【数学】黑龙江省大庆中学2019-2020学年高二上学期期中考试(理)

合集下载

黑龙江省大庆中学2019-2020学年高一下学期期中考试化学试题 Word版含答案

黑龙江省大庆中学2019-2020学年高一下学期期中考试化学试题 Word版含答案

祝学长学业有成,取得好成绩大庆中学2019—2020学年度下学期阶段性测试高一年级化学试题一、单选题(本题共22小题,每小题3分,共66分,答案填在问卷星上)1.下列有关甲烷及其氯代物说法正确的是()A. 甲烷及其氯代物中都只存在极性键B。

甲烷及其氯代物都是正四面体结构C. 甲烷性质稳定,但可以被酸性高锰酸钾溶液氧化D。

甲烷与氯气发生取代反应时,共生成四种物质2.下列有关电池的说法不正确的是()A。

手机上用的锂离子电池属于二次电池 B. 锌锰干电池中,锌电极是负极C. 甲醇燃料电池可把化学能转化为电能D. 铜锌原电池工作时,电子沿外电路从铜电极流向锌电极3.下列变化符合图示的是()4.冰雪融化分解制铝与氧化铁的反应钠与水反应二氧化碳与灼热的木炭反应碘的升华和的反应A。

B。

C。

D.5.日常所用锌-锰干电池的电极分别为锌筒和石墨棒,以糊状NH4Cl作电解质,电极反应为:Zn-2e-=Zn2+,2MnO2+2NH4++2e-=Mn2O3+2NH3+H2O。

下列有关锌-锰干电池的叙述中,不正确的是()A. 干电池工作时,电子方向是由锌筒经外电路流向石墨棒B. 干电池中锌筒为负极,石墨棒为正极C。

外电路中每通过0.2mol电子,锌的质量理论上减小6。

5gD. 干电池可实现化学能向电能和电能向化学能的相互转化6.加成反应是有机化学中的一类重要的反应,下列属于加成反应的是()A. 甲烷与氯气混合后光照反应B。

乙烯与溴的四氯化碳溶液反应C。

乙烯使酸性高锰酸钾溶液褪色D。

在苯中滴入溴水,溴水褪色7.下列图象分别表示有关反应的反应过程与能量变化的关系( )8.据此判断下列说法中不正确的是()A. 石墨转变为金刚石是吸热反应B. 等质量的S(g)完全燃烧放出的热量大于S(s)C。

白磷比红磷稳定D。

CO(g)+H2O(g)=CO2(g)+H2(g)为放热反应9.比较乙烷和乙醇结构,下列说法错误的是()A 。

两个碳原子以单键相连B。

黑龙江省大庆实验中学2013-2014学年高二下学期期中考试数学(理)试题 Word版无答案

黑龙江省大庆实验中学2013-2014学年高二下学期期中考试数学(理)试题 Word版无答案

高二下学期期中考试数学(理)试题一、选择题(本大题共12小题,每小题5分,共 60分)1.在复平面内,复数34i z i=-(i 为虚数单位)的共轭复数对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数32()33f x x x x =-+的极值点的个数是( )A .0B .1C .2D .33.从5种不同的书(每种书不少于3本)买3本送给3名同学,每人各一本的不同送法有( )A .35AB .35C .53D .3353A A4.在R 上的可导函数()f x 的图像如图所示,则关于x 的不等式 ()0xf x '<的解集是 ( )A.(,1)(0,1)-∞-B.(1,0)(1,)-+∞C.(2,1)(1,2)--D.(,2)(2,)-∞-+∞ 5.有7个座位连成一排,安排3人就座,恰有3个空位相邻的不同坐法有( )A.36种B.48种C.72种D.96种6.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集)①“若,,0则a b R a b a b ∈-=⇒=”类比推出“若,,0则a b C a b a b ∈-=⇒=” ②“若,,,,,则复数a b c d R a bi c di a c b d ∈+=+⇒==”类比推出若,,,,,a b c d Q a c a c b d ∈+=+⇒==“则实数”③“若,,0则a b R a b a b ∈->⇒>”类比推出“若,,0则a b C a b a b ∈->⇒>”其中类比结论正确的个数是( )A .0B .1C .2D .37.已知函数x x x f ln )(=,若直线l 过点(0,1)-,并且与曲线()y f x =相切,则直线l 的方程为( )A .10x y +-=B .10x y --=C .10x y ++=D .10x y -+=8. 用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.360B.328C.296D.2689. 分析法又称执果索因法,若分析法证明"0,"设且a b c a b c a >>++=索的因应是( )A. 0a b ->B. 0a c ->C. ()()0a b a c -->D. ()()0a b a c --<10. 20(cos 2x dx ⎰π 的值为( )A . 2π B.π C .π+1 D .2+ππ11.在实数集R 中定义一种运算“*”,对任意给定的,a b R ∈,a *b 为唯一确定的实数且具有性质:①对任意,a b R ∈,a *b =b *a②对任意a R ∈,a *0=a③对任意,a b R ∈,(a *b )*c =c *(ab )+(a *c )+(c *b )-2c关于函数()x f x e =*x e -的性质,有如下说法:(1)函数()f x 的最小值为3(2)函数()f x 为偶函数(3)函数()f x '在(,)-∞+∞上是增函数其中正确说法的个数为( )A .0B .1C .2D .312.已知函数()||x f x xe =,方程2()+()10()f x tf x t R +=∈有4个实数根,则t 的取值范围为( ) A.21(,)e e ++∞ B.21(,)e e +-∞- C.21(,2)e e +-- D.21(2),e e+ 二、填空题(本大题共4小题,每小题5分,共 20分)13.20141()1i i -+=_____________ 14.101x dx x =+⎰___________ 15.函数()cos x f x e x =在区间[0,]4π上的值域为________16.甲、乙、丙、丁等7人站成一排,要求甲在中间,乙丙相邻且丁不在两端,则不同的排法种数为__________(用数字作答)三、解答题(本大题共6小题,共70分,解答应写出过程)17.(本小题满分10分)已知实数2,(4)40满足a b b i b ai -+++=(1)求,a b 的值;(2)若|||0且|z C z a bi z ∈---=,求||z 最小时的复数z 。

人教版高二上学期期末数学试卷(理)(有答案)

人教版高二上学期期末数学试卷(理)(有答案)

黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。

黑龙江省大庆中学2019-2020学年高二上学期期末考试数学(理)试题(解析版)

黑龙江省大庆中学2019-2020学年高二上学期期末考试数学(理)试题(解析版)

大庆中学2019—2020学年度上学期期末考试高二年级理科数学试题一、选择题(本大题共12个小题,每小题5分,共60分)1.已知i 为虚数单位,复数z 满足()11z i +=,则z 的共轭复数z =( ) A.1122i + B.1122i - C. 1122-+i D. 1122i -- 【答案】A 【解析】由()1i 1z +=,得()()11i 1111i,i 1i 1i 1i 2222z z -===-∴=+++-,故选A. 2.设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件 【答案】B 【解析】 【分析】 分别求出两不等式解集,根据两解集的包含关系确定.【详解】化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B .【点睛】本题考查充分必要条件,解题关键是化简不等式,由集合关系来判断条件.3.已知0.20.32log 0.2,2,0.2a b c ===,则A. a b c <<B. a c b <<C. c a b <<D. b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A. 若//,//,m n αα则//m n B. 若m α⊥,n α⊂,则m n ⊥ C. 若m α⊥,m n ⊥,则//n α D. 若//m α,m n ⊥,则n α⊥【答案】B 【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确. 考点:空间点线面位置关系. 此处有视频,请去附件查看】5.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8π C.12D.4π 【答案】B【【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 6.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B. -4C. 4D. -3【答案】B 【解析】 【分析】根据秦九韶算法先将多项式改写成如下形式:()()()()()4012016f x x x x x x =+++++,将2x =-代入并依次计算0v ,1v ,2v 值,即可得到答案【详解】多项式()()()()()542420164012016f x x x x x x x x x x =++++=+++++,当2x =-时,01v =,12v =,24v =-,故选B .【点睛】本题考查的知识点是秦九韶算法,其中熟练掌握秦九韶算法的运算法则,是解答本题的关键,属于中档题.7.已知数列{}n a 中,114a =,111(2)n n a n a -=-≥,则2020a 的值是( ) A.43B.14C. -3D.15【答案】B 【解析】 【分析】写出数列的前几项,可发现数列有周期,周期为3,则20201a a =.的【详解】因为114a =,111(2)n n a n a -=-≥, 所以2143a =-=-,314133a =+=,431144a =-=,⋯, 可知数列的取值有周期,周期为3, 所以2020114a a ==, 故选:B【点睛】本题主要考查了数列的递推关系式,属于容易题. 8.2521(2)(1)x x+-的展开式的常数项是( ) A. 3- B. 2-C. 2D. 3【答案】D 【解析】 【详解】的展开式通项为:,由2100r -=得=5r ,所以的常数项系数为;由2102r -=-得4r =,所以的项系数为,所以的展开式的常数项是,故选D.【此处有视频,请去附件查看】9.已知曲线11(0x y a a -=+>且1)a ≠过定点(),k b ,若m n b +=且0,0m n >>,则41m n+的最小值为( ). A.92B. 9C. 5D.52【答案】A 【解析】 【分析】根据指数型函数所过的定点,确定1,2k b ==,再根据条件2m n +=,利用基本不等式求41m n+的最小值.【详解】Q 定点为(1,2),1,2k b ∴==,2m n ∴+=41141()()2m n m n m n +=++∴149(5+)22m n n m =+… 当且仅当4m nn m=时等号成立,即42,33m n ==时取得最小值92.故选A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.10.将函数()()()()sin 220f x x x ϕϕϕπ=++<<的图象向左平移4π个单位后,得到函数的图象关于点,02π⎛⎫⎪⎝⎭对称,则ϕ等于( ) A. 6π-B.6π C.4π D.3π 【答案】B 【解析】 【分析】先利用辅助角公式将函数()y f x =的解析式化简,并求出平移变换后的函数解析式,由变换后的函数图象关于点,02π⎛⎫⎪⎝⎭对称,可得出ϕ的表达式,结合ϕ的范围可求出ϕ的值.【详解】()()()sin 222sin 23f x x x x πϕϕϕ⎛⎫=+++=++ ⎪⎝⎭Q , 将函数()y f x =的图象向左平移4π个单位后, 所得图象的函数解析式为()52sin 22sin 2436g x x x πππϕϕ⎡⎤⎛⎫⎛⎫=+++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由于函数()y g x =的图象关于点,02π⎛⎫⎪⎝⎭对称,则()5226k k Z ππϕπ⨯++=∈,得()116k k Z ϕπ⎛⎫=-∈ ⎪⎝⎭,0ϕπ<<Q ,2k ∴=,6π=ϕ. 故选:B.【点睛】本题考查利用三角函数的对称性求参数值,同时也考查了三角函数图象的平移变换,根据对称性得出参数的表达式是解题的关键,考查推理能力与计算能力,属于中等题.11.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( ) A. 240种 B. 188种 C. 156种 D. 120种【答案】D 【解析】当E,F 排在前三位时,2231223()N A A A ==24,当E,F 排后三位时,122223322()()N C A A A ==72,当E,F 排3,4位时,112232322()N C A A A ==24,N=120种,选D.12.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是( )A.B.C.D.【答案】B 【解析】【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M 是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB+=,在ABF ∆中222AB AF BF=+22cos3AF BF π-22AF BF AF BF=++2()AF BF AF BF=+-2()AF BF ≥+2()2AF BF+-23()4AF BF =+,所以22()43AF BF AB+≤,即3AF BF AB +≤,所以3MN AB≤,故选B . 考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知向量,a b r r夹角为45︒,且1,2a a b =-=r r r b =r __________.【答案】【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数. 【此处有视频,请去附件查看】14.不透明的袋子中装有除颜色不同其它完全一样的黑、白小球共10只,从中任意摸出一只小球得到是黑球的概率为25.则从中任意摸出2只小球,至少得到一只白球的概率为 . 【答案】【解析】试题分析:这属于古典概型问题,设其中有黑球x 只,则有2105x =,4x =,故白球有6只,任意摸出2只小球,至少得到一只白球的概率为1124662101315C C C C +=. 考点:古典概型.15.在四面体A BCD -中,2AB AC AD BC BD =====,若四面体A BCD -的外接球的体积3V =,则CD =______.【答案】【解析】 【分析】设CD 的中点为M ,AB 的中点为N ,连接MN,可知球心O 在MN 上,连接CN,DN,OA,OD,设2CD x =,根据勾股定理,得方程,进而问题得解.【详解】设CD 的中点为M ,AB 的中点为N ,连接MN,由题目中已知条件可知,MN 分别为CD ,AB 的垂直平分线,故四面体A BCD -的外接球球心O 在线段MN 上,连接CN,DN,OA,OD ,设四面体A BCD -的外接球半径为r,由3433V r π==,得r = 设2CD x =,在Rt OAN V中,1ON ===, 在Rt ADN V中,DN =在Rt DMN V 中,MN ==所以1OM MN ON =-=,在Rt ODM V 中,222OM OD DM =-,由)2212x =-,解得x =所以CD =故填:【点睛】本题考查了几何体的外接球的有关问题,关键是确定球心在几何体中的位置,根据已知条件,结合几何体的半径和表面积或体积公式求解.16.过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为__________.【答案】()⋃+∞【解析】分析:设出双曲线的左焦点,令x=﹣c ,代入双曲线的方程,解得A ,B 的坐标,讨论∠DAB 为钝角,可得DA AB⋅u u u v u u u v<0,或∠ADB 为钝角,可得DA AB ⋅u u u v u u u v<0,运用向量数量积的坐标表示,再由离心率公式和范围,即可得到所求范围.详解:设双曲线22221(0,0)x y a b a b-=>>的左焦点F 1(﹣c ,0),令x=﹣c ,可得y==±2b a , 可得A (﹣c ,2b a ),B (﹣c ,﹣2b a),又设D (0,b ),可得AD u u u r =(c ,b ﹣2b a),AB u u u r =(0,﹣22b a),DB uuu r =(﹣c ,﹣b ﹣2b a ), 由△ABD 为钝角三角形,可能∠DAB 为钝角,可得AD AB ⋅u u u v u u u v<0,即为0﹣22b a•(b ﹣2b a )<0,化为a >b ,即有a 2>b 2=c 2﹣a 2,可得c 2<2a 2,即e=ca,又e >1,可得1<e ,可能△ADB 中,∠ADB 为钝角,可得AD AB ⋅u u u v u u u v<0,即为c 2﹣(2b a +b )(2ba﹣b )<0,化为c 4﹣4a 2c 2+2a 4>0, 由e=ca,可得e 4﹣4e 2+2>0,又e >1,可得e综上可得,e 的范围为(1.+∞).故答案为()⋃+∞点睛:(1) 本题考查双曲线的离心率的范围及向量数量积的坐标表示. 意在考查学生对这些知识的掌握能力和分析推理运算能力.(2)本题的关键是转化ABD ∆为钝角三角形,这里是利用数量积AD AB ⋅u u u v u u u v<0转化的,比较简洁高效.三、解答题(本大题共6个小题,17题10分,18—22题每小题12分,共70分)17.已知以点(1,2)A -为圆心圆与直线1:270l x y ++=相切,过点(2,0)B -的动直线l 与圆A 相交于,M N两点.(1)求圆A 的方程;(2)当||MN =l 的方程. (用一般式表示) 【答案】(1)22(1)(2)20x y ++-=;(2)20x +=或3460x y -+= 【解析】 【分析】(1)由点到直线的距离公式求出圆的半径,再求出圆的方程即可;(2)由||MN =A 到直线MN 的距离为d ,再结合点到直线的距离公式求解即可.【详解】解:(1)由题意知:点()1,2A -到直线270x y ++=的距离为圆A 的半径R ,∴R ==∴圆A 的方程为:()()221220x y ++-=;(2)设圆心()1,2A -到直线MN 的距离为d ,由垂径定理及勾股定理知:1d ===, 又直线过点(2,0)B -, 当动直线l 的斜率不存在时,直线l 的方程为2x =-,显然满足题意;当动直线l 的斜率存在时,设动直线l 的方程为:()2y k x =+,由点()1,2A -到动直线l 的距离为11=,解得:34k =, 此时直线l 的方程为:3460x y -+=,综上,直线l 的方程为:3460x y -+=或20x +=.【点睛】本题考查了点到直线的距离,主要考查了垂径定理及勾股定理,重点考查了直线的一般式方程,属中档题.18.已知,,a b c 分别为ABC ∆三个内角,,A B C的对边,且满足sin cos 0a B A -=,4a =.(1)求A ∠;(2)若D 是BC 中点,3AD =,求ABC ∆面积.【答案】(1)3A π=;(2. 【解析】【分析】(1)由正弦定理化简sin cos 0a B A =即可求得tan A ,从而可求A 的值..2.在ABC V 中由余弦定理列方程.在ABD V 中利用余弦定理列方程.在ACD V 中利用余弦定理列方程.联立可得10bc =的值,根据三角形面积公式即可计算得解.【详解】: (1)sin cos 0a B A = ,2sin sin 2sin cos 0R A B R B A =则sin 0A A = ,tan A =3A π∴=(2)方法一:在ABC V 中,222222cos a b c bc BAC b c bc =+-∠=+-即2216b c bc +=+ .在ABD V 中222229413cos 223212AD BD AB c c ADB AD BD +-+--∠===⋅⨯⨯,同理ACD V 中222229413cos 223212AD CD AC b b ADC AD CD +-+--∠===⋅⨯⨯,而ADB ADC π∠+∠=,有cos cos 0ADC ADB ∠+∠=, 即222213130261212b c b c --+=⇒+=.联立得162610bc bc +=⇒=,11=sin 1022ABC S bc BAC ∠=⨯=V . 方法二:又222221cos 1622b c a A b c bc bc +-==⇒+-=① 2AB AC AD +=uu u v u u u vu u u v222294AB AC AB AC AD ++⋅==u u u v u u u v u u u v u u u vu u u v 22222cos 9364c b bc Ab c bc ++=⇒++=②②-①得10bc =11=sin 1022ABC S bc A =⨯=V方法三:(极化式)()()cos 945AB AC AB AC A AD DB AD DB ⋅==+⋅-=-=u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 510cos AB AC A∴==u u u v u u u v1=sin 2ABC S AB AC A ∴=V u u u v u u u v 【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知数列{}n a 是公比大于1的等比数列(*)n N ∈,24a =,且21+a 是1a 与3a 的等差中项. I.求数列{}n a 的通项公式;II.设2log n n b a =,n S 为数列{}n b 的前n 项和,记1231111=++++L L n nT S S S S ,证明:12n T ≤<. 【答案】I.()*2n n a n N =∈;II.见解析 【解析】【分析】I.根据等差中项性质得到()21321a a a +=+,再根据等比数列通项公式构造方程求得q ,从而可求得通项公式;II.根据n a 求得n b ,利用等差数列求和公式得到n S ;再根据裂项相消法求得n T ,根据2011n <≤+证得结论.【详解】I.由题意得:()21321a a a +=+设数列{}n a 公比为q ,则()22221a a a q q +=+,即22520q q -+= 解得:12q =(舍去)或2q = 则212a a q == ()1*12n n n a a q n N -∴==∈ II.由I.得:2log 2n n b n ==,可知{}n b 为首项为1,公差为1的等差数列则()()1122n n n b b n n S ++== ()1211211nS n n n n ⎛⎫∴==⨯- ⎪++⎝⎭ 1111111122121222334111n T n n n n ⎛⎫⎛⎫∴=⨯-+-+-+⋅⋅⋅+-=⨯-=- ⎪ ⎪+++⎝⎭⎝⎭2011n <≤+Q 21221n ∴≤-<+ 即12n T ≤<【点睛】本题考查等比数列通项公式的求解、裂项相消法求解数列的前n 项和问题,关键是能够确定需求和的数列的通项公式符合裂项相消法的形式,从而使问题得以解决.20.已知动圆P 过点(1,0)F 且和直线l :1x =-相切.(1)求动点P 的轨迹E 的方程;(2)已知点(1,0)M -,若过点F 的直线与轨迹E 交于A ,B 两点,求证:直线MA ,MB 的斜率之和为定值.【答案】(1)24y x =;(2)详见解析.【解析】【分析】(1)由抛物线的定义知,点P 的轨迹为抛物线,由此能求出动圆圆心的轨迹方程;(2)设直线AB 的方程为1x my =+,联立直线与抛物线,利用韦达定理、斜率公式,即可证明结论.【详解】由题意得:圆心P 到点F 的距离等于它到直线l 的距离, ∴圆心P 的轨迹是以F 为焦点,直线l 为准线的抛物线,设圆心P 的轨迹方程为22y px =(0p >), ∵12p =, ∴2p =.∴圆心P 的轨迹方程为:24y x =;(2)证明:设直线AB 的方程为1x my =+,11()A x y ,,22()B x y ,,联立直线与抛物线可得2440y my --=,∴124y y m +=,124y y =-, ∴()()()12121212121401111MA MB y y y y y y k k x x x x ⎛⎫++ ⎪⎝⎭+=+==++++, 即直线MA ,MB 的斜率之和为定值.【点睛】本题考查轨迹方程的求法以及直线与圆锥曲线的位置关系,求轨迹方程常用的方法有直接法、相关点法等,解决直线与圆锥曲线的位置关系常用代数法,属于常考题.21.在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD .60DAB ∠=o .2AD =.1AM =.E 为AB 的中点.(1)求证:AN ∥平面MEC .(2)在线段AM 上是否存在点P ,使二面角P EC D --的大小为3π?若存在,求出AP 的长;若不存在,请说明理由.【答案】(1)详见解析;(2)3π 【解析】【分析】 ()I 利用CM 与BN 交于F ,连接EF .证明//AN EF ,通过直线与平面平行的判定定理证明//AN 平面MEC ;()II 对于存在性问题,可先假设存在,即假设x 在线段AM 上是否存在点P ,使二面角P EC D --的大小为3π.再通过建立空间直角坐标系,求出相关点的坐标,利用坐标法进行求解判断. 【详解】()I CM 与BN 交于F ,连接EF .由已知可得四边形BCNM 是平行四边形,所以F 是BN 的中点.因为E 是AB 的中点,所以//AN EF .又EF ⊂平面MEC ,AN ⊂平面MEC ,所以//AN 平面MEC .()II 由于四边形ABCD 是菱形,60DAB o ∠=,E 是AB 的中点,可得DE AB ⊥.又四边形ADNM 是矩形,面ADNM ⊥面ABCD ,DN ∴⊥面ABCD ,如图建立空间直角坐标系D xyz -,则(0D ,0,0),E ,0,0),(0C ,2,0),P 1-,)h ,CE =u u u v ,2-,0),(0EP =u u u v ,1-,)h ,设平面PEC 的法向量为1(n x =u v ,y ,)z .则11·0·0CE n EP n ⎧=⎪⎨=⎪⎩u u u v u v u u u v u v ,∴200y y hz -=-+=⎪⎩,令y =,∴ 1(2n h =u v,又平面ADE 的法向量2(0n =u u v ,0,1),1cos n ∴<u v,12212·12n n n n n >===u v u u v u u v u v u u v,解得7h =, Q1>, ∴在线段AM 上不存在点P ,使二面角P EC D --的大小为3π.【点睛】本题主要考查空间直线和平面平行的判断以及二面角的应用,考查存在性问题,建立坐标系利用向量法是解决本题的关键.考查学生的运算和推理能力.利用空间向量法求二面角的一般方法,属于中档题.22.已知椭圆C :22221(0)x y a b a b +=>>的四个顶点组成的四边形的面积为,且经过点⎛ ⎝⎭.(1)求椭圆C 的方程;(2)若椭圆C 的下顶点为P ,如图所示,点M 为直线2x =上的一个动点,过椭圆C 的右焦点F 的直线l 垂直于OM ,且与C 交于A ,B 两点,与OM 交于点N ,四边形AMBO 和ONP ∆的面积分别为1S ,2S ,求12S S 的最大值.【答案】(1)2212x y +=(2)2【解析】【详解】(1)因为1,2⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又因为椭圆四个顶点组成的四边形的面积为1222a b ab ⨯⨯== 解得222,1a b ==,所以椭圆C 的方程为2212x y += (2) 由(1)可知()1,0F ,设()()()11222,,,,,M t A x y B x y ,则当0t ≠时,:2t OM y x =,所以2AB k t=-, 直线AB 的方程为()21y x t =--,即()2200x ty t +-=≠, 由()2221220y x tx y ⎧=--⎪⎨⎪+-=⎩得()222816820t x x t +-+-=, 则()()()()22242164882840t t t t ∆=--+-=+>, 21212221682,88t x x x x t t-+==++,)2248tABt+==+,又OM=,所以)22122441288t tS OM ABt t++=⨯==++,由()212y xtty x⎧=--⎪⎪⎨⎪=⎪⎩,得244Nxt=+,所以2221421244St t=⨯⨯=++,所以212224284tS St t+=⨯==<++,当0t=,直线:1l x=,AB=1122S==2111122S=⨯⨯=,122S S=,所以当0t=时,()12max2S S=.点睛:在圆锥曲线中研究最值或范围问题时,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围.。

2020-2021学年黑龙江省大庆中学高二(下)期末数学试卷(理科)(解析版)

2020-2021学年黑龙江省大庆中学高二(下)期末数学试卷(理科)(解析版)

2020-2021学年黑龙江省大庆中学高二(下)期末数学试卷(理科)一、单选题(共12小题,每小题5分,共60分).1.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 2.z=(i是虚数单位),则z的共轭复数为()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<04.已知命题p∨q为真,¬p为真,则下列说法正确的是()A.p真q真B.p假q真C.p真q假D.p假q假5.已知命题p:∀x>0,e x+1>0;命题q:a<b,则a2<b2,下列命题为真命题的是()A.p∧¬q B.p∧q C.¬p∧q D.¬p∧¬q6.如表提供的是两个具有线性相关的数据,现求得回归方程为=0.7x+0.35,则t等于()x3456y 2.5t4 4.5A.4.5B.3.5C.3.15D.37.在新高考改革中,学生可先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科参加高考,现有甲、乙两名学生若按以上选科方法,选三门学科参加高考,则甲、乙二人恰有一门学科相同的选法有()A.24B.30C.48D.608.2020年高校招生实施强基计划,其主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,有36所大学首批试点强基计划某中学积极应对,高考前进行了一次模拟笔试,甲、乙、丙、丁四人参加,按比例设定入围线,成绩公布前四人分别做猜测如下:甲猜测:我不会入围,丙一定入围;乙猜测:入围者必在甲、丙、丁三人中;丙猜测:乙和丁中有一人入围;丁猜测:甲的猜测是对的.成绩公布后,四人中恰有两人预测正确,且恰有两人入围,则入围的同学是()A.甲和丙B.乙和丁C.甲和丁D.乙和丙9.要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的概率为()A.B.C.D.10.二项展开式的第三项系数为15,则的二项展开式中的常数项为()A.1B.6C.15D.2011.已知ABCD为正方形,其内切圆I与各边分别切于E,F,G,H,连接EF,FG,GH,HE.现向正方形ABCD内随机抛掷一枚豆子,记事件A:豆子落在圆I内,事件B:豆子落在四边形EFGH外,则P(B|A)=()A.B.C.D.12.已知函数f(x)=|x|e x,若g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,则a取值范围为()A.(2,+∞)B.(e+,+∞)C.(2,e)D.()二、填空题(本大题共4小题,共20.0分)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=.14..15.已知箱子中装有10不同的小球,其中2个红球,3个黑球和5个白球.现从该箱中有放回地依次取出3个小球,若变量ξ为取出3个球中红球的个数,则ξ的方差D(ξ)=.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.三、解答题(本大题共6小题,共70.0分)17.为了了解A地区足球特色学校的发展状况,某调查机构得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.60 1.00 1.40 1.70(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);(Ⅱ)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式:r=,(x i﹣)2=10,(y i﹣)2=1.3,,=,=.18.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如表:没有感染新冠病毒感染新冠病毒总计10x A 没有注射重组新冠疫苗注射重组新冠疫苗20y B总计303060已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:K2=,n=a+b+c+d.P(K2≥k)0.050.0100.0050.001 k 3.841 6.6357.87910.828 19.2019女排世界杯于2019年9月14日到9月29日举行,中国女排以十一胜卫冕女排世界杯冠军,四人进入最佳阵容,女排精神,已经是一种文化.为了了解某市居民对排球知识的了解情况,某机构随机抽取了100人参加排球知识问卷调查,将得分情况整理后作出的直方图如图:(1)求图中实数a的值,并估算平均得分(每组数据以区间的中点值为代表);(2)得分在90分以上的称为“铁杆球迷”,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,求X的分布列及数学期望.20.已知函数f(x)=ax+lnx,g(x)=e x﹣1﹣1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.21.如图,过顶点在原点、对称轴为y轴的抛物线E上的点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定点.22.在极坐标系中,曲线,以极点为坐标原点,极轴为轴正半轴建立直角坐标系xOy,曲线C2的参数方程为(t为参数).(1)求C1的直角坐标方程与C2的普通方程;(2)若曲线C1与曲线C2交于A、B两点,且定点P的坐标为(2,0),求|PA|+|PB|的值.参考答案一、单选题(共12小题,每小题5分,共60分).1.设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4}【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.2.z=(i是虚数单位),则z的共轭复数为()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【分析】直接利用复数代数形式的乘除运算化简求值.解:∵z==,∴.故选:C.3.已知命题p:“∃x∈R,x2﹣x+1<0”,则¬p为()A.∃x∈R,x2﹣x+1≥0B.∃x∉R,x2﹣x+1≥0C.∀x∈R,x2﹣x+1≥0D.∀x∈R,x2﹣x+1<0【分析】由特称命题的否定为全称命题,注意量词和不等号的变化.解:由特称命题的否定为全称命题,可得命题p:∃x∈R,x2﹣x+1<0,则¬p是∀x∈R,x2﹣x+1≥0.故选:C.4.已知命题p∨q为真,¬p为真,则下列说法正确的是()A.p真q真B.p假q真C.p真q假D.p假q假【分析】命题p∨q为真是真命题,有三种情况:①p、q均为真,②p真q假,③p假q真;由已知条件然后逐项判断即可.解:命题p∨q为真是真命题,有三种情况:①p、q均为真,②p真q假,③p假q真;∵¬p也为真命题,⇒p为假命题,q为真,¬q为假命题,由逻辑连词链接的命题真假逐项判断即可.故选:B.5.已知命题p:∀x>0,e x+1>0;命题q:a<b,则a2<b2,下列命题为真命题的是()A.p∧¬q B.p∧q C.¬p∧q D.¬p∧¬q【分析】容易判断出p是真命题,q是假命题,所以得到p∧¬q为真命题.解:∵∀x>0,e x+1>e1=e>0,∴命题p为真命题,当a=﹣2,b=﹣1时,满足a<b,但不满足a2<b2,∴命题q为假命题,∴p∧¬q为真命题,故选:A.6.如表提供的是两个具有线性相关的数据,现求得回归方程为=0.7x+0.35,则t等于()x3456y 2.5t4 4.5A.4.5B.3.5C.3.15D.3【分析】计算代入回归方程求出,根据平均数公式列方程解出t.解:=,∴=0.7×4.5+0.35=3.5,∴,解得t=3.故选:D.7.在新高考改革中,学生可先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科参加高考,现有甲、乙两名学生若按以上选科方法,选三门学科参加高考,则甲、乙二人恰有一门学科相同的选法有()A.24B.30C.48D.60【分析】以甲,乙所选相同学科是否在物理、历史两科中分为两类,每类中由排列组合公式和基本原理可求.解:分为两类,第一类物理、历史两科中是相同学科,则有C C C=12种选法;第二类物理、历史两科中没相同学科,则有A C A=48种选法,所以甲、乙二人恰有一门学科相同的选法有12+48=60种,故选:D.8.2020年高校招生实施强基计划,其主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,有36所大学首批试点强基计划某中学积极应对,高考前进行了一次模拟笔试,甲、乙、丙、丁四人参加,按比例设定入围线,成绩公布前四人分别做猜测如下:甲猜测:我不会入围,丙一定入围;乙猜测:入围者必在甲、丙、丁三人中;丙猜测:乙和丁中有一人入围;丁猜测:甲的猜测是对的.成绩公布后,四人中恰有两人预测正确,且恰有两人入围,则入围的同学是()A.甲和丙B.乙和丁C.甲和丁D.乙和丙【分析】本题主要抓住甲、丁的预测是一样的这一特点,则甲、丁的预测要么同时与结果相符,要么同时与结果不符.先假设甲、丁的预测成立,则乙、丙的预测不成立,可推出矛盾,故甲、丁的预测不成立,则乙、丙的预测成立,再分析可得出获奖的是甲和丁.解:由题意,可知:∵甲、丁的预测是一样的,∴甲、丁的预测要么同时与结果相符,要么同时与结果不符.①假设甲、丁的预测成立,则乙、丙的预测不成立,根据甲、丁的预测,丙获奖,乙、丁中必有一人获奖;这与丙的预测不成立相矛盾.故甲、丁的预测不成立,②甲、丁的预测不成立,则乙、丙的预测成立,∵乙、丙的预测成立,∴丁必获奖.∵甲、丁的预测不成立,乙的预测成立,∴丙不获奖,甲获奖.从而获奖的是甲和丁.故选:C.9.要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的概率为()A.B.C.D.【分析】先利用排列组合求出基本事件总数和甲被分到A班包含的基本事件个数,由此能求出甲被分到A班的概率.解:要将甲、乙、丙、丁4名同学分到A,B,C三个班级中,要求每个班级至少分到一人,基本事件总数n==36,甲被分到A班包含的基本事件个数m==12,∴甲被分到A班的概率为p=.故选:B.10.二项展开式的第三项系数为15,则的二项展开式中的常数项为()A.1B.6C.15D.20【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.解:∵二项展开式的第三项系数为=15,∴n=6,则的二项展开式的通项公式为T r+1=•x6﹣2r,令6﹣2r=0,求得r=3,可得展开式中的常数项为T4==20,故选:D.11.已知ABCD为正方形,其内切圆I与各边分别切于E,F,G,H,连接EF,FG,GH,HE.现向正方形ABCD内随机抛掷一枚豆子,记事件A:豆子落在圆I内,事件B:豆子落在四边形EFGH外,则P(B|A)=()A.B.C.D.【分析】由题意,计算正方形EFGH与圆I的面积比,利用对立事件的概率求出P(B|A)的值.解:由题意,设正方形ABCD的边长为2a,则圆I的半径为r=a,面积为πa2;正方形EFGH的边长为a,面积为2a2;∴所求的概率为P(B|A)=1﹣=1﹣.故选:C.12.已知函数f(x)=|x|e x,若g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,则a取值范围为()A.(2,+∞)B.(e+,+∞)C.(2,e)D.()【分析】函数f(x)=|x|e x=,利用导数研究函数的单调性极值即可得出图象,令f2(x)﹣af(x)+1=0,对△=a2﹣4及其a分类讨论,结合图象即可得出.解:函数f(x)=|x|e x=,x≥0,f(x)=xe x,f′(x)=(x+1)e x>0,因此x≥0时,函数f(x)单调递增.x<0,f(x)=﹣xe x,f′(x)=﹣(x+1)e x,可得函数f(x)在(﹣∞,﹣1)单调递增;可得函数f(x)在(﹣1,0)单调递减.可得:f(x)在x=﹣1时,函数f(x)取得极大值,f(﹣1)=.画出图象:可知:f(x)≥0.令f2(x)﹣af(x)+1=0,①△=a2﹣4<0时,函数g(x)无零点.②△=0时,解得a=2或﹣2,a=2时,解得f(x)=1,此时函数g(x)只有一个零点,舍去.a=﹣2,由f(x)≥0,可知:此时函数g(x)无零点,舍去.③△=a2﹣4>0,解得a>2或a<﹣2.解得f(x)=,f(x)=.a<﹣2时,<0,<0.此时函数g(x)无零点,舍去.因此a>2,可得:0<<1<.由g(x)=f2(x)﹣af(x)+1恰有四个不同的零点,∴a>2,0<<,1<.解得:a>+e.则a取值范围为.另解:由g(t)=t2﹣at+1有两根,一个在(0,)上,一个在(,+∞)上,∴△=a2﹣4>0,g()=﹣a•+1<0,解得a>e+.∴a取值范围为.故选:B.二、填空题(本大题共4小题,共20.0分)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=0.8.【分析】由已知求得正态分布曲线的对称轴,再由已知结合对称性求解.解:∵随机变量X~N(1,σ2),∴正态分布曲线的对称轴方程为x=1.又P(X>2)=0.2,∴P(X<0)=P(X>2)=0.2,则P(X>0)=1﹣P(X<0)=1﹣0.2=0.8.故答案为:0.8.14..【分析】由于dx=,第一个积分根据积分所表示的几何意义是以(0,0)为圆心,1为半径第一、二象限内圆弧与坐标轴围成的面积,只需求出圆的面积乘以二分之一即可,第二个积分利用公式进行计算即可.解:由于,表示的几何意义是:以(0,0)为圆心,1为半径第一,二象限内圆弧与坐标轴围成的面积=π×1=,又==0,∴原式=.故答案为:.15.已知箱子中装有10不同的小球,其中2个红球,3个黑球和5个白球.现从该箱中有放回地依次取出3个小球,若变量ξ为取出3个球中红球的个数,则ξ的方差D(ξ)=.【分析】先求出每次抽出红球的概率,然后利用ξ~B(3,),由方差的计算公式求解即可.解:由题意,每次抽出红球的概率为,所以ξ~B(3,),故ξ的方差D(ξ)=np(1﹣p)==.故答案为:.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为π.【分析】易知圆锥内半径最大的球应为圆锥的内切球,作图,求得出该内切球的半径即可求出球的体积.解:因为圆锥内半径最大的球应该为该圆锥的内切球,如图,圆锥母线BS=3,底面半径BC=1,则其高SC==2,不妨设该内切球与母线BS切于点D,令OD=OC=r,由△SOD∽△SBC,则=,即=,解得r=,V=πr3=π,故答案为:π.三、解答题(本大题共6小题,共70.0分)17.为了了解A地区足球特色学校的发展状况,某调查机构得到如下统计数据:年份x20142015201620172018足球特色学校y(百个)0.300.60 1.00 1.40 1.70(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性相关性较弱);(Ⅱ)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式:r=,(x i﹣)2=10,(y i﹣)2=1.3,,=,=.【分析】(Ⅰ),,∴y与x线性相关性很强.(Ⅱ)根据公式计算线性回归方程,再令x=2019可得.解:(Ⅰ),,∴y与x线性相关性很强.…………………………(Ⅱ),,∴y关于x的线性回归方程是.当x=2019时,,即A地区2019年足球特色学校有208个.…………………………18.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如表:没有感染新冠病毒感染新冠病毒总计10x A 没有注射重组新冠疫苗注射重组新冠疫苗20y B 总计303060已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:K2=,n=a+b+c+d.P(K2≥k)0.050.0100.0050.001 k 3.841 6.6357.87910.828【分析】(1)由题意列方程求出y、x和A、B的值;计算K2,对照附表得出结论;(2)由题意计算所求的概率值即可.解:(1)由题知,解得y=5,所以x=30﹣5=25,A=10+25=35,B=20+5=25;所以,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,所以.19.2019女排世界杯于2019年9月14日到9月29日举行,中国女排以十一胜卫冕女排世界杯冠军,四人进入最佳阵容,女排精神,已经是一种文化.为了了解某市居民对排球知识的了解情况,某机构随机抽取了100人参加排球知识问卷调查,将得分情况整理后作出的直方图如图:(1)求图中实数a的值,并估算平均得分(每组数据以区间的中点值为代表);(2)得分在90分以上的称为“铁杆球迷”,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,求X的分布列及数学期望.【分析】(1)由频率分布直方图能求出a,并能估算平均分.(2)记这四人中“铁杆球迷”的人数为X,则X~B(4,0.1),由此能求出X的分布列和数学期望.解:(1)由频率分布直方图得:(0.005+0.010+0.020+a+0.025+0.010)×10=1,解得a=0.030.估算平均分为:=45×0.005×10+55×0.010×10+65×0.020×10+75×0.03×10+85×0.025×10+95×0.010×10=74.(2)得分在90分以上的称为“铁杆球迷”,由频率分布直方图的性质得得分在90分以上的频率为0.010×10=0.1,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为X,则X~B(4,0.1),P(X=0)==0.6561,P(X=1)==0.2916,P(X=2)==0.0486,P(X=3)==0.0036,P(X=4)==0.0001,∴X的分布列为:X01234P0.65610.29160.04860.00360.0001 E(X)=4×0.1=0.4.20.已知函数f(x)=ax+lnx,g(x)=e x﹣1﹣1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.【分析】(1)先对函数求导,,然后对a进行分类讨论,再结合导数与单调性关系即可求解;(2)由已知不等式可令F(x)=e x﹣1﹣lnx﹣ax﹣1+a,x≥1,然后求导,结合导数研究单调性,即可求解.解:(1)函数f(x)定义域是(0,+∞),,当a≥0时,f'(x)>0,函数f(x)在(0,+∞)单调递增,无减区间;当a<0时,函数f(x)在单调递增,在单调递减,(2)由已知e x﹣1﹣lnx﹣ax﹣1+a≥0在x≥1恒成立,令F(x)=e x﹣1﹣lnx﹣ax﹣1+a,x≥1,则,易得F'(x)在[1,+∞)递增,∴F'(x)≥F'(1)=﹣a,①当a≤0时,F'(x)≥0,F(x)在[1,+∞)递增,所以F(x)≥F(1)=0成立,符合题意.②当a>0时,F'(1)=﹣a<0,且当x=ln(a+1)+1时,,∴∃x0∈(1,+∞),使F'(x)=0,即∃x∈(1,x0)时F'(x)<0,F(x)在(1,x0)递减,F(x)<F(1)=0,不符合题意.综上得a≤0.21.如图,过顶点在原点、对称轴为y轴的抛物线E上的点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.(1)求抛物线E的标准方程和准线方程;(2)若k1+k2=k1k2,证明:直线BC恒过定点.【分析】(1)设抛物线的方程为x2=ay,代入A(2,1),可得a=4,即可求抛物线E 的标准方程和准线方程;(2)设出AB和AC所在的直线方程,分别把直线和抛物线联立后求得B,C两点的横坐标,再由两点式写出直线BC的方程,把B,C的坐标,k1+k2=k1k2,代入后整理,利用相交线系方程的知识可求出直线BC恒过的定点.【解答】(1)解:设抛物线的方程为x2=ay,则代入A(2,1),可得a=4,∴抛物线E的标准方程为x2=4y,准线方程为y=﹣1;(2)证明:设B(x1,y1),C(x2,y2),则直线AB方程y=k1(x﹣2)+1,AC方程y=k2(x﹣2)+1,联立直线AB方程与抛物线方程,消去y,得x2﹣4k1x+8k1﹣4=0,∴x1=4k1﹣2①同理x2=4k2﹣2②而BC直线方程为y﹣x12=(x﹣x1),③∵k1+k2=k1k2,∴由①②③,整理得k1k2(x﹣2)﹣x﹣y﹣1=0.由x﹣2=0且﹣x﹣y﹣1=0,得x=2,y=﹣3,故直线BC经过定点(2,﹣3).22.在极坐标系中,曲线,以极点为坐标原点,极轴为轴正半轴建立直角坐标系xOy,曲线C2的参数方程为(t为参数).(1)求C1的直角坐标方程与C2的普通方程;(2)若曲线C1与曲线C2交于A、B两点,且定点P的坐标为(2,0),求|PA|+|PB|的值.【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)曲线,根据,整理得:y2=4x.曲线C2的参数方程为(t为参数)转换为普通方程为:.(2)把直线的参数方程为(t为参数),代入y2=4x,得到:.所以,,所以|PA|+|PB|==.。

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考数学(理)试题及答案

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考数学(理)试题及答案

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考数学(理)试题★考试顺利★(含答案)一、选择题(每小题5分,共12小题,共60分)1. 设命题:p 2,2n n N n ∀∈≤ ,则p ⌝为( )0022220000.,2.,2.,2.,2n n n n A n N n B n N n C n N n D n N n ∃∈>∃∈≤∀∈>∀∉>2.下面四个条件中,使a b <成立的充分不必要条件是( )2233...1.1A a b B a b C a b D a b <<<+<-3. 某班有学生50人,现将所有学生按1,2,3,...,50随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,,24,,44a b 号学生在样本中,则a b +=( ).14.34.48.50A B C D4. 阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,a b ,则椭圆的面积公式为S ab π=.若椭圆C 的离心率为2,面积为8π,则椭圆C 的标准方程为( ) 2222.11164164x y y x A +=+=或 2222.1116121612x y y x B +=+=或 2222.11124124x y y x C +=+=或 2222.11169916x y x y D +=+=或 5. 连续抛掷两枚质地均匀的骰子,则向上点数之积为6的概率是( )1531 (936186)A B C D6. 关于曲线22:C x y x y +=+,给出下列五个命题:①曲线C 关于x 轴对称;②曲线C 关于y 轴对称;③曲线C 关于y x =对称; ④曲线C 关于原点对称;⑤曲线C 所围成的区域面积大于6其中正确的命题个数为( ).2.3.4.5A B C D7. 某学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min ),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( ).A .B.C .D8. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为:“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ).A 甲地:总体平均值为3,中位数为4 .B 乙地:总体平均值为1,总体方差大于0.C 丙地:中位数为2,众数为3 .D 丁地:总体均值为2,总体方差为29. 定义{},,min ,,.a a b a b b a b ≤⎧=⎨>⎩ ,在区域0303x y ≤≤⎧⎨≤≤⎩ 内任取一点(),P x y ,则点(),P x y 满足{}min 21,11x y x y x y -++-=+- 的概率为( )1751 (2121212)A B C D 10.已知点()1,0A -,()10B ,,若圆22(1)(2)1x a y a -++--=上存在点M 满足8MA MB ⋅= ,则实数a 的值不可以为( )。

黑龙江省大庆铁人中学2020-2021学年高二上学期期中考试化学试题 含答案

黑龙江省大庆铁人中学2020-2021学年高二上学期期中考试化学试题 含答案

铁人中学2019级高二上学期期中考试化学试题相对原子质量:O ——16 Cu ——64 Ag ——108试题说明:1、本试题满分100分,答题时间90分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

第Ⅰ卷选择题部分(50分)一、选择题(共20小题,每小题只有一个正确选项,1—10题每小题2分,11—20题每小题3分)1.为防止流感病毒的传播,许多公共场所都注意环境消毒,以下消毒药品属于强电解质的是( )A.84消毒液B.高锰酸钾C.酒精D.醋酸2.最近《科学》杂志评出“十大科技突破”,其中“火星上‘找’到水的影子”名列第一。

下列关于水的说法中正确的是()A.加入电解质一定会破坏水的电离平衡,其中酸和碱通常都会抑制水的电离B.水的电离和电解都需要电,常温下都是非自发过程C.水电离出的c(H+)=10-7mol/L的溶液一定呈中性D.水的离子积不仅只适用于纯水,升高温度一定使水的离子积增大3.下列化学用语书写正确的是( )A.水溶液中NH4HSO4的电离方程式:NH4HSO4NH4++H++SO42-B.水溶液中H2CO3的电离方程式:H2CO32H++CO32-C.NaHCO3溶液水解的离子方程式:HCO-3+H2O CO2-3+H3O+D.AlCl3溶液水解的离子方程式:Al3++3H2O Al(OH)3+3H+4.下列说法正确的是()A.若用水润湿过的pH试纸去测pH相等的H2SO4和H3PO4,H3PO4的误差更大B.用10 mL的量筒量取8.58 mL 0.10 mol·L-1的稀盐酸C.准确量取25.00 mLKMnO4溶液,可选用50 mL酸式滴定管D.用广泛pH试纸测得0.10mol/LNH4Cl溶液的pH=5.25.关于如图所示①、②两个装置的叙述,正确的是()A.装置名称:①是原电池,②是电解池B.硫酸浓度变化:①增大,②减小C.电极反应式:①中阳极4OH--4e-2H2O+O2↑,②中正极Zn-2e-Zn2+D.离子移动方向:①中H+向阴极方向移动,②中H+向负极方向移动6.关于如图所示各装置的叙述中,正确的是()④A.装置①是原电池,总反应是:Cu+2Fe3+===Cu2++2Fe2+B.装置②通电一段时间后石墨I电极附近溶液红褐色加深C.若用装置③精炼铜,则d极为粗铜,c极为纯铜,电解质溶液为CuSO4溶液D.装置④中钢闸门应与电源的负极相连被保护,该方法叫做外加电流的阴极保护法7.室温下,有两种溶液:①0.01mol·L-1NH3·H2O溶液、②0.01mol·L-1NH4Cl溶液,下列操作可以使两种溶液中c(NH+4)都增大的是()A.加入少量H2O B.加入少量NaOH固体C.通入少量HCl气体D.升高温度8.已知室温时,0.1mol·L-1某一元酸HA的电离平衡常数约为1×10-7,下列叙述错误的是()A.该溶液的pH=4B.此溶液中,HA约有0.1%发生电离C.加水稀释,HA的电离平衡向右移动,HA的电离平衡常数增大D.由HA电离出的c(H+)约为水电离出的c(H+)的106倍9.合理利用某些盐能水解的性质,能解决许多生产、生活中的问题,下列叙述的事实与盐水解的性质无关的是()A.金属焊接时可用NH4Cl溶液作除锈剂B.配制FeSO4溶液时,加入一定量Fe粉C.长期施用铵态氮肥会使土壤酸化D.向FeCl3溶液中加入CaCO3粉末后有气泡产生10.下列叙述正确的是()A.室温下,pH=2的盐酸与pH=12的氨水等体积混合后pH>7B.pH=4的盐酸溶液,稀释至10倍后pH>5C.100 ℃时,将pH=2的盐酸与pH=12的NaOH溶液等体积混合,溶液显中性D.在100 ℃的温度下,0.001 mol/L的NaOH溶液,pH=1111.常温下,浓度均为0.1 mol·L-1的下列四种盐溶液,其pH测定如下表所示:下列说法正确的是()A.四种溶液中,水的电离程度:①>②>④>③B.Na2CO3和NaHCO3溶液中,粒子种类不相同C.将等浓度的CH3COOH和HClO溶液比较,pH小的是HClOD.Na2CO3和NaHCO3溶液中分别加入NaOH固体,恢复到原温度,c(CO32-)均增大12.N A表示阿伏加德罗常数的值,以下说法正确的是( )A.常温下pH=13的Ba(OH)2溶液中含有Ba2+数目为0.05N AB.0.1L 0.5mol/L CH3COOH溶液中含有的H+数小于0.05N AC.100mL 1.0mol/L NaHCO3溶液中的HCO3-数目为0.1 N AD.用惰性电极电解CuSO4溶液,外电路中通过电子数目为N A时,阳极产生5.6L气体13.常温时,下列各组溶液中的离子一定能够大量共存的是()A.由水电离出的c(H+)=1.0×10-13mol/L的溶液中:Na+、Cl-、NH4+、SO32-B.含有大量的Al3+溶液中:K+、Na+、CO32-、HCO3-C.使甲基橙试液变黄的溶液中:Fe2+、Mg2+、NO3-、Cl-D.c(H+)=1.0×10-13mol/L的溶液中:Na+、S2-、CO32-、SO42-14.下列说法正确的是()(A)(B) (C) (D)A.制备Fe(OH)2并能较长时间观察其颜色B.测定盐酸浓度C.蒸干AlCl3饱和溶液制备AlCl3晶体D.记录滴定终点读数为12.20 mL15.相同温度、相同浓度下的八种溶液,其pH由小到大的顺序如图所示,图中①②③④⑤代表的物质可能分别为()A.NH4Cl(NH4)2SO4CH3COONa NaHCO3NaOHB.(NH4)2SO4NH4Cl CH3COONa NaHCO3NaOHC.(NH4)2SO4NH4Cl NaOH CH3COONa NaHCO3D.CH3COOH NH4Cl(NH4)2SO4NaHCO3NaOH16.下列表述或判断不正确的是()A.根据CH3COO-+H2O CH3COOH+OH-能说明CH3COOH是弱电解质B.根据NH3+H3O +NH4++H2O能说明NH3结合H+的能力比H2O强C.pH相等的①Na2CO3;②NaOH;③CH3COONa三种溶液,物质的量浓度的大小顺序为:③>①>②D.相同条件下等物质的量浓度的①NaCl溶液;②NaOH溶液;③HCl溶液中由水电离出的c(H+):③>①>②17.下列实验能达到预期目的是()编号实验内容实验目的A等体积pH=2的HX和HY两种酸分别与足量的铁反应,排水法收集气体,HX放出的氢气多且反应速率快证明HX酸性比HY强B室温下,用pH试纸分别测定浓度为0.1 mol·L-1NaClO溶液和0.1 mol·L-1NaF溶液的pH比较HClO和HF溶液的酸性C向含有酚酞的Na2CO3溶液中加入少量BaCl2固体,溶液红色变浅证明Na2CO3溶液中存在水解平衡D 向MgCl2溶液加入NaOH溶液除去MgCl2溶液中的Fe3+18.如图是以葡萄糖为燃料的微生物燃料电池结构示意图。

黑龙江省大庆实验中学2019_2020学年高一数学上学期第一次月考试题(含解析)

黑龙江省大庆实验中学2019_2020学年高一数学上学期第一次月考试题(含解析)

黑龙江省大庆实验中学2019-2020学年高一数学上学期第一次月考试题(含解析)一、选择题(本大题共12小题)1.已知集合2,3,,,则A. B. C. D.2.下列各组函数表示同一函数的是A. ,B. ,C. ,D. ,3.函数的定义域为A. B. C. D.4.已知函数,则A. 是奇函数,且在上是增函数B. 是偶函数,且在上是增函数C. 是奇函数,且在上是减函数D. 是偶函数,且在上是减函数5.函数的单调递增区间为A. B. C. D.6.设偶函数的定义域为R,当时是增函数,则,,的大小关系是A. B.C. D.7.函数在上单调递减,且为奇函数.若,则满足的x的取值范围是A. B. C. D.8.已知函数,若,则A. 2B. 4C. 6D. 89.设,且,则A. B. 10 C. 20 D. 10010.集合,,若,则实数a的取值范围是A. B. C. D.11.已知函数,且是单调递增函数,则实数a的取值范围是A. B. C. D.12.记不大于x的最大整数为,定义函数,若不等式恒成立,则实数a的取值范围是A. B.C. ,D.二、填空题(本大题共4小题)13.计算: ______ .14.已知函数在区间上的最大值是,则实数a的值为______.15.函数的图象不经过第二象限,则实数m的取值范围是______用区间表示16.已知函数其中a,b为常数,,且的图象经过,若不等式在上恒成立,则实数m的最大值为______.三、解答题(本大题共6小题)17.已知全集.求,,;若,求实数a的取值范围.18.已知函数.用定义证明在上是增函数;求函数在区间上的值域.19.若二次函数满足,且.求的解析式;设,求在上的最小值的解析式.20.设函数是定义在R上的奇函数,当时,确定实数m的值并求函数在R上的解析式;求满足方程的x的值.21.定义在R上的函数对任意x,都有,且当时,.求证:为奇函数;求证:为R上的增函数;若对任意恒成立,求实数k的取值范围.22.定义:若函数在某一区间D上任取两个实数,,都有,则称函数在区间D上具有性质T.试判断下列函数中哪些函数具有性质给出结论即可;;;.从中选择一个具有性质T的函数,用所给定义证明你的结论.若函数在区间上具有性质T,求实数a的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.把A中元素代入中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把,2,3,4分别代入得:,4,7,10,即4,7,,2,3,,.故选D.2.【答案】C【解析】解:A.的定义域为R,的定义域为,定义域不同,不是同一函数;B.的定义域为R,的定义域为,定义域不同,不是同一函数;C.的定义域为R,的定义域为R,定义域和解析式都相同,是同一函数;D.的定义域为,的定义域为,定义域不同,不是同一函数.故选:C.通过求定义域可判断选项A,B,D的两函数都不是同一函数,从而A,B,D都错误,只能选C.考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同.3.【答案】D【解析】解:要使函数有意义,则,得,得,即或,即函数的定义域为,故选:D.根据函数成立的条件进行求解即可.本题主要考查函数定义域的求解,结合函数成立的条件建立不等式关系是解决本题的关键.比较基础.4.【答案】A【解析】【分析】本题考查函数的奇偶性与单调性,指数函数及其性质,属于基础题.由已知得,即函数为奇函数,由函数为增函数,为减函数,结合“增”“减”“增”,可得答案.【解答】解:函数的定义域为,,,即函数为奇函数,又由函数为增函数,为减函数,故函数为增函数.故选A.5.【答案】D【解析】解:令,可得函数的对称轴为:,,是减函数,由复合函数的单调性可知,函数的单调递增区间为,故选:D.利用指数函数的单调性,通过二次函数的性质可得结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,体现了转化的数学思想,属于基础题.6.【答案】A【解析】解:由偶函数与单调性的关系知,若时是增函数则时是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,故选:A.由偶函数的性质,知若时是增函数则时是减函数,此函数的几何特征是自变量的绝对值越小,则其函数值越小,故比较三式大小的问题,转化成比较三式中自变量,,的绝对值大小的问题.本题考点是奇偶性与单调性的综合,对于偶函数,在对称的区间上其单调性相反,且自变量相反时函数值相同,将问题转化为比较自变量的绝对值的大小,做题时要注意此题转化的技巧.7.【答案】C【解析】解:因为为奇函数,所以,于是等价于,又在单调递减,,.故选:C.根据函数的奇偶性以及函数的单调性求出x的范围即可.本题考查了函数的单调性和奇偶性问题,考查转化思想,是一道常规题.8.【答案】B【解析】解:函数,,,,且,解得,.故选:B.推导出,,且,推导出,由此能求出的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.9.【答案】A【解析】解:,,又,.故选:A.直接化简,用m代替方程中的a、b,然后求解即可.本题考查指数式和对数式的互化,对数的运算性质,是基础题.10.【答案】A【解析】解:集合,,,当时,,解得,当时,,解得.综上,实数a的取值范围是.故选:A.当时,;当时,,由此能求出实数a的取值范围.本题考查实数的取值范围的求法,考查集合的包含关系、不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.【答案】A【解析】解:函数,函数为递增函数,,即,解得.故选:A.分段函数的单调递增则需在每一段上单调递增,且在端点处也满足条件列出不等式组求解即可.本题主要考查了函数单调性的性质,以及分段函数的单调性,同时考查了计算能力,属于基础题.12.【答案】B【解析】解:,,又当时,;当时,,当时,当时,;同理,当时,,不等式恒成立,则,所以,则实数a的取值范围或,故选:B.这是一道取整的问题,先要弄清楚的取值情况,求的最值时,先平方在求的方法;这是一道信息题,也是常见的信息,先要对信息进行分析处理,以及平方求最值方法的应用,也可用均值不等式求最值;13.【答案】3【解析】解::.故答案为:3.直接利用对数运算法则化简求解即可.本题考查有理指数幂的运算法则以及对数运算法则的应用,是基础题.14.【答案】或【解析】解:二次函数对称轴,开口向下,,则函数在单调递减,时,,解得,,则函数在单调递增,时,,解得,故答案为:或.由函数的解析式可知,对称轴,开口向下,进而求解.考查二次函数对称轴,开口方向,单调区间,在特定区间内的最值.15.【答案】【解析】解:函数的图象如图,时,,时函数是增函数,函数的图象不经过第二象限,.故答案为:.根据条件作出函数的图象,利用数形结合求解即可.本题主要考查基本函数的图象变换,通过变换了解原函数与新函数的图象和性质.16.【答案】【解析】解:由题意:函数的图象经过,.可得,解得那么不等式在上恒成立,是递减函数,当时,y取得最小值为.则实数m的最大值为.故答案为:.根据函数的图象经过,求解a,b的值,带入不等式,根据指数的单调性即可求解m的最大值.本题考查了指数函数的单调性求解最值问题.属于基础题.17.【答案】解:,,,,;,,,,,的取值范围是.【解析】可以求出集合B,然后进行交集、并集和补集的运算即可;根据可得出,从而可得出.考查描述法的定义,交集、并集和补集的运算,以及子集、并集的定义.18.【答案】解:证明:任取,,且,又由,则,,,故,即;在单调递增;由知,在单调递增,则,故在上的值域是.【解析】根据题意,任取,,且,用作差法证明即可,根据题意,由的结论可得在上单调性,据此分析可得答案.本题考查函数的单调性的性质以及应用,涉及函数的值域,属于基础题.19.【答案】解:解:设二次函数的解析式为由已知:,又对称轴为当即时在上单调递增当即时在上单调递减当即时在单调递减,在单调递增,综上可知:【解析】利用待定系数法设二次函数的方程,由,且可求得方程;根据区间与轴的关系讨论二次函数的单调性,进而求得最小值.本题主要考察二次函数解析式的求法,根据函数的单调性求函数的最值和分类讨论的思想.20.【答案】解:根据题意,是定义在R上的奇函数,则当时,,解可得:,设,则,则,又由,则,故;当时,,令,得,即,解可得或,即,;又由是定义在R上的奇函数,则当时根为;综合可得:方程的根为,,【解析】根据题意,由奇函数的性质可得,解可得:,即可得函数的解析式,结合函数的奇偶性分析可得答案;根据题意,由函数的解析式,当时,,令可得此时方程的根,结合函数的奇偶性分析可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数的解析式的求法,属于基础题.21.【答案】证明:令,得得令,得,,为奇函数,证明:任取,,且,,,,,即,是R的增函数;解:,,是奇函数,,是增函数,,,令,下面求该函数的最大值,令则当时,y有最大值,最大值为,,的取值范围是.【解析】利用函数奇偶性的定义,结合抽象函数,证明为奇函数;利用函数单调性的定义,结合抽象函数,证明为增函数利用函数的单调性和奇偶性解不等式即可.本题主要考查抽象函数的应用,利用抽象函数研究函数的奇偶性单调性,以及二次函数的应用.综合性应用.22.【答案】解:具有性质T.如果选择证明如下:任取两个实数,则,具有性质T.由于在区间上具有性质T,任取,则.,的取值范围是,【解析】根据函数的图象判定具有性质T.选择证明如下:任取两个实数即可.由于在区间上具有性质T,任取,则,只需在、上恒成立,可求实数a的取值范围.本题以函数为载体,考查新定义,考查恒成立问题,解题的关键是对新定义的理解,恒成立问题采用分离参数法.。

黑龙江省大庆市大庆中学2023-2024学年高二下学期4月月考数学试题

黑龙江省大庆市大庆中学2023-2024学年高二下学期4月月考数学试题

黑龙江省大庆市大庆中学2023-2024学年高二下学期4月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在等比数列{}n a 中,22a =,5274a =-,则公比q =( ) A .32-B .23-C .23D .322.在等差数列{}n a 中,241,5a a ==,则8a =( ) A .9B .11C .13D .153.下列求导运算结果正确的是( ) A .'2111x x x ⎛⎫+=+ ⎪⎝⎭B .()'ln ln 1x x x =+ C .()'sin πcos π= D .()'2e 1e x x x x x +⎛⎫= ⎪⎝⎭& 4.在等比数列{}n a 中,112a =,公比2q =,则3a 与5a 的等比中项是( ) A .2B .4C .±2D .±45.曲线()322f x x ax =-+在点()()1,1f 处的切线的倾斜角为3π4,则实数=a ( )A .2-B .1-C .2D .36.已知数列{}n a 满足13a =,111nn na a a ++=-,则数列{}n a 前2023项的积为( ) A .2B .3C .2-D .6-7.等差数列{}n a 共2n +1个项,且奇数项和为165,偶数项和为150,则n =( ) A .10B .13C .11D .228.已知数列{}n a 满足11a =,且12n n a a +=+,数列{}n b 满足11b =,且11n n n b b a ++-=,则6n b n +的最小值为( ) A .133B .5C.D .173二、多选题9.已知数列{}n a 是公差为d 的等差数列,n S 是其前n 项的和,若10a <,20002024S S =,则( ) A .0d >B .20120a =C .40240S =D .2012n S S ≥10.已知等比数列{}n a 的各项均为正数,120a =,65420a a a +-=,数列{}n a 的前n 项积为n T ,则( )A .数列{}n a 单调递增B .数列{}n a 单调递减C .n T 的最大值为5TD .n T 的最小值为5T11.在边长为3的正方形ABCD 中,作它的内接正方形EFGH ,且使得15BEF ∠=︒,再作正方形EFGH 的内接正方形MNPQ ,使得15FMN ∠=︒,依次进行下去,就形成了如图所示的图案.设第n 个正方形的边长为n a (其中第1个正方形的边长为1a AB =,第2个正方形的边长为2a EF =,……),第n 个直角三角形(阴影部分)的面积为n S (其中第1个直角三角形AEH 的面积为1S ,第2个直角三角形EQM 的面积为2S ,……,则( ).A.2a =B .132S =C .数列{}n a的等比数列D .数列{}n S 的前n 项和n T 的取值范围为39,44⎛⎫ ⎪⎝⎭三、填空题12.设数列{}n a 为等比数列,其公比为q ,已知1234a a a ++=,45632a a a ++=,则1a =. 13.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且2331n n A n B n -=+,则88a b =. 14.等差数列{}n a 中,已知15a =,且在前n 项和n S 中,仅当10n =时,10S 最大,则公差d 的取值范围为.四、解答题15.已知{}n a 为等差数列,公差2d =,且1a 、2a 、5a 成等比数列. (1)求数列{}n a 的通项公式; (2)记11n n n b a a +=⋅,数列{}n b 的前n 项和为n S ,证明:12n S <.16.已知数列{}n a 满足*111,235,n n a a a n n +=+=-∈N . (1)设2n n b a n =-+,证明:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .17.已知数列{}n a 的前n 项和n S 满足()1122n n S n +=-+.(1)求{}n a 的通项公式;(2)求数列12·1n n a n ++⎧⎫⎨⎬+⎩⎭的前n 项和n T . 18.已知抛物线22x py =(0p >)上点P 处的切线方程为10x y --=. (1)求抛物线的方程;(2)设11()A x y ,和22()B x y ,为抛物线上的两个动点,其中12y y ≠,且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC V 面积的最大值.19.若有穷数列12,n a a a L (n 是正整数),满足1n a a =,21n a a -=,…,1n a a =即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”.(1)已知数列{}n b 是项数为8的对称数列,且1b ,2b ,3b ,4b 成等差数列,11b =,410b =,试写出{}n b 的每一项.(2)已知{}n c 是项数为2k (其中1k ≥,且Z k ∈)的对称数列,且122,,,k k k c c c ++L 构成首项为15,公差为2-的等差数列,数列{}n c 的前2k 项和为2k S ,则当k 为何值时,2k S 取到最大值?最大值为多少?(3)对于给定的正整数1i >,试写出所有项数为21i -的对称数列,使得211,2,22i -K 成为数列中的连续项;当2000i >时,并分别求出所有对称数列的前2024项和2024S .。

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题(解析版)

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题(解析版)

2019-2020学年黑龙江大庆实验中学高二下学期期中考试数学(理)试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D【答案】C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.极坐标方程2cos 3cos 30ρθρθρ-+-=表示的曲线是( ) A .一个圆 B .两个圆 C .两条直线 D .一个圆和一条直线 【答案】D【解析】分析:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=,然后化为直角坐标方程即可得结论.详解:2cos 3cos 30ρθρθρ-+-=化为()()cos 130ρθρ+-=,因为cos 10ρθ+=表示一条直线1x =-30ρ-=表示圆229x y +=,所以,极坐标方程2cos 3cos 30ρθρθρ-+-= 表示的曲线是一个圆和一条直线,故选D.点睛:本题主要考查极坐标方程的应用,属于中档题. 极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.3.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .112【答案】B【解析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.4.根据最小二乘法由一组样本点(),i i x y (其中1,2,,300i =L ),求得的回归方程是ˆˆˆybx a =+,则下列说法正确的是( ) A .至少有一个样本点落在回归直线ˆˆˆybx a =+上 B .若所有样本点都在回归直线ˆˆˆybx a =+上,则变量同的相关系数为1 C .对所有的解释变量i x (1,2,,300i =L ),ˆˆibx a +的值一定与i y 有误差 D .若回归直线ˆˆˆybx a =+的斜率ˆ0b >,则变量x 与y 正相关 【答案】D【解析】对每一个选项逐一分析判断得解. 【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A 错误;所有样本点都在回归直线ˆˆˆybx a =+上,则变量间的相关系数为1±,故B 错误; 若所有的样本点都在回归直线ˆˆˆy bx a =+上,则ˆˆbx a +的值与y i 相等,故C 错误; 相关系数r 与ˆb符号相同,若回归直线ˆˆˆy bx a =+的斜率ˆ0b >,则0r >,样本点分布应从左到右是上升的,则变量x 与y 正相关,故D 正确. 故选D . 【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.5.某人连续投篮5次,其中3次命中,2次未命中,则他第2次,第3次两次均命中的概率是( ) A .310B .25C .12D .35【答案】A【解析】基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,由此能求出他第2次,第3次两次均命中的概率,得到答案.【详解】由题意某人连续投篮5次,其中3次命中,2次未命中,因为基本事件总数3252n C C 10==,他第2次,第3次两次均命中包含的基本事件个数212232m C C C 3==,所以他第2次,第3次两次均命中的概率是m 3p n 10==. 故选:A . 【点睛】本题主要考查了古典概型及其概率的计算,以及排列、组合等知识的应用,其中解答中根据排列、组合求得基本事件的总数和第2次、第3次两次均命中所包含的基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.6.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是A .24B .16C .8D .12【答案】B【解析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。

黑龙江省大庆市大庆中学2022届高三第二次模拟数学(理)试题(原卷版)

黑龙江省大庆市大庆中学2022届高三第二次模拟数学(理)试题(原卷版)
1.已知集合 ,则 的元素个数为()
A.3B.4C.5D.6
2.已知复数 ,则 的虚部是()
A. B. C.1D.i
3.在空间中,已知命题 三个顶点到平面 的距离相等且不为零,命题 :平面 平面 ,则 是 的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.已知数列{an}是首项为 ,公差为d的等差数列,前n项和为Sn,满足 ,则S9=( )
A. B. C. D.
6.已知平面向量 , 满足 , ,且 与 的夹角为 ,则 ()
A. B. C. D.3
7.设 ,若 , , ,则()
A. B. C. D.
8.已知函数 ,若 ,则实数 的值为()
A. B. C.1D.2
9.西安中学抗疫志愿者小分队中有3名男同学,2名女同学,现随机选派2名同学前往社区参加志愿服务活动,在已知抽取的1名志愿者是女同学的情况下,2名都是女同学的概率是()
A.35B.40C.45D.50
5.在流行病学中,基本传染数是指每名感染者平均可传染的人数.当基本传染数高于1时,每个感染者平均会感染1个以上的人,从而导致感染这种疾病的人数呈指数级增长.当基本传染数持续低于1时,疫情才可能逐渐消散.接种新冠疫苗是预防新冠病毒感染、降低新冠肺炎发病率和重症率的有效手段.已知新冠病毒的基本传染数 ,若1个感染者在每个传染期会接触到 个新人,这 人中有 个人接种过疫苗( 称为接种率),那么1个感染者新的传染人数为 ,为了有效控制新冠疫情(使1个感染者传染人数不超过1),我国疫苗的接种率至少为()
A B. C. D.
10.已知 的展开式中所有项的系数之和为 ,则该展开式中 项的系数是()
A. B. C. D.

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

2023-2024学年高二数学上学期期中考试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的()A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义判断即可.【详解】lg 0m >等价于1m >.若2m =,则方程()2211m x y m -+=-表示单位圆.若方程()2211m x y m -+=-表示椭圆,则椭圆方程可化为2211y x m +=-,则1m >且2m ≠.故“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的必要不充分条件.故选:B.2.直线()()()2212:110,:120l a x ay l a x a a y -+-=-+++=,若12//l l ,则实数a 的值不可能是()A .1-B .0C .1D .2-【答案】A【分析】根据平行列式,求得a 的值,进而确定正确答案.【详解】由于12//l l ,所以()()()2211a a a a a -⨯+=⨯-,()()()21110a a a a a +---=,()()()()()()22211112120a a a a a a a a a a ⎡⎤-+-=-+=-+=⎣⎦,解得0a =或1a =或2a =-.当0a =时,12:10,:20l x l x --=-+=,即12:1,:2l x l x =-=,两直线平行,符合题意.当1a =时,12:10,:220l y l y -=+=,即12:1,:1l y l y ==-,两直线平行,符合题意.当2a =-时,12:3210,:3220l x y l x y --=-++=,即12:3210,:3220l x y l x y --=--=,两直线平行,符合题意.所以a 的值不可能是1-.故选:A3.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC 中点,则MN等于()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c+-【答案】B【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.4.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,若1AM AB AA λμ=+,[]0,1λ∈,[]0,1μ∈,若1D M CP ⊥,则BCM 面积的最小值为()A .4B .8C .855D .82【答案】C【分析】由题意知点M 在平面11ABB A 内,建立如图空间直角坐标系A xyz -,设(,0,)M a b ,根据空间向量的数量积的坐标表示可得24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,结合线面垂直的性质即可求解.【详解】由1,[0,1]AM AB AA λμλμ=+∈、,知点M 在平面11ABB A 内,以1,,AB AD AA 所在直线为坐标轴建立如图空间直角坐标系A xyz -,则1(0,0,2),(4,4,0),(0,4,4)P C D ,设(,0,)M a b ,则1(,4,4),(4,4,2)D M a b CP =--=-- ,由1D M CP ⊥,得1416280D M CP a b ⋅=-++-=,即24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,则4245525BQ ⨯==,又BC ⊥平面11ABB A ,故BC BQ ⊥,所以BCM S △的最小值为145854255QBC S =⨯⨯= .故选:C.5.在平面直角坐标系中,设军营所在区域为221x y +≤,将军从点()2,0A 出发,河岸线所在直线方程为4x y +=,假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程()A .101-B .251-C .25D .10【答案】B【分析】根据题意作出图形,然后求出()2,0A 关于直线4x y +=的对称点A ',进而根据圆的性质求出A '到圆上的点的最短距离即可.【详解】若军营所在区域为22:1x y Ω+≤,圆:221x y +=的圆心为原点,半径为1,作图如下:设将军饮马点为P ,到达营区点为B ,设(),A x y '为A 关于直线4x y +=的对称点,因为()2,0A ,所以线段AA '的中点为2,22x y +⎛⎫⎪⎝⎭,则2422x y ++=即60x y +-=,又12AA yk x '==-,联立解得:42x y =⎧⎨=⎩,即()4,2A ',所以总路程||||||||PB PA PB PA '+=+,要使得总路程最短,只需要||||PB PA '+最短,即点A '到圆22=1x y +上的点的最短距离,即为11OA OB OA ''-=-=.故选:B.6.在等腰直角三角形ABC 中,4AB AC ==,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC 的重心,则QR 的长度等于()AB.9C.9D.9【答案】B【分析】建立平面直角坐标系,得出ABC 各顶点以及重心的坐标,设(),0P a ,04a <<.求出直线BC 的方程,根据光的反射原理得出点P 关于BC 以及y 轴的对称点的坐标,表示出RQ 的方程,代入重心坐标,求出a 的值,得出RQ 的方程.进而求出,R Q 的坐标,即可根据两点间的距离公式得出答案.【详解】如图,建立平面直角坐标系,则()0,0A ,()4,0B ,()0,4C ,ABC 的重心坐标为44,33⎛⎫⎪⎝⎭,BC 方程为40x y +-=,设(),0P a ,04a <<.根据光的反射原理以及已知可知,点P 关于BC 的对称点1P 在QR 的反向延长线上,点P 关于y 轴的对称点2P 在QR 的延长线上,即12,,,P P Q R 四点共线.由已知可得点()111,P x y 满足()11110422011a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=--⎪⎩,解得1144x y a =⎧⎨=-⎩,所以()14,4P a -.易知()2,0P a -.因为12,,,P P Q R 四点共线,所以有直线QR 的斜率为()40444a ak a a ---==--+,所以,直线QR 的方程为()44ay x a a-=++.由于直线QR 过重心44,33⎛⎫⎪⎝⎭,所以有444343a a a -⎛⎫=+ ⎪+⎝⎭,整理可得2340a a -=,解得43a =或0a =(舍去),所以直线QR 的方程为44434343y x -⎛⎫=+⎪⎝⎭+,整理可得3640x y -+=.所以,R 点坐标为20,3⎛⎫⎪⎝⎭.联立QR 与BC 的方程364040x y x y -+=⎧⎨+-=⎩,解得209169x y ⎧=⎪⎪⎨⎪=⎪⎩,即2016,99Q ⎛⎫ ⎪⎝⎭,所以,QR ==.故选:B.7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A .2B .94C .3D .52【答案】C【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以22333BG BE ==所以AG ===r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,238OM ON ⋅=-=-⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,POPM PN ⋅的最大值为23348⎛⎫-= ⎪ ⎪⎝⎭.故选:C8.已知M 为椭圆:()222210x y a b a b+=>>上一点,1F ,2F 为左右焦点,设12MF F α∠=,21MF F β∠=,若sin sin cos 1sin cos sin 3ααββαβ-=+,则离心率e =()A .12B .13C .12D .23【答案】C【分析】设12||,||MF m MF n ==,12||2F F c =,结合三角恒等变换以及正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+化为22243224c n m n m m c cm+--⋅=+,继而推出,,a b c 的关系,求得答案.【详解】设12||,||MF m MF n ==,12||2F F c =,则2m n a +=,由sin sin cos 1sin cos sin 3ααββαβ-=+得3sin 3sin cos sin cos sin ααββαβ-=+,即3sin 2sin cos sin sin cos cos sin sin sin()ααββαβαββαβ-=++=++,在12MF F △中,由正弦定理得1222sin sin sin sin()n m c cF MF αβαβ===∠+,故32cos 2n m m c β-=+,又2224cos 4c n mcmβ+-=,故22243224c n m n m m c cm+--⋅=+,即282(3)()()0c c m n m n n m +-++-=,即[4()][2()]0c m n c n m -+--=,即4c m n =+或2c n m =-,结合椭圆定义可知2m n c +>且||2m c -<,故4c m n =+,即142,2c c a e a =∴==,故选:C【点睛】关键点睛:本题是椭圆的离心率的求解问题,即求,,a b c 之间的关系,解答的关键是对于已知等式的化简,即利用三角恒等变换结合正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+转化为三角形边之间的关系式,进而化简可得,,a b c 的关系,即可求解答案.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP 面积可能是()A .1B .3C .4D .7【答案】BC【分析】根据给定条件,求出线段AB 长,点P 到直线AB 的距离范围,再利用三角形面积公式求解即得.【详解】依题意,点(2,0),(0,2)A B --,则||AB =圆()2222x y -+=的圆心(2,0)C ,半径2r =,则点C 到直线AB 的距离4222r =>,因此点P 到直线AB 的距离[2,32]d ∈,ABP 的面积1||2[2,6]2S AB d d =⋅=∈,显然BC 满足,AD 不满足.故选:BC10.已知圆2221:2100C x y mx y m ++-+=,圆222:450C x y y ++-=,则下列说法正确的是()A .若点()1,1在圆1C 的内部,则24m -<<B .若2m =,则圆12,C C 的公共弦所在的直线方程是41490x y -+=C .若圆12,C C 外切,则15m =±D .过点()3,2作圆2C 的切线l ,则l 的方程是3x =或724270x y -+=【答案】BCD【分析】根据点在圆的内部解不等式2112100m m ++-<+即可判断A 错误;将两圆方程相减可得公共弦所在的直线方程可知B 正确;利用圆与圆外切,由圆心距和两半径之和相等即可知C 正确;对直线l 的斜率是否存在进行分类讨论,由点到直线距离公式即可得D 正确.【详解】对于A ,由点(1,1)在圆1C 的内部,得2112100m m ++-<+,解得42m -<<,故A 错误;对于B ,若2m =,则圆221:41040C x y x y ++-+=,将两圆方程相减可得公共弦所在的直线方程是41490x y -+=,故B 正确;对于C ,圆1C 的标准方程为22()(5)25x m y ++-=,圆心为()1,5C m -,半径15r =,圆2C 的标准方程为22(2)9x y ++=,圆心为()20,2C -,半径23r =,若圆12,C C 外切,则1212C C r r =+,即24953m +=+,解得15m =±,故C 正确;对于D ,当l 的斜率不存在时,l 的方程是3x =,圆心2C 到l 的距离23d r ==,满足要求,当l 的斜率存在时,设l 的方程为()32y k x =-+,圆心2C 到l 的距离224331k d r k -===+,解得724k =,所以l 的方程是724270x y -+=,故D 正确.故选:BCD.11.如图,正方体1111ABCD A B C D -的棱长为2,E 为11A B 的中点,P 为棱BC 上的动点(包含端点),则下列结论正确的是()A .存在点P ,使11D P AC ⊥B .存在点P ,使1PE D E =C .四面体11EPCD 的体积为定值83D .二面角11P DE C --的余弦值的取值范围是23⎡⎢⎣⎦【答案】AB【分析】利用向量法,根据线面垂直,两点间的距离,几何体的体积,二面角等知识对选项进行分析,从而确定正确答案.【详解】建立如图所示空间直角坐标系,设()02CP a a =≤≤,则(),2,0P a ,()2,1,2E ,()()12,0,0,0,2,2A C ,()10,0,2D ,则()12,2,2AC =- ,()1,2,2D P a =-,112442D AC a a P ⋅=-+-=-,当0a =时,即P 点与C 点重合时,11D P AC ⊥,故A 正确.由1PE D E =2a =,此时P 点与B 点重合,故B 正确.111111111422223323E PC D P C D E C D E V V S --==⨯⋅=⨯⨯⨯⨯= 为定值,故C 错误.又()12,1,0D E = ,()1,2,2D P a =-,设平面1D EP 的法向量()1,,n x y z = ,由11112002200D E n x y D P n ax y z ⎧⋅=+==⎪⎨⋅=+-==⎪⎩,令1x =则=2y -,22a z =-,11,2,22a n ⎛⎫∴=-- ⎪⎝⎭ ,又平面11D EC 的法向量()20,0,2n =,12cos ,22n an ∴=-又02a ≤≤,122cos ,3n n ⎤∴∈⎣⎦,故D 错误.故选:AB12.已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫ ⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B.椭圆C C .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为2636c e a ===,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()22212122446F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.在三棱锥-P ABC 中,PC ⊥底面,90,4,45ABC BAC AB AC PBC ∠∠==== ,则点C 到平面PAB 的距离是.【答案】463/463【分析】建立空间直角坐标系,设平面PAB 的一个法向量为(),,m x y z =,由点C 到平面PAB 的距离为PC m d m⋅=求解.【详解】解:建立如图所示的空间直角坐标系,则()()()()0,0,0,4,0,0,0,4,0,0,4,42A B C P ,所以()()()0,4,42,4,0,0,0,0,42AP AB PC ===-.设平面PAB 的一个法向量为(),,m x y z =,则0,0,m AP m AB ⎧⋅=⎪⎨⋅=⎪⎩ 即4420,40,y z x ⎧+=⎪⎨=⎪⎩令y 1z =-,所以()1m =-,所以点C 到平面PAB的距离为PC m d m⋅==14.若非零实数对(),a b满足关系式1771a b a b ++=-+=,则a b=.【答案】34-或43【分析】化简转化为点到直线的距离,利用直线的位置关系即可求解.【详解】由1771a b a b ++=-+=5==,()1,1A 到直线10ax by ++=的距离1d,()7,7B -到直线10ax by ++=的距离2d ,5==,所以125d d ==.因为10AB =,1210d d +=,所以当点A ,B 在直线10ax by ++=同侧时,直线AB 与直线10ax by ++=平行,当点A ,B 在直线10ax by ++=异侧时,A ,B 关于直线10ax by ++=对称,因为直线AB 的斜率174173k +==--,直线10ax by ++=的斜率为ab-,所以43a b -=-或413a b ⎛⎫⎛⎫-⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以43a b =或34ab=-.故答案为:34-或43.15.过椭圆2222:1(0)x y C a b a b+=>>的右焦点F且与长轴垂直的弦的长为(2,1)P 且斜率为1-的直线与C 相交于,A B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为.【答案】3/3+【分析】利用点差法可求基本量的关系,再结合通径的长可求基本量,故可求焦半径的最大值.我们也可以联立直线方程和椭圆方程,从而可用基本量表示中点,从而得到基本量的一个关系式,同样结合通径长可取基本量,故可求焦半径的最大值.【详解】法一:将x c =代入椭圆C 的方程得2b y a =±,所以22ba=,设()11,A x y ,()22,B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得()()()()12121212220x x x x y y y y a b -+-++=,又124x x +=,1212122,1y y y y x x -+==--,所以22210a b-=②,解①②得3a b ==,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.法二:将x c =代入椭圆C 的方程得2by a=±,所以22b a =,直线AB 的方程是1(2)y x -=--,即3y x =-,代入椭圆的方程并消去y 整理得()2222222690a b x a x a a b +-+-=,则()()()()22222222222490694a a b a a b a b a b ∆=--++-->=,设()11,A x y ,()22,B x y ,则2122264a x x a b+==+,即222a b =②,解①②得3a b ==,满足0∆>,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.故答案为:3.16.在平面直角坐标系xOy 中,已知()1,1A --,圆22:1O x y +=,在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),则Q 的坐标为.【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设00(,)Q x y ,(,)P x yλ=对圆O 上任意点(,)P x y 恒成立,从而得到202202(22)()320x x y x λλλ+++--=对任意[x y +∈恒成立,从而得到202220220320x x λλλ⎧+=⎨--=⎩,即可求出λ与0x ,从而得解.【详解】设00(,)Q x y ,(,)P x y ,则PA =PQ =若在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),λ=对圆O 上任意点(,)P x y 恒成立,即22222200(1)(1)()()x y x x y y λλ+++=-+-,整理得222222022000(1)()(22)(22)2()0x y x x y y x y λλλλ-++++++-+=,因为点Q 在直线AO 上,所以00x y =,由于P 在圆O 上,所以221x y +=,故202202(22)()320x x y x λλλ+++--=恒成立,其中点(),P x y 在圆22:1O x y +=上,令x y m +=,则0x y m +-=,所以直线0x y m +-=与圆有交点,所以圆心到直线的距离小于等于半径,即1d ≤,解得m ≤≤[x y +∈,所以202220220320x x λλλ⎧+=⎨--=⎩,显然0λ≠,所以021x λ=-,故22230λλ--=,因为0λ>,解得λ=1λ=.当1λ=时,(1,1)Q --,此时,Q A 重合,舍去.当λ=11,22Q ⎛⎫-- ⎪⎝⎭,综上,存在满足条件的定点11,22Q ⎛⎫-- ⎪⎝⎭,此时λ=故答案为:11,22⎛⎫-- ⎪⎝⎭【点睛】关键点睛:本题解决的关键是利用题设条件,结合221x y +=与00x y =化简得202202(22)()320x x y x λλλ+++--=恒成立,从而得到关于0,x λ的方程组,由此得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,E ,F 分别是AB ,PB 的中点.(1)求证:EF CD ⊥.(2)已知点G 在平面PAD 内,且GF ⊥平面PCB ,试确定点G 的位置.【答案】(1)证明见解析(2)点G 为AD 的中点【分析】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,设AD a =,再根据0EF DC ⋅= 即可证明.(2)设(,0,)G x z ,根据GF ⊥平面PCB 得到0FG CB ⋅= ,0FG CP ⋅= ,即可得到答案.【详解】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系(如图),设AD a =,则(0,0,0)D ,(,,0)B a a ,(0,,0)C a ,,,02a E a ⎛⎫ ⎪⎝⎭,(0,0,)P a ,,,222a a a F ⎛⎫ ⎪⎝⎭,所以,0,22a a EF ⎛⎫=- ⎪⎝⎭ ,(0),,0DC a = ,所以,0,(0,,0)022a a EF DC a ⎛⎫⋅=-⋅= ⎪⎝⎭ ,所以EF CD ⊥.(2)因为∈G 平面PAD ,设(,0,)G x z ,所以,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭ .由(1),知(,0,0)CB a = ,(0,),CP a a =- .因为GF ⊥平面PCB ,所以,,(,0,0)()02222a a a a FG CB x z a a x ⎛⎫⋅=---⋅=-= ⎪⎝⎭ ,2,,(0,,)022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以2a x =,0z =,所以点G 的坐标为,0,02a ⎛⎫ ⎪⎝⎭,即点G 为AD 的中点.18.(12分)已知直线:1l y kx k =+-.(1)求证:直线l 过定点;(2)若当44x -<<时,直线l 上的点都在x 轴下方,求k 的取值范围;(3)若直线l 与x 轴、y 轴形成的三角形面积为1,求直线l 的方程.【答案】(1)证明见解析(2)11[,]35-(3)(21y x =+++(21y x =+【分析】(1)由直线方程观察得定点坐标即证;(2)由4x =±时对应点的纵坐标不小于0可得;(3)求出直线与坐标轴的交点坐标,再计算三角形面积从而得直线的斜率,即得直线方程.【详解】(1)由1y kx k =+-,得1(1)y k x +=+.由直线方程的点斜式可知,直线l 过定点(1,1)--;(2)若当44x -<<时,直线l 上的点都在x 轴下方,则410,410,k k k k -+-≤⎧⎨+-≤⎩解得1135k -≤≤,所以k 的取值范围是11[,35-;(3)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,坐标原点为O .当0x =时,得||||1|OB k =-,当0y =时,得|1|||||k OA k -=,所以11|1||||||1|22||AOB k S OA OB k k -==-⨯△,即211|1|12||k k -⨯=,解得2k =2,所以直线l 的方程为(21y x =+(21y x =+19.(12分)如图所示,第九届亚洲机器人锦标赛VEX 中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 10米,在AB 边上距离A 点4米的F 处放置一只电子狗,在距离A 点2米的E v ,电子狗行走速度为2v ,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M ,那么电子狗将被机器人捕获,点M 叫成功点.(1)求在这个矩形场地内成功点M 的轨迹方程;(2)若P 为矩形场地AD 边上的一点,若电子狗在线段FP 上都能逃脱,问:P 点应在何处?【答案】(1)2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭(2)P 的横坐标范围为⎤⎥⎝⎦即可逃脱.【分析】(1)分别以,AD AB 为,x y 轴,建立平面直角坐标系,由题意2MF ME v v =,利用两点间的距离公式可得答案.(2)利用三角函数得到极端情况时P 点的横坐标即可得到答案.【详解】(1)分别以AD ,AB 为x ,y 轴,建立平面直角坐标系,则()0,2E ,()0,4F ,设成功点(),M x y ,可得2MF ME v v ==化简得2241639x y ⎛⎫+-= ⎪⎝⎭,因为点M 需在矩形场地内,所以403x ≤≤,故所求轨迹方程为2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭.(2)当线段FP 与(1)中圆相切时,则413sin 4243AFP ∠==-,所以30AFP ∠=︒,所以4tan 30AP =︒=,若电子狗在线段FP 上都能逃脱,P点的横坐标取值范围是⎤⎥⎝⎦.20.(12分).如图,//AD BC 且2,,//AD BC AD CD EG AD =⊥且,//EG AD CD FG =且2,CD FG DG =⊥平面,2ABCD DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求平面BCE 和平面BCF 夹角的正弦值;(3)若点P 在线段DG 上,且直线与平面ADGE 所成的角为45︒,求点P 到平面CDE 的距离.【答案】(1)证明见解析;(2)10;(3)2.【分析】(1)取GD 中点为Q ,连接NQ ,MQ ,通过证明平面//MQN 平面CDE ,可得//MN 平面CDE ;(2)如图,建立以D 为原点的空间直角坐标系,分别求出平面BCE 和平面BCF 夹角的法向量,即可得答案;(3)由(2),设()0,0,P t ,直线BP 与平面ADGE 所成的角为45︒可得点P 坐标,可得点P 到平面CDE 的距离.【详解】(1)取GD 中点为Q ,连接NQ ,MQ .因M 为CF 的中点,N 为EG 的中点,Q 为GD 中点,由三角形及梯形中位线定理,可得,NQ ED MQ DC .又注意到,,ED DC ⊂平面EDC ,,NQ MQ ⊄平面EDC ,,NQ MQ ⊂平面MNQ ,∩NQ MQ Q =,则平面//MQN 平面CDE .又MN ⊂平面MQN ,则//MN 平面CDE .(2)因DG ⊥平面ABCD ,,⊂DA DC 平面ABCD ,则,DG DC DG DA ⊥⊥,又AD DC ⊥,则如图建立以D 为原点的空间坐标系.则()()()()()()()000200020002120202012,,,,,,,,,,,,,,,,,,,,D A C G B E F .()()()100122112,,,,,,,,BC BE BF =-=-=--.设平面BCE 和平面BCF 的法向量分别为()()11112222,,,,,n x y z n x y z == .则1111110220BC n x BE n x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取()10,1,1n = ;222222020BC n x BF n x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,取()20,2,1n = .设平面BCE 和平面BCF 夹角为θ,则1210cos cos ,θn n === .则平面BCE 和平面BCF夹角的正弦值为sin θ=(3)由(2),设()0,0,P t ,其中[]0,2t ∈,则()12,,BP t =-- 又由题可得,平面ADGE 的一个法向量可取()30,1,0n = .结合直线BP 与平面ADGE 所成的角为45︒,则32cos ,n BP t ==⇒=则(DP = ,()()020202,,,,,DC DE == .设平面CDE 法向量为()4444,,n x y z = ,则4444420220DC n y DE n x z ⎧⋅==⎪⎨⋅=+=⎪⎩ .取()4101,,n =- ,则点P 到平面CDE的距离442n DP d n ⋅=== .21.(12分)已知在平面直角坐标系xOy 中,已知A 、B 是圆O :228x y +=上的两个动点,P 是弦AB 的中点,且90AOB ∠=︒;(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :4x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,判断直线MN 是否过定点,若是,求出定点的坐标,若不是,请说明理由.【答案】(1)224x y +=(2)过定点()1,0Q .【分析】(1)设点(),P x y 为曲线上任意一点,根据几何关系得到2OP =,得到轨迹方程.(2)设()4,E t ()0t ≠,分别计算CE ,DE 的直线方程,联立圆方程得到交点坐标,考虑直线MN 斜率存在和不存在两种情况,计算直线方程得到答案.【详解】(1)设点(),P x y 为曲线上任意一点,P 是弦AB 的中点,且90AOB ∠=︒,圆O :228x y +=的半径r =122OP AB ===,故点P 的轨迹方程为:224x y +=.(2)不妨取()2,0C -,()2,0D ,设()4,E t ()0t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,3636t t M t t ⎛⎫- ⎪++⎝⎭.联立()22224t y x x y ⎧=-⎪⎨⎪+=⎩,得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288,44t t N t t ⎛⎫-- ⎪++⎝⎭.①当t ≠±MN 的斜率222222224883647222812364MNt t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,直线过定点()1,0,所以()1,0Q ;②当t =±MN 垂直于x 轴,方程为1x =,也过定点()1,0Q .综上所述:直线MN 恒过定点()1,0Q .【点睛】关键点睛:本题考查了圆的轨迹方程,定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中设出E 的坐标,分别计算,M N 坐标再计算直线方程是解题的关键.22.(12分)如图所示,已知椭圆2219x y +=中()3,0A ,()0,1B ;P 在椭圆上且为第一象限内的点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N(1)求证:①||||AN BM ⋅为定值;②PMN 与PAB 面积之差为定值;(2)求MON △面积的最小值.【答案】(1)①证明见解析;②证明见解析(2)92+【分析】(1)①设00(,)P x y ,利用直线方程求出点,M N 坐标,从而可得||||AN BM ⋅的表达式,结合点在椭圆上化简,即可证明结论;②利用PMN 与PAB 面积之差为MAN BAN S S - ,利用三角形面积公式,结合①的定值即可证明结论;(2)利用三角形面积公式表示出MON △面积的表达式,利用(1)的定值结合基本不等式,即可求得答案.【详解】(1)证明:①设00(,)P x y ,()001,030x y <<<<,则220019x y +=,即220099x y +=,直线()0033:y PA y x x =--,令0x =,则0033M y y x =--,故003|||1|3y BM x =+-;直线0011:y PB y x x =+-,令0y =,则001N x x y -=-,故00|||3|1x AN y =+-;所以00000000003|||||3||1||33|||133331x y x y x y AN BM y x y x ⋅=+⋅+⋅-+----+()()()2220000000000000033996618||||3133x y x y x y x y x y x y x y +-+++--==----+000000001666183|38x y x y x y x y --++-==-,即||||AN BM ⋅为定值6;②PMN 与PAB 面积之差为11||||||||22MAN BAN S S AN OM AN OB -=⋅-⨯⋅ 1||||32AN BM =⨯⋅=,即PMN 与PAB 面积之差为定值3;(2)MON △面积()()11||||3||1||22OMN S ON OM AN BM =⋅=++ ()1||||||3||32AN BM AN BM =⋅+++()1966322+≥+=,当且仅当||3||AN BM =,结合||||6AN BM ⋅=,即|||AN BM ==时取等号,即MON △面积的最小值为92+.【点睛】关键点睛:解答本题的关键在于证明||||AN BM ⋅为定值,解答时要利用直线方程表示出||,||AN BM ,从而求得||||AN BM ⋅表达式,结合点在椭圆上化简即可证明结论.。

2019年黑龙江省大庆市中考数学试题(Word版,含解析)

2019年黑龙江省大庆市中考数学试题(Word版,含解析)

2019年黑龙江省大庆市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数﹣8的立方根为()A.﹣2 B.2 C.±2 D.±42.在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A.60.8×104 B.6.08×105 C.0.608×106 D.6.08×1074.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m| C.﹣m>|n| D.|m|<|n|5.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.6.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等7.某企业1﹣6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1﹣6月份利润的众数是130万元B.1﹣6月份利润的中位数是130万元C.1﹣6月份利润的平均数是130万元D.1﹣6月份利润的极差是40万元8.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15° B.30° C.45° D.60°9.一个“粮仓”的三视图如图所示(单位:m),则它的体积是()A.21πm3 B.30πm3 C.45πm3 D.63πm310.如图,在正方形ABCD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,则线段CD扫过的面积为()A. B. C.π D.2π二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.a5÷a3=.12.分解因式:a2b+ab2﹣a﹣b=.13.一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.14.如图,在△ABC中,D、E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD =.15.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为.16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a﹣b)2的值是.17.已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax﹣3a﹣1<0的解,则实数a的取值范围是.18.如图,抛物线y=x2(p>0),点F(0,p),直线l:y=﹣p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1、B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b、则△A1OB1的面积=.(只用a,b表示).三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(2019﹣π)0+|1﹣|﹣sin60°.20.已知:ab=1,b=2a﹣1,求代数式﹣的值.21.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450机器所需时间相同,求该工厂原来平均每天生产多少台机器?22.如图,一艘船由A港沿北偏东60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C两港之间的距离(结果保留到0.1km,参考数据:≈1.414,≈1.732);(2)确定C港在A港的什么方向.23.某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.请根据图表信息回答下列问题:(1)填空:①m=,②n=,③在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A组数据中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人?24.如图,反比例函数y=和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.(1)求一次函数的表达式;(2)求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.25.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.26.(8分)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?27.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.(1)求证:PA是⊙O的切线;(2)证明:EF2=4OD•OP;(3)若BC=8,tan∠AFP=,求DE的长.28.如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y 轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x 的取值范围.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.有理数﹣8的立方根为.答案:A.2.A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确;答案:D.3.608000,这个数用科学记数法表示为6.08×105.答案:B.4.因为m、n都是负数,且m<n,|m|<|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.答案:C.5.∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.答案:A.6.A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;答案:C.7.A、1﹣6月份利润的众数是120万元;故本选项错误;B、1﹣6月份利润的中位数是125万元,故本选项错误;C、1﹣6月份利润的平均数是(110+120+130+120+140+150)=万元,故本选项错误;D、1﹣6月份利润的极差是150﹣110=40万元,故本选项正确.答案:D.8.∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,答案:B.9.观察发现该几何体为圆锥和圆柱的结合体,其体积为:32π×4+×32π×3=45πm3,答案:C.10.∵将正方形ABCD绕点A按逆时针方向旋转180°至正方形AB1C1D1,∴CC1=2AC=2×AB=2,∴线段CD扫过的面积=×()2•π﹣×π=,答案:B.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.a5÷a2=a3.故答案为:a312.a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(ab﹣1)(a+b)故答案为:(ab﹣1)(a+b)13.袋子中球的总数为8+5+5+2=20,而白球有8个,则从中任摸一球,恰为白球的概率为=.故答案为.14.∵D、E分别是BC,AC的中点,∴点G为△ABC的重心,∴AG=2DG=2,∴AD=AG+DG=2+1=3.故答案为3.15.由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.16.根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a﹣b)2=a2﹣2ab+b2=13﹣12=1.故答案为:1.17.∵x=4是不等式ax﹣3a﹣1<0的解,∴4a﹣3a﹣1<0,解得:a<1,∵x=2不是这个不等式的解,∴2a﹣3a﹣1≥0,解得:a≤﹣1,∴a≤﹣1,故答案为:a≤﹣1.18.∵AA1=AF,B1B=BF,∴∠AFA1=∠AA1F,∠BFB1=∠BB1F,∵AA1⊥l,BB1⊥l,∴AA1∥BB1,∴∠BAA1+∠ABB1=180°,∴180°﹣2∠AFA1+180°﹣∠BFB1=180°,∴∠AFA1+∠BFB1=90°,∴∠A1FB1=90°,∴△A1OB1的面积=△A1FB1的面积=ab;故答案为ab.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.原式=1+﹣1﹣=.20.∵ab=1,b=2a﹣1,∴b﹣2a=﹣1,∴﹣===﹣1.21.设该工厂原来平均每天生产x台机器,则现在平均每天生产(x+50)台机器.根据题意得:=,解得:x=150.经检验知,x=150是原方程的根.答:该工厂原来平均每天生产150台机器.22.(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==10≈14.1.答:A、C两地之间的距离为14.1km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=60°﹣45°=15°,∴C港在A港北偏东15°的方向上.23.(1)①m=20÷20%=100,②n=100﹣10﹣40﹣20﹣10=20,③c==144°;故答案为100,20,144(2)被抽取同学的平均体重为:(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克.(3)1000×30%=300(人).答:七年级学生体重低于47.5千克的学生大约有300人.24.(1)∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.(2)由解得或,∴B(﹣,﹣3)∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.25.(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.26.(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴,∴,∴y关于x的函数关系式为y=(0<x<4).(2)S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.27.(1)证明∵D是弦AC中点,∴OD⊥AC,∴PD是AC的中垂线,∴PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(2)证明:由(1)知∠ODA=∠OAP=90°,∴Rt△AOD∽Rt△POA,∴,∴OA2=OP•OD.又OA=EF,∴EF2=OP•OD,即EF2=4OP•OD.(3)在Rt△ADF中,设AD=a,则DF=3a.OD=BC=4,AO=OF=3a﹣4.∵OD2+AD2=AO2,即42+a2=(3a﹣4)2,解得a=,∴DE=OE﹣OD=3a﹣8=.28.(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y≤7,x=n时,y≥m,即:,解得:﹣2≤x;②当m、n在对称轴两侧时,x=2时,y的最小值为9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.。

【解析】黑龙江省大庆市大庆中学2019-2020学年高二上学期期中考试数学(理)试题

【解析】黑龙江省大庆市大庆中学2019-2020学年高二上学期期中考试数学(理)试题

2019----2020学年度上学期期中考试高二年级理科数学试题一、选择题(本大题共12小题,每题5分,共60分)1.知集合2{|4}A x x x =<,{|25}B x x =<<,则A B =U ( ) A. (0,2) B. (2,4) C. (0,5) D. (4,5)【答案】C 【分析】先解二次不等式求得A ,再进行并集运算【详解】2{|4}A x x x =<=(0,4),则A B =U (0,5)故选:C【点睛】本题考查并集运算,考查解二次不等式,是基础题2.设命题0:p x ∃<0,001xe x ->,则p ⌝为A. 0,1xx e x ∀≥-> B. 0,1xx e x ∀<-≤ C. 0000,1xx e x ∃≥-≤ D. 0000,1xx e x ∃<-≤【答案】B 【分析】根据特称命题的否定是全称命题的知识,判断出正确选项.【详解】原命题是特称命题,否定是全称命题,注意要否定结论,故本小题选B.【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定是全称命题,属于基础题.3.如果0a b <<,那么下列不等式中错误的是( )A. a c b c +<+ <C. 22ac bc <D.11a b> 【答案】C 【分析】逐一分析每一个选项判断得解.【详解】对于选项A,根据不等式的加法法则,显然正确,所以该选项正确; 对于选项B,因为0a b <<,所以a b <,所以该选项正确;对于选项C,当c=0时,显然不成立,所以该选项错误;对于选项D, 110,b aa b ab --=>所以11a b>,所以该选项正确. 故选:C【点睛】本题主要考查不等式的性质和实数大小的比较,意在考查学生对这些知识的理解掌握水平.4.函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A. xxy e e -=+B. 1y x x=-C. ln ||y x =D.sin x y x=【答案】B 【分析】由偶函数排除A,C,由单调性排除D【详解】对A,C ,函数为偶函数,故错误; 对D,函数为奇函数,令()sin x y f x x ==,()202f f πππ⎛⎫=<= ⎪⎝⎭,故函数不是增函数,错误 故选:B【点睛】本题考查函数的单调性及奇偶性判断,熟记定义是关键,注意举反例的应用 5.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A. 甲、乙两人的各科平均分相同B. 甲的中位数是83,乙的中位数是85C. 甲各科成绩比乙各科成绩稳定D. 甲的众数是89,乙的众数为87 【答案】D 【分析】利用中位数、众数、平均数、茎叶图的性质求解. 【详解】对于选项A,甲的平均数()174368747783838489929399x =++++++++=甲, 乙的平均数()174364667476858798989599x =++++++++=乙,所以选项A 是正确的; 对于选项B,由茎图知甲的中位数是83,乙的中位数是85,故选项B 正确;对于选项C, 由由茎图知甲的数据相对集中,乙的数据相对分散,故甲的各科成绩比乙各科成绩稳定,故选项C 正确;对于选项D, 甲的众数是83,乙的众数是98,故选项D 错误; 故选:D【点睛】本题主要考查平均数、中位数、众数的计算和概念,考查茎叶图的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.已知(2,3)a =r ,(,1)b m m =-r ,(,3)c m =r ,若//a b r r ,则b c ⋅=r r( )A. -5B. 5C. 1D. -1【答案】A 【分析】通过平行可得m 得值,再通过数量积运算可得结果.【详解】由于//a b r r,故()21=3m m -,解得2m =-,于是(2,3)b =--r ,(2,3)c =-r , 所以495b c ⋅=-=-r r.故选A.【点睛】本题主要考查共线与数量积的坐标运算,考查计算能力.7.某同学根据一组x ,y 的样本数据,求出线性回归方程y bx a =+$$$和相关系数r ,下列说法正确的是( )A. y 与x 是函数关系B. $y 与x 是函数关系C. r 只能大于0D. |r |越接近1,两个变量相关关系越弱 【答案】B 【分析】根据线性回归方程的定义进行求解即可【详解】解:由两变量x ,y 具有线性相关关系,可知y 与x 不是函数关系,故A 错误; 求出线性回归方程y b =$$x a +$,其中y $与x 是函数关系,故B 正确; 相关系数可能大于0,也可能小于0,故C 错误; |r |越接近1,两个变量相关关系越强,故D 错误. 故选:B .【点睛】本题考查两个变量的线性相关性,是基础题. 8.知(0,)2πα∈,2sin 21cos2αα=-,则cos α=( )A. 15【答案】B 【分析】由二倍角公式化简求得tan α再利用同角三角函数求得答案 【详解】2sin 21cos2αα=-故24sin cos 2sin ααα=(0,)2πα∈所以sin 0tan 2cos 5ααα≠∴==,, 故选:B【点睛】本题考查二倍角的正余弦公式,考查同角三角函数基本关系,熟记公式是关键,是基础题9.如图,在三棱锥111ABC A B C -中,底面为正三角形,侧棱垂直于底面,14,6AB AA ==.若E 是棱1BB 上的点,且1BE B E =,则异面直线1A E 与1AC 所成角的余弦值为( )A.1313B.21313C.51313D.81313【答案】A 【分析】以C 为原点,CA 为x 轴,在平面ABC 中过作AC 的垂线为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与1AC 所成角的余弦值.【详解】以C 为原点,CA 为x 轴,在平面ABC 中过作AC 的垂线为y 轴,CC 1为z 轴,建立空间直角坐标系,∵在三棱柱ABC ﹣A 1B 1C 1中,底面为正三角形,侧棱垂直底面,AB =4,AA 1=6,E ,F 分别是棱BB 1,CC 1上的点,且BE =B 1E ,∴A 1(4,0,6),E (2,33),A (4,0,0),()10,0,6C =1A E u u u r =(﹣2,3,﹣3),1AC =u u u u r(-4,0,6), 设异面直线1A E 与1AC 所成角所成角为θ,则cos θ1111131013A E AC A E AC ⋅===⋅u u u r u u u u ru u u r u u u u r . ∴异面直线A 1E 与AF 13. 故选:A .【点睛】求空间两条异面直线所成角的大小是立体几何中最为常见的基本题型之一。

黑龙江省大庆中学2019_2020学年高二数学上学期期中试题文

黑龙江省大庆中学2019_2020学年高二数学上学期期中试题文

黑龙江省大庆中学2019-2020学年高二数学上学期期中试题 文注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本大题共12个小题,每小题5分,共60分) 1.直线l 经过点()0,1-和()1,0,则直线l 的倾斜角为( )A .23π B .34π C .3π D .4π 2.点()00,P x y 是抛物线C :28y x =上一点,若P 到C 的焦点的距离为8,则( ) A.08x = B.08y = C.06x = D.06y = 3.直线()120x m y +++=与直线210mx y +-=平行,则m =( ) A.2-B.1或2-C.1D.2或1-4.已知圆22240x y x my +-+-=上两点M ,N 关于直线20x y +=对称,则圆的半径为( ) A .9B .3C .23D .25.椭圆221x ky +=的焦距为2,则k 的值为( ) A.2B.2或23C.23D.1或236.经过点()2,3P -作圆()22125:C x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线的方程为( ) A.50x y --=B.50x y -+=C.50x y ++=D.50x y +-=7.O 为坐标原点,F 为抛物线2:42C y x = 的焦点,P 为C 上一点,若 42PF =,则POF ∆ 的面积为( )A .2B .2C .23D .48.已知双曲线22221x y a b-=的左、右焦点分别为12F F 、,直线l 过1F ,与双曲线的左支交于A B、两点,若5AB =,且双曲线的实轴长为8,则2ABF ∆的周长是( ) A.16B.18C.21D.269.如图,过抛物线22y px =(0p >)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若2BC BF =,且3AF =,则此抛物线的方程为( )A.29y x =B.26y x =C.23y x = D.2y x =10.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =uu r uu r,则AF uuu r =( )A.2B.2C.3D.311.已知双曲线()222210,0x y E a b a b-=>>:,222)c a b =+的左,右焦点分别为12,F F . 直线:l x y c +=在第一象限内与双曲线E 的渐近线交于点P ,与y 轴正半轴交于点Q ,且点P 为2QF 的中点,12QF F ∆的面积为4,则双曲线E 的方程为( )A .22122x y -=B .2212x y -=C .22144x y -=D .22143x y -=12.已知椭圆2222:1x y C a b+=,0a b >>,12,F F 分别为椭圆的左右焦点,若椭圆C 上存在点()()000,0P x y x ≥使得1260PF F o∠=,则椭圆的离心率的取值范围为( )A .2,12⎫⎪⎪⎣⎭ B .20,2⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦第II 卷(非选择题)二、填空题(本大题共4个小题,每小题5分,共20分)13.已知经过椭圆2216416x y +=的右焦点2F 作垂直于x 轴的直线AB ,交椭圆于A ,B 两点,1F 是椭圆的左焦点,则1AF B ∆的周长为_____________.14.已知双曲线C :22221(0,0x y a b a b-=>>)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距为_____________.15.圆222610x y x y ++-+=与圆2242110x y x y +-+-=的公共弦的长为_____________.16.已知抛物线()2:20E y px p =>的焦点为F ,直线l 过点F 与抛物线交于A ,B 两点,与其准线交于点C (点B 在点A ,C 之间),若3BC =BF ,且9AB =,则p =_____________.三、解答题(本大题共6个小题,17题10分,18---22题每小题12分,共70分) 17.(本题10分)已知直线l 经过点P (-2,5),且斜率为(Ⅰ)求直线l 的方程;(Ⅱ)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.18.(本题12分)已知圆22:(2)(3)4C x y -+-=外有一点P (4,)1-,过点P 作直线l .(Ⅰ)当直线l 与圆C 相切时,求直线l 的方程;(Ⅱ)当直线l 的倾斜角为135︒时,求直线l 被圆C 所截得的弦长.19.(本题12)已知抛物线C :22(0)y px p =>的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,弦AB 的中点的横坐标为32,5AB =. (Ⅰ)求抛物线C 的方程;(Ⅱ)若直线l 的倾斜角为锐角,求与直线l 平行且与抛物线C 相切的直线方程.20.(本题12分)已知椭圆的中心在原点,其中一个焦点为()11,0F -,离心率为12e =,过点1F 的直线l 交椭圆于,A B 两点. (Ⅰ)求椭圆E 的方程:(Ⅱ)若直线AB 的倾斜角为135度,求AB .21.(本题12分)已知抛物线()2:20G x py p =>上一点(),4R m 到其焦点的距离为174. (Ⅰ)求p 与m 的值;(Ⅱ)若斜率为2-的直线l 与抛物线G 交于P 、Q 两点,点M 为抛物线G 上一点,其横坐标为1,记直线PM 的斜率为1k ,直线QM 的斜率为2k ,试问:12k k +是否为定值?并证明你的结论.22.(本题12分)定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆1C 与椭圆2C 是相似的两个椭圆,并且相交于上下两个顶点,椭圆22122:10)x y C a b a b +=>>(的长轴长是4,椭圆22222:10)y x C m n m n +=>>(长轴长是2,点1F ,2F 分别是椭圆1C 的左焦点与右焦点.(Ⅰ)求椭圆1C ,2C 的方程;(Ⅱ)过1F 的直线交椭圆2C 于点M ,N ,求2F MN ∆面积的最大值.大庆中学2019---2020学年度上学期期中考试高二年级文科数学试题参考答案1.D 2.C 3.B 4.B 5.B 6.A 7.C 8.D 9.C 10.A 11.A 12.D 13.32 14.4. 15.24516.4 17.(1) 3x +4y -14=0;(2) 3x +4y +1=0或3x +4y -29=0. 【详解】(1)由点斜式方程得,()3524y x -=-+,∴34140x y +-=. (2)设m 的方程为340x y c ++=,则由平线间的距离公式得,1435c +=,解得:1c =或29-.∴3410x y ++=或34290x y +-= 18.(1) 4x =或3480x y +-=(2) 22.【解析】(1)当斜率不存在时,直线l 的方程为4x =; 当斜率存在时,设直线l 的方程为410kx y k ---=,则2234121k k k ---=+,解得34k =-,所以l 的方程为3480x y +-=,所以直线l 的方程为4x =或3480x y +-=.(2)当直线l 的倾斜角为135︒时,直线l 的方程为30x y +-=,23322d +-==,所求弦长为22224222l r d =-=-=.19.(Ⅰ)24y x =(Ⅱ)122y x =+【详解】(Ⅰ)设11(,)A x y ,22(,)B x y , 因为AB 的中点的横坐标为32,所以12322x x +=. 根据抛物线定义知125AB AF BF p x x =+=++=.所以35p +=,解得2p =,所以抛物线C 的方程为24y x =.(Ⅱ)设直线l 的方程为(1)y k x =-,0k >.则由24(1)y x y k x ⎧=⎨=-⎩得()2222240k x k x k -++=. 所以212224k x x k ++=,即22243k k +=,解得2k =.设与直线l 平行的直线的方程为2y x b =+,由242y x y x b⎧=⎨=+⎩得224(44)0x b x b +-+=.依题知22(44)160b b ∆=--=,解得12b =.故所求的切线方程为122y x =+. 20.(1)22143x y +=(2)247【解析】(1)由条件知,1c =,又由离心率12e =知2a =,b ∴== ∴椭圆的方程为22143x y +=. (2)由条件知,直线l 的方程为1y x =-+,联立椭圆方程2234120x y +-=, 得到27880x x +-=,易知>0∆,设()11,A x y ,()22,B x y , 则由韦达定理,1287x x +=-,1287x x =-故12AB x =-==247=. 21.(1)12p =,2m =±;(2)12k k +为定值,证明见解析 【详解】(1)根据抛物线定义,点(,4)R m 到焦点的距离等于它到准线的距离, 即17424p +=,解得12p =,∴抛物线方程为2x y =, 点(,4)A m 在抛物线上,得21242m =⋅⋅,∴2m =±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省大庆中学2019-2020学年高二上学期期中考试(理)考试范围:必修1,2,3,4,5选修2-1;考试时间:120分钟;试卷总分:150分 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(本大题共12小题,每题5分,共60分)1. 已知集合2{|4}A x x x =<,{|25}B x x =<<,则A B =( ).A )2,0( .B (2,4) .C (0,5) .D (4,5)2. 设命题0:p x ∃<0,001xe x ->,则p ⌝为( ).A 0000,1x x e x ∃≥-≤ .B 0000,1xx e x ∃<-≤.C 0,1x x e x ∀≥-> .D 0,1x x e x ∀<-≤ 3. 如果0a b <<,那么下列不等式中错误的是( ).A a c b c +<+.B a b < .C 22ac bc < .D 11a b>4. 下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ).A xxy e e -=+ .B 1y x x=- .C l n ||y x = .D sin x y x = 5. 两人的各科成绩如茎叶图所示,则下列说法不正确的是( ).A 甲、乙两人的各科平均分相同 .B 甲的中位数是83,乙的中位数是85 .C 甲的众数是89,乙的众数为87 .D 甲各科成绩比乙各科成绩稳定 6. 已知(2,3)a =,(,1)b m m =-,(,3)c m =,若//a b ,则b c ⋅=( ).A 5 .B 1 .C 1- .D 5-7. 某同学根据一组x ,y 样本数据,求出线性回归方程 = x+ 和相关系数r ,下列说法正确的是( ).A y 与x 是函数关系 .B y 与x 是函数关系.C r 只能大于0 .D ||r 越接近1,两个变量相关关系越弱8. 已知(0,)2πα∈,2sin 21cos2αα=-,则cos α= ( ).A 15 .B 55 .C 33.D 255 9. 如图,在三棱锥111ABC A B C -中,底面为正三角形,侧棱垂直于底面,14,6AB AA ==.若E 是棱1BB 的中点,则异面直线1A E 与1AC 所成角的余弦值为( ).A 1313 .B 21313 .C 51313 .D 8131310. 设0a >,0b >,3是3a 与3b 的等比中项,则12a b +的最小值是( ).A 3 .B 4 .C 42 .D 3+2211. 已知圆C :()()22122x y -+-=和点()00P x ,,若圆C 上存在两点A B ,使得3APB π∠=,则实数0x 的取值范围是( ).A [31]-,.B [13]-, .C [23]-, .D [24]-, 12. 已知双曲线22221(0,0)x y a b a b -=>>的左、右顶点分别为A ,B ,P 为双曲线左支上一点,ABP ∆为等腰三角形且其外接圆的半径为5a ,则该双曲线的离心率为( ).A155.B 154 .C 153 .D 152二、填空题(本大题共4小题,每题5分,共20分)13. 点()00,P x y 是抛物线C :28y x =上一点,若P 到C 的焦点的距离为8,则0x =______________.14. 如果椭圆22142x y +=的弦被点()1,1平分,则这条弦所在的直线方程是______________.15.如图,设△ABC 的内角,,A B C 所对的边分别为,,a b c ,3(cos cos )2sin a C c A b B +=,且3CAB π∠=.若点D 是△ABC 外一点,1DC =,3DA =,则四边形ABCD 面积的最大值为_________. 16.过球面上A ,B ,C 三点的截面和球心的距离等于球半径的一半,且3AB BC CA ===,则球的体积为______________.三、解答题(本大题共6小题,17题10分,18、19、20、21、22每题12分,共70分)17. 为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题: (1)求第四组的频率,并补全这个频率分布直方图;(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)18. 已知数列{}n a 是等差数列,满足25a =,49a =,数列{}n n b a +是公比为3的等比数列,且13b =.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和n S .19. 已知点(,)M x y 满足22(1)|1|x y x -+=+,设点M 的轨迹是曲线C .(1)求曲线C 的方程.(2)直线l 过焦点与曲线C 交于两点A ,B ,||8AB =,求直线l 的方程.20.如图,在ABC ∆中,边2AB =,1cos 3B =,且点D 在线段BC 上,(1)若34ADC π∠=,求线段AD 的长;(2)若2BD DC =,sin 42sin BADCAD∠=∠,求ABD ∆的面积.21. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,侧棱PD ⊥底面ABCD ,PD DC =,点E 是PC 的中点.(1)求证://PA 平面BDE ;(2)若直线BD 与平面PBC 所成角为30°,求二面角C PB D --的大小.22. 已知椭圆C :22221(0)x y a b a b+=>>经过点()6,2,离心率为33.(1)求椭圆C 的标准方程;(2)过坐标原点O 作直线PQ 交椭圆C 于P 、Q 两点,过椭圆右焦点2F 作PQ 的平行线交椭圆C 于A 、B 两点.①是否存在常数λ,满足2AB OP λ=?若存在,求出这个常数;若不存在,请说明理由; ②若2AF P ∆的面积为1S , 2OF B ∆的面积为2S ,且12S S S =+,求S 的最大值.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBCDBBADBC二、填空题13.06x = 14.230x y +-= 15.5332+ 16.323π 三、解答题17.解:(1)因为各组的频率和等于1,所以第四组的频率为10.0250.01520.0100.0()05100.3--⨯++⨯=. 补全的频率分布直方图如图所示. (2)众数:75,中位数:1733因为抽取学生的平均分约为45×0.1+55×0.156+65×0.15+75×0.3+85×0.25+95×0.05=71(分),所以可估计这次考试的平均分为71分. 18.解:(1)设等差数列{}n a 的公差为d . 由25a =,49a =,得952d =+,解得2d =. 所以2(2)52(2)21n a a n d n n =+-=+-=+. 即{}n a 的通项公式为:21n a n =+,*n ∈N . 由于{}n n b a +是公比为3的等比数列,且116b a +=, 所以1111()363n n n n b a b a --+=+⋅=⨯.从而11*6363(21),n n n n b a n n --=⨯-=⨯-+∈N .(Ⅱ)由(Ⅰ)1*63(21),n n b n n -=⨯-+∈N .数列{}n b 的前n 项和16(133)[35(21)]n n S n -=+++-++++6(13)[3(21)]132n n n -++=-- 12332n n n +=---.19.(1)由已知得点M 的轨迹是以点()1,0F 为焦点的抛物线 ∴12p=∴2p = 所以曲线c 的方程为24y x = (2)1010x y x y --=+-=或20.(I )由1cos 3B =可得22sin 3B =,由34ADC π∠=,可得344ADB πππ∠=-=, 在三角形ADB 中,由正弦定理,sin sin AD ABABD ADB=∠∠可得222232AD =,所以83AD =. (II )由2BD DC =,得2BADCADS S ∆∆=,所以1sin 221sin 2AB AD BADAC AD CAD ⋅∠=⋅∠,因为sin 422sin BADAB CAD∠==∠,,所以42AC =,在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅, 即234840BC BC --=,可得6BC =或143BC =-(舍去), 所以1122824sin 242233ABD BD S AB BD B ∆==⋅=⨯⨯⨯=,. 21.(1)连接AC 交BD 于O ,连接OE , 由题意可知,,PE EC AO OC ==,//PA EO ∴,又PA 在平面BED 外,EO ⊂平面BED ,所以//PA 平面BED .()2以D 为坐标原点,,,DA DC DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -,设1P D C D ==,AD a =,则(,0,0)A a ,(,1,0)(0,1,0)B a C ,,1(0)0,P ,, (,1,0)DB a =,(,)1,1PB a =-,()0,1,1PC =-,设平面PBC 的法向量(,)n x y z =,,由·0·0PB n PC n ⎧=⎨=⎩,得00ax y z y z +-=⎧⎨-=⎩,取(0,1,1)n =,又由直线BD 与平面PBC 所成的角为30, 得211cos ,212DB n DB n DB na ===+⨯,解得1a =, 同理可得平面PBD 的法向量1,)0(1,m =-, 由向量的夹角公式,可得11cos ,222n m n m n m===⨯,又因为二面角C PB D --为锐二面角,所以二面角C PB D --的大小为60︒.22.(1)3,3c e a ==得到3a c =,结合222,a b c =+得到2b c =, 将点()6,2代入椭圆方程中,解得2,23,22c a b ===所以椭圆方程为:221128x y +=(2)①当OP 直线斜率不存在时33λ=当OP 直线斜率存在时 ,设OP 直线方程为y kx =,结合椭圆方程221128x y +=,代入得到222242432k OP k +=+,设()()1122,,,A x y B x y 设AB 的直线方程为()2y k x =-,代入椭圆方程,计算出223843332k AB k =-⋅+,结合2AB OP λ=,代入可得33λ= ②分析图可知,所求面积之和实则为S ∆OAB ,故 设直线AB 的方程为2x my =+,则12S d AB ∆OAB =⋅ 其中d 为圆心O 到直线AB 的距离,则2200+221+1m d mm+⋅==+则()()()()22222121212121222+1AB x x y y my my y y m y y =-+-=+---=+-()2212121+4m y y y y =+-将直线方程代入椭圆方程,得到()22238160m y my ++-= 解得121222816,2323m y y y y m m +=-=-++,代入OAB S ∆中,得到 228332+3OABm S m ∆+=,令2+1t m =,得到28383,11212t S t t t t∆OAB ==≥++, 则当1t =时,该函数取到最大值,代入OAB S ∆中,得到833S ∆OAB =。

相关文档
最新文档