δt , ∴ΔsΔt =a ·Δt +2a +2. 在t =1 s 时,瞬时速度为0limt ∆→ΔsΔt=2a +2,即2a +2=4,∴a =1.方向1 求函数在某点处的导数【例3-1】 求函数f (x )=3x 2-2x 在x =1处的导数. 解 ∵Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1) =3(Δx )2+4Δx ,∴Δy Δx =3(Δx )2+4Δx Δx=3Δx +4,∴y ′|x =1=0lim x ∆→ΔyΔx =0lim x ∆→(3Δx +4)=4.方向2 已知函数在某点处的导数求参数【例3-2】 已知函数y =ax -1x 在x =1处的导数为2,求a 的值.解∵Δy=a(1+Δx)-11+Δx-⎝⎛⎭⎪⎫a-11=aΔx+Δx1+Δx,∴ΔyΔx=aΔx+Δx1+ΔxΔx=a+11+Δx,∴limx∆→ΔyΔx=limx∆→⎝⎛⎭⎪⎫a+11+Δx=a+1=2,从而a=1.规律方法求一个函数y=f(x)在x=x0处的导数的步骤如下:(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=limx∆→ΔyΔx.【训练3】利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解由导数的定义知,函数在x=2处的导数f′(2)=limx∆→f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-3(-22+3×2)=-(Δx)2-Δx,于是f′(2)=limx∆→-(Δx)2-ΔxΔx=limx∆→(-Δx-1)=-1.课堂达标1.如果质点M按规律s=3+t2运动,则在时间段[2,2.1]中相应的平均速度是()A.4 B.4.1 C.0.41 D.3解析v-=(3+2.12)-(3+22)0.1=4.1.答案 B2.函数f (x )在x 0处可导,则0lim h ∆→f (x 0+h )-f (x 0)h ( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .与x 0,h 均无关 答案 B3.若质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6B .18C .54D .81解析 因为Δs Δt =3(3+Δt )2-3×32Δt=18Δt +3(Δt )2Δt =18+3Δt ,所以lim t ∆→ΔsΔt =18.答案 B4.若一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.解析 Δs Δt =7(t +Δt )2+8-(7t 2+8)Δt=7Δt +14t ,当0lim t ∆→ (7Δt +14t )=14t =1时,t =114.答案 1145.已知函数f (x )=x ,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→1+Δx -1Δx=0limx ∆→11+Δx +1=12.答案 12课堂小结利用导数定义求导数三步曲:(1)作差求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)作比求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限得导数f ′(x 0)=0lim x ∆→ΔyΔx .简记为一差、二比、三极限.基础过关1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx 等于( ) A .4B .4xC .4+2ΔxD .4+2(Δx )2解析 Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2Δx=4+2Δx . 答案 C2.如图,函数y =f (x )在A ,B 两点间的平均变化率是( ) A .1 B .-1 C .2 D .-2解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.答案 B3.如果某物体的运动方程为s =2(1-t 2) (s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ) A .-4.8 m/s B .-0.88 m/s C .0.88 m/sD .4.8 m/s解析 物体在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 答案 A4.设f (x )=ax +4,若f ′(1)=2,则a 等于________. 解析 因为f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0lim x ∆→a (1+Δx )+4-a -4Δx =a ,所以f ′(1)=a =2. 答案 25.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________.解析 v 初=s ′|t =0=0lim t ∆→s (0+Δt )-s (0)Δt=0lim t ∆→ (3-Δt )=3.答案 36.求函数y =2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ,∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.∴y ′|x =3=0lim x ∆→ΔyΔx =0lim x ∆→ (2Δx +16)=16.7.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知,f ′(x )=0lim x ∆→(x +Δx )2-x 2Δx =2x ,g ′(x )=0lim x ∆→(x +Δx )3-x 3Δx =3x 2.∵f ′(x )+2=g ′(x ),∴2x +2=3x 2, 即3x 2-2x -2=0, 解得x =1-73或x =1+73.能力提升8.设f (x )为可导函数,且满足0lim x →f (1)-f (1-2x )2x =-1,则f ′(1)为( )A .1B .-1C .2D .-2解析 令x →0,则Δx =1-(1-2x )=2x →0,所以 0lim x → f (1)-f (1-2x )2x =0lim x ∆→f (1)-f (1-Δx )Δx=f ′(1)=-1. 答案 B9.设函数f (x )可导,则0lim x ∆→f (1+Δx )-f (1)3Δx 等于( )A .f ′(1)B .3f ′(1) C.13f ′(1)D .f ′(3)解析 根据导数的定义,得 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx ,所以0lim x ∆→f (1+Δx )-f (1)3Δx =13f ′(1),故选C. 答案 C10.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________,当Δx =0.001时,割线的斜率k =________.解析 ∵Δy =(1+Δx )2+1-(12+1) =2Δx +(Δx )2,∴ΔyΔx =2+Δx , ∴割线斜率为2+Δx .当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001. 答案 2.1 2.00111.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 解析 由导数的定义,得f ′(0)=0lim x ∆→f (Δx )-f (0)Δx=0lim x ∆→a (Δx )2+b (Δx )+c -cΔx =0lim x ∆→[a ·(Δx )+b ]=b >0.又⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2.当且仅当a =c =|b |2时等号成立. 答案 212.一质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值. 解 因为Δs =s (2+Δt )-s (2) =a (2+Δt )2+1-a ·22-1 =4a Δt +a (Δt )2,所以Δs Δt =4a +a Δt .所以当t =2时,质点M 的瞬时速度为0lim t ∆→Δs Δt =4a , 即4a =8,所以a =2.创新突破13.用导数的定义求函数y =f (x )=1x 在x =1处的导数. 解 ∵Δy =f (1+Δx )-f (1) =11+Δx -11=1-1+Δx 1+Δx =-Δx1+Δx ·(1+1+Δx ), ∴Δy Δx =-11+Δx ·(1+1+Δx ), ∴0lim x ∆→Δy Δx =0lim x ∆→-11+Δx ·(1+1+Δx ) =-11+0×(1+1+0)=-12,∴y ′|x =1=f ′(1)=-12.。

变化率与导数教学设计(共7篇)

变化率与导数教学设计(共7篇)

变化率与导数教学设计(共7篇)第1篇:1.1变化率与导数教学设计教案教学准备1. 教学目标知道了物体的运动规律,用极限来定义物体的瞬时速度,学会求物体的瞬时速度掌握导数的定义.2. 教学重点/难点【教学重点】:理解掌握物体的瞬时速度的意义和导数的定义.【教学难点】:理解掌握物体的瞬时速度的意义和导数的定义.3. 教学用具多媒体4. 标签变化率与导数教学过程课堂小结课后习题第2篇:1.1变化率与导数教学设计教案教学准备1. 教学目标(1)理解平均变化率的概念.(2)了解瞬时速度、瞬时变化率、的概念.(3)理解导数的概念(4)会求函数在某点的导数或瞬时变化率.2. 教学重点/难点教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解教学难点:会求简单函数y=f(x)在x=x0处的导数3. 教学用具多媒体、板书4. 标签教学过程一、创设情景、引入课题【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。

【板演/PPT】【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 【板演/PPT】让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。

【设计意图】自然进入课题内容。

二、新知探究 [1]变化率问题【合作探究】探究1 气球膨胀率【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是如果将半径r表示为体积V的函数,那么【板演/PPT】【活动】【分析】当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为0.62>0.16 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 解析:探究2 高台跳水【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? (请计算)【板演/PPT】【生】学生举手回答【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。

(完整版)《变化率问题与导数的概念》导学案

(完整版)《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念a1.通过物理中的变化率问题和瞬时速度引入导数的概念.2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤.3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验.4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢?问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么:(1)在0≤t≤0.5这段时间里,运动员的平均速度= .(2)在1≤t≤2这段时间里, 运动员的平均速度= .问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx 表示,平均变化率的公式是.问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== .问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但.1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为().A.0.40B.0.41C.0.43D.0.442.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则().A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为.4.求y=2x2+4x在点x=3处的导数.求平均变化率(1)已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及附近一点B(-1+Δx,-2+Δy),则= .(2)求y=x2在x=x0附近的平均变化率.求物体运动的瞬时速度若一物体运动方程为s=求此物体在t=1和t=4时的速度.导数定义的应用已知f'(x0)=2,求.函数y=5x2+6在区间[2,2+Δx]内的平均变化率为.质点M按规律s(t)=at2+1作直线运动(位移单位:m,时间单位:s),若质点M在t=2 s时的瞬时速度为8 m/s,求常数a的值.已知f(x)=x3-8x,则=;= ;= .1.自变量x从x0变到x1时,函数值的增量与相应自变量的增量之比是函数().A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.函数f(x)=x2在x0到x0+Δx之间的平均变化率为k1,在x0-Δx到x0之间的平均变化率为k2,则k1 ,k2的大小关系是().A.k1>k2B.k1=k2C.k1<k2D.无法确定3.(1)设函数y=f(x),当自变量x由x0变化到x0+Δx时,函数值的改变量Δy 为.(2)设函数y=f(x)=3x2,则Δy=f(1+Δx)-f(1)= ,= ,= ,f'(1)= .4.已知自由下落物体的运动方程是s=gt2(s的单位是m,t的单位是s),求:(1)物体在t0到t0+Δt这段时间内的平均速度;(2)物体在t0时的瞬时速度;(3)物体在t0=2 s到t1=2.1 s这段时间内的平均速度;(4)物体在t=2 s时的瞬时速度.求函数f(x)=x3+2x+1在x0=1处的导数f'(1).考题变式(我来改编):第一章导数及其应用第1课时变化率问题与导数的概念知识体系梳理问题1:(1)=4.05 m/s(2)=-8.2 m/s问题2:问题3:问题4:Δx≠0基础学习交流1.B∵x=2,Δx=0.1,∴Δy=f(x+Δx)-f(x)=f(2.1)-f(2)=(2.12+1)-(22+1)=0.41.2.C==a+bΔx,f'(x 0)==(a+bΔx)=a.3.8s(2+Δt)-s(2)=2(2+Δt)2-2×22=2(Δt)2+8Δt,∴==(2Δt+8)=8.4.解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16,=(2Δx+16)=16,即y'|x=3=16.重点难点探究探究一:【解析】(1)∵Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-[-(-1)2+(-1)]=-(Δx)2+3Δx,∴==-Δx+3.(2)因为Δy=(x0+Δx)2-,所以==2x0+Δx,所以y=x2在x=x0附近的平均变化率为2x0+Δx.【小结】1.本题需利用平均变化率的定义来解决,但要注意Δx可正、可负、不可为零, Δy可正、可负、可为零.2.求平均变化率可根据定义代入公式直接求解,解题的关键是弄清自变量的增量Δx与函数值的增量Δy,求平均变化率的主要步骤是:(1)先计算函数值的改变量Δy=f(x1)-f(x0).(2)再计算自变量的改变量Δx=x1-x0.(3)得平均变化率=.探究二:【解析】当t=1时,s=3t2+2,Δs=s(t+Δt)-s(t)=3(1+Δt)2+2-(3+2)=6Δt+3(Δt)2,∴v===(6+3Δt)=6.当t=4时,s=29+3(t-3)2,Δs=s(t+Δt)-s(t)=29+3(4+Δt-3)2-29-3(4-3)2=3(Δt)2+6Δt,∴v===(3Δt+6)=6.∴物体在t=1和t=4时的瞬时速度分别是6和6.【小结】1.“(6+3Δt)=6”中,“Δt→0”指Δt趋近于零,即自变量的变化几乎为零.2.求物体瞬时速度的步骤:(1)设非匀速直线运动的规律s=s(t).(2)求时间改变Δt时的位置改变量Δs=s(t0+Δt)-s(t0).(3)求平均速率=.(4)计算瞬时速率:当Δt→0时,→v(常数).探究三:【解析】由已知得:=2,当h→0,2h→0,-4h→0,==2.[问题]上面的解答遵循导数的定义吗?[结论]没有,在导数的定义形式中,增量Δx的形式多种多样,但是无论增量Δx选择哪种形式,Δy必须保持相应的形式.即:f'(x0)===(其中a为非零常数).于是,正确解答为:=-4=-4=-4f'(x0)=-8.【小结】对极限的理解和计算,也是对导数概念的准确理解.通过此题可以看出学生是否掌握了导数的概念.思维拓展应用应用一:20+5Δx 因为Δy=5(2+Δx)2+6-5×22-6=20Δx+5(Δx)2,所以平均变化率=20+5Δx.应用二:∵Δs=s(2+Δt)-s(2)=a(2+Δt)2+1-a×22-1=4aΔt+a(Δt)2,∴=4a+aΔt,=4a,即4a=8,∴a=2.应用三:4 4 -2f'(x)====(3x2+3x·Δx+Δx2-8)=3x2-8,∴f'(2)=4.=f'(2)=4.==f'(2)=4.=-=-f'(2)=-2.基础智能检测1.A由平均变化率的定义可知应选A.2.D因为Δx可正、可负不可为0,所以k1与k2大小关系不确定,应选D.3.(1)f(x0+Δx)-f(x0)(2) 6Δx+3(Δx)26+3Δx 6 64.解:(1)平均速度为==gt0+gΔt.(2)瞬时速度为=(gt 0+gΔt)=gt0.(3)由(1)得物体在t0=2 s到t1=2.1 s这段时间内的平均速度为g×2+g×0.1=g.(4)由(3)得物体在t=2 s时的瞬时速度为g×2=2g.全新视角拓展∵Δy=f(1+Δx)-f(1)=(Δx)3+3(Δx)2+5Δx,∴f'(1)===[(Δx)2+3Δx+5]=5.。

1.1变化率与导数学案

1.1变化率与导数学案

x
x
x
5. 在高台跳水运动中,若运动员离水面的高度
h(单位: m )与起跳后时间 t (单位: s)的函数关系是
ht
4.9t 2 6.5t 10 ,则下列说法不正确的是(

A 在 0 t 1这段时间里,平均速度是 1.6m / s
65
B 在0 t
这段时间里,平均速度是 0m / s
49
65 C 运动员在 0, 时间段内,上升的速度越来越慢
8.( 1)已知 f ( x) 在 x x0 处的导数为 A ,求 lim f ( x0 x0
( 2)若 f ( x0 )
2 ,求 lim f ( x0 h0
h) f (x0 h
h) 的值 .
x) x
f ( x0 ) 及 lim f (x0 x0
2 x) x
f (x0 ) 的值。
例 2 将原油精炼为汽油、柴油、塑胶等各种不同产品
解 : (1)
x2 f (x0
x 在 x 1 附近的平均变化率 , 并求出该点处的导数 .
x)
f ( x0) , 再求
y , 最后求 lim
y
.
x
x0 x
(2)
A0
B3
C -2
1 5.函数 y x , 在 x 1 处的导数是
x
D 3 2t
lim 6. y x 3 1,当 x 2 时 ,
y
x0 x
7.设圆的面积为 A ,半径为 r ,求面积 A 关于半径 r 的变化率。
四、课堂练习
1. 质点运动规律为 s 2. 求曲线 y f ( x)
t 2 3 , 求质点在 t 3 的瞬时速度为 . x3 在 x 1 时的导数 .

1.1变化率与导数(二) 导学案

1.1变化率与导数(二) 导学案

【导学案】§1.1.2变化率与导数(二) 班级____________姓名___________【学习目标】 1. 理解瞬时变化率的意义; 2.会求函数()y=f x 在0x=x 处的导数.【探索新知】1. 瞬时变化率:设函数()y=f x ,当自变量x 从0x 变为1x 时,函数值从()0f x 变为()1f x ,函数值y 关于x 的平均变化率为y =x ∆∆=当1x 趋近于0x ,即x ∆趋近于0时,如果平均变化率趋近于一个稳定值,那么这个值就是函数()y=f x 在0x 点的瞬时变化率.2. 函数()y=f x 在0x=x 处的导数:函数()f x 在0x=x 处的瞬时变化率称为函数()y=f x 在0x=x 处的 导数,记作:()'0f x 或'0y x x =,即()'0f x _________________=3.概念应用:函数()2y=f x 2x = ,则()'f 1_____=()()y=f 1f 1_________________x ∆+∆-=,y =_________x ∆∆,0y lim =_________x x ∆→∆∆ 【基础自测】1.如果质点按规律23t s =运动,则在3秒时的瞬时速度为( )A 、6B 、18C 、54D 、812.已知(),102+-=x x f 则()x f 在23=x 处的瞬时变化率是 ( ) A 、3 B 、 -3 C 、 2 D 、 -23.函数2()3f x x = 在2x =处的导数是________. 4.函数3()f x x =在3x =处的导数是________.5.函数1()f x x= 在在2x =处的导数是________. 5.设函数)(x f y =,当自变量x 由0x 改变到x x ∆+0时,函数值的改变量y ∆=( )A.)(0x x f ∆+B.x x f ∆+)(0C. )()(00x f x x f -∆+D. x x f ∆⋅)(0【合作学习】例1. 利用导数的定义求解:(1)已知()2x x f =,求()1/f ; (2)函数xx y 1+=在x=1处的导数.例2.质点M 按规律()12+=at t s 做直线运动(位移单位:m ,时间单位:s )。

变化率与导数教案

变化率与导数教案

变化率与导数教案一、教学目标:1.理解变化率的概念,知道变化率可以用来描述函数在一些点的瞬时变化。

2.掌握求函数在一些点的瞬时变化率的方法,可以利用导数求变化率。

3.理解导数的概念,认识导数是函数变化率的极限。

4.掌握求函数导数的方法,可以通过“导函数”公式或者导数的定义求函数的导数。

5.掌握利用导数求函数的极值、切线以及函数的增减性。

二、教学重难点:1.掌握求函数在一些点的瞬时变化率的方法,可以利用导数求变化率。

2.掌握求函数导数的方法,可以通过“导函数”公式或者导数的定义求函数的导数。

3.掌握利用导数求函数的极值、切线以及函数的增减性。

三、教学准备:1.教学课件、电子白板2.笔记本电脑、投影仪3.相关教学素材:函数的图像、求导公式。

四、教学过程:步骤一:导入与引入1.导入:通过呈现一个问题引入本节课的主题:“小明骑自行车从家到学校的距离是10公里,他用了1小时到达。

那么,小明在哪个位置的时候速度最快?”引导学生思考问题。

2.引入:让学生想一想在一小时内的任何时刻骑车的速度都是一样的吗?为什么?引导学生思考速度是如何变化的。

这种速度的变化可以用什么来描述?步骤二:引导学生理解变化率1.提问:让学生思考如果小明家到学校的距离是20公里,他用了1小时到达,那么小明在哪个位置的时候速度最快?在哪个位置的时候速度最慢?2.学生合作讨论,教师介绍:引导学生思考速度变化率的概念,说明速度变化率可以反映速度的变化情况。

如果速度变化率是正值,说明速度在增加;如果速度变化率是负值,说明速度在减小;如果速度变化率是零,说明速度保持不变。

3.举例说明:通过一个具体的例子,如小明每隔10分钟记录下自行车的位置,并计算出速度变化率。

通过计算结果展示速度是如何变化的。

步骤三:引导学生理解导数1.导入:提问学生,是否可以通过计算出速度变化率来确定速度在一些位置的变化情况?2.导入定义:引导学生理解导数的概念,导数是函数的变化率的极限。

第一课时变化率与导数教案

第一课时变化率与导数教案

第一课时 变化率与导数、导数的计算一、学习目标:1、变化率与导数① 了解导数概念的实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等)② 掌握函数在一点处的导数的定义和导数的几何意义,会在已知切点的情况下求切线方程;③理解导函数的概念;2、导数的运算 ①能根据导数定义求函数xy x y x y C y 1,,,2====的导数 ②能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二、自学探究1、自学课本P73—78(1)通过问题2了解平均变化率和顺势变化率的关系,如何由平均变化率得到瞬时变化率?(2)函数的瞬时变化率与导数是怎样定义的?导数与瞬时变化率的关系是怎样的?(3)导数有什么几何意义?2、自学课本P81—84(1)你能根据导数定义求一些简单函数如xy x y x y C y 1,,,2====的导数吗? 如何理解例题中的x ∆?(2)求导数的方法:八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x = )('x e = , )('x a = )(ln 'x = , )(log 'x a =(3)导数的四则运算)('±v u = ])(['x Cf = )('uv = ,)('vu = )0(≠v 三、分层训练(一)必做题1.设函数f (x )在x =x 0处的瞬时变化率也叫函数f (x )在x =x 0的 ,0lim →h hx f h x f )()(00-+与x 0,h 的关系是 仅与 有关而与 无关 。

2.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873741234-+-=,那么速度为零的时刻是 秒末。

3.已知)1()('23f x x x f +=, 则=)2('f 。

高中数学选修2-21.1.1 变化率与导数学案

高中数学选修2-21.1.1 变化率与导数学案

§1.1 变化率与导数学案§1.1.1 变化率问题学习目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.教学重点:平均变化率的概念、函数在某点处附近的平均变化率.教学难点:平均变化率的概念.教学过程:一、学习背景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课学习(一)问题提出问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V从0增加到1时,气球半径增加了气球的平均膨胀率为(2)当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出:思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算: 5.00≤≤t 和21≤≤t 的平均速度探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆)则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考: 观察函数)(x f 的图象平均变化率=∆∆xf1212)()(x x x f x f --表示什么?三、典例分析例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. [解析]:例2 求2x y =在0x x =附近的平均变化率.[解析]:四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率. 3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线, 求出当1.0=∆x 时割线的斜率. 五、课堂反馈1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 5. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )A 在10≤≤t 这段时间里,平均速度是s m /6.1B 在49650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 10.甲、乙两人跑步路程与时间关系以及百米赛跑路程与时间关系分别如图(1)(2)所示,试问:(1)甲、乙两人哪一个跑得较快?(2)甲、乙两人百米赛跑,问接近终点时,谁跑得较快?11.一水库的蓄水量与时间关系如图所示,试指出哪一段时间(以两个月计)蓄水效果最好?哪一段时间蓄水效果最差?12.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04t t t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆t§1.1.2 导数的概念学习目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数. 教学重点:瞬时速度、瞬时变化率的概念、导数的概念. 教学难点:导数的概念. 学习过程: 一、创设情景 (一)平均变化率: (二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:二、学习新知 1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势? 结论: 小结:2.导数的概念 从函数)(x f y =在0x x =处的瞬时变化率是:0000()()lim lim x x f x x f x f xx ∆→∆→+∆-∆=∆∆我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或'|x x y =即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()limx x f x f x f x x x →-'=-.三、典例分析例1 (1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求xy ∆∆,最后求x yx ∆∆→∆0lim .[解析]: (1)(2)例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C o )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.[解析]:注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线3)(x x f y ==在1x =时的导数. 3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、课堂反馈1.自变量由0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( )A 在区间],[10x x 上的平均变化率B 在0x 处的变化率C 在1x 处的变化率D 在区间],[10x x 上的导数2.下列各式中正确的是( )Ax x f x x f y x x x ∆-∆-=→∆=)()(|000'lim 0 B x x f x x f x f x ∆∆-∆-=→∆)()()(000'lim Cx x f x x f y x x x ∆+∆+=→∆=)()(|000'lim 0 D x x x f x f x f x ∆∆--=→∆)()()(0000'lim3.设4)(+=ax x f ,若2)1('=f ,则a 的值( ) A 2 B . -2C 3D -34.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( )A 0B 3C -2D t 23-5.函数xx y 1+=, 在1=x 处的导数是6.13-=x y ,当2=x 时 ,=∆∆→∆xyx lim 07.设圆的面积为A ,半径为r ,求面积A 关于半径r 的变化率。

变化率与导数教案

变化率与导数教案

变化率与导数教案教案标题:变化率与导数教案教案目标:1. 了解变化率的概念和意义;2. 理解导数的定义和计算方法;3. 掌握使用导数求函数在某一点的变化率;4. 能够应用变化率和导数解决实际问题。

教案内容和步骤:一、引入(5分钟)1. 激发学生学习本课内容的兴趣,例如,介绍一些实际应用中变化率的重要性和意义。

2. 提问引导学生思考:什么是变化率?我们可以如何计算它?二、理论讲解(15分钟)1. 介绍变化率的定义:变化率是指函数在某一点的增长速度或减少速度。

2. 解释变化率的计算方法:计算函数在两个点间的斜率,或者通过求函数的导数。

3. 引入导数的概念:导数是函数在某一点的变化率。

介绍导数的符号表示和几何意义。

4. 讲解导数的计算方法:通过限定增量趋近于零的极限来计算导数。

三、例题演练(15分钟)1. 给出一个函数,要求学生计算其一些特定点上的导数。

2. 指导学生使用限定增量计算导数的方法,理解导数的物理意义。

3. 利用导数计算函数在某一点的变化率,并解释其意义。

四、综合应用(15分钟)1. 提供一些实际问题,要求学生应用导数和变化率的概念解决问题。

2. 通过问题的解答,巩固学生对导数和变化率的理解。

五、拓展延伸(10分钟)1. 引导同学思考:导数和变化率是否总是有意义的?有什么例外情况?2. 讲解导数在图像上的几何意义:导数表示函数图像的切线斜率。

3. 鼓励学生通过阅读相关书籍或课外资料,深入了解导数的应用领域。

六、总结与评价(5分钟)1. 总结本节课的重点内容,强调变化率与导数的关系和应用。

2. 提醒学生复习导数计算的方法和应用技巧。

3. 鼓励学生提出问题和困惑,并对本节课的教学进行评价。

备注:根据实际教学情况,上述步骤的时间可以适当调整。

同时,可以在教案中加入多媒体教学资源、互动讨论等教育工具,以提高学生的参与度和理解能力。

高中数学变化率与导数 学案(新人教A版选修1-1)

高中数学变化率与导数 学案(新人教A版选修1-1)

1.1.1变化率问题学案【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。

【学习重点】通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;1. 掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法; 【学习难点】平均变化率的概念.【自学点拨】一.阅读章引言,并思考章引言写了几层意思? 二、问题提出问题1气球膨胀率问题:气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________. 如果将半径r 表示为体积V 的函数,那么___________. ⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________. 问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度. 思考计算:5.00≤≤t 和21≤≤t 的平均速度 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以___________., 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xf x y ___________. 思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f --表示什么? (1) 一起讨论、分析,得出结果;(2) 计算平均变化率的步骤:①求自变量的增量Δx=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1);③求平均变化率2121()()f x f x fx x x -∆=∆-. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘; ②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1;三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:例2. 求2x y =在0x x =附近的平均变化率。

《变化率与导数综合》学案1(北师大版选修2-2)

《变化率与导数综合》学案1(北师大版选修2-2)

变化率与导数变化率问题学习目标 1.理解函数的增量的概念2.理解函数的增量与自变量的增量的比的极限的具体意义学习重点函数的增量瞬时速度、切线的斜率、边际成本学习难点极限思想教学过程一、导入新课1.瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少?析:大家知道,自由落体的运动公式是(其中g是重力加速度).当时间增量很小时,从3秒到(3+)秒这段时间内,小球下落的快慢变化不大.因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+)秒这段时间内位移的增量:从而,.从上式可以看出,越小,越接近29.4米/秒;当无限趋近于0时,无限趋近于29.4米/秒.此时我们说,当趋向于0时,的极限是29.4.当趋向于0时,平均速度的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s=s(t),则物体在t到(t+)这段时间内的平均速度为.如果无限趋近于0时,无限趋近于某个常数a,就说当趋向于0时,的极限为a,这时a就是物体在时刻t的瞬时速度.2.切线的斜率问题2:P(1,1)是曲线上的一点,Q是曲线上点P附近的一个点,当点Q沿曲线逐渐向点P趋近时割线PQ的斜率的变化情况.析:设点Q的横坐标为1+,则点Q的纵坐标为(1+)2,点Q对于点P的纵坐标的增量(即函数的增量),所以,割线PQ的斜率.由此可知,当点Q沿曲线逐渐向点P接近时,变得越来越小,越来越接近2;当点Q无限接近于点P时,即无限趋近于0时,无限趋近于2.这表明,割线PQ无限趋近于过点P且斜率为2的直线.我们把这条直线叫做曲线在点P 处的切线.由点斜式,这条切线的方程为:.一般地,已知函数的图象是曲线C,P(),Q()是曲线C上的两点,当点Q沿曲线逐渐向点P接近时,割线PQ绕着点P转动.当点Q沿着曲线无限接近点P,即趋向于0时,如果割线PQ无限趋近于一个极限位置PT,那么直线PT叫做曲线在点P处的切线.此时,割线PQ的斜率无限趋近于切线PT的斜率k,也就是说,当趋向于0时,割线PQ的斜率的极限为k.3.边际成本问题3:设成本为C,产量为q,成本与产量的函数关系式为,我们来研究当q =50时,产量变化对成本的影响.在本问题中,成本的增量为:2)22=⨯∆+Cq-C∆+ =∆+∆.-=∆++C3(10)5010(3q)50300(3(qq)50()50产量变化对成本的影响可用:来刻划,越小,越接近300;当无限趋近于0时,无限趋近于300,我们就说当趋向于0时,的极限是300.我们把的极限300叫做当q=50时的边际成本.一般地,设C是成本,q是产量,成本与产量的函数关系式为C=C(q),当产量为时,产量变化对成本的影响可用增量比刻划.如果无限趋近于0时,无限趋近于常数A,经济学上称A为边际成本.它表明当产量为时,增加单位产量需付出成本A(这是实际付出成本的一个近似值).二、小结瞬时速度是平均速度当趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率当趋近于0时的极限;边际成本是平均成本当趋近于0时的极限.三、练习与作业:1.某物体的运动方程为(位移单位:m,时间单位:s)求它在t=2s时的速度.2.判断曲线在点P(1,2)处是否有切线,如果有,求出切线的方程.3.已知成本C与产量q的函数关系式为,求当产量q=80时的边际成本.4.一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为,求t=4s时此球在垂直方向的瞬时速度.5.判断曲线在(1,)处是否有切线,如果有,求出切线的方程.6.已知成本C与产量q的函数关系为,求当产量q=30时的边际成本.。

1.1变化率与导数导学案

1.1变化率与导数导学案
我 们称它为函数 在 出的导数 ,记作 或 ,即
3、利用导数的定义求导,步骤为:
第一步,求函数的增量 ;
第二步:求平均变化率 ;
第三步:取极限得导数 .
教师精选编制内容
针对目标训练(用时10-20分钟)
【针对训练】
1、质点运动动规律 ,则在时间 中,相应的平均速度为()
A. B.
C. D.
2、设函数 在 附近有定义,且有 ( 为常数)则
1.1变化率与导数
学生明确内容
学习目标
1、了解导数概念的实际背景;
2、会求函数在某一点附近的平均变化率;
3、会利用导数的定义求函数在某处的导数。
重点难点
教学重点:准确求解函数的平均变化率
教学难点:理解导数的概念以及求导数
易混淆知识点
教师编制内容
生成问题预习提纲
【自主学习】
1、平均变化率:_______________=_______
设 , 是数轴上的一个定点,在数轴 上另取一点 , 与 的差记为 ,即 =或者 =, 就表示从 到 的变化量或增量,相应地,函数的变化量或增量记为 ,即 =;如果它们的比值 ,则上式就表示为,此比值就称为平均变化率.
反思:所谓平均变化率也就是的增量与的增量的比值.
2.导数的概念
从函数 )在 处的瞬时变化率是:
A. 上的平均变化率为__
4、一质点运动规律是 (单位: (米) (秒)),则在 秒时的瞬时速度估计是__
5、函数 在 =1处的导数为__
师生共同完成内容
1、问题梳理2、归纳小结
1.平均变化率的概念
2.函数的瞬时变化率
3.函数在某点处的导数
学生自主完成
听课所得

高中数学选修1,1《变化率与导数》教案

高中数学选修1,1《变化率与导数》教案

高中数学选修1,1《变化率与导数》教案高中数学选修1-1《变化率与导数》教案【一】一、内容和内容解析本节内容选自课标实验教材人教A版,是导数的起始课,主要内容有变化率问题和导数的概念。

导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用。

在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值。

大纲教材中导数概念学习的起点是极限,这种建立概念的方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质理解。

课标教材则不介绍极限的形式化定义及相关知识,而是通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),这种直观形象的方法中蕴含了逼近的思想,这样定义导数的优点是:1.使学生将更多精力放在导数本质的理解上;2.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义.基于上述分析,本节课的教学重点是:丰富学生的感性经验,运用逼近的思想方法引导学生探索理解导数的思想及内涵。

二、目标和目标解析1.通过分析实例,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;2.通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会逼近的思想方法;3.经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。

通过概念的形成过程体会从特殊到一般的数学思想方法。

三、教学问题诊断分析1.吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键之一。

对于吹气球问题要用函数的观点分析变化过程中的自变量和函数值,自然地引导学生建立半径r关于体积V的函数关系式;在吹气过程中要注意观察或者想象,并把实际操作转化为相应的数学语言,比如当吹入差不多大小相同的一口气时,是指气球的体积的增量相同等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1 变化率与导数学案 §1.1.1 变化率问题导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V 从0增加到1时,气球半径增加了气球的平均膨胀率为(2)当V 从1增加到2时,气球半径增加了 气球的平均膨胀率为 可以看出:思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算: 5.00≤≤t 和21≤≤t 的平均速度探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念 1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆)则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 思考: 观察函数)(x f 的图象平均变化率=∆∆x f 1212)()(x x x f x f --表示什么?三、典例分析例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. 例2 求2x y =在0x x =附近的平均变化率.四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率.3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线,求出当1.0=∆x 时割线的斜率.五、课堂反馈1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+ 2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 5. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )A 在10≤≤t 这段时间里,平均速度是s m /6.1B 在49650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的 7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 10.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04t t t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆t§1.1.2 导数的概念探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: (1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况: 思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势?2.导数的概念 从函数)(x f y =在0x x=处的瞬时变化率是:0000()()limlim x x f x x f x fxx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y = 即0000()()()limx f x x f x f x x∆→+∆-'=∆说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()limx x f x f x f x x x →-'=-三、典例分析例1 (1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数.例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单 位:C)为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的义.课堂练习1.质点运动规律为32+=t s,求质点在3t =的瞬时速度为.2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.1.自变量由0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( )A 在区间],[10x x 上的平均变化率B 在0x 处的变化率C 在1x 处的变化率D 在区间],[10x x 上的导数2.下列各式中正确的是( )A x x f x x f y x x x ∆-∆-=→∆=)()(|000'lim 0B x x f x x f x f x ∆∆-∆-=→∆)()()(000'lim C x x f x x f y x x x ∆+∆+=→∆=)()(|000'lim0 D x x x f x f x f x ∆∆--=→∆)()()(0000'lim3.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A 2B . -2C 3D -34.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0 B 3C -2D t 23-5.函数xx y 1+=, 在1=x 处的导数是 6.13-=x y ,当2=x 时 ,=∆∆→∆x yx lim 07.设圆的面积为A ,半径为r ,求面积A 关于半径r 的变化率。

8.(1)已知)(x f 在0x x =处的导数为A ,求x x f x x f x ∆-∆-→∆)()(000lim 及x x f x x f x ∆-∆-→∆)()2(000lim 的值。

(2)若2)(0='x f ,求hh x f h x f h )()(000lim+--→的值.9.枪弹在枪筒中运动可以看作匀速运动,如果它的加速度是25/105s m a ⨯=,枪弹从枪口,射出的时间为s 3106.1-⨯,求枪弹射出枪口时的瞬时速度。

§1.1.3 导数的几何意义(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数)(x f y =在0x x =处的瞬时变化率,反映了函数)(x f y =在0x x =附近的变化情况,导数0()f x '的几何意义是什么呢?(一)曲线的切线及切线的斜率 如图,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点 00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现:问题: (1)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? (2)切线PT 的斜率k 为多少?说明: (1)设切线的倾斜角为α,那么当0→∆x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.(二)导数的几何意义函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率,即0000()()()limx f x x f x f x k x∆→+∆-'==∆说明: 求曲线在某点处的切线方程的基本步骤:①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.(三)导函数由函数)(x f y =在0x x =处求导数的过程可以看到,当0x x =时,0()f x '是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为)(x f 的导函数. 记作:()f x '或y ',即0()()()limx f x x f x f x y x∆→+∆-''==∆.注: 在不致发生混淆时,导函数也简称导数.(四)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的区别与联系(1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任意点x 而言的,就是函数)(x f 的导函数.(3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是求函数在点0x 处的导数的方法之一.三、典例分析例1 (1)求曲线1)(2+==x x f y 在点)2,1(P 处的切线方程.(2)求函数23x y =在点(1,3)处的导数.例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况.四、课堂练习1.求曲线3)(x x f y ==在点(1,1)处的切线.2.求曲线y =(4,2)处的切线.五、课堂反馈1.曲线2x y =在0=x 处的( )A 切线斜率为1B 切线方程为x y 2=C 没有切线D 切线方程为0=y 2.已知曲线22x y =上的一点A (2,8),则点A 处的切线斜率为( ) A 4 B 16 C 8 D 23.函数)(x f y =在0x x =处的导数)(0/x f 的几何意义是( ) A 在点0x x =处的函数值B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率D 点))(,(00x f x 与点(0,0)连线的斜率4.已知曲线3x y =上过点(2,8)的切线方程为01612=--ax x ,则实数a 的值为( )A -1B 1C -2D 2 5.若3)(0/-=x f ,则hh x f h x f h )3()(lim000--+→=________。

相关文档
最新文档