人教版数学七年级下册平行线的判定和性质练习题__非常经典的题型_值得给学生测试
七年级下数学《平行线的判定与性质》练习题 (24)
七年级下数学《平行线的判定与性质》练习题
1.下列正确的有()
①过一点有且只有一条直线与已知直线垂直.②过一点有且只有一条直线平行于已知直
线.③两条直线相交线若有3个角相等,那么这两条直线互相垂直.④同位角相等,两直线平行.
A.4个B.3个C.2个D.1个
【分析】根据垂直、平行线的判定和性质判断即可.
【解答】解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,是假命题.
②过直线外一点有且只有一条直线平行于已知直线,是假命题.
③两条直线相交线若有3个角相等,那么这两条直线互相垂直是真命题.
④同位角相等,两直线平行是真命题;
故选:C.
1。
人教版七年级数学下册平行线的判定同步练习题(含解析)
人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断AB CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∠CD,∠EAB=80°,ECD∠=︒,则∠E的度数是()110A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A .∠1=∠3B .∠2+∠3=180°C .∠1=∠4D .∠1+∠4=180° 4.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( )A .∠3=∠4B .∠D =∠DCEC .∠D +∠ACD =180° D .∠1=∠25.如图,下面条件不能判断EF AC ∥的是( )A .12∠=∠B .13180∠+∠=︒C .4C ∠=∠D .3180C ∠+∠=︒ 6.如图,要使AD BC ∥,则需要添加的条件是( )A .A CBE ∠=∠B .AC ∠=∠ C .C CBE∠=∠ D .180A D ︒∠+∠=二、填空题7.如图,请你添加一个条件________,使AB ∠CD .8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a ∠b (已知) ,所以∠1=_____(两直线平行,内错角相等) .9.如图所示,在下列条件中,不能判断12l l //的有___________.∠.13∠=∠ ∠.23∠∠= ∠.45180∠+∠=︒ ∠.24180∠+∠=︒10.a 、b 、c 是直线,且a ∠b ,b ∠c ,则a 与c 的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a ∠b .三、解答题12.如图,在∠ABC 中,AD 是BC 边上的中线,F ,E 分别是AD 及其延长线上的点.(1)如果CF //BE ,说明:∠BDE ∠∠CDF ;(2)若CF ,BE 是∠ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F ,请猜想BF 与CE 的位置关系?并说明理由.13.如图,点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF .有下列三个条件:∠AC =DF ,∠∠ABC =∠DEF ,∠∠ACB =∠DFE .(1)请在上述三个条件中选取一个条件,使得∠ABC ∠∠DEF .你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定∠ABC ∠∠DEF 的依据是______(填“SSS ”或“SAS ”或“ASA ”或“AAS ”);(2)利用(1)的结论∠ABC ∠∠DEF .求证:AB∥DE .14.下列推理是否正确?为什么?(1)如图,∠12∠=∠,∠12l l ;(2)如图,∠45180∠+∠=︒,∠34l l ∥;(3)如图,∠24∠∠=,∠34l l ∥;(4)如图,∠36180∠+∠=︒,∠12l l .15.如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.16.如图,已知∠ABC ∠∠DEF ,∠A =85°,∠B =60°,AB =8,EH =2(1)求角F 的度数与DH 的长;(2)求证:AB DE ∥.17.如图,在四边形ABCD 中,,,A C B D AB ∠=∠∠=∠与CD 有怎样的位置关系?为什么?BC 与AD 呢?18.已知:如图,BE 平分∠ABC ,∠1=∠2.求证:BC //DE .19.请补全证明过程及推理依据.已知:如图,BC //ED ,BD 平分∠ABC ,EF 平分∥AED .求证:BD ∠EF .证明:∠BD平分∥ABC,EF平分∥AED,∠∠1=12∥AED,∠2=12∥ABC(______________)∠BC∠ED(________)∠∥AED=________(________________)∠12∥AED=12∥ABC∠∠1=________∠BD∠EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A 无法判断AB CD ,故A 不符合题意;B.由∠1=∠2能判断AB CD ∥,故B 符合题意;C.由∠D =∠DCE 可以判断AC BD ∥,不能判断AB CD ∥,故C 不符合题意;D.∠D +∠ACD =180°可以判断AC BD ∥,不能判断AB CD ∥,故D 不符合题意. 故选:B .【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键. 2.A【分析】过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.【详解】解:如图,过点E 作//EF AB ,80EAB ∠=︒,180100A E B E A F ∠=︒-=∴∠︒,//AB CD ,//CD EF ∴,180CEF ECD ∴∠+∠=︒,110ECD ∠=︒,18070CEF ECD ∴∠=︒-∠=︒,1007030AEC AEF CEF ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:13,a b ∥(同位角相等,两直线平行),故A 不符合题意; ∠2+∠3=180°,a b ∥(同旁内角互补,两直线平行)故B 不符合题意;4=3,1=4,13,a b ∥(同位角相等,两直线平行)故C 不符合题意;∠1+∠4=180°,1,4∠∠不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定,a b ∥ 故D 符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A 、由∠3=∠4,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;B 、由∠D =∠DCE ,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;C 、由∠D +∠ACD =180°,可以利用内错角相等,两直线平行得到BD AC ∥,不能得到AB CD ∥,不符合题意;D 、由∠1=∠2,可以利用内错角相等,两直线平行得到得到AB CD ∥,符合题意; 故选D .【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A 、由∠1=∠2,可以判断EF AC ∥(内错角相等,两直线平行),故此选项不符合题意;B 、由∠1+∠3=180°,可以判断∥DE BC (同旁内角互补,两直线平行),不能判断EF AC ∥,故此选项符合题意;C 、由4C ∠=∠,可以判断EF AC ∥(同位角相等,两直线平行),故此选项不符合题意;D 、由3180C ∠+∠=︒,可以判断EF AC ∥(同旁内角互补,两直线平行),故此选项不符合题意;故选B .【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键. 6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A .∠∠A =∠CBE ,∠AD ∠BC ,符合题意;B .由∠A =∠C 无法得到AD ∠BC ,不符合题意;C .由∠C =∠CBE ,只能得到AB ∠CD ,无法得到AD ∠BC ,不符合题意;D .由∠A +∠D =180°,只能得到AB ∠CD ,无法得到AD ∠BC ,不符合题意;故选:A .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∠∠1=∠5,∠AB∠CD .故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8. 相等 ∠2【解析】略9.∠∠##∠∠【分析】根据平行线的判定进行解答即可得.【详解】解:∠∠13∠=∠,∠12//l l (内错角相等,两直线平行),说法正确,不符合题意;∠∠2∠和3∠既不是同位角,也不是内错角,∠不能根据23∠∠=判定12//l l ,说法错误,符合题意;∠∠45∠∠,为同位角,45180∠+∠=︒∠12l l ,不一定平行,符合题意;∠∠24180∠+∠=︒,∠12//l l (同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:∠∠.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定. 10.互相垂直【详解】且a ∠b ,b ∠c ,a ∠c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BF //CE ,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明∠BDE ∠∠CDF ; (2)先证CF //BE ,利用(1)中结论得△BDE ∠△CDF ,推出DF=DE ,利用SAS 证明△BDF ∠△CDE ,推出FBD ECD ﹦,利用内错角相等,两直线平行,可得BF //CE . (1)证明:∠CF //BE ,∠∠FCD ﹦∠EBD .∠AD 是BC 边上的中线,∠CD BD =.在△BDE 和△CDF 中,EBD FCD BD CDEDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠△BDE ∠△CDF ()ASA .(2)解:BF //CE .理由如下:如图,连接BF ,CE .∠ CF ∠AD 于F ,BE ∠AD 于E ,∠CF //BE .由(1)的结论可知△BDE ∠△CDF ,∠DF DE =.∠AD 是BC 边上的中线,∠BD =CD .在△BDF 和△CDE 中,DF DE BDF CDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∠△BDF ∠△CDE ()SAS .∠FBD ECD ∠=∠,∠BF //CE .【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键. 13.(1)∠,SSS(2)见解析【分析】(1)根据SSS 即可证明∠ABC ∠∆DEF ,即可解决问题;(2)根据全等三角形的性质可得可得∠A =∠EDF ,再根据平行线的判定即可解决问题. (1)解:在∠ABC 和∠DEF 中,AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩,∠∠ABC ∠∠DEF (SSS ),∠在上述三个条件中选取一个条件,使得∠ABC ∠∠DEF ,选取的条件为∠,判定∠ABC ∠∠DEF 的依据是SSS .(注意:只需选一个条件,多选不得分) 故答案为:∠,SSS ;(2)证明:∠∠ABC ∠∠DEF .∠∠A =∠EDF ,∠AB∥DE .【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)1,2∠∠是12,l l 被4l 所截形成的同位角,再利用同位角相等,两直线平行可判断; (2)4,5∠∠是12,l l 被3l 所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断; (3)2,4∠∠是34,l l 被2l 所截形成的内错角,再利用内错角相等,两直线平行可判断; (4)3,6∠∠是12,l l 被4l 所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“45180∠+∠=︒”只能推出“12//l l ”,推不出“34//l l ”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)53π 【分析】(1)先利用旋转的性质证明∠ABD 为等边三角形,则可证60DAB ︒∠=,即,CBE DAB ∠=∠再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:,60ABC DBE ABD CBE ︒∆≅∆∠=∠=,AB BD ABD ∴=∴∆是等边三角形所以60DAB ︒∠=,CBE DAB ∴∠=∠∠//BC AD ;(2)依题意得:AB=BD=4,BC=BE=1,所以A ,C 两点经过的路径长之和为60460151801803πππ⨯⨯+=. 【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB ,根据全等三角形的性质得出AB =DE ,∠F =∠ACB ,即可得出答案;(2)根据全等三角形的性质得出∠B =∠DEF ,再根据平行线的判定即可证得结论. (1)解:∠∠A =85°,∠B =60°,∠∠ACB =180°-∠A -∠B =180°-85°-60°=35°,∠∠ABC ∠∠DEF ,AB =8,∠∠F =∠ACB =35°,DE =AB =8,∠EH =2,∠DH =DE -EH =8-2=6;(2)证明:∠∠ABC ∠∠DEF ,∠∠B =∠DEF ,∠AB DE ∥.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB =DE ,∠B =∠DEF ,∠ACB =∠F ,注意:全等三角形的对应边相等,对应角相等.17.//,//AB CD BC AD ,见解析【分析】四边形ABCD 内角和360°,即360A B C D ︒∠+∠+∠+∠=,因为C A B D ∠=∠∠=∠、,所以180A D ︒∠+∠=,所以//AB CD ,同理//BC AD . 【详解】四边形ABCD 内角和360°∴360A B C D ︒∠+∠+∠+∠=C A BD ∠=∠∠=∠、∴180A D ︒∠+∠=∴//AB CD同理可得://BC AD∴////AB CD BC AD ,【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE 平分∠ABC ,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∠BE 平分∠ABC ,∠∠1=∠3,∠∠1=∠2,∠∠2=∠3,∠BC //DE .【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC ;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=12∥AED ,∠2=12∠ABC ,根据平行线的性质定理得出∠AED =∠ABC ,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∠BD 平分∠ABC ,EF 平分∠AED , ∠∠1=12∥AED ,∠2=12∠ABC (角平分线的定义)∠BC ∠ED (已知)∠∠AED =∠ABC (两直线平行,同位角相等)∠12∠AED=12∠ABC∠∠1=∠2∠BD∠EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.。
七年级数学下册第五章相交线与平行线专题一平行线的判定与性质作业新版新人教版
解:(1)直线EF与GH的位置关系是平行,理由如下:过点C向右侧作CD∥EF, ∴∠CAE=∠ACD,∵∠ACB=∠ACD+∠BCD=80°,∠CAE+∠CBG= 80°.∴∠BCD=∠CBG,∴CD∥GH,∴EF∥GH
(2)∠APB的大小不会随着点B的运动而发生变化,理由如下:由(1)知∠ACB= ∠CAE+∠CBG=80°,同理∠APB=∠PAF+∠PBH,∠PAF=180°-∠CAE -∠CAP,∠PBH=180°-∠CBG-∠CBP,∵∠CAP=2∠CAE,∠CBP= 2∠CBG,∴∠APB=360°-3(∠CAE+∠CBG)=120°,即∠APB大小为定值 120°
2
类型3 与平行线有关的探究问题 14.如图①,已知∠ACB=80°,点A在直线EF上,点B在直线GH上,且 ∠CAE+∠CBG=80°. (1)试判断直线EF与GH的位置关系,并说明理由; (2)如图②,若点B在直线GH上运动,作∠CAP=2∠CAE,作∠CBP= 2∠CBG,试判断∠APB的大小是否会随着点B的运动而发生变化?若不变,求出 ∠APB的大小;若变化,请说明理由.
专题(一) 平行线的判定与性质
类型1 利用平行线的性质求角度 题组1 直接利用平行线的性质与判定求角度 1.(教材P24习题T13(1)变式)如图,AB∥CD,BC∥DE,∠B=72°,则∠D =( C ) A.36° B.72° C.108° D.120°
Байду номын сангаас
2.(教材P23T7(2)变式)(广元中考改)如图,a∥b,M,N分别在a,b上,P为两平 行线间一点,那么∠1+∠2+∠3= __3_6_0_°___.
12.已知:如图,∠1=∠2,∠A=∠F.求证:∠C=∠D.
证明:∵∠1=∠2,∠1=∠3, ∴∠2=∠3,∴BF∥AE,∴∠F=∠AED, 又∵∠A=∠F, ∴∠A=∠AED,∴AC∥DF,∴∠C=∠D
人教版初中数学七年级下册第五章《平行线的性质与判定》同步练习(含答案)
《平行线的判定与性质》同步练习一、选择题(每小题只有一个正确答案)1.在同一平面内,两条直线可能的位置关系是 ( )A. 平行B. 相交C. 相交或平行D. 垂直2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A. 第一次向左拐30°,第二次向右拐30°B. 第一次向右拐50°,第二次向左拐130°C. 第一次向左拐50°,第二次向右拐130°D. 第一次向左拐50°,第二次向左拐1303.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A. ∠1=∠2B. ∠2=∠3C. ∠1=∠4D. ∠2+∠5=180°4.如图,点F,E分别在线段AB和CD上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠45.如图,图中给出了过直线外一点作已知直线的平行线的方法,其依据的是()A. 同位角相等,两直线平行B. 同旁内角互补,两直线平行C. 内错角相等,两直线平行D. 同平行于一条直线的两直线平行6.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为()A. 70°B. 86°C. 70°或86°D. 30°或38°7.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B 两岛的视角∠ACB等于( )A. 90°B. 80°C. 70°D. 60°8.如图,直线EF 分别与直线AB ,CD 相交于点G ,H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3等于( )A. 60°B. 65°C. 70°D. 130°9.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 其中,正确的个数有() A. 1 B. 2 C. 3 D. 410.如图,AB EF ,90C ∠=︒,则α、β、γ的关系为().A. βαγ=+B. 180αβγ++=︒C. 90βγα+-=︒D. 90αβγ+-=︒不存在二、填空题11.如图,要使AD∥BF,则需要添加的条件是_______________(写一个即可)12.同一平面内有四条直线,,,a b c d ,若a ∥b ,a ⊥c ,b ⊥d ,则直线,c d 的位置关系_________.13.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=____________.14.如图,ABCD 为一长条形纸带,//AB CD ,将ABCD 沿EF 折叠,A 、D 两点分别与'A 、'D 对应.若150∠=︒,则2∠=_____.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23°,那么∠2=__°.三、解答题16.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.17.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.(1)求证:AB∥CD;(2)求∠2的度数.18.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请完善说明过程,并在括号内填上相应依据.解:∵AD∥BC ( ) ,∴∠1=∠3 ( ),∵∠1=∠2(已知),∴∠2=∠3 ( ),∴____∥____ ( ),∴∠3+∠4=180°( ) .19.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,∠ACB=40°,∠BAC=70°,延长BA至点E.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.参考答案1.C2.A3.A4.B5.A6.D7.A8.B9.A10.D 11.∠ADC=∠DCF12.c∥d13.60°14.65°16.证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.17.(1)证明:∵AC平分∠DAB,∴∠BAC=∠DAC=12∠DAB=12×70°=35°,又∵∠1=35°,∴∠1=∠BAC,∴AB∥CD;(2)∵AB∥CD,∴∠2=∠DAB=70°.18.解:∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等),∵∠1=∠2,∴∠2=∠3(等量代换),∴BE∥DF(同位角相等,两直线平行),∴∠3+∠4=180°(两直线平行,同旁内角互补).19.解:(1)AD与BC平行.∵CA平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°,∴AD∥BC.(2)由(1)知,AD∥BC,∴∠DAC=∠ACB=40°,∴∠EAD=∠180°-∠BAC-∠DAC=180°-70°-40°=70°.。
人教版七年级数学平行线的性质与判定的证明练习题附答案
平行线的性质与判定的证明练习题温故而知新可以为师以:重点1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解.换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)证明:因为∠AGD=∠ACB,所以DG∥BC,所以∠1=∠DCB,又因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠2=∠DCB,所以∠1=∠2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE) 答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C 应为多少度?解析:动画过点B作BD∥AE,答案:解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°,∴∠2=30°,∴∠C=180°-30°=150°.小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°. 答案:B.2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.解析:解:∵AB∥EF∥CD,∴∠B=∠BEF,∠DEF=∠D.∵∠B+∠BED+∠D=192°,即∠B+∠BEF+∠DEF+∠D=192°,∴2(∠B+∠D)=192°,即∠B+∠D=96°.∵∠B-∠D=24°,∴∠B=60°,即∠BEF=60°.∵EG平分∠BEF,∴∠GEF=12∠BEF=30°.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.解析:标注AB∥EF,BC∥ED答案:证明:∵AB∥EF,∴∠E=∠AGD.∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.解析:标注AB∥CD,∠1=∠2答案:方法一:(标注CF∥BE)解:需添加的条件为CF∥BE ,理由:∵AB∥CD,2l ,且3l 两点,连接PC 、PD 、∠3之间的关系,并说明理由。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
人教版数学七年级下册平行线的判定和性质练习题__非常经典的题型_值得给学生测试
(第1页,共3页)一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ) 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ.[二]、平行线的性质 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个.A CB 4 1 2 3 5 图4 a b c d 1 2 3 图3 A BC ED 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3A F C DB E图8E BAF D C 图91 32 A E CD B F图10 F 2A B C D Q E1 PM N 图11A D CB O 图5 图6 5 1 24 3 l 1 l 2 图75 4 3 2 1 A D C B 图1 2 4 3 1 A B C D E 1 2 AB DC E F 图2 1 2 3 4 5 A B C DF E 图3 1 2 A B C D E F图4 图51 A B C DE F G H 图7 1 2 D A C B l 1l 2 图8 1 A B F C D E G 图6 C D F E B A(第2页,共3页)二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB∥CD; (2)∠2 +∠3 = 90°. 三.填空题:1.如图③ ∵∠1=∠2,∴_______∥________( )。
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。
人教版七年级下册数学第五章平行线的性质与判定的证明-练习题及答
∵∠B-∠D=24°,
∴∠B=60°,
即∠BEF=60°.
∵EG平分∠BEF,
∴∠GEF= ∠BEF=30°.
3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.
求证:∠B=∠E.
解析:标注AB∥EF,BC∥ED
答案:证明:∵AB∥EF,
∴∠E=∠AGD.
∵BC∥ED,
平行线的性质与判定的证明
练习题
温故而知新可以为师以:
重点1.平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
2.平行线的判定
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行互补.
例1已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;
由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)
答案:证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠1=∠ABC,∠2=∠CDE.
∵∠BCD=∠1+∠2,
∴∠ABC+∠CDE=∠BCD;
(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.
(标注∠ABC+∠1=180°,∠2+∠CDE=180°)
答案:∠ABC+∠BCD+∠CDE=360°.
证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
七年级数学下册平行线的性质与判定配套练习新人教版.doc
平行线的性质与判定一、选择题1、两条直线被第三条直线所截,那么内错角Z间的大小关系是().A、相等B、互补C、不相等D、无法确定2、如右图所示:若m〃n, Zl=105°,则Z2二()A、55°B、60°C、65°D、75°3、两条平行线被第三条直线所截,则()A、一对内错角的平分线互相平行C、一对对顶角的平分线互相平行DE//BC,图中相等的角共有()4、如有图所示:BE平分ZABC,A、 3对B、4对C、5对D、6对5、下列条件中,不能判断直线1丨〃1 2的是()A. Z 1 =Z 3B.Z4=Z5C. Z 2 +Z4 =180°D. Z 2 =Z 36、如图,AB〃CD〃EF, AF〃CG,则图中与ZA(不包括ZA)相等的角冇(7、如图,能判断直线AB〃CD的条件是(C2A、Z1=Z2 C、Z1 + Z3二180B、Z3=Z4D、Z3+Z4二1808、直线乩b都与直线c相交,给出下列条件:①Z1 = Z2;②Z3=Z6;③Z4+Z7=180°;④Z5+Z8=180°。
其中能判断日〃b的条件是()A、①②B、②④C、①③④D、①②③④二、填空题9、如图3, BC 平分ZDBA, Z1=Z2,因为BC平分ZDBA,所以____________所以Z2二______ ,所以AB〃_____ 。
D C图3I。
、两个角的两边两两互相平行,且-个角的+等于另-个角的扌,则这两个角的度数分别是。
11、已知DE〃B.C, DF、BE 分别平分ZADE 和ZABC求证:ZFDE=ZDEB证明:・・・DE〃BC・•・ ZADE二_ ( __________________________ ) TDF、BE 平分ZADE、ZABC・・・ZADF二丄2 -----------・・・ZABE二丄( )2 ----------- ---------------------------------------- ・・・ZADF二ZABE・・・// ______ ( ____________________________ ) ZFDE^.Z _____ ( ___________________________ )A 图412、AB〃EF, BC〃DE,则ZE+ZB 的度数为__________13、如图⑤,已知d//b,若Z1=5O\则Z2= ______________c图⑤b若Z3=100\ 则Z2= _________14、已知AB〃CD,直线EF 分别交AB, CD 于E,F,EG 平分ZBEF,若Z1 二72° ,则Z2二五.解答题。
人教版七年级下数学 小专题 平行线的性质与判定(含解析)
小专题(一)平行线的性质与判定1.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2( ).∵∠1=∠2,∴∠DCB=∠1( ).∴GD∥CB( ).∴∠3=∠ACB( ).2.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.(蓟县期中)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.6.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.7.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°,求∠ACF的度数.9.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.10.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.12.(萧山区月考)如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD 之间的关系,不必写理由.小专题(一)平行线的性质与判定1.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等).∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).2.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.解:∠B=∠C.理由:∵AD平分∠EAC,∴∠EAD=∠DAC.∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∴∠B=∠C.3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.证明:∵AD∥BE,∴∠A=∠EBC.∵∠A=∠E,∴∠EBC=∠E.∴DE∥AB.∴∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.证明:∵AD ∥EF , ∴∠1=∠BAD. ∵∠1=∠2, ∴∠BAD =∠2. ∴AB ∥DG .5.(蓟县期中)已知:如图,∠1+∠2=180°,∠3=100°,OK 平分∠DOH ,求∠KOH 的度数.解:∵∠1+∠2=180°,∴AB ∥CD.∴∠GOD =∠3=100°.∴∠DOH =180°-∠GOD =180°-100°=80°. 又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =12×80°=40°.6.如图,已知AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线,CM ⊥CN ,求∠BCM 的度数.解:∵AB ∥CD , ∴∠BCE +∠B =180°. ∵∠B =40°,∴∠BCE =180°-40°=140°. ∵CN 是∠BCE 的平分线,∴∠BCN =12∠BCE =12×140°=70°.∵CM ⊥CN ,∴∠BCM =90°-70°=20°.7.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠1+∠GED=180°,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°,∠2=110°.8.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°,求∠ACF的度数.解:∵AD∥BC,∴∠ACB+∠DAC=180°.又∵∠DAC=130°,∴∠ACB=50°.∵EF∥AD,AD∥BC,∴EF∥BC.∴∠BCE=∠FEC=15°.又∵CE平分∠BCF,∴∠BCF=2∠BCE=30°.∴∠ACF=∠ACB-∠BCF=20°.9.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.解:AD平分∠BAC.理由:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴∠3=∠2,∠E=∠1.∵∠3=∠E,∴∠1=∠2,即AD平分∠BAC.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.解:AB∥DE.理由:过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.如图,直线l1,l2均被直线l3,l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.解:已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF 的度数;(2)若已知直线AB ∥CD ,求∠P 的度数. 解:(1)∵∠AEF =66°,∴∠BEF =180°-∠AEF =180°-66°=114°. 又∵EP 平分∠BEF ,∴∠PEF =∠PEB =12∠BEF =57°.(2)过点P 作PQ ∥AB. ∴∠EPQ =∠PEB =57°. ∵AB ∥CD ,∴PQ ∥CD ,∠DFE =∠AEF =66°. ∴∠FPQ =∠PFO. ∵FP 平分∠DFE , ∴∠PFD =12∠DFE =33°.∴∠FPQ =33°.∴∠EPF =∠EPQ +∠FPQ =57°+33°=90°.13.(萧山区月考)如图,已知直线l 1∥l 2,直线l 3和直线l 1,l 2交于点C 和D ,直线l 3上有一点P.(1)如图1,若P 点在C ,D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化,并说明理由; (2)若点P 在C ,D 两点的外侧运动时(P 点与点C ,D 不重合,如图2和3),试直接写出∠PAC ,∠APB ,∠PBD 之间的关系,不必写理由.解:(1)当P 点在C ,D 之间运动时, ∠APB =∠PAC +∠PBD. 理由:过点P 作PE ∥l 1, ∵l 1∥l 2,∴PE ∥l 2∥l 1.∴∠PAC =∠APE ,∠PBD =∠BPE.∴∠APB =∠APE +∠BPE =∠PAC +∠PBD.(2)当点P 在C ,D 两点的外侧运动时,在l 2下方时,则∠PAC =∠PBD +∠APB ; 在l 1上方时,则∠PBD =∠PAC +∠APB.。
完整版)平行线的判定和性质经典题
完整版)平行线的判定和性质经典题平行线的判定和性质经典题一、选择题(共18小题)1.同位角共有()。
A。
6对B。
8对C。
1对D。
12对2.将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()。
A。
平行B。
垂直C。
平行或垂直D。
无法确定3.下列说法中正确的个数为()。
①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A。
1个B。
2个C。
3个D。
4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()。
A。
平行B。
垂直C。
平行或垂直D。
无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()。
A。
150°和110°B。
140°和100°C。
110°和70°D。
7°和30°6.XXX所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠XXX等于()。
A。
4°B。
5°C。
6°D。
不能确定7.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()。
A。
1°B。
2°C。
3°D。
15°8.下列所示的四个图形中,∠1和∠2是同位角的是()。
①②③④A。
②③B。
①②C。
①④D。
②④9.已知∠AOB=40°,∠XXX的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()。
A。
5°B。
130°C。
5°或130°D。
100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()。
【初中数学】人教版七年级下册专题训练(一)平行线的判定与性质(练习题)
人教版七年级下册专题训练(一)平行线的判定与性质(147)1.如图,∠1=∠2=40∘,MN平分∠EMB,则∠3=∘.2.如图所示,一束平行光线AB与DE射向一水平镜面后被反射,此时∠1=∠2,∠3=∠4,则反射光线BC与EF的位置关系是怎样的?3.如图,已知∠ABC与∠ECB互补,∠1=∠2,∠P与∠Q一定相等吗?说说你的理由.4.已知:如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,试问:AD是∠BAC的平分线吗?若是,请说明理由.5.探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠APC与∠A,∠C的数量关系.(1)发现:在图①中,小明和小亮都发现:∠APC=∠A+∠C.小明是这样解答的:过点P在∠APC内部作PQ∥AB,∴∠APQ=∠A().∵PQ∥AB,AB∥CD,∴PQ∥CD(),∴∠CPQ=∠C,∴∠APQ+∠CPQ=∠A+∠C,即∠APC=∠A+∠C.小亮是这样解答的:过点P作PQ∥AB∥CD.∴∠APQ=∠A,∠CPQ=∠C,∴∠APQ+∠CPQ=∠A+∠C,即∠APC=∠A+∠C.请在上面解答过程中的横线上填写依据;两人的解答过程中,完全正确的是.(2)应用:在图②中,若∠A=120∘,∠C=140∘,则∠P的度数为;在图③中,若∠A=30∘,∠C=70∘,则∠P的度数为.(3)拓展:在图④中,探索∠P与∠A,∠C的数量关系,并说明理由.6.小红把一把直尺与一块直角三角板如图放置,测得∠1=48∘,则∠2的度数为()A.38∘B.42∘C.48∘D.52∘7.如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数为()A.140∘B.130∘C.120∘D.110∘8.如图,AB∥CD∥EF,若∠A=30∘,∠AFC=15∘,则∠C的度数为.9.如图,AE∥CF,∠A=∠C.(1)若∠1=35∘,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;10.如图,不能判定l1∥l2的条件是()A.∠1=∠3B.∠2+∠4=180∘C.∠4=∠5D.∠2=∠311.如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180∘;④∠BAD+∠ABC=180∘.其中能使直线AB∥CD成立的是.(填序号)12.如图,∠BAF=46∘,∠ACE=136∘,CE⊥CD.问CD∥AB吗?为什么?13.已知:如图,AD⊥BC,FG⊥BC,垂足分别为D,G,且∠ADE=∠CFG.试说明:DE∥AC.14.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42∘,则∠2等于()A.130∘B.138∘C.140∘D.142∘参考答案1.【答案】:110【解析】:∵∠2=∠MEN,∠1=∠2=40∘,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180∘.∵MN平分∠EMB,∴∠BMN=1×(180∘−40∘)=70∘,2∴∠3=180∘−70∘=110∘2.【答案】:BC∥EF.理由如下:∵AB∥DE,∴∠1=∠3.而∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF【解析】:BC∥EF.理由如下:∵AB∥DE,∴∠1=∠3.而∠1=∠2,∠3=∠4,∴∠2=∠4,∴BC∥EF3.【答案】:∠P=∠Q.理由:∵∠ABC与∠ECB互补(已知),∴AB∥ED(同旁内角互补,两直线平行),∴∠ABC=∠BCD(两直线平行,内错角相等) . ∵∠1=∠2(已知),∴∠ABC−∠1=∠BCD−∠2(等式的性质),即∠PBC=∠BCQ,∴PB∥CQ(内错角相等,两直线平行),∴∠P=∠Q(两直线平行,内错角相等)【解析】:∠P=∠Q.理由:∵∠ABC与∠ECB互补(已知),∴AB∥ED(同旁内角互补,两直线平行),∴∠ABC=∠BCD(两直线平行,内错角相等) .∵∠1=∠2(已知),∴∠ABC−∠1=∠BCD−∠2(等式的性质),即∠PBC=∠BCQ,∴PB∥CQ(内错角相等,两直线平行),∴∠P=∠Q(两直线平行,内错角相等)4.【答案】:是,理由如下:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90∘,∴AD∥EG,∴∠CAD=∠E,∠BAD=∠1.∵∠E=∠1,∴∠CAD=∠BAD,∴AD是∠BAC的平分线【解析】:是,理由如下:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90∘,∴AD∥EG,∴∠CAD=∠E,∠BAD=∠1.∵∠E=∠1,∴∠CAD=∠BAD,∴AD是∠BAC的平分线5(1)【答案】两直线平行,内错角相等;平行于同一直线的两直线平行;小明(2)【答案】100∘;40∘【解析】:应用:如图②,过点P作PE∥AB,∴∠APE+∠A=180∘,而∠A=120∘,∴∠APE=60∘.∵PE∥AB,AB∥CD,∴PE∥CD(平行于同一直线的两直线平行),∴∠CPE+∠C=180∘,而∠C=140∘,∴∠CPE=40∘,∴∠APC=∠APE+∠CPE=100∘.如图③,过点P作PF∥AB,∴∠APF=∠A.∵PF∥AB,AB∥CD,∴PF∥CD,∴∠CPF=∠C,∴∠CPF−∠APF=∠C−∠A,即∠APC=∠C−∠A=40∘.(3)【答案】∠P=∠A−∠C.理由:如图④,过点P作PG∥AB,∴∠APG+∠A=180∘,∴∠APG=180∘−∠A.∵PG∥AB,AB∥CD,∴PG∥CD(平行于同一直线的两直线平行),∴∠CPG+∠C=180∘,∴∠CPG=180∘−∠C,∴∠APC=∠CPG−∠APG=180∘−∠C−(180∘−∠A)=∠A−∠C.6.【答案】:B【解析】:如图,∵∠1=48∘,∴∠3=90∘−∠1=90∘−48∘=42∘.∵直尺的两边互相平行,∴∠2=∠3=42∘7.【答案】:B【解析】:过点C作CG∥AB,∴∠B=∠BCG=40∘.∵AB∥EF,∴EF∥CG,∴∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.∴∠BCD=∠BCG+∠GCD=40∘+90∘=130∘8.【答案】:15∘【解析】:∵AB∥EF,∴∠A=∠AFE=30∘,∴∠CFE=∠AFE−∠AFC=15∘.∵CD∥EF,∴∠C=∠CFE=15∘9(1)【答案】∵AE∥CF,∴∠BDC=∠1=35∘.又∵∠2+∠BDC=180∘,∴∠2=180∘−∠BDC=180∘−35∘=145∘(2)【答案】AD∥BC.理由:∵AE∥CF,∴∠A+∠ADC=180∘. 又∵∠A=∠C,∴∠C+∠ADC=180∘,∴AD∥BC10.【答案】:D【解析】:∵∠1=∠3,∴l1∥l2(内错角相等,两直线平行),故A选项正确;∵∠2+∠4=180∘,∴l1∥l2(同旁内角互补,两直线平行),故B选项正确;∵∠4=∠5,∴l1∥l2(同位角相等,两直线平行),故C选项正确;由∠2=∠3不能推断两直线平行,故选 D11.【答案】:②③12.【答案】:CD∥AB.理由:∵CE⊥CD,∴∠DCE=90∘. ∵∠ACE=136∘,∴∠ACD=360∘−∠ACE−∠DCE=360∘−136∘−90∘=134∘.∵∠BAF=46∘,∴∠BAC=180∘−∠BAF=180∘−46∘=134∘.∴∠ACD=∠BAC,∴CD∥AB【解析】:CD∥AB.理由:∵CE⊥CD,∴∠DCE=90∘.∵∠ACE=136∘,∴∠ACD=360∘−∠ACE−∠DCE=360∘−136∘−90∘=134∘. ∵∠BAF=46∘,∴∠BAC=180∘−∠BAF=180∘−46∘=134∘.∴∠ACD=∠BAC,∴CD∥AB13.【答案】:∵AD⊥BC,FG⊥BC,∴∠C+∠CFG=90∘,∠BDE+∠ADE=90∘.∵∠ADE=∠CFG,∴∠BDE=∠C,∴DE∥AC【解析】:∵AD⊥BC,FG⊥BC,∴∠C+∠CFG=90∘,∠BDE+∠ADE=90∘.∵∠ADE=∠CFG,∴∠BDE=∠C,∴DE∥AC14.【答案】:B【解析】:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90∘,∴AB∥CD,∴∠BPF=∠1=42∘,∴∠2=180∘−∠BPF=180∘−42∘=138∘。
2019-2020学年七年级下数学《平行线的判定与性质》练习题 (16)
2019-2020学年七年级下数学《平行线的判定与性质》练习题1.如图,已知BD⊥AC,EF⊥AC,点D,F是垂足,∠1=∠2,求证:∠ADG=∠C.
【分析】由BD与EF都与AC垂直,利用垂直于同一条直线的两直线平行得到BD与EF 平行,利用两直线平行同位角相等得到一对角相等,再由已知的一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BC平行,利用两直线平行同位角相等即可得证.
【解答】证明:∵BD⊥AC,EF⊥AC(已知),
∴∠3=∠4=90°(垂直的定义),
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等),
∵∠1=∠2(已知),
∴∠1=∠CBD(等量代换),
∴GD∥BC(内错角相等,两直线平行),
∴∠ADG=∠C(两直线平行,内错角相等).
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第1页,共3页)
一、填空 1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ . 2.若a⊥c,b⊥c,则a b . 3.如图2,写出一个能判定直线l 1∥l 2的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图5,填空并在括号中填理由: (1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( ); (3)由∠CBA +∠BAD = 180°得 ∥ ( ) 7.如图6,尽可能多地写出直线l 1∥l 2的条件: . 8如图7,尽可能地写出能判定AB∥CD 的条件来: . 9.如图8,推理填空: (1)∵∠A =∠ (已知), ∴AC∥ED( ); (2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( ); (4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ) 10.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
[二]、平行线的性质 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .
3.如图3所示 (1)若EF∥AC ,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF. (3)若∠A +∠ = 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = . 5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 .
8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题 9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
a b
c d 1 2 3 图3 A B
C E
D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3
A F C D
B E
图8 A D C B O 图5 图6 5 1 2
4 3 l 1 l 2 图7
5 4 3 2 1 A D C B 图1 2 4 3 1 A B C D E 1 2 A
B D
C E F 图2 1 2 3 4 5 A B C D
F E 图3 1 2 A B C D E F
图4 图5
1 A B C D
E F G H 图7 1 2 D A C B l 1
l 2 图8 1 A B F C D E G
图6 C D F E B A 图9
1 2 A C B F G E
D
(第2页,共3页)
10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.
一、填空题: 1.如图④ ∵∠1=∠2,∴_______∥________( )。
∵∠3=∠4,∴_______∥________( )。
二.选择题:
1.如图⑦,∠D=∠EFC ,那么( )
A .AD ∥BC
B .AB ∥CD
C .EF ∥BC
D .AD ∥EF
2.如图⑧,判定AB ∥CE 的理由是( )
A .∠B=∠ACE
B .∠A=∠ECD
C .∠B=∠ACB
D .∠A=∠ACE
3.如图⑨,下列推理正确的是( )
A .∵∠1=∠3,∴a ∥b
B .∵∠1=∠2,∴a ∥b
C .∵∠1=∠2,∴c ∥d
D .∵∠1=∠2,∴c ∥d
三.解答题
1.如图⑩
∵∠B=∠_______,∴ AB ∥CD ( ) ∵∠BGC=∠_______,∴ CD ∥EF ( ) ∵AB ∥CD ,CD ∥EF ,
∴ AB ∥_______( )
2.如图⑾ 填空:
(1)∵∠2=∠B (已知) ∴ AB__________( ) (2)∵∠1=∠A (已知) ∴ __________ ( ) (3)∵∠1=∠D (已知)
∴ __________ ( )
(4)∵_______=∠F (已知) ∴ AC ∥DF ( ) 3.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°( )又∠2=∠3( ) ∴∠1+∠3=180°
∴_________( ) 五.证明题
1.已知:如图⑿,CE 平分∠ACD ,∠1=∠B ,
求证:AB ∥CE
2.如图:∠1=︒53,∠2=︒127,∠3=︒53,
试说明直线AB 与CD ,BC 与DE 的位置关系。
图10 2
1 B C E
D。