§5.1.4 认识三角形
七年级数学下册 认识三角形(第四课时)教案 北师大版
教学设计思想:本节内容需四课时讲授;三角形是学生在小学就已熟悉的图形,本节以观察房子的顶部框架中所包含的三角形出发,让学生经历从现实世界中抽象出几何模型的过程,复习三角形的有关概念,认识三角形的基本要素(边、角、顶点)及其表示方法,进一步展开对三角形性质的讨论。
首先结合生活实例引入三角形的概念、表示方法。
接着运用观察和测量等方法获得三角形的性质,同时运用已有的结论进行简单的推理,从而得到“三角形任意两边之和大于第三边”;对于“三角形任意两边之差小于第三边”的性质只须通过测量等活动归纳得出结论即可,无须用不等式证明。
在探索“三角形内角和为180°”这个结论时,学生在以前的学习中已经通过操作获得了这个结论,教师此时应引导学生在操作中进行自觉地思考,思考能否利用平行线的有关事实说明这个结论,将直观和说理结合起来。
教学目标(一)知识与技能1.熟记三角形的高线的定义.2.掌握三角形的高线的画法.(二)过程与方法1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力.2.认识三角形的高线,并能在具体的三角形中作出它们.(三)情感与价值观要求通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.教学重点三角形的高线的定义.教学难点直角三角形和钝角三角形的三条高的认识和理解,尤其是画出它们是本节课的难点.教学方法探求发现法让学生在现实情景中探求问题,在动手操作中发现规律,从而使他们掌握新的内容.教具准备上节课的电脑课件.电脑课件:直角三角形、钝角三角形的高.投影片.教学安排4课时.教学过程Ⅰ.巧设现实情景,引入新课[师]同学们好,大家来看大屏幕如图5-37,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC 边移动到点C,观察移动过程中形成的无数条线段(AD,AE,AF,AG……)中,有没有特殊位置的线段?你认为有哪些特殊位置?图5-37[生]老师,这个问题上节课已经解决了.这些线段中有三条线段的位置比较特殊,它们分别是三角形的角平分线、中线和高线.[师]对.上节课我们已探讨了三角形的中线和角平分线,这节课来研究三角形的高线.Ⅱ.讲授新课[师]从刚才移动的过程中,知道:AG⊥BC,这时我们说AG就是△ABC的高,那么三角形的高是如何定义的呢?从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.(height)图5-38如图5-38,线段AG是BC边上的高.注意:三角形的高是线段.由定义可知:AG是△ABC中BC边上的高,那么有∠AGB=90°,∠AGC=90°,∠AGB=∠AGC.教师演示视频——三角形的高三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段.那么如何过三角形的一个顶点,画出它的对边的垂线呢?我们先来回忆:过一点如何作一条直线的垂线?[生甲]可以利用折纸的方法,对折直线所在的纸片,使直线重合,折痕过已知点,这样折痕就是过已知点垂直于已知直线的垂线.(甲同学演示)[生乙]也可以用三角尺来画.把三角尺的一条直角边与已知直线重合,移动三角尺,使它的另一条直角边经过已知点,画直线,这样即可画出过一点并与已知直线垂直的直线.[生丙]也可以利用量角器来画.[师]很好,同学们利用几种方法,画出了过已知点并与已知直线垂直的直线,那能不能画出三角形的高呢?下面我们来做一做.每人准备一个锐角三角形纸片.(1)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?(2)这三条高之间有怎样的位置关系?将你的结果与同伴进行交流.[生甲]我能画出这个锐角三角形的三条高,用折纸的方法也能得到它们.这三条高相交于一点.如图5-39.图5-39线段AD、BE、CF是△ABC的三条高,它们相交于点O.[师]很好,大家能画出锐角三角形的三条高,并且知道这三条高都在三角形内,且相交于一点,那么直角三角形的三条高,你能画出来吗?钝角三角形呢?大家来议一议在纸上画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?将你的结果与同伴进行交流.[生乙]直角三角形中,只有一条高,如图5-40,在Rt△ABC中,CD是直角三角形ABC的高.图5-40[生丙]不对,直角三角形的两边互相垂直.所以:直角边AC、BC也应该是Rt△ABC 的高,即:AC是BC边上的高,BC也是AC边上的高.Rt△ABC的三条高分别是AC、BC、CD,它们相交于一点,这个点是三角形的一个顶点.[师]丙同学说得对吗?[生齐声]对.[师]很好.直角三角形有一条高在三角形的内部,而另两条高恰是它的两条直角边.下面我们来看钝角三角形.即问题(2).[生丁]我画出钝角三角形后,只能折出它的一条高,而其他两条找不到.[生戊]其他的两条高在三角形的外边.如图5-41:图5-41线段AD、BE、CF是钝角三角形ABC的高.[师]对,下面我们看问题.如图5-42,△ABC的高AD.(1)当点C沿着CB向点B方向移动.当点C与点D重合时,此时AD是△ABC的高吗?由此你发现了什么?(2)将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时AD是△ABC的高吗?由此你发现了什么?图5-42(一个问题解决完后,再解决第2个)[生甲]当点C沿着CB向点B方向移动,点C与点D重合时,这时∠ACB=90°,这时由原来的锐角三角形变为直角三角形,此时AD仍是△ABC的高,只是比较特殊,AC与AD 为同一条线段了.即:直角边也是直角三角形的高.[生乙]将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时的三角形为钝角三角形.因为AD仍然垂直于BC所在的直线,所以AD是△ABC的高,只是它在三角形的外面.[师]同学们分析得很透彻,那你能画出或折出钝角三角形的高吗?[生]能.[师]很好,钝角三角形的高有什么特点呢?[生丙]钝角三角形有三条高,一条高在三角形内,另两条高在三角形外.[师]对,那钝角三角形的三条高交于一点吗?[生丁]不.[师]那么这三条高所在的直线交于一点吗?(学生讨论)[生]钝角三角形的三条高所在的直线交于一点.如图5-43.图5-43[师]很好,由此我们知道了:三角形的三条高所在的直线交于一点.接下来,同学们想一想:分别指出图5-44中△ABC的三条高.图5-44[生甲]图(1)中的三条高分别为:AB、BC、BD.[生乙]图(2)中的三条高分别为:BF、AD、CE.[师]好,接下来我们做一练习来熟悉掌握三角形的三条重要线段.Ⅲ.课堂练习(一)补充1.分别画出图5-45中一组直角三角形的所有高.图5-452.分别画出图5-46中一组钝角三角形的所有高.图5-463.分别画出图5-47中各个三角形的所有角平分线.图5-474.分别画出图5-48各个三角形的所有的中线.图5-485.从上面画直角三角形、钝角三角形的高、角平分线、中线,你发现了什么?以下有三种情况,根据你画图的实践,用序号字母填写下表(有几种可能情况填写几个字母).A.在三角形的内部B.在三角形的边上C.在三角形的外部锐角三角形直角三角形钝角三角形角平分线中线高线答案:1.如图5-49.图5-492.如图5-50.图5-503.如图5-51.图5-51 4.略5.如下表:锐角三角形直角三角形钝角三角形角平分线A A A中线A A A高线A A、B A、C(二)看课本P126~127,然后小结.Ⅳ.课时小结这节课我们重点探讨了三角形的高.三角形的高不一定都在三角形的内部.锐角三角形的三条高都在三角形的内部;直角三角形中,有两条高恰好是它的两条直角边;钝角三角形中,两锐角所对边上的高都在三角形的外部.三角形的三条高所在的直线相交于一点.到现在为止,我们学习了三角形的三种重要线段:角平分线、中线和高线.这三种重要线段都是用连结顶点——对边(或对边所在直线)上一个特殊点的方法来定义的.大家要掌握它们的定义,并且会在图形中准确地作出这些线段.Ⅴ.课后作业.(一)课本P127习题5.4 1、2、3(二)1.预习内容 P128~1302.预习提纲(1)什么是全等图形?(2)全等图形有什么性质.板书设计§5.1.4 认识三角形一、三角形的高线从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段.注意:三角形的高是线段,与垂线有区别.。
《认识三角形》课件
《认识三角形》课件一、引言三角形是几何学中最基本、最重要的图形之一。
在我们的日常生活中,三角形的身影无处不在,如房屋的屋顶、衣架的形状等。
因此,认识三角形并掌握其相关性质,对于我们的生活具有重要意义。
本课件旨在帮助大家系统地认识三角形,了解其性质,并学会运用这些知识解决实际问题。
二、三角形的定义及分类1.定义:三角形是由三条线段首尾相连围成的封闭平面图形。
2.分类:(1)按边长分类:不等边三角形、等腰三角形、等边三角形。
(2)按角度分类:锐角三角形、直角三角形、钝角三角形。
三、三角形的基本性质1.三角形的内角和:三角形的三个内角之和等于180°。
2.三角形的边长关系:任意两边之和大于第三边,任意两边之差小于第三边。
3.三角形的重心:三角形的三条中线交于一点,该点称为重心,重心将中线分为2:1的两段。
4.三角形的内心:三角形的三条角平分线交于一点,该点称为内心,内心是三角形内切圆的圆心。
5.三角形的垂心:三角形的三条高线交于一点,该点称为垂心,垂心到三角形三顶点的距离分别是该顶点对应高的长度。
6.三角形的旁心:三角形的一个角的平分线与另外两个顶点所在边的延长线相交于一点,该点称为旁心。
四、三角形的特殊性质1.等腰三角形的性质:等腰三角形的两底角相等,底边上的中线垂直平分底边。
2.等边三角形的性质:等边三角形的三条边相等,三个内角均为60°。
3.直角三角形的性质:直角三角形的一个内角为90°,其余两个内角互余,即和为90°。
直角三角形的斜边长度等于两条直角边长度的平方和的平方根。
五、三角形的应用1.在建筑设计中的应用:三角形的稳定性使得其在建筑设计中广泛应用,如房屋的屋顶、桥梁的支撑结构等。
2.在物理学中的应用:在力学中,三角形常用于解决力的合成与分解问题。
3.在日常生活中的应用:衣架、自行车架等物品的形状都采用了三角形,以增加稳定性。
六、总结本课件对三角形的基本概念、性质和应用进行了系统介绍。
三角形的认识课件
三角形的认识课件一、引言三角形是几何学中最基本的多边形之一,由三条线段首尾相连所围成的封闭图形。
三角形作为一种基础的几何形状,广泛应用于日常生活和各个学科领域。
本课件旨在帮助大家深入了解三角形的性质、分类和判定方法,以及在实际问题中的应用。
二、三角形的性质1.三角形的内角和三角形的内角和是指三个内角的角度之和。
根据欧几里得几何的基本原理,三角形的内角和恒等于180度。
这一性质是解决与三角形相关问题的关键。
2.三角形的边角关系(1)大边对大角:在一个三角形中,较长的边对应较大的角。
(2)大角对大边:在一个三角形中,较大的角对应较长的边。
(3)等边对等角:在一个三角形中,相等的边对应相等的角。
3.三角形的重心、外心和内心(1)重心:三角形的重心是三条中线的交点,每条中线都是连接顶点与对边中点的线段。
重心将中线分为两段,其中靠近顶点的线段长度是另一段的2倍。
(2)外心:三角形的外心是三条垂直平分线的交点,每条垂直平分线都是连接顶点与对边中点的线段,并且垂直于对边。
外心到三个顶点的距离相等。
(3)内心:三角形的内心是三条角平分线的交点,每条角平分线都是从一个顶点出发,将相邻两边的角平分。
内心到三边的距离相等。
三、三角形的分类1.按边长分类(1)不等边三角形:三边长度都不相等的三角形。
(2)等腰三角形:有两条边长度相等的三角形。
(3)等边三角形:三边长度都相等的三角形。
2.按角度分类(1)锐角三角形:三个内角都小于90度的三角形。
(2)直角三角形:一个内角等于90度的三角形。
(3)钝角三角形:一个内角大于90度的三角形。
四、三角形的判定方法1.边长判定法(1)两边之和大于第三边:任意两边之和大于第三边。
(2)两边之差小于第三边:任意两边之差小于第三边。
2.角度判定法(1)锐角三角形:三个内角都小于90度。
(2)直角三角形:一个内角等于90度。
(3)钝角三角形:一个内角大于90度。
五、三角形在实际问题中的应用1.土木工程在土木工程中,三角形常用于桁架结构的分析。
小学数学《认识三角形》教案
小学数学《认识三角形》教案小学数学《认识三角形》教案(集合10篇)在教学工作者开展教学活动前,通常会被要求编写教案,借助教案可以更好地组织教学活动。
教案应该怎么写呢?下面是小编帮大家整理的小学数学《认识三角形》教案,希望对大家有所帮助。
小学数学《认识三角形》教案11、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。
2、过程与方法目标:在认识三角形的基本特征及底和高的活动中,体会认识多边形特征的基本方法,发展观察能力和比较、抽象、概括等思维能力。
3、情感、态度与价值观目标:认识到三角形是日常生活中的常见图形,在学习活动中进一步产生学习图形的兴趣和积极性。
教学重点:认识三角形的基本特征,认识三角形的底和高。
教学难点:懂得底和高的对应关系,会画三角形指定边上的高。
教学准备:小棒、三角板、导学案、多媒体课件等。
教学过程:一、联想揭题师:刚才,看到有一个家,你会想到什么?生:房子师:(课前在黑板上画好一幅房子示意图)下面请同学看黑板,板上有一幅房子图,从图中你可以想到我们学过的什么图形?生1-2-3:三角形、长方形--师:根据我们已学的知识,你能在推理的基础上,说一说,这节课我们学习什么?生:三角形师:真棒!这节课我们就一起走进三角形的世界!(板书三角形)二、探究新知(一)认识三角形1、想一想(联想)师:看到“三角形”,你想到了什么?生:2、说一说(举例)师:从房子图上,我们找到了三角形,想想生活中的场景、结合平时观察,你能从什么地方的图上找出三角形?生:自行车上、电线杆上----师:(出示图片)我也在课前找了一些图片,请大家一起来看一看3、做一做(操作)师:数学来源于生活。
平时观察中,我们能发现三角形,你能创造出三角形吗?生:能师:(课前准备:3根小棒、方格纸、一副三角尺)学生活动:请你们拿出课前自己准备好的小棒,每人做一个三角形。
《认识三角形》说课稿
《认识三角形》说课稿
教材分析:
地位:三角形是最基本、最简单的多边形,三角形既是前面学过线段,角等知识的延续,又是学习四边形,相似性,圆等知识的基础。
认识三角形是这一章的起始课,是学习三角形其他知识的铺垫。
作用:通过本节课的学习能进一步培养学生的合情推理能力,体会数形结合思想,领会数学知识来源于实际,又必将服务于实际,能帮助学生理解社会,适应生活。
教学目标:
知识目标:理解并掌握三角形的基本概念及三边之间的关系;
能力目标:经历观察,操作,推力等数学活动,发展合情推理能力极有条理的表达能力。
情感目标:在探索活动中体验成功的体验,建立自信,培养勇于探索的精神。
重点:三角形三边关系,利用动手操作,小组讨论来突出重点。
难点:三角形三边关系的探究与归纳。
利用课件变抽象为直观,有效突破难点。
学情分析:
七年级学生好奇心强,有一定的表达能力,但归纳能力,抽象思维能力较差,我将采用鼓励学生动手操作,小组讨论等形式来组织教学。
教法及学法:
1.观察法。
培养学生观察联想的能力,根据七年级的学生想象力丰富的特点,让学生通过观察情景丰富的图象,获取有关三角形的信息。
2.讨论法。
培养学生自主探究、合作交流的能力。
3.多媒体电化教学。
利用信息技术和网络,为学习提供丰富的素材和背景材料,激发学生学习兴趣。
运用几何画板展示变化的三角形三边关系,变抽象为直观,复杂为简单,有效分散难点.
教学设计:
[课前准备]:学生准备不等长的木棒。
七年级认识三角形
七年级认识三⾓形认识三⾓形(1)1:三⾓形三边关系:“三⾓形任意两边之和⼤于第三边;三⾓形任意两边之差⼩于第三边”. 2:1、能从右图中找出4个不同的三⾓形吗?2、这些三⾓形有什么共同的特点?⼀、新课:1、在右下图中你能⽤符号表⽰上⾯的三⾓形吗?2、它的三个顶点分别是___________________,三条边分别是______________________,三个内⾓分别是____________________.3、分别量出这三⾓形三边的长度,并计算任意两边之和以及任意两边之差.你发现了什么?结论:三⾓形任意两边之和⼤于第三边三⾓形任意两边之差⼩于第三边例:有两根长度分别为5cm 和8cm 的⽊棒,⽤长度为2cm 的⽊棒与它们能摆成三⾓形吗?为什么?长度为13cm 的⽊棒呢?长度为7cm 的⽊棒呢?⼆、巩固练习:1、下列每组数分别是三根⼩⽊棒的长度,⽤它们能摆成三⾓形吗?为什么?(单位:cm )(1)1,3,3;(2)3,4,7;(3)5,9,13;(4)11,12,22;(5)14,15,30.2、已知⼀个三⾓形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是____________________.若X 是奇数,则X 的值是_______________,这样的三⾓形有_______个;若X 是偶数,则X 的值是_______________,这样的三⾓形⼜有_______个A BCDEFGABCabc3、⼀个等腰三⾓形的⼀边是2cm ,另⼀边是9cm ,则这个三⾓形的周长是___________cm4、⼀个等腰三⾓形的⼀边是5cm ,另⼀边是7cm ,则这个三⾓形的周长是________________________________cm5.2 认识三⾓形(2)⼀、复习: 1、填空:(1)当0o<α<90o时,α是______⾓;(2)当α=______o时,α是直⾓;(3)当90o<α<180o时,α是______⾓;(4)当α=______o时,α是平⾓. 2、如右图,∵AB ∥CE ,(已知)∴∠A =_____,(_________________________)∴∠B =_____,(_________________________)练习1: 1、判断:(1)⼀个三⾓形的三个内⾓可以都⼩于60o.()(2)⼀个三⾓形最多只能有⼀个内⾓是钝⾓或直⾓.() 2、在△ABC 中,(1)∠C =70o,∠A =50o,则∠B =_______度;(2)∠B =100o,∠A =∠C ,则∠C =_______度;(3)2∠A =∠B +∠C ,则∠A =_______度.3、在△ABC 中,∠A =3x o∠=2x o∠=x o,求三个内⾓的度数.解:∵∠A +∠B +∠C =180o,(______________________)∴3x +2x +x =_______ ∴6x =_______ ∴x =从⽽,∠A =_______,∠B =_______,∠C =_______.三、猜⼀猜:.⼀个三⾓形中三个内⾓可以是什么⾓?(提醒:⼀个三⾓形中能否有两个直⾓?钝⾓呢?)按三⾓形内⾓的⼤⼩把三⾓形分为三类.锐⾓三⾓形(acute trangle ):三个内⾓都是锐⾓;直⾓三⾓形(right triangle ):有⼀个内⾓是直⾓.钝⾓三⾓形(obtuse triangle ):有⼀个内⾓是钝⾓.练习2:1、观察三⾓形,并把它们的标号填⼊相应的括号内:AB CD E 123锐⾓三⾓形();直⾓三⾓形();钝⾓三⾓形().2、⼀个三⾓形两个内⾓的度数分别如下,这个三⾓形是什么三⾓形?(1)30o和60o();(2)40o和70o();(3)50o和30o();(4)45o和45o().四、猜想结论:简单介绍直⾓三⾓形,和表⽰⽅法,Rt △.思考:直⾓三⾓形中的两个锐⾓有什么关系?结论:直⾓三⾓形的两个锐⾓互余举例(略)练习3:1、图中的直⾓三⾓形⽤符号写成_________,直⾓边是______和______,斜边是_______.2、如图,在Rt △BCD ,∠C 和∠B 的关系是______,其中∠C =55o,则∠B =________度.3、如图,在Rt △ABC 中,∠A =2∠B ,则∠A =_______度,∠B =_______度;⼩结:1、三⾓形的三个内⾓的和等于180o;2、三⾓形按⾓分为三类:(1)锐⾓三⾓形;(2)直⾓三⾓形;(3)钝⾓三⾓形.直⾓三⾓形的两个锐⾓互余.5.1 认识三⾓形(3)三⾓形⼀个⾓的⾓平分线和这个⾓的对边相交,这个⾓的顶点和对边交点之间的线段叫做三⾓形中这个⾓的⾓平分线.简称三⾓形的⾓平分线.如图:∵AD 是三⾓形ABC 的⾓平分线,∴∠BAD =∠CAD =∠BAC ,或:∠BAC =2∠BAD =2∠CAD .⼀个三⾓形共有三条⾓平分线,它们都在三⾓形内部,⽽且相交于⼀点.例题:△ABC 中,∠B =80o∠C =40o,BO 、CO 平分∠B 、∠C ,则∠BOC =______.连结三⾓形⼀个顶点和它对边中点的线段,叫做三⾓形这个边上的中线.简称三⾓形的中线.如图:∵AD 是三⾓形ABC 的中线,∴BD =DC =21BC ,或:BC =2BD =2DC .⼀个三⾓形共有三条中线,它们都在三⾓形内部,⽽且相交于⼀点.已知,AD 是BC 边上的中线,AB =5cm ,AD =4cm ,▲ABD 的周长是12cm ,求BC 的长.AB C BC D巩固练习:1、AD 是△ABC 的⾓平分线(D 在BC 所在直线上),那么∠BAD =_______=21______.△ABC 的中线(E 在BC 所在直线上),那么BE =___________=_______BC . 2、在△ABC 中,∠BAC =60o,∠B =45o,AD 是△ABC 的⼀条⾓平分线,求∠ADB 的度数.⼩结:(1)三⾓形的⾓平分线的定义;(2)三⾓形的中线定义.(3)三⾓形的⾓平分线、中线是线段.(1)已知AD 是三⾓形ABC 的⾓平分线,则∠B =∠C ;( )5.1 认识三⾓形(4)1、★三⾓形的⾼:从三⾓形的⼀个顶点向它的对边所在直线作垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼线,简称三⾓形的⾼.如图,线段AM 是BC 边上的⾼.∵AM 是BC 边上的⾼,∴AM ⊥BC .锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点. 1、直⾓三⾓形的三条⾼交于直⾓顶点处.2、钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部. 4、练习:如图,(1)共有___________个直⾓三⾓形;(2)⾼AD 、BE 、CF 相对应的底分别是_______,_____,____;(3)AD =3,BC =6,AB =5,BE =4.则S △ABC =___________,CF =_________,AC =_____________. 5、⼩结:(1)锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点.(2)直⾓三⾓形的三条⾼交于直⾓顶点处.(3)钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部.5.2图形的全等1.把下列两组图形投影出来:(1)(2说出两组图形中上、下两个图形的异同之处2.形状相同且⼤⼩也相同的两个图形能够重合,反之亦然.形状不同或⼤⼩不同的两个图形不能重合,不能重合的两个图形⼤⼩⼀定不相同.3.能够重合的两个图形称为全等图形.全等图形的形状和⼤⼩都相同5.3图案设计在⽣活中,我们经常看到由全等图形拼成的美丽图案.例如在给定的三⾓形上,画出⼩鱼形状的图形,利⽤它就可以拼成下⾯这个美丽的图案.2、根据课本中的图形设计出相应的图案:5.4全等三⾓形(1)⼀个三⾓形共有______个顶点,_________个⾓,_______条边;(2)已知△ABC,它的顶点是_______,它的⾓是___________,它的边是___________;(3)两个图形完全重合指的是它们的形状___________,⼤⼩___________;(4)完全重合的两条线段_________(填“相等”或“不相等”);(5)完全重合的两个⾓_________(填“相等”或“不相等”).1.全等三⾓形的定义及有关概念和性质.(1)定义:全等三⾓形是能够完全重合的两个三⾓形或形状相同、⼤⼩相等的两个三⾓形.2.全等三⾓形的符号表⽰及读法和写法.”≌”读作全等如图,∵△ABC≌DFE,(已知)∴AB=DF,AC=DE,BC=FE,(全等三⾓形的对应边相等)∠A=∠D,∠B=∠F,∠C=∠E.(全等三⾓形的对应⾓相等)(1)全等⽤符号_________表⽰,读作__________.(2)三⾓形ABC全等于三⾓形DEF,⽤式⼦表⽰为______________.(3)已知△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′∠C=∠C′;AB=A′B′,BC=B′C′,AC=A′C′,则△ABC_______△A′B′C′.(4)如右图△ABC≌△BCD,∠A的对应⾓是∠D,∠B的对应⾓∠E,则∠C与____是对应⾓;AB与_____是对应边,BC与_____是对应边,AC与____是对应边.(5)判断题:①全等三⾓形的对应边相等,对应⾓相等.()②全等三⾓形的周长相等.()③⾯积相等的三⾓形是全等三⾓形.()④全等三⾓形的⾯积相等.()三、性质应⽤举例1.性质的基本应⽤.例1 已知:△ABC≌△DFE,∠A=96o,∠B=25o,DF=10cm.求∠E的度数及AB的长.例2 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C=20o,AB=10,AD=4,G为AB延长线上⼀点.求∠EBG的度数和CE的长.5.5探索三⾓形全等的条件(1)1、全等三⾓形的__________相等,__________相等.2、如图1,已知△AOC≌△BOD,则∠A=∠B,∠C=_______,______=∠2,对应边有AC=________,_______=OB,_______=OD.3、如图2,已知△AOC≌△DOB,则∠A=∠D,∠C=_______,______=∠2,对应边有AC=________,OC=_______,AO=_______.4、如图3,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA.则△________≌△___________5、判定两个三⾓形全等,依定义必须满⾜()(A)三边对应相等(B)三⾓对应相等(C )三边对应相等和三⾓对应相等(D )不能确定1、画出⼀个三⾓形,使它的三个内⾓分别为40o,60o,80o,结论:_________________________________________________________. 2、画出⼀个三⾓形,使它的三边长分别为3cm ,4cm ,7cm ,结论:_________________________________________________________.⼆、巩固练习:1、下列三⾓形全等的是________________________________________.2、三边对应相等的两个三⾓形全等,简写为_______或__________.3、如图,AB =AC ,BD =DC ,求证:△ABD ≌△ACD .4、如图,AM =AN ,BM =BN ,求证:△AMB ≌△ANB .5、如图,AD =CB ,AB =CD ,求证:∠B =∠D .6、如图,P A =PB ,PC 是△P AB 的中线,∠A =55o,求:∠B 的度数.第5题第6题1、如图,AB =DC ,BF =CE ,AE =DF ,你能找到⼀对全等的三⾓形吗?2、如图,A 、C 、F 、D 在同⼀直线上,AF =DC ,AB =DE ,BC =EF 你能找到哪两个三⾓形全等?3、如图,已知AC =AD ,BC =BD ,CE =DE ,则全等三⾓形共有______对,5.5 探索三⾓形全等的条件(2)1、三边对应相等的两个三⾓形全等,简写为________或_______.2、如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AD 能平分∠BAC 吗?你能说明理由吗?3、如图,(1)∵AC ∥BD (已知),∴∠_____=∠_____(___________________).(2)∵AD ∥BC (已知),∴∠_____=∠_____(___________________).4、如图3,∵EA ⊥AD ,FD ⊥AD (已知),∴∠_________=∠________=90o(___________________).教学过程:⼀、探索练习:1、如果”两⾓及⼀边”条件中的边是两⾓所夹的边,⽐如三⾓形的两个内⾓分别是60A BCD1234ABCDEFABCDo和80o,它们所夹的边为2cm ,你能画出2个三⾓形吗?你画的三⾓形⼀定全等吗?结论:___________________________________________________________. 2、如果”两⾓及⼀边”条件中的边是其中⼀⾓的对边,⽐如三⾓形两个内⾓分别是60o和45o,⼀条边长为3cm .你画的三⾓形⼀定全等吗?结论:___________________________________________________________.⼆、巩固练习:1、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________.2、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_________.3、如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?4、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD =BC ,你能说明BO =DO 吗?5、如图,∠B =∠C ,AD 平分∠BAC ,你能证明△ABD ≌△ACD ?若BD =3cm ,则CD 有多长?6、如图,在△ABC 中,BE ⊥AD 于E ,CF ⊥AD 于F ,且BE =CF ,那么BD 与DC 相等吗?你能说明理由吗?.7、如图,已知AB =CD ,∠B =∠C ,你能说明△ABO ≌△DCO 吗?ABB ABCD EFA BCDO三、提⾼练习:1、如图,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110o,求∠DCF 的度数.2、如图,在Rt △ACB 中,∠C =90o,BE 是⾓平分线,ED ⊥AB 于D ,且BD =AD ,试确定∠A 的度数.5.5《边⾓边》第1课时1.三⾓形全等的判定Ⅰ(1)全等三⾓形具有”对应边相等、对应⾓相等”的性质.如图2,AC 、BD 相交于O ,AO 、BO 、CO 、DO 的长度如图所标,△ABO 和△CDO 是否能完全重合呢?不难看出,这两个三⾓形有三对元素是相等的: AO =CO ,∠AOB =∠COD , BO =DO .如果把△OAB 绕着O 点顺时针⽅向旋转,因为OA =OC ,所以可以使OA 与OC 重合;⼜因为∠AOB =∠COD ,OB =OD ,所以点B 与点D 重合.这样△ABO 与△CDO 就完全重合.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE =45o,②在AD 、AE 上分别取B 、C ,使AB =3.1cm ,AC =2.8cm .③连结BC ,得△ABC .④按上述画法再画⼀个△A 'B 'C '.(2)把△A 'B 'C '剪下来放到△ABC 上,观察△A 'B 'C '与△ABC 是否能够完全重合?3.边⾓边公理.有两边和它们的夹⾓对应相等的两个三⾓形全等(简称”边⾓边”或”SAS ”)ABCDEAEF⼆、三⾓形全等判定Ⅰ的应⽤1.填空:(1)如图3,已知AD∥BC,AD=CB,要⽤边⾓边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,⼀是AD=CB(已知),⼆是()=();还需要⼀个条件()=()(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要⽤边⾓边公理证明△ABD≌ACE,需要满⾜的三个条件中,已具有两个条件:()=(),()=()(这个条件可以证得吗?).2.例题例1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.⼩结:1.根据边⾓边公理判定两个三⾓形全等,要找出两边及夹⾓对应相等的三个条件.2.找使结论成⽴所需条件,要充分利⽤已知条件(包括给出图形中的隐含条件,如公共边、公共⾓等),并要善于运⽤学过的定义、公理、定理.3.证明的书写格式:(1)通过证明,先把题设中的间接条件转化成为可以直接⽤于判定三⾓形全等的条件;(2)再写出在哪两个三⾓形中:具备按边⾓边的顺序写出可以直接⽤于判定全等的三个条件,并⽤括号把它们括起来;(3)最后写出判定这两个三⾓形全等的结论.作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同⼀条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.5.6作三⾓形(1)如图,使⽤直尺作图,看图填空.①②③④①过点____和_______作直线AB;②连结线段___________;③以点_______为端点,过点_______作射线___________;④延长线段__________到_________,使得BC=2AB.(2)如图,使⽤圆规作图,看图填空:①在射线AM上__________线段________=___________.②以点______为圆⼼,以线段______为半径作弧交_________于点___________.以点______为圆⼼,以任意长为半径作弧,分别交∠AOB两边,交_________于点___________,交________于点__________.这部分内容是为让学⽣熟悉作法的语⾔表达⽽设的.教师应该让学⽣慢慢理解这种语⾔表达的意思.逐步学会⾃⼰⼝述表达⾃⼰的作图过程.内容⼆(作⼀个三⾓形与已知三⾓形全等)1、已知三⾓形的两边及其夹⾓,求作这个三⾓形.已知:线段a,c,∠α.求作:ΔABC,使得BC=a,AB=c,∠ABC=∠α.作法与过程:(1)作⼀条线段BC=a,(2)以B为顶点,BC为⼀边,作⾓∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三⾓形.2、已知三⾓形的两⾓及其夹边,求作这个三⾓形.已知:线段∠α,∠β,线段c.求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.作法:(1)作____________=∠α;(2)在射线______上截取线段_________=c;(3)以______为顶点,以_________为⼀边,作∠______=∠β,________交_______于点_______.ΔABC就是所求作的三⾓形.3、已知三⾓形的三边,求作这个三⾓形.已知:线段a,b,c.求作:ΔABC,使得AB=c,AC=b,BC=a.⼩结:能根据题⽬给出的条件作出三⾓形.能⼝述作图过程.5.7 利⽤三⾓形全等测距离1、三边对应相等的两个三⾓形全等,简写为___________或__________;2、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________;3、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_______;4、两边和它们的夹⾓对应相等的两个三⾓形全等,简写成_______或_______;5、全等三⾓形的性质:两三⾓形全等,对应边_______,对应⾓_______;6、如图;△ADC ≌△CBA ,那么∠ABC =∠____,AB =_____;7、如图;△ABD ≌△ACE ,那么∠BDA =∠____,AD =_____.⼀、探索练习:如图:A 、B 两点分别位于⼀个池塘的两端,⼩明想⽤绳⼦测量A ,B 间的距离,但绳⼦不够长.他叔叔帮他出了⼀个这样的主意:先在地上取⼀个可以直接到达A 点和B 点的点C ,连接AC 并延长到E ,使CD =AC ;连接BC 并延长到E ,使CE =CB ;连接DE 并测量出它的长度;(1)DE =AB 吗?请说明理由(2)如果DE 的长度是8m ,则AB 的长度是多少?⼆、巩固练习:1.如图,⼭脚下有A 、B 两点,要测出A 、B 两点的距离.(1)在地上取⼀个可以直接到达A 、B 点的点O ,连接AO 并延长到C ,使AO =CO ,ACBDC你能完成下⾯的图形?(2)说明你是如何求AB的距离.2.如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在⼀条直线上,这时测得DE的长就是AB 的长,试说明理由.3.如图,A,B两点分别位于⼀个池塘的两端,完成右图并求出A、B的距离.三、提⾼练习:1.在⼀座楼相邻两⾯墙的外部有两点A、C,如图所⽰,请设计⽅案测量A、C两点间的距离.2.如图,⼀池塘的边缘有A、B两点,试设计两种⽅案测量A、B两点间的距离5.8探索直⾓三⾓形全等的条件1、判定两个三⾓形全等的⽅法:_____、_____、_____、_______2、如图,Rt△ABC中,直⾓边是_________、________,斜边是____________3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(⼀)探索练习:(动⼿操作):已知线段a,c(a1、按步骤作图:①作∠MCN=∠α=90o,②在射线CM 上截取线段CB =a ,③以B 为圆⼼,C 为半径画弧,交射线CN 于点A ,④连结AB .2、与同桌重叠⽐较,是否重合?3、从中你发现了什么?__________________________________ 三、巩固练习:1、如图,△ABC 中,AB =AC ,AD 是⾼,则△ADB 与△ADC ___________(填”全等”或”不全等”)根据______________(⽤简写法).2、如图,CE ⊥AB ,DF ⊥AB ,垂⾜分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据______;(2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据______;(3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据______;(4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据__________;(5)若AC =BD ,CE =DF (或AE =BF ),则△ACE ≌△BDF ,根据________. 3、判断两个直⾓三⾓形全等的⽅法不正确的有()(A )两条直⾓边对应相等(B )斜边和⼀锐⾓对应相等(C )斜边和⼀条直⾓边对应相等(D )两个锐⾓对应相等4、如图,B 、E 、F 、C 在同⼀直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB =DC ,BE =CF ,你认为AB 平⾏于CD 吗?说说你的理由.5、如图,⼴场上有两根旗杆,已知太阳光线AB 与DE 是平⾏的,经过测量这两根旗杆在太阳光照射下的影⼦是⼀样长的,那么这两根旗杆⾼度相等吗?说说你的理由.四、提⾼练习:1、判断题:(1)⼀个锐⾓和这个锐⾓的对边对应相等的两个直⾓三⾓形全等.()(2)⼀个锐⾓和锐⾓相邻的⼀直⾓边对应相等的两个直⾓三⾓形全等()(3)⼀个锐⾓与⼀斜边对应相等的两个直⾓三⾓形全等()(4)两直⾓边对应相等的两个直⾓三⾓形全等()(5)两边对应相等的两个直⾓三⾓形全等()(6)两锐⾓对应相等的两个直⾓三⾓形全等()(7)⼀个锐⾓与⼀边对应相等的两个直⾓三⾓形全等()(8)⼀直⾓边和斜边上的⾼对应相等的两个直⾓三⾓形全等() 2、如图,∠D =∠C =90o,请你再添加⼀个条件,使△ABD ≌△BAC ,并在添加的条件后的()内写出判定全等的依据.(1)________();(2)________();(3)________();(4)________(). 3、如上图,AD ⊥DB ,BC ⊥CA ,AC 、BD 相交于点O ,AC =BD ,试说明AD =BC4、如图,∠BAC =∠DCA =90o,AD =BC ,∠1=20o,你能求出∠D 的度数吗?说说你的理由.5、如图,AB //DC ,AD //BC ,AE ⊥BD ,CF ⊥BD ,垂⾜分别为E 、F ,试说明AE =CF。
教育实习教案
在纸上画一个直角三角形和一个钝角三角形。
(1)画出直角三角形的三条高,他们有怎样的位置关系?
(2)你能这出钝角三角形的三条高吗?你能画出他们吗?
(3)钝角三角形的高交于一点吗?他们所在的直线交于一点吗?
布置课堂练习“想一想”。
学生活动:学生先独立思考、画,并体会他们的不同特点,观察他们的位置关系,在讨论交流后总结出结论。
(学生独立思考后回答。
)
四、课堂练习
1、如图,CD是直角三角形ACB斜边AB上的高,则图中的直
角三角形有Rt△ADC、Rt△BCD、Rt△ABC
2.如图,AD、BE是△ABC的两条高,AD=3,BC=6,BE=4,则
S(ABC)=S(ABD)+S(ACD)=S(AEB)+S(EBC) , AC=AE+EC.
五、课堂小结
总结三角形高的定义以及三种不同类型的三角形三边上的让学生很好的把握三角形高的定义,思考并回答提出的问题,引导他们得出结论,尤其是钝角三角形高的画法。
学生独立完成后进行交流
回顾三角形面积公式,与本节内容结合。
高的特点。
注意:钝角三角形的三条高的画法和位置。
六、布置作业:
习题5.4“知识技能”。
学生独立完成此表,形成知识体系。
《认识三角形》三角形PPT(第4课时)教学课件
直角三角形
6.如果△ABC中,∠A:∠B:∠C=2:3:5,则此三角
形按角分类应为________________.
课堂小结
本节课都学到了
什么?
1、三角形三个内角的和等于180 ˚ .
2、三角形按角的大小分类:
⑴锐角三角形 :三个内角都是锐角;
⑵直角三角形 :有一个内角为直角;
2 7
随堂检测
20
2.直角三角形一个锐角为70°,另一个锐角
度.
1
1
3
3.一个三角形最多有
个直角;最多有
个锐角;最多
CB
∠B
有 AC
个钝角.
4. 如图,△ABC中,AB与BC的夹角是
是
,∠A、∠C的公共边是
.
,∠A的对边
随堂检测
80º º,
5.在△ABC中,AD是角平分线,若∠B=50º,∠C=70
⑶钝角三角形 :有一个内角为钝角 .
3、直角三角形的两个锐角互余.
个性化作业
1.如图,共有三角形的个数是(
A.3
B.4
C.5
2.如图,三角形共有________个
)
D.6
个性化作业
3.如图所示,在ΔABC中,∠ACB是钝角,让点C在射线BD上向右移动,则(
)
A.ΔACB将变为锐角三角形,而不会再是钝角三角形
钝角三角形
有一个内角是钝角
直角三角形
有一个内角是直角
活动探究
探究点四、直角三角形的表示方
法及性质
直
角
边
斜
边
直角边
1、常用符号“Rt∆ABC”来表示直
角三角形ABC.
《认识三角形》PPT课件
1
猜谜语
直直三条边, 首和尾相连。 三个顶点尖, 大家齐团圆。
(打一平面图形)
2021
2
我们身边的三角形
2021
3
2021
4
为什么那么多的物体都设计成是三角形的形状
三角形一定具有某种特殊的性质,
三角形究竟有那些性质呢?
2021
5
拉一拉 比比看,两个框架有什么 变化?
三角形具有稳定性。
(2)由三条线段(围成)的图形叫作三角形。
(3)由三角形的一个顶点到它对边作一条垂线,(顶点)和 垂足 ( )之间的线段叫作三角形的高,这条对边底叫作( )。
2021
21
3、分别画出下面三角形底边上的高。(课本33页第2题)
∟
∟
2021
22
小结
这节课我们学到了什么?
2021
23
课下思考: 你能画出下面三角形底边上的高吗?
顶点
底
2021
24
)
2021
11
三角形各部分名称
顶点
顶点
边 角边
角角
边
顶点
三角形是由( )条边、( 顶点、( )个角组成的
2021
)个
12
三角形的高
2021
13
顶点
A
高
B
底
C
从三角形的一个顶点到它的对边作一条垂线,
顶点和垂足之间的线段叫作三角形的高,
这条对边叫作三角形的底。
2021
14
你能画出下面三角形底边上的高吗? 顶点
2021
6
2021
7
木工小组的同学在修理桌椅时,常常在 桌椅下边斜着钉一根木条。他们这样做 是为什么?
《认识三角形》优秀课件pptx
三角形内心、外心、重心概念
内心
三角形内切圆的圆心, 到三角形三边距离相等
外心
三角形外接圆的圆心, 到三角形三个顶点距离 相等
重心
三角形三条中线的交点 ,具有将三角形面积平 分等性质
塞瓦定理和梅内劳斯定理简介
塞瓦定理
在一个三角形中,如果有三条过顶点且与对边有交点的线, 那么这三个交点是共线的当且仅当三条线的交点与对应顶点 的连线满足一定的比例关系
适用范围
适用于所有已知三边长的三角形面 积计算。
三角形面积与边长关系
等底等高原则
若两个三角形底边相等且高相等 ,则它们的面积相等。
边长比例关系
对于相似三角形,其面积之比等 于对应边长之比的平方。
三角形不等式
任意两边之和大于第三边,任意 两边之差小于第三边,与面积大
小有一定关联。
实际应用问题举例
土地测量
《认识三角形》优秀 课件pptx
目录
• 三角形基本概念与性质 • 三角形边角关系探究 • 三角形面积计算方法 • 三角形在生活中的应用 • 三角形相关数学问题解析 • 创新思维与拓展训练
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次相接所组成的图形。
三角形分类
01
在三角形中,当角度发生变化时,与之对应的边长也会发生变
化。
边长变化对角度的影响
02
在三角形中,当边长发生变化时,与之对应的角度也会发生变
化。
角度与边长的相互制约关系
03
在三角形中,角度与边长之间存在着相互制约的关系,即当一
个量发生变化时,另一个量也会随之变化。
三角形的认识课件
三角形的认识课件三角形的认识课件使学生理解等腰三角形、等边三角形的特点,掌握底和高的概念是教学的重点;下面是小编精心收集的三角形的认识课件,希望能对你有所帮助。
三角形的认识课件【1】教学目标1.使学生理解三角形的意义,掌握三角形的特征和特性,能按角的不同给三角形分类.2.培养学生观察能力和动手操作能力.教学重点正确认识三角形及其分类.教学难点正确掌握画三角形高的方法.教学过程一、联系生活,课前调查.课前调查:找一找,生活中有哪些物体的外形或表面是三角形?请收集和拍摄这类的图片.二、创设情境,导入新课.1.让学生说说生活中见到的三角形.投影展示:学生展示收集到的有关三角形的图片.2.出示下图:3.导入新课.教师导入:看来生活中的三角形无处不在.关于三角形你还想了解它什么?整理学生发言,并提出以下学习目标:(1)什么叫三角形?(2)三角形有哪些特征?(3)三角形具有什么特性?(4)三角形怎样分类?今天我们就一起来认识三角形.(板书课题:三角形)三、师生互动,引导探索.1.教学三角形的意义.(1)教师:请同学们拿出三根小棒,如果把每根小棒看做是三角形的一条边,你们分组摆一摆,并互相交流一下,知道了什么?(2)继续演示课件"三角形".教师:看一看哪组和你摆的一样,它们是三角形吗?(3)分组讨论:如果我们摆三角形用的三根小棒看作三条线段,那么什么样的图形叫做三角形呢?(4)教师演示三根小棒是怎样摆的,从而使学生知道一根接着一根连在一起的,随后明确这是围成的.(板书:围成)(5)揭示概念.教师启发同学互相补充,口述三角形的含义.(教师板书)(6)练一练:继续演示课件"三角形".2.教学三角形的特征:(1)自学:①三角形各部分名称叫什么?②三角形有几条边、几个角、几个顶点?(2)继续演示课件"三角形"出示三角形各部分名称.教师提问:什么叫三角形的边?三角形有几条边?同桌讨论:这些三角形都有哪此共同的特征?引导学生用一句话概括三角形的特征.(3)结合手里三角形学具、边摸边说出它的特征.3.三角形的特性.(1)用三角形木框实验.学生尝试:让学生用手拉一拉这个三角形,感觉怎么样?你发现了什么?同桌互相拉一拉.引导学生得出结论:三角形的木框不易变形.提问:为什么这些部位要制成三角形呢?(2)实验:出示三角形、平行四边形(用木条钉成的)教具,让学生试拉一拉它们.感觉如何?你发现了什么?提问:要使平行四边形不变形,应怎么办?(加一条边构成一个三角形)(3)揭示特性.(4)师小结:房架、自行车架等之所以制成三角形的其中很重要的一个原因是利用了三角形的稳定性,使其结实耐用.(5)你还能举例子说明吗?4.三角形的分类.(1)让学生任意画一个三角形(或剪一个三角形)(2)对三角形进行分类.①学生猜测:三角形按角的特点可以分为哪几类?②教师揭示:通常我们根据三角形角的特点分成三类.分别是锐角三角形、直角三角形和钝角三角形.③小组讨论:你画或剪的三角形属于哪一类?找同学代表把三角形贴在黑板相应的集合图中.④组织学生观察并分组讨论:这些角有什么特点,可以分成几类?⑤教师小结:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形.有一个角是钝角的三角形叫做钝角三角形.⑥认识三角形之间的关系.继续演示课件"三角形".教师提问:如果我们把所有的三角形看作一个整体,这个整体是由哪几部分组成的呢?(3)三角形按边进行分类.全班同学共同测量课本137页上部的三角形.教师提问:通过测量你发现这些三角形边、角各有什么特点?引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.5.认识三角形的底和高,并画高.(1)画锐角三角形,教师边作图边说明.教师说明:我们已经学过从直线外一点向直线作垂线的方法.现在利用这个知识来认识三角形的高.教师提问:锐角三角形有几条高?如果从B点画高,它的底边是哪条线段?如果从C点画高,它的底边是哪条线段?引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.(2)画直角三角形.讨论:直角三角形的高应该怎样画?使学生明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.教师提问:再找一找另外一条高在哪儿?使学生明确:从直角的顶点向斜边作一条垂线,所以直角三角形的另一条高在斜边上.(3)教师演示怎样画钝角三角形的高.(4)教师强调说明:每画完一条高,要标上垂足.6.教学三角形的内角和.【演示动画"三角形内角和定理"】(1)量一量下面每个三角形中三个内角的度数.算一算三角形三个内角的和是多少度.教师:怎样能知道三角形的三个内角和的准确度数呢?(2)实验:指导学生拿一个直角三角形,按下图的顺序,把∠1和∠2沿虚线折过来.观察一下,知道了什么?使学生明确:∠1+∠2=∠3=90°.指导学生拿一个锐角三角形,按下图的顺序,把∠1、∠2、∠3沿虚线折过来.观察一下,知道了什么?使学生明确:∠1+∠2+∠3=180°.③指导学生用一个钝角三角形再试一试.(3)引导学生总结:三角形的内角和是180°.(4)根据三角形内角的是180°,如果知道三角形是两个角的度数,就能求出第三个角的度数.出示例题,引导学生读题,分析题意.列式计算.(5)练习:"做一做".在三角形中,已知∠1=140°,∠3=25°,求∠2.四、巩固练习.1.在信封中藏一个三角形,只露出一个锐角,请同学们猜一猜是什么三角形?提问:为什么不能确定?2.判断.①由三条线段组成的图形叫做三角形.( )②三角形有三条边、三个角、三个顶点.( )③有两个角是锐角的三角形一定是锐角三角形.( )④直角三角形只有一个直角.( )3.操作题.在下面的图形中画出一个条线段.(1)把这个三角形分成两个锐角三角形?(2)把这个三角形分成两个钝角三角形?(3)把这个三角形分成两个直角三角形?4.实践题.小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?5.说出下面每个三角形的名称,并画出每个三角形的高.五、教师小结.通过学习,你掌握或学会了什么?六、布置作业.140页10题下图是一块菜地,它外面的篱笆围成了一个等边三角形.这个篱笆的周长是多少?140页11题用七巧板拼三角形.用两块拼一个三角形,你想出几种拼法?用四块拼一个三角形,你想出几种拼法?用七块拼一个三角形,你想出几种拼法?141页14题已知∠1和∠2是直角三角形中的两个锐角.(1)∠1=50°,求∠2.(2)∠2=48°,求∠1.板书设计三角形的认识课件【2】教学目标(一)使学生了解并掌握等腰三角形、等边三角形的特征,认识三角形的底和高.(二)学会画三角形.(三)进一步提高学生观察能力和画图能力.教学重点和难点使学生理解等腰三角形、等边三角形的特点,掌握底和高的概念是教学的重点;辨认三角形的底和高,尤其是当高不是处于铅垂位置时,对底的认识容易出错,因此辨认和画高是学习的难点.教学过程设计(一)复习准备1.口答:(1)说说什么叫做三角形?它有什么特征?(2)按角的特征,三角形可以分成哪几类?各叫做什么三角形?2.指出下面各叫做什么三角形?(投影)(二)学习新课我们学习了根据三角形角的特征把三角形分成直角三角形、锐角三角形、钝角三角形,今天继续学习对三角形的认识.(板书课题:三角形的认识(二))1.教学等腰三角形.(1)我们班得到了一面卫生流动红旗(如图),以及同学们戴的红领巾都是三角形.观察一下这样的三角形,它们的边有什么特点?(2)动手测量.(拿出事先准备好的三角形.)测量每个三角形三条边的长度,你发现了什么?这三个三角形的边长有什么共同特点?(3)动手折叠.上面的每个三角形,能不能折叠成互相重叠的图形?(4)通过我们的观察、测量、折叠,你发现这些三角形有什么特点?引导学生明确:这些三角形都有两条边相等,两个角相等.教师指出并板书:两条边相等的三角形叫做等腰三角形.2.认识等腰三角形各部分名称.出示一等腰三角形,结合图形认识各部分名称.在等腰三角形里,相等的两条边叫做腰,另一条边叫做底,两个腰的夹角叫顶角,底边上的两个角叫底角.(3)认识等腰三角形的性质.让学生量一量自己手中三个等腰三角形,每个等腰三角形的底角.你发现了什么?在度量的基础上,引导学生明确:等腰三角形两个底角相等.(板书)反馈:下面哪些图形是等腰三角形?3.教学等边三角形.出示三幅图:指定三人到黑板上测量每个三角形的边长和每个角的度数.全班同学测量课本145页右上角图.通过测量你发现这些三角形边、角各有什么特点?引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.通过把等边三角形与等腰三角形对比,引导学生明确等边三角形是特殊的等腰三角形.4.认识三角形的底和高,并画高.(1)认识三角形的底和高.我们已经学过从直线外一点向直线作垂线的`方法.现在利用这个知识来认识三角形的高.①画锐角三角形,师边作图边说明.从三角形的一个顶点到它的对边作一条垂线.顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底.提问:锐角三角形有几条高?如果从B点画高,它的底边是哪条线段?如果从C点画高,它的底边是哪条线段?引导学生明确:锐角三角形的底和高不止一个,从任何一个顶点都可以向它的对边作高.这样三角形就有3个底和3个高.②画直角三角形的高.想一想,直角三角形应该怎样画高?通过观察思考明确:因为直角三角形两条边成直角,所以夹直角的一条边是高,另一条边就是底.再找一找另外一条高在哪儿?从而明确从直角的顶点向斜边作一条垂线,所以直角三条形的另一条高在斜边上.③画钝角三角形的高.右图这个钝角三角形,从A点作高,底边应是BC,高要画在三角形外;从B点作高,底边是AC,高也要画在三角形外.这两条高的画法我们就不研究了.只有从C点向对边作高,底边是AB,高画在三角形里.因此钝角三角形只有从钝角的顶点向对边作高.教师边作图边说明.教师强调指出:每画完一条高,要标上垂足.反馈:①指出各图的底和高.(投影)②学生动手画高.在自己准备好的三角形上画高.教师巡视.5.学习画三角形.根据三角形的边长和角的度数,可以画符合已知条件的三角形.例一个三角形的两条边长分别是2.5厘米和2厘米,它们的夹角是30°.根据这些条件画出三角形.教师边演示边与学生同画.先画一个30°的角.从这个角的顶点起,在一条边上量出2.5厘米的线段,在另一条上量出2厘米的线段,各点上一个点.用线段把这两个点连接起来.让学生说说画三角形的步骤.学生试画:两条边长都是3厘米,夹角是40°的三角形.教师行间巡视指导.完成146页“做一做”.(三)巩固反馈1.出示一组图形,各是什么三角形?(投影)2.完成练习三十一第5,6题3.判断下面说法对吗?(1)一个三角形里如果有两个锐角,必定是一个锐角三角形.(2)所有的等边三角形都是等腰三角形.(3)所有的等腰三角形都是锐角三角形.(四)作业练习三十一第7~10题.课堂教学设计说明学生已经掌握了根据三角形角的特征对三角形进行分类,在这个基础上,本节课学习根据边的特点认识等腰三角形和等边三角形,并认识三角形的底和高,会画三角形的高和三角形.新课分为四部分.第一部分,认识等腰三角形,通过动手实践、测量、折叠,从而建立等腰三角形概念,了解各部分名称及其性质.第二部分,用同样方法认识等边三角形,并明确等边三角形是特殊的等腰三角形.第三部分,认识三角形的底和高,并会画高.今后学习三角形面积要常用到,因此一定要让学生掌握.最后一部分动手操作,让学生学会画三角形,掌握画三角形的步骤.教师要高度重视,加强指导.本节课既重视教师的直观、演示,更要重视学生的动手实践,以逐步提高学生的识图、作图能力.。
认识三角形教案12篇
认识三角形教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!认识三角形教案12篇认识三角形教案1教学目标:1.经历从具体物体中抽象出角和三角形的过程,认识角和三角形,知道周角、平角及周角、平角、直角、钝角、锐角的大小关系。
小班数学《认识三角形》PPT课件
小班数学《认识三角形》PPT课件目录CONTENCT •三角形基本概念•三角形图形识别•三角形边长与角度关系•三角形面积计算及应用•三角形变换与操作实践•总结回顾与拓展延伸01三角形基本概念三角形定义及性质三角形的定义由三条线段首尾顺次连接而成的图形。
三角形的基本性质三角形的任意两边之和大于第三边;三角形的三个内角之和等于180度。
三角形分类与特点按角分类锐角三角形(三个角都小于90度)、直角三角形(有一个角等于90度)、钝角三角形(有一个角大于90度)。
按边分类等边三角形(三边相等)、等腰三角形(有两边相等)、不属于以上两种的其他三角形。
生活中三角形应用举例建筑结构在建筑设计中,三角形结构常被用于增强稳定性,如桥梁的支撑结构、房屋的屋顶等。
交通工具部分交通工具的设计中融入了三角形元素,如自行车的车架、飞机的机翼等,以提供稳固的支撑和减少风阻。
物品设计许多日常用品也采用了三角形设计,如三脚架、三角形的桌子和椅子等,这些设计往往具有稳定性和美观性。
02三角形图形识别01 02 03 04 05等边三角形三边长度相等,三个内角均为60度。
等腰三角形有两边长度相等,两个内角相等。
直角三角形有一个内角为90度,其余两个内角之和为90度。
锐角三角形三个内角均小于90度。
钝角三角形有一个内角大于90度,其余两个内角为锐角。
常见三角形图形展示相似与全等三角形判断方法相似三角形判断方法如果两个三角形的对应角相等,则这两个三角形相似。
全等三角形判断方法如果两个三角形的三边及三个内角分别相等,则这两个三角形全等。
观察法拆分法标记法利用已知条件复杂图形中三角形识别技巧通过观察图形的形状和特征,寻找可能存在的三角形。
将复杂图形拆分成简单的图形,再寻找其中的三角形。
在图形上标记出可能的三角形,以便后续分析和计算。
如果已知某些线段或角度的信息,可以利用这些信息来辅助识别三角形。
03三角形边长与角度关系010203三角形两边之和大于第三边三角形两边之差小于第三边等腰三角形两腰相等,等边三角形三边相等三角形边长关系定理介绍角度和定理及其推论三角形内角和为180°等腰三角形底角相等,等边三角形三个角均为60°直角三角形中,两锐角互余,且其中一个锐角的度数为90°减去另一个锐角的度数1 2 3短直角边等于斜边的一半,长直角边等于短直角边的√3倍30°-60°-90°三角形两直角边相等,斜边等于直角边的√2倍45°-45°-90°三角形两直角边相等,斜边等于直角边的√2倍,且两个锐角均为45°等腰直角三角形特殊角度下三角形性质探讨04三角形面积计算及应用海伦公式介绍海伦公式表达式海伦公式应用举例海伦公式求解任意三角形面积假设三角形三边长度分别为a 、b 、c ,半周长p=(a+b+c)/2,则三角形面积S=√[p(p -a)(p-b)(p-c)]。
七年级下册认识三角形教学设计
七年级下册认识三角形教学设计七年级下册认识三角形教学设计教学设计是作为教者,基于对学生和教学任务的分析,而对教学目标、教学方法、教学材料、教学进度、课程评估等做出系统设计的一门学科。
教学设计者经常使用教学技术以改进教学。
店铺为大家提供了七年级下册认识三角形教学设计,供大家参考。
教材分析:本节是北师大版七年级下册数学第五章第一节的第一课时,在小学初步认识三角形的基础上,进一步了解三角形的表示方法,认识三角形的各组成要素,理解三边关系,并能应用三边关系解决一些实际问题,发展学生的空间观念和推理能力,提高观察力,本节是学习三角形其他知识的基础和保证。
根据具体的教学内容将采取以学生自主探究为主,教师适时引导相结合的方法,让学生在学中乐,乐中学的氛围中完成教学任务。
根据教学内容本节的教学重点应是理解并掌握三角形的有关概念及三角形的三边关系的性质。
学情分析:学生对三角形的知识已有了初步了解,能够较容易掌握三角形的表示方法等基础知识,但动手操作能力,以及通过观察总结结论的能力,语言表达等能力较差,对于知识的表述不是很全面、规范、准确,比如:学生很可能只发现“两边之和小于第三边时,不能围成三角形”,而忽略了“两边之和等于第三边时,也不能围成三角形”。
教师就应多听取更多同学的意见。
因此三角形三边关系性质的应用就成为了本节的难点。
教学目标:1、理解三角形的概念及基本要素,能初步应用三角形三边关系解决问题,培养观察、推理能力。
2、经历观察、操作、想象、推理、交流等活动,自主探究,获取结论,体验数学知识在生活中的作用。
3、在探究问题的过程中,培养学生合作交流的意识,在交流中体会团结合作的必要性。
教学方法:自主探究教具准备:( 教师)三角板、多媒体课件( 学生 )刻度尺、小棒、牙签教学过程:一、创设情境,引出课题教师利用多媒体出示引例:王师傅想做一个三角形零件,现在手里只有两根分别为50cm、100cm长的铁条,想去商店再买一根,可商店里只有这样几种规格的铁条:40cm、50cm、60cm、90cm、150cm,你认为王师傅应买哪种铁条合适?学生纷纷发表自己的观点,设置疑问:到底哪个答案是正确的呢?教师导出课题并板书。
四年级数学《认识三角形》PPT课件
相似三角形面积比关系
相似三角形面积比关系介绍
01
相似三角形的面积比等于其对应边长的平方比。
相似三角形面积比关系表达式
02
若两个三角形相似,且对应边长比为k,则它们的面积比为k^2
。
相似三角形面积比关系应用
03
利用相似三角形的性质,可以通过已知三角形的面积和边长比
,求出另一个相似三角形的面积。
实际问题中面积计算应用
选项A:80度 选项B:100度
选项C:140度
计算题:计算给定条件下三角形面积或边长
题目1
已知一个三角形的底边长为6cm ,高为4cm,求这个三角形的面
积。
题目2
已知一个等边三角形的周长为 18cm,求这个三角形的边长。
题目3
已知一个直角三角形的两条直角边 分别为3cm和4cm,求这个三角形 的面积和斜边长。
选项C
有一个角为90度的 图形
选择题:选择正确描述三角形性质的选项
题目1
下列关于三角形的描述中,正确的是?
选项A
任意两边之和大于第三边
选项B
任意两边之差小于第三边
选择题:选择正确描述三角形性质的选项
选项C
三角形的内角和等于180度
题目2
一个等腰三角形的一个底角是40度,那么它的顶角是多少度?
选择题:选择正确描述三角形性质的选项
三角形结构稳定性
实例展示
在建筑中,三角形结构被广泛用于提 高稳定性,如屋顶、桥梁和塔楼等结 构。
展示一些著名建筑如埃菲尔铁塔、金 字塔等,突出其三角形结构的设计。
原理解释
三角形具有稳定性是因为其三个内角 之和恒等于180度,这种特性使得三 角形在受到外力作用时不易变形。
(新插图版)人教版五年级数学下册 5.1《认识三角形》课件
角角 顶点 边 顶点
人教版 数学 四年级 下册
课堂练习
人教版 数学 四年级 下册
说出下面每个三角形各部分的名称,并各画出 一条高。
课堂练习
人教版 数学 四年级 下册
判断: 直角三角形只有一条高。 ( × )
任意一个三角形都有三条高。
课堂小结
人教版 数学 四年级 下册
这节课你们都学会了哪些知识?
探究新知
人教版 数学 四年级 下册
交流:说一说三角形里有几条边,几个角,几个顶点。
顶点
边角 边
角角
顶点
边
顶点
三角形里有3条边,3个角,3个顶点。
探究新知
人教版 数学 四年级 下册
说一说:下边图形是三角形吗,为什么?
探究新知
思考:什么是三角形? 顶点
人教版 数学 四年级 下册
边角 边
角角
顶点
边
顶点
由3条边围成的图形叫(每做相三邻角两形条。线段的端点相连)
探究新知
人教版 数学 四年级 下册
如果用字母A、B、C分别表示三角形的三个顶点。
这个三角形可以表示成三角形ABC。
A
B
C
说说三角形ABC的3条边、3个角、3个顶点分别是什么?
探究新知
人教版 数学 四年级 下册
做一做:试着画出三角形的高,并和同学交流你
是怎么做的。
A
高
Γ
B
底
C
从三角形的一个顶点到它的对边作一条垂线,顶
点和垂足之间的线段叫做三角形的高。
这条对边叫做三角形的底。
探究新知
人教版 数学 四年级 下册
交流:还能在你的三角形中画出其他的高吗?还能通 过哪个顶点向它的对边做垂线画高? 三角形有几条高?
认识三角形ppt课件
相似三角形的对应边成比例,对应角相等,面积比等于相似比的平方。
相似三角形判定条件
两角分别相等
01
如果两个三角形有两组对应的角分别相等,则这两个三角形相
似。
两边成比例且夹角相等
02
如果两个三角形有两组对应的边成比例,并且夹角相等,则这
两个三角形相似。
三边成比例
03
如果两个三角形的三组对应边都成比例,则这两个三角形相似。
等腰三角形和等边三角形
利用等腰三角形和等边三角形的特殊性质,结合三角函数进行求解。
三角函数在解决实际问题中应用
测量问题
如测量建筑物高度、河宽 等,可以通过构造直角三 角形并应用三角函数进行 求解。
物理问题
在力学、运动学等领域中, 三角函数常用于描述周期 性运动、振动等问题。
工程问题
在土木工程、水利工程等 领域中,三角函数可用于 计算坡度、角度等问题。
已知一边一角求其他两边和角
通过三角函数关系式求解其他两边长度和角度。
已知两边和夹角求第三边
运用余弦定理求解第Байду номын сангаас边长度。
三角函数在其他类型三角形中应用
锐角三角形
通过作高将锐角三角形转化为直角三角形,再利用正弦、余弦、 正切函数求解相关量。
钝角三角形
同样可以通过作高将钝角三角形转化为直角三角形进行处理。
三角形稳定性及应用
三角形的稳定性
当三角形的三条边长度确定时,其形状和大小也就唯一确定了,这种性质称为三角 形的稳定性。
应用
在建筑、桥梁、机械等领域中,常常利用三角形的稳定性来增强结构的稳固性,如 钢架桥中的三角形支撑结构。
02
三角形边长与角度关系
三角形的定义和定理
三角形的定义和定理一、三角形的定义1. 在平面内的定义- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这三条线段叫做三角形的边,每两条边所组成的角叫做三角形的内角(简称角),三角形用符号“△”表示。
例如,三角形ABC,记作△ABC。
2. 在空间中的定义(高中拓展)- 三条线段首尾相接且不在同一平面内所组成的封闭图形叫做空间三角形。
不过在初中阶段主要研究平面内的三角形。
二、三角形的定理1. 三角形内角和定理- 三角形的内角和等于180°。
可以通过多种方法证明,如将三角形的三个角剪下来拼在一起,可以拼成一个平角,从而得出内角和为180°;也可以通过作辅助线,利用平行线的性质来证明。
例如,在△ABC中,∠A+∠B +∠C = 180°。
2. 三角形的外角定理- 三角形的一个外角等于与它不相邻的两个内角之和。
例如在△ABC中,∠ACD 是∠ACB的外角,则∠ACD=∠A +∠B。
- 三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形三边关系定理- 三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,在△ABC 中,AB + BC>AC,AB - BC<AC。
4. 等腰三角形的性质定理- 等腰三角形的两腰相等。
如果△ABC中,AB = AC,那么这个三角形是等腰三角形。
- 等腰三角形的两个底角相等(简称为“等边对等角”)。
在等腰三角形ABC 中,AB = AC,则∠B=∠C。
- 等腰三角形底边上的高、中线和顶角平分线互相重合(简称为“三线合一”)。
5. 等边三角形的性质定理- 等边三角形的三条边都相等。
- 等边三角形的三个内角都相等,并且每个内角都等于60°。
6. 直角三角形的性质定理- 直角三角形的两个锐角互余。
在Rt△ABC中,∠C = 90°,则∠A+∠B = 90°。
- 直角三角形斜边上的中线等于斜边的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
你通过本节课的学习你哪些收获
2
作业
144也知识技能1,2
1
当堂
验收
1.若三角形的三个内角的比为1:2:3,则它是[ ]
A.等腰直角三角形B.等腰三角形
C.直角三角形D.锐角三角形
2.在△ABC中,∠A=50°,∠B、∠C的平分线相交于O,则∠BOC的度数为[ ]
A.65°B.115°C.130°D.100°
课题
§5.1.3认识三角形
主备人
课型
新授课
时间
教
学
目
标
知识与技能
三角形的内角平分线..三角形的中线
过程与方法
通过观察、操作、想象平分线、中线,并能在具体三角形中作出它们
情感态度与价值观
在学生观察、操作、思考和交流的过程中,丰富学生的知识,激发学生进一步探索知识的激情,同时发展他们的空间观念
教材
分析
重点
三角形的角平分线、中线的概念
难点
准确画出三角形的角平分线、中线
教法
教学
手段
学法
教学过程
教师活动
学生活动
用案教师修改意见
T
创设情境
出示目标
探索新知
上两节课我们认识了三角形及其基本要素:边、角,现在来回顾一下:
什么样的图形叫做三角形?三角形的三条边有什么关系呢?三个角呢?
师口述
在一张薄纸上任意画一个三角形,你能设法画出它的一个内角的平分线吗?你能通过折纸的方法得到它吗?
在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.
在定义中需要注意:
(1)三角形的角平分线是一条线段而不是射线,它与一个角的平分线不同.
(2)一个内角的角平分线与它的对边是相交的.这个角的顶点与交点之间的线段才是这个内角的平分线.即三角形的角平分
回顾思考
浏览教材
3
1
15
教学过程
教师活动
学生活动
用案教师修改意见
T
巩固加深
AD是∠BAC的角平分线.
(1)你能分别画出锐角三角形、钝角三角形和直角三角形这三个三角形的三条角平分线吗(2)你能用折纸的办法得到它们吗?
(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?
下面我们来研究三角形的中线.
在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线(median).
AD是△ABC的角平分线.
注意:三角形的角平分线是线段.
二、做一做
三角形的三条角平分线交于一点,三条中线交于一点.
三、三角形的中线.
AE是△ABC的中线
注意:三角形的中线是线段.
四、议一议
五、练习
六、课时小结
七、课后作业
教学
反思
图5-25
如图5-25,E是BC的中点,线段AE是△ABC的中线.
注意:三角形的中线是线段.
(1)在纸上画一个锐角三角形,并画出它的所有中线,它们有怎样的位置关系?
(2)钝角三角形和直角三角形的中线有几条,它们也有同样的位置关系吗?折一折.画一画,并与同伴交流.
探索交流
16
教学过程
教师活动
学生活动
用案教师修改意见
3.已知:△ABC中,∠C=80°,∠A∠B=20°,则∠B的度数是[ ]
A.60°B.30°C.20°D.40°
4.如图,已知在直角三角形ABC中,∠BAC=90°,AD⊥BC于D,则图中互为余角的角共有[ ]
A. 2对B. 3对C. 4对D. 5对
7
板书
设计
§5.1.3认识三角形
一、三角形的角平分线.