第六节带电粒子在磁场中的运动(五)--磁场中的临界极值问题
(完整版)带电粒子在有界磁场中运动的临界问题
带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
磁场中的临界极值问题
带电粒子在磁场中运动的极值问题1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角大的,运动时间越长.1 如图7所示, 匀强磁场 的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD 边界外侧以速率v0垂直匀强磁场射入,入射方向与CD 边界间夹角为θ.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF 射 出,求电子的速率v 0至少多大?2、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感应强度B=1.0T ,若被束缚的带电粒子的荷质比为 mq 4×107C/kg ,中空区域中带电粒子具有各个方向的速度。
试计算: (1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度。
4、如图所示一足够长的矩形区域abcd 内充满磁感应强度为B ,垂直纸面向里的匀强磁场,现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角30°,大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为l ,重力影响不计。
(1)试求粒子能从ab 边上射出磁场的v 0的大小范围。
(2)粒子在磁场中运动的最长时间是多少?5如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。
磁场中的临界和极值问题
-
8
解:(1)设粒子的发射速度为,粒子做圆周运动的轨道半径为R,
由牛顿第二定律和洛仑兹力公式,得 qvB m v 2
①
R
由①式得
R mv
②
qB
当 a/2Ra时,在磁场中运动时间最长的粒子,其轨迹是圆心为C的圆弧,
圆弧与磁场的上边界相切,如图所示。设该粒子在磁场运动的时间为t,
依题意 t T / 4 ,得 OCA
( (
θv
A
θv
A
θ
r rO1
O
xO
x
由 rrsind
qBd
v2 qvB m
得 v
m(1 sin )
r
-
5
y
o
x
y
x o
一束带电的粒子以初速度v进入匀强磁场,若初速度 大小 相同,
不同方,向则所有粒子运动的轨道半径
,但相不同同粒子的圆心位置
不同。其共同规律是:
所有粒子的圆心都在 以射入点为圆心、半径等于入射
12
磁聚焦概括: 迁移与逆向、对称的物理思想!
一点发散成平行
R r
R r
平行会聚于一点
区域半径 R 与运动半径 r 相等 出射方向和入射点的位置有关
-
13
课堂总结
动态圆的两种模型: 1、放缩圆 速度 方向 不变,速度 大小发生变化,轨迹半径 不同,圆 心始终在与速度方向垂直的同一直线上。所有圆内切。
1
P (x,y)
夹角为 ,则由图可知:
v0
r
x = rsin, y = r-rcos ,
Oθ
x
得: x2 + (y-r)2 = r2。
r O
带电粒子在磁场中运动的临界问题课件
03
CATALOGUE
带电粒子在磁场中运动的实例分析
粒子在均匀磁场中的运动
在此添加您的文本17字
总结词:直线运动
在此添加您的文本16字
详细描述:带电粒子在均匀磁场中运动时,受到洛伦兹力 作用,由于力与速度始终垂直,粒子做直线运动。
在此添加您的文本16字
洛伦兹力
01 02
洛伦兹力
带电粒子在磁场中运动时受到的力,方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁 感应强度,$theta$是速度与磁感应强度的夹角。
洛伦兹力对带电粒子运动轨迹的影响
洛伦兹力总是垂直于带电粒子的速度方向,因此它只改变速度的方向而 不改变速度的大小。这导致带电粒子在磁场中做曲线运动。
总结词:匀速圆周运动
在此添加您的文本16字
详细描述:当带电粒子在均匀磁场中以一定速度垂直射入 时,洛伦兹力提供向心力,使粒子做匀速圆周运动。
在此添加您的文本16字
总结词:螺旋运动
在此添加您的文本16字
详细描述:当带电粒子在均匀磁场中以一定速度斜射入时 ,洛伦兹力与速度方向既不平行也不垂直,粒子做螺旋运 动。
实验结论与讨论
01
讨论
02
03
04
本实验结果对于理解电磁场与 粒子的相互作用具有重要意义
。
可进一步探讨不同类型带电粒 子在磁场中的行为差异。
本实验的局限性及其对结果的 影响,如何改进实验方法以提
高结果的准确性。
05
CATALOGUE
带电粒子在磁场中运动的工程应用
粒子加速器
高中物理磁场带电粒子在匀强磁场中运动的临界极值问题与多解问题
带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。
在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。
分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。
应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。
【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。
带电粒子在有界磁场中的临界,极值,多解问题
带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。
【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。
物理带电粒子在匀强磁场中运动的临界极值问题
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
带电粒子在有界磁场中运动的临界问题极值问题和多解问题
R1sin30°+2l =R1
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
由几何关系知
OA= AS2-OS2 AS=2r′ OS=r′ OC=r′ 解得 OA= 3L,OC=L 故被电子打中的区域长度为
AC=OA+OC=(1+ 3)L.
【答案】
BeL (1) 2m
(2)(1+ 3)L
题后反思 (1)审题应首先抓住“速率相等”⇒即轨迹圆半径相 等,其次“各个方向发射”⇒轨迹不同.然后作出一系 列轨迹圆. (2)注意粒子在磁场中总沿顺时针方向做圆周运动, 所以粒子打在左边和右边最远点的情形不同.
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:
带电粒子在磁场中运动的临界问题课件
研究结果可以应用于空间探测、天气 预报、通讯和导航等领域。
地球磁场可以影响太阳风等离子体的 运动和散布,空间物理研究有助于了 解太阳系中的环境和天体现象。
05
CHAPTER
带电粒子在磁场中运动的临 界问题的挑战和展望
研究方法和技术的改进和创新
引入新的数学模型和计算方法, 以更精确地描述带电粒子在磁场
促进学术交流和合作,以便更好地推动带电粒子在磁 场中运动的研究和应用发展。
THANKS
谢谢
临界条件的实验验证和方法改进
实验验证
通过实验可以验证临界条件的正确性。例如,可以使用粒子加速器和磁场装置来模拟带电粒子在磁场中的运动, 并视察其轨迹是否满足临界条件。
方法改进
根据实验结果和理论分析,可以对临界条件的推导和分析方法进行改进。例如,可以使用更精确的数学工具来推 导和分析临界条件;也可以通过改变磁场强度或边界形状等参数来调整临界条件。
03
CHAPTER
带电粒子在磁场中运动的临 界问题
临界条件的定义和分类
定义
带电粒子在磁场中运动的临界条件是指粒子在磁场中运动时,其轨迹恰好不与 边界相切或相离,而是恰好与边界相切或相交。
分类
根据不同的标准,临界条件可以分为不同的类型。例如,根据粒子的速度方向 与磁场方向的关系,可以分为横向和纵向临界条件;根据粒子的能量大小与磁 场强度的大小关系,可以分为高能临界和低能临界。
中的运动。
开发先进的模拟软件和计算程序 ,以便更好地预测和模拟带电粒
子的行为。
推动实验技术的发展,以便更好 地测量和验证带电粒子在磁场中
的运动。
理论和实验的进一步验证和完善
开展更多的理论研究和实验验证,以进 一步揭示带电粒子在磁场中运动的规律
磁场精讲精练带电粒子在磁场中运动的临界、极值问题
一带电粒子在磁场中运动的临界、极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1.临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例题1.平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为()A.mv2qB B.错误!C。
错误! D.错误!解析:选D.如图所示,粒子在磁场中运动的轨道半径为R=错误!.设入射点为A,出射点为B,圆弧与ON的交点为P.由粒子运动的对称性及粒子的入射方向知,AB=R。
由几何图形知,AP=错误!R,则AO=错误!AP=3R,所以OB=4R=错误!。
故选项D正确.例题2.(多选)如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的任意值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=30°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,则( )A.两板间电压的最大值U m=错误!B.CD板上可能被粒子打中区域的长度x=错误!LC.粒子在磁场中运动的最长时间t m=错误!D.能打在N板上的粒子的最大动能为错误!解析:选BCD.M、N两板间电压取最大值时,粒子恰垂直打在CD板上,所以其轨迹圆心在C点,CH=QC=L,故半径R1=L,又因Bqv1=m错误!,qU m=错误!mv错误!,可得U m=错误!,所以A错误.设轨迹与CD板相切于K点,半径为R2,在△AKC中sin 30°=错误!=错误!,可得R2=错误!,CK长为错误!R2=错误!L,则CD板上可能被粒子打中的区域即为HK的长度,x=HK=L-CK=错误!L,故B正确.打在QE间的粒子在磁场中运动的时间最长,周期T=错误!,所以t m=错误!,C正确.能打到N板上的粒子的临界条件是轨迹与CD 相切,由B选项知,r m=R2=错误!,可得v m=错误!,动能E km=错误!,故D正确.例题3.如图甲所示,在空间中存在垂直纸面向里的磁感应强度为B的匀强磁场,其边界AB、CD相距为d,在左边界的Q点处有一质量为m、带电量为q的负粒子沿与左边界成30°的方向射入磁场,粒子重力不计.求:(1)带电粒子能从AB边界飞出的最大速度;(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图乙所示的匀强电场中减速至零且不碰到负极板,则极板间电压U应满足什么条件?整个过程粒子在磁场中运动的时间是多少?(3)若带电粒子的速度是(2)中的3倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的距离大小?解析:(1)带电粒子在磁场中做匀速圆周运动,设半径为R1,运动速度为v0.粒子能从左边界射出,临界情况如图甲所示,由几何条件知R1+R1cos 30°=d又qv0B=错误!解得v0=错误!=错误!所以粒子能从左边界射出时的最大速度为v m=v0=错误!(2)带电粒子能从右边界垂直射出,如图乙所示.由几何关系知R2=错误!由洛伦兹力提供向心力得Bqv2=m错误!由动能定理得-qU=0-错误!mv错误!解得U=错误!=错误!所加电压满足的条件U≥错误!。
2021届全国新高考物理精品备考 带电粒子在磁场中运动的临界极值问题
例2. 如图所示,在足够长的荧光屏MN上方分布了水平方向 的匀强磁场,磁感应强度的大小B=0.1T、方向与纸面垂直.距离 荧光屏h=16cm处有一粒子源S,以速度v=1×106m/s不断地在纸面 内向各个方向发射比荷q/m=1×108C/kg的带正电粒子,不计粒子 的重力。则粒子打在荧光屏范围的长度为( )
(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度 v0的大小。
【拓展】如图(a)所示,在以O为圆心,内外半径分别为R1和R2的 圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间 的电势差U为常量,R1=R0,R2=3R0,一电荷量为+q,质量为 m的粒子从内圆上的A点进入该区域,不计重力。
(2)若撤去电场,如图(b),已知粒子从OA延长线与外圆的 交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度 的大小及粒子在磁场中运动的时间。
【拓展】如图(a)所示,在以O为圆心,内外半径分别为R1和R2的 圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间 的电势差U为常量,R1=R0,R2=3R0,一电荷量为+q,质量为 m的粒子从内圆上的A点进入该区域,不计重力。
3mv0 ae
D.B<
3mv0 ae
[答案] D
变式:
变式:
变式:
变式:
变式:
变式:
变式:
例2. 如图所示,在足够长的荧光屏MN上方分布了水平方向 的匀强磁场,磁感应强度的大小B=0.1T、方向与纸面垂直.距离 荧光屏h=16cm处有一粒子源S,以速度v=1×106m/s不断地在纸面 内向各个方向发射比荷q/m=1×108C/kg的带正电粒子,不计粒子 的重力。则粒子打在荧光屏范围的长度为( )
带电粒子在磁场中运动——极值多解问题模板
带电粒子从射入到射出磁场所用的总时间 t=t1+t2 由以上各式可得 B1=56πqmt ,B2=53πqmt
答案
5πm 6qt
5πm 3qt
建模感悟 粒子在多个磁场中连续运动时,会画出不同 的轨迹,从复杂的轨迹中找出规律,寻找解决问题的突 破口,解这类问题时,关键在于能画出轨迹,想清楚粒 子的运动过程,借助圆周运动的特点解决问题.
1)
B
. R vO0
·
S
t
总r
(n
1)R
tan
n 1
n2
v
v
5.如图所示,在半径为R的圆筒内有匀强磁场,质量
为m、带电量为q的正离子在小孔S处,以速度v0向着 圆心射入,施加的磁感应强度为多大,此粒子才能在
最短的时间内从原孔射出?(设相碰时电量和动能均
无损失)
B
解:粒子经过n=2,3,4……次与圆筒
碰撞从原孔射出,其运动轨迹具
有对称性.当发生最少碰撞次数
r
. R vO0
n=2时 600
r R cot 300 3R
·
O’
r
S
qvB m v2 B mv0 mv0
r
qr 3qR
t 3 1 T m 3R
6 qB v0
当发生碰撞次数n=3时
900
(1)若能打到P点,则粒子速度的最小值为多少? (2)若能打到P点,则粒子在磁场中运动的最长时间 为多少?
例1.如图所示,一带电质点,质量为m,电量为q,以 平行于Ox轴的速度v从y轴上的a点射入图中第一象限所 示的区域.为了使该质点能从x轴上的b点以垂直于Ox轴 的速度v射出,可在适当的地方加一个垂直于xy平面、 磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆 形区域内,试求这圆形磁场区域的最小半径.重力忽略 不计. (若磁场为矩形,或正三角形又如何?)
带电粒子在有界磁场中运动 的临界问题解析
带电粒子在有界磁场中运动的临界问题解析“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解:由qvB =Rv m 2可求R =0.2m由圆心角=偏向角,当粒子从O 点射出后穿过磁场路径最大时,对应圆心角最大。
由几何关系圆心角为60º 故最大偏角为60 º二、带电粒子在“长方形磁场区域”中的运动例2、如图2,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解:两种情形1.当粒子以较小速度射入从磁场左边界射出,对应最大速度为v 1,半径为r 1图2⨯⨯⨯⨯⨯⨯⨯⨯→∙d LvmqBdv dr r v m B qv 4 4111211===可求2.以较大速度射入从磁场右边界射出对应最小速度v 2,半径r 2mdL d qB v L dr r r mv B qv 4)4()2( 222222222222+=+-==可求三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,(边界无磁场)有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图3所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件.解:若粒子恰好与AC 相切.轨道半径为r 1,速度为v 1mqBa v mqBam qBa v a r r a r v r BC mqBa v a r r mv B qv a r r 3)336(3 330cos ])32([)336()336( 330cos 22222211121111<<-===-+-=-===+故可求速度为相切半径为若粒子恰好与可求图3DB四、带电粒子在“宽度一定的无限长磁场区域”中的运动例4、如图4所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=, A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系.解:①粒子运动的最大半径处至点右侧从板范围为打在范围点至距板上范围为打在m m Q B m d P P A mqB mv r mm 222210110)32(100.12102----⨯⨯-⨯=⨯==6108sin sin 2⨯====mqBdv qBmv r dr θθ则②五、带电粒子在“单边磁场区域”中的运动例5、如图5所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解:y 轴范围mqBmvr rr 1.03==-至从练习1.在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
带电粒子在磁场中地临界极值问题
带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v 0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m ).2.偏角的极值问题例2 在真空中,半径r =3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷q m=1×108C/kg ,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.3.时间的极值问题例3 如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值Um;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4 如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节带电粒子在磁场中的运动(五) 带电粒子在磁场中运动的极值问题
1.解决此类问题的关键是:找准临界点 2.找临界点的方法是:
以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v 变化时,圆心角(或弦切角、偏转角)越大的,运动时间越长.
1、 如图所示,匀强磁场 的磁感应强度为B ,宽度为d ,边界为CD 和EF.一电子从CD 边界外侧以速率v 0垂直匀强磁场射入,入射方向与CD 边界间夹角为θ.已知电子的质量为m ,电荷量为e ,为使电子能从磁场的另一侧EF 射出,求电子的速率v 0至少多大?
2、如图所示,一足够长的矩形区域内充满磁感应强度为B ,方向垂直于纸面向里的匀强磁场,现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角为300,大小为V 的带正电的粒子。
已知粒子的质量为m 、带电量为q ,ad 边场为L ,重力不计。
求: (1)该粒子能从ab 边上射出磁场,其速度V 的大小范围为多少? (2)粒子在磁场中运动的最长时间是多少?
3、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感应强度B=1.0T ,若被束缚的带电粒子的荷质比为
m
q
4×
107C/kg ,中空区域中带电粒子具有各个方向的速度。
试计算:
(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度; (2)所有粒子不能穿越磁场的最大速度。
4、如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。
位于极板左侧的粒子源沿x 轴间右连接发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子在0~3t 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。
已知t =0时刻进入两板间的带电粒子恰好在t 0时,刻经极板边缘射入磁场。
上述m 、q 、l 、t 0、B 为已知量。
(不考虑粒子间相互影响及返回板间的情况) (1)求电压U 的大小。
(2)求
时进入两板间的带电粒子在磁场中做圆周运动的半径。
(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
5、如图所示,半径为R=10cm 的圆形匀强磁场,区域边界跟y 轴相切于坐标原点O ,磁感应强度B = 0.332T ,方向垂直纸面向里,在O 处有一放射源S ,可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒子,已知α粒子质量为m=6.64×10-27kg ,电荷量q=3.2×10-19C 。
(1)画出α粒子通过磁场空间做圆周运动的圆心点的连线线形状;(2)求出α粒子通过磁场的最大偏向角;
6、在真空中,半径r=3×10-2m 的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T ,一个带正电的粒子,以初速度v 0=106m/s 从磁场边界上直径ab 的一端a 射入磁场,已知该粒子的比荷
=m
q
108C/kg ,不计粒子重力,求: (1)粒子在磁场中作匀速圆周运动的半径是多少?
(2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0方向与ab 的夹角θ及粒子的最大偏转角β。
7、M 、N 两极板相距为d ,板长均为5d ,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v 射入板间,为了使电子都不从板间穿出,求磁感应强度B 的范围。
8、如图所示一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域,为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感强度为B 的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。
9、一质量为m 、带电量为q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感强度为B 的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从b 处穿过x 轴,速度方向与x 轴正向夹角为30°,如图所示(粒子重力忽略不计)。
试求:圆形磁场区的最小面积;
10、如图所示,S 为电子放射源,它能在如图所示纸面内的3600范围内发射速率相等、质量为m 、电量为e 的电子。
MN 是一块足够大的竖直挡板,与S 的水平距离为OS =L 。
挡板的左侧充满垂直于纸面向里的匀强磁场,磁感应强度为B 。
求:
(1)要使S 发射的粒子能到达挡板,发射电子的速度至少多大?
(2)若发射电子的速率为eBL/m 时,挡板被电子击中的范围多大?(要求画出能击中挡板的距O 上、下最远的电子的轨迹)。