第七章 非线性系统分析

合集下载

第七章 非线性系统的分析

第七章  非线性系统的分析

针对一任意非线性系统,设输入 x =Xsinωt ,输出为 sinω 针对一任意非线性系统, n(t) ,则可以将n(t)表示为傅立叶级数形式: 则可以将n 表示为傅立叶级数形式:
∞ A0 n( t ) = + ∑ ( Ai cos iω t + Bi sin iω t ) 2 i =1
其中: 其中: Ai = Bi =
3、间隙特性 输入输出之间具有多值关系
输出
输入
k [ x( t ) − a ] y( t ) = k [ x ( t ) + a ] c sgn x(t )
液压传动中的油隙
& y( t ) > 0 & y( t ) < 0 & y( t ) = 0
齿轮传动中的齿隙
间隙特性对系统性能的影响: 间隙特性对系统性能的影响: 间隙 输出相位滞后,减小稳定性裕量,动态特性变坏 输出相位滞后,减小稳定性裕量,
第七章
非线性系统的分析
7-1 非线性系统的基本概念 一、非线性系统基本概念
线性控制系统: 线性控制系统: 由线性元件组成,输入输出间具有叠加性, 由线性元件组成 , 输入输出间具有叠加性 , 由线性 微分方程描述。 微分方程描述。 非线性控制系统: 非线性控制系统: 系统中有非线性元件,输入输出间不具有叠加性, 系统中有非线性元件,输入输出间不具有叠加性,由 非线性微分方程描述。 非线性微分方程描述。 非本质非线性: 非本质非线性: 能够用小偏差线性化方法进行线性化处理的非线性。 能够用小偏差线性化方法进行线性化处理的非线性。 本质非线性 用小偏差线性化方法不能解决的非线性。 用小偏差线性化方法不能解决的非线性。
π ∫
1
1

自动控制原理__(13)

自动控制原理__(13)
x0 e t , 其中x0 x(0) t 1 x0 x 0 e
江南大学物联网工程学院——自动控制原理
(2)会产生自激振荡 非线性系统即使无外界作用,往往也会产生具有一定振幅 和频率的稳定性振荡,称为自激(自持)振荡。在有的非线性 系统中,还可能产生不止一种振幅和频率的自激振荡。自激振 荡是非线性系统一种特有的运动形式,其振幅和频率由系统本 身特性决定。 说明:
江南大学物联网工程学院——自动控制原理
2. 典型的非线性特性
常见的非线性特性有饱和、死区、间隙(回环)、继电等。 (1)饱和特性 特点:当输入信号超过某一范围后,输出信号不再随输 入信号而变化,将保持某一常数值不变。可将饱和非线性元 件看作为一个变增益的比例环节。
x2 f ( x1 ) tan , x1 <s 如图: x2 f ( x1 ) K x1 x1 0, x1 >s
作用:饱和特性将使系 统等效增益减小,因此可用 来改善系统的稳定性,但会 降低稳态精度。在有些系统 中利用饱和特性起信号限幅 作用。
(a)理想饱和特性
(b)实际饱和特性
图7-2 理想与实际饱和特性
江南大学物联网工程学院——自动控制原理
(2)死区(不灵敏区)特性 特点:是当输入信号在零值附近的某一小范围之内变化 时,没有相应的输出信号,只有当输入信号大于此范围时, 才有信号输出。 常见于测量、放大、变换元件中,执行机构中静摩擦的 影响往往也可用死区来表示。 影响:控制系统中死区特性的存 在,将导致系统稳态误差增大,而测 量元件死区的影响尤为显著。摩擦死 区会造成系统低速运动的不均匀,导 致随动系统不能准确地跟踪目标。
3. 非线性系统的分析方法
目前,对于非线性系统的分析与设计,工程上常用的近似方法有:小 偏差线性化法、分段线性化法、反馈线性化法、描述函数法、相平面法及 计算机仿真等。本章将重点介绍应用较多的相平面法和描述函数法。 (1) 相平面法 相平面法是基于时域的图解分析方法。特点是保留非线性特性,将高 阶的线性部分近似地化为二阶,利用二阶系统的状态方程,绘制由状态变 量所构成的的相轨迹图。可用来分析系统的稳定性及运动特性。 只适用于一、二阶的简单非线性系统分析。

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

非线性系统分析方法

非线性系统分析方法

解:1. 死去继电特性的描述函数
4M N(X)
1 ( )2
X
X
2. 绘制描述函数的负倒数特性
1
X
N(X ) 4M 1 ( )2
X
3. 绘制线性部分的极坐标图
4. 判断稳定性,分析两曲线相交点的性质
1 N(X)
X
-1.56 300 400 B -1 -0.5
X 130 A 140
120 G(j)
趋于奇点 远离奇点 包围奇点
例:二阶线性定常系统
••

x 2n x n2 x 0
试分析其奇点运动性质。
dx/dt x
稳定节点
••

x 2n x n2 x 0
dx/dt x
1
稳定节点
相轨迹趋于原点,该奇点称为 稳定节点
••

x 2n xn2 x 0
dx/dt x
1
不稳定节点
相轨迹远离原点,该奇点为 不稳定节点
者是自持振荡的
自持振荡点 a 振荡幅值=Xa
振荡频率=a
Im Re
X a
0
1 G(j) N ( X )
例:已知死区继电非线性系统如图
R(s)
+M
460
C(s)
+-
- -M
( j)(0.01 j 1)(0.005 j 1)
继电参数: M 1.7 死区参数:Δ 0.7 应用描述函数法作系统分析。

x
-1 -5/4
-3/2
-5/3
=
-2
-3/7
-3
-5 - x
3
1 1/3
0 -3/4 -1/2 -1/3

第7章非线性系统分析

第7章非线性系统分析

描述函数的定义是:输入为正弦函数时,输 出的基波分量与输入正弦量的复数比。
其数学表达式为
N
X
R
X
Y1
sin(t X sint
1)
Y1 X
1
A12 B12 arctan A1
A1
1
2
y(t) costdt
0
X
B1
1
B1
2
y(t ) sin tdt
0
7.3 非线性特性的描述函数法
(2)举例说明描述函数
(1) 降低了定位精度,增大了系统的静差。 (2) 使系统动态响应的振荡加剧,稳定性变坏。
7.2 非线性环节及其对系统结构的影响
4.摩擦特性
Mf
M1 •
M2

M f 摩擦力矩
转速
M1 静摩擦力矩
M 2 动摩擦力矩
7.2 非线性环节及其对系统结构的影响
摩擦特性的影响
(1)对随动系统而言,摩擦会增加静差,降低精 度。
7.2 非线性环节及其对系统结构的影响
2.饱和特性
x1 a ,等效增益 为常值,即线性段 斜率;
而 x1 a ,输出饱
和,等效增益随输 入信号的加大逐渐 减小。
7.2 非线性环节及其对系统结构的影响
饱和特性的影响
(1) 饱和特性使系统开环增益下降, 对动态响应的 平稳性有利。
(2) 如果饱和点过低,则在提高系统平稳性的同时, 将使系统的快速性和稳态跟踪精度有所下降。
7.3 非线性特性的描述函数法
KX sint
y(t) Ka
0 t 1 1 t / 2
∵ y(t) 单值奇对称, A0 0 A1 0
B1
4

第7章 非线性系统的分析

第7章 非线性系统的分析

某一初始条件出发在相平面上按照式(7-13)或式(7-14)绘出的
曲线称为相平面轨迹,简称相轨迹。不同初始条件下构成的
相轨迹,称为相轨迹簇。由相轨迹簇构成的图称为相平面图。
利用相平面图分析系统性能的方法,称为相平面分析法。
图7-6为某个非线性系统的相平面图。图中,相轨迹上的
箭头表示相变量随着时间的增加沿相轨迹运动的方向。
第7章 非线性系统的分析 7.2 相平面分析法
7.2.1 相平面的基本概念 设二阶非线性系统的微分方程为
第7章 非线性系统的分析
第7章 非线性系统的分析
1.相平面和相轨迹
前面已经设定
我们称以x1(或x)为横坐
标、以x2(或 )为纵坐标构成的平面为相平面(注意,纵坐标x2
是横坐标x1的一阶导数),如图7-6所示。x1、x2为相变量。由
7.2.2 线性系统的相轨迹 在学习非线性系统的相平面分析法之前,我们先对非常
熟悉的线性系统做相平面分析。设二阶线性系统的微分方程 为
第7章 非线性系统的分析
也就是说,无论系统特征参数ωn和ξ是何值,系统的奇点是 不变的。此外,式(7-21)的特征方程为
系统的特征根为
对于不同的阻尼比ξ,二阶系统特征根的形式是不同的,而 线性系统的时域响应是由特征根决定的。下面介绍系统特征 根与系统的奇点(0,0)以及相轨迹的关系。
行线性化。我们只研究系统平衡点附近的特性时,就可以采 用平衡点附近的线性化方法,将非线性系统在平衡点附近小 范围线性化。当然,也可以将非线性系统分为几个区域,对每 个区域进行分段线性化。
第7章 非线性系统的分析
2.相平面分析法 相平面分析法简称相平面法,是非线性系统的图解分析 法。其基本思路是:建立一个相平面,在相平面上根据非线性 系统的结构和特性,绘制非线性系统的相轨迹。相轨迹就是 非线性系统中的变量在不同初始条件下的运动轨迹,根据相 轨迹就可以对非线性系统进行分析。该方法只适用于一阶和 二阶非线性微分方程。

第七章 非线性系统的分析

第七章 非线性系统的分析

一次近似,则得到奇点附近关于 微分方程:
x 增量 x 的线性二阶
x 0
线上相轨迹任一点的切线斜率
dx dx ax bx x ax bx 0 dx dx x b x Kx 等倾线方程: x a
相等,所以当相轨迹
运动至特殊等倾线上时,将沿特殊等倾线收敛或发散。

b 0时
a2 4 b 2 a2 4 b 2 0 0
解: x dx 2x 0 dx xdx 2 xdx
2 2
(1, 0)

( x) ( x) c x 2 ( ) x 2 a 2 相轨迹是椭圆。
0
x

例7-1:二阶系统微分方程为 m 0,其中 m为常数, x 绘制相平面图。 dx 解: x m0
4) 0
s1,2 jn
这时二阶系统为:
bx 0 x
中心点
0 时线性二阶系统的相平面图
5) 1 0
s1,2 n jn 1 2
两个具有正实
部共轭复根。
不稳定焦点
0.5,n 1 时线性二阶系统的相轨迹
6) 1
Te e Ke T r,Tc c Kc Kr r
K 1 n , 2n T T 1 T 1 K 2 KT 2 T 1 1 设 0 2 KT
c e
10AcE NhomakorabeaB
C
单位阶跃响应
D F
e
t
1. 相平面
若以 e 为横坐标,以 称这一平面为相平面。 2. 相轨迹 设输入为单位阶跃函数,即

第7章 非线性系统分析

第7章 非线性系统分析

这种方法适用下述情况:(1)非线性因素对系统 影响很小,可以忽略。(2)系统工作时,其变量只发 生微小变化(即所谓小偏差线性化),此时系统模型用 变量的增量方程式表示。
21
2.逐段线性近似法 将非线性系统近似地分为几个线性区域,每个区 域用相应的线性微分方程描述。通过给微分方程引人 恰当的初始条什,将各段的解合在一起即可得到系统 的全解。方法适用于任何阶系统的任何非线性的分段 线性化。 3.描述函数法 描述函数法和线性系统中的频率法相似,因此也 称非线性系统的频率法。适用于具有低通滤波特性的 各种阶次的非线性系统。
y y
M
0 0
M
x

2
t
Yn

x(t ) X sin t
0 3 5 7 (b)
2
(a)
图7-9 理想继电特性及输入、输出波形与输出波形
25
输出周期函数可展开成富里叶级数
1 1 y(t) (sin t sin 3t sin 5 ) 3 5 4M
y
M
a
0
K
a
x
M
图7-2 饱和非线性
10
饱和非线性是一种常见的非线性,在 铁磁元件及各种放大器中都存在,如稳压 二极管限幅特性、 磁饱和特性等。实际 放大器、许多元件的运动范围由于受到能 源、功率等条件的限制,通常具有饱和非 线性特性。有时,工程上还人为引入饱和 非线性特性以限制过载。
11
2. 不灵敏区非线性 不灵敏区又称为死区,死区非线性特性如图7-3所示, 其特性是输入信号在 x 区间时,输出信号为零。超 出此区间时,呈线性特性。这种只有在输入量超过一定值后 才有输出的特性称为不灵敏区非线性,其中区域 x 叫做不灵敏区或死区。

第七章 非线性系统的分析讲解

第七章 非线性系统的分析讲解

分析方法:频域上有描述函数法和波波夫法;时域 上有相平面法和李亚普诺夫第二法。计算机仿真的 方法也可以分析复杂的非线性系统。
§7.2
x(t)
非线性系统的描述函数分析法
n(t)
e
一、描述函数法的基本概念
非线性环节N
+ -
N
非线性部分
x
G(s) 线性部分
c
假设非线性系统的输入函数为
x(t ) A sin(t )
(t ) 0 y (t ) 0 y (t ) 0 y
间隙输出相位滞后,减小稳定性裕量,动特性变坏自 持振荡。同时使稳态误差增大。
5. 继电器特性
y M -a -ma ma a -M
y y M -a x -M a -M x -a a -M x M y
x
0 m a x(t ) a, 0 a x(t ) m a, y (t ) M sgn x(t ) M x(t ) m a, x(t ) m a, M
输出n(t)将是非正弦的周期信号。可以展成傅利叶级数, y(t)是由恒定分量、基波分量、和高次谐波组成。 பைடு நூலகம்设1:如果非线性部分的特性曲线具有中心对称性质,那以 输出信号y(t)的波形具有奇次对称性(波形的后半个周期重复 前半个周期的变化,但符号相反)输出不含直流分量,输出响 应的平均值为零。
假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值 远小于基波。闭环通道内近似地只有一次谐波信号流通。对于 一般的非线性系统而言这个条件是满足的,线性部分的低通滤 波性越好,用描述函数法分析的精度越高。 上述两个假设满足时,非线性环节的输入是一个正弦信号,系 统的输出是相同频率的正弦信号,对于非线性环节的输出只研 究其基波成分就足够了。 假设系统中非线性环节的输入函数为

非线性控制系统分析(《自动控制原理》课件)

非线性控制系统分析(《自动控制原理》课件)

出发的相轨迹曲线互不相交. 如果在相平面上某些点的

d x/ dx 0/ 0, 即曲线在这一点上的斜率不定, 可有无穷多
条相轨迹通过这一点, 称这一点为系统的平衡点, 或叫奇
点.
在相平面的上方(如下图) ,
由于

x

0所以
x总是朝大的

x
A(x0 ,

x0 )
方向变化, 故相轨迹上的点总是按图 中箭头所指从左向右移动. 在相平面
u0
0
u(t) u(t) G(s) c(t)
u0
上图中, 大方框表示一具有理想继电特性的非线性环节, G(s) 表示非线性系统中线性部分的传递函数.
非线性的特性是各种各样的, 教材图及 表给出了一些工程上常见的典型非线性特性.
7-2非线性控制系统的特征
非线性控制系统有如下两个基本特征: (1)非线性控制系统的基本数学模型是非线性微分方程 (2)非线性控制系统的性能不仅与系统本身的结构和参
0
x
的下方,
由于

x

0
所以
x
总是朝小的
方向变化, 故相轨迹上的点总是按图中箭

箭头所指从右向左移动. 在 x 轴上, 由于
x 0, 即 x不变化, 达到最大值或最小值, 故相轨迹曲线
与 x 轴的交点处的切线总垂直于x 轴.
2. 相轨迹作图法
先以线性系统为例, 说明相轨迹曲线的画法.
(1)解析法
数有关, 还与系统的初始状态及输入信号的形式和大小 有关.
由于非线性控制系统的基本数学模型是非线性微分 方程, 而从数学上讲, 非线性微分方程没有一个统一的 解法, 再由于第二个特征, 对非线性控制系统也没有一 个统一的分析和设计的方法, 只能具体问题具体对待.

自动控制原理第七章非线性系统ppt课件

自动控制原理第七章非线性系统ppt课件

7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π

ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn

自动控制原理第七章

自动控制原理第七章
基本思想 相轨迹的特点 相轨迹的绘制方法 线性系统的相平面图 非线性系统的相平面图
基本思想
ɺ x
x
相平面分析法是分析非线性系统性能的一种图 示方法。 示方法。而相轨迹和相平面图的绘制为该分析方法的前提 条件。 条件。
x 1 (t), 2 (t) x
相平面定义:由两个线性无关的状态变量 作为坐标的平面称 为相平面。通常采用位移和位移的变化率作为状态变量用于描述一、二 阶系统的运动特性。
ɺɺ = -f(x, x ) ɺ x ⇒ ɺ ɺɺ = d x x = − f(x, x ) ɺ ɺ x dx ⇒ ɺ ɺ dx f(x, x ) = − ɺ dx x
ɺ x
x
相轨迹的绘制方法
解析法
消除变量法 直接积分法
等倾线法绘制相轨迹思 ɺɺ + f(x,ɺ ) = 0 x x 令: ⇒ 路: ɺ dx f(x,ɺ ) x =− ɺ x dx
E 0
Im

Re
死区继电器的负倒描述函数曲线
Im
N(E) N(E)
4M = πE = 0
Δ2 1− E 2 (E ≤ Δ )
(E
≥ Δ)
∆ ∞
E Re

1 N(E)
= − 4M
πE
Δ2 1− E 2
(E
≥ Δ)
拐点参数:
E = 2 Δ 1 − N(E) E =
Y ϕ 非线性环节的描述函数 :N = 1 e j 1 = E
2 2 − A 1 + B 1 jtg 1 B 1 B A = 1+j 1 e E E E
A1
描述函数的自变量为输入正弦信号的幅值
求取描述函数应用举例

第七章 非线性系统的分析 7

第七章 非线性系统的分析 7

系统的频率特性中相移不是一回事。
退出
典型非线性特性的描述函数 下面介绍几种典型非线性特性的描述函数。 这些特性都是对称奇函数。包括: (1)饱和特性的描述函数; (2)不灵敏区特性的描述函数; (3)间隙特性的描述函数; (4)继电器特性的描述函数;
退出
(1)饱和特性的描述函数
输出 y (t)
y (t)
A
A
1
2 A
(A )
退出
N( A) K
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A
退出
问题:请大家绘出
1 N( A)
退出
(3)间隙特性的描述函数;
输出 y (t)
退出
一般概念 1 非线性系统的基本概念 (1)实际控制系统在某种程度上都具有非线 性,所谓线性系统是在实际系统中,忽略了非线 性因素后的理想模型。 (2)若系统的非线性特性y=f(x) 在工作点附近能 展开台劳级数,忽略变量增量的高次项,仅取变 量增量的一次项,则函数增量与变量增量之间是 线性关系。此时,系统可近似成线性系统。若 y=f(x) 在工作点附近不能展开成台劳级数,则称 y=f(x) 为本质非线性,这样的系统只能按非线性 系统理论来进行分析。
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S A
退出
问题:请大家绘出
1 N( A)
S A
退出
(2)不灵敏区特性的描述函数
输出 y (t)
y (t)
K
0
x (t)
0
t
输入

第七章 非线性系统的分析

第七章 非线性系统的分析
自激振荡或自振荡,如图所示。 自振荡是人们特别感兴趣的一个 问题,对它的研究有很大的实际意义。
Nanjing University of Technology
四、非线性系统的正弦输入响应 正弦信号作用下,线性系统的输出是与输入信 号同频率的正弦信号。 而非线性系统在正弦信号作用下的响应则很复 杂,一般不是正弦信号,但仍是周期信号;有 时输出信号频率为输入频率的倍频、分频等现 象。 非线性系统响应还有其他与线性系统不同的现 象,无法用线性系统的理论来解释。在一些情况 下,引入某些非线性环节,使系统获得比线性系 统更为优异的性能。实际上大多数智能控制都 属于非线性控制范畴。
Nanjing University of Technology
图7-6-3非线性控制系统的稳定性分析
二、自振荡分析
Nanjing University of Technology
• 若复平面中-1/N (X)曲线与G (j)曲线有交点,则该交 点对应着可能的等幅振荡,问题是这个等幅振荡能否稳 定地存在?也就是说,如果系统受到某个扰动使振荡的 振幅发生变化,系统是否具有恢复到扰动前的等幅振荡 状态的能力?如果系统具备这种能力,则该等幅振荡能 够稳定地存在,并能被观察到,称这个稳定的等幅振荡为 自持振荡。反之,振荡不能稳定地存在,必然转移到其它 运动状态(收敛到零或发散)。 • 以图7-6-3(c) 为例进行分析。图中-1/N (X)曲线与G (j)曲线有两个交点a和b, 对应于不同的振荡频率和振 幅。对a点,振幅及频率为Xa及 (j),若由于扰动使振 荡的振幅略有增大,这时工作点将沿-1/N (X)曲线由a 点移动到c点。由于c点不被G (j)所包围,故系统进入稳 定区,周期振荡的振幅要衰减,并逐步恢复到Xa,即自动返 回原状态;若由于扰动使振荡的振幅略有减小,这时工 作点将沿-1/N (X)曲线由a 点转移到d点,由

第7章 非线性系统分析

第7章 非线性系统分析
1 2
x ≥ a x < −a
2 2
x >
1 1

0
− a < x < a x > a x < −a
1
x <
2

0
4. 间隙特性
输入输出之间具 有多值关系
输出
齿轮传动中的齿隙 液压传动中的油隙
输入
元件开始运动 输入信号< 无输出信号; 输入信号< a 时,无输出信号; 当输入信号> 以后,输出随输入线性变化。 当输入信号> a 以后,输出随输入线性变化。 元件反向运动 保持在运动方向发生变化瞬间的输出值; 保持在运动方向发生变化瞬间的输出值; 输入反向变化>2 输出随输入线性变化。 输入反向变化>2a ,输出随输入线性变化。
§7-2
常见非线性特性 常见非线性特性
一个单输入单输出静态非线性特性的数 学描述为: 学描述为:
y = f (x)
静态非线性特性中,死区特性、饱和特性、继 电特性、间隙特性是最常见的,也是最简单。 也是最简单 也是最简单
1. 死区特性
输出
(不灵敏区特性 不灵敏区特性) 不灵敏区特性
各类液压阀的正重叠量; 各类液压阀的正重叠量; 系统的库伦摩擦; 系统的库伦摩擦; 测量变送装置的不灵敏区; 测量变送装置的不灵敏区; 调节器和执行机构的死区; 调节器和执行机构的死区; 弹簧预紧力;等等。 弹簧预紧力;等等。
如果系统线性部分gs具有良好的低通滤波特性则高次谐波分量通过线性部分后将被衰减到忽略不计可以近似认为当输入为正弦信号xt时只有yt的基波分量沿闭环反馈回路送至比较点其高次谐波分量可忽略不计即只考虑一次谐波sincos非线性环节相当于一个对正弦输入信号的幅值及相位进行变换的环节可以仿照线性系统频率特性的概念建立非线性环节的等效幅相特性

第七章非线性系统的分析

第七章非线性系统的分析

2、死区非线性
x1 ≤ ∆ 0, x2 = k ( x1 − ∆signx1 ), x1 > ∆
1 signx1 = −1
x1 > 0 x1 < 0
在实际系统中死区可由众多原因引起,它对系统可产生不同的 影响:一方面它使系统不稳定或者产生自振荡;另一方面有时 人们又人为的引入死区特性,使系统具有抗干扰能力。
第七章 非线性控制系统
7-2
1、饱和非线性
kx1 = x2 = ka x2 m −ka = − x 2m
典型非线性环节
x1 < a x1 ≥ a x1 ≤ −a
x2m
x2
−a
0
k
a
x1
此处:输入 x1 − − − − x2 − − − −输出 k − − − −比例系数
− x2m
第七章 非线性控制系统
第七章 非线性控制系统
4)混沌(Chaos)
蝴蝶效应( The Butterfly Effect) 是指在一个动力系统中,初始条 件下微小的变化能带动整个系统 的长期的巨大的连锁反应。这是 一种混沌现象。 核心理念:看似微不足道的细小 变化,却能以某种方式对社会产 生微妙的影响,甚至影响整个社 会系统的正常运行。
第七章 非线性控制系统
r(t)
e(t)
N(A,ω) NLS
x(t)
G(s)
c(t)
非线性系统的闭环“传递函数”:
G ( jω ) N ( A, ω ) Φ ( jω ) = 1 + G ( jω ) N ( A, ω )
0 闭环“特征方程”: 1 + G ( jω ) N ( A, ω ) =

1 G ( jω ) = − N ( A, ω )

第七章 非线性系统

第七章 非线性系统
二阶非线性系统解的轨迹能用平面上的曲线表示,因此非 线性系统的许多概念都能有简单、明确的几何解释。相平面 法是一种求解二阶非线性方程的图解方法,是状态空间法在 二维空间情况下的应用。用这种方法不但能判定非线性系统 的稳定性,还可以给出系统的时间响应。
xoBox
§7-2
相平面法
设二阶系统的微分方程为
xoBox
二、典型非线性特性 常见的非线性元件或系统的特性可划分为以下几种。 1.死区(不灵敏区)特性 死区特性的输入输出关系如图7—1所示, 输入在低于某值时无输出。例如测速发电 机的输出电压与输入转速应成正比,但由 于有电刷压降的存在,只有在转速超过某 一值后,才会有电压的输出,形成了一定 的转速、电压关系的死区。二极管正向开 放电压、机械运动中的静摩擦等都能产生死区。 死区的存在会使系统的稳态误差增大,在调速系统中使低 速运动的不平滑性增大。
点附近对非线性系统进行线性化的方法。这种方法前面已经作 过介绍。线性化后的系统就可按线性系统的方法来分析计算。 当然不要忘记,这种分析计算的结果只是在限制条件下才是有 效的。如果系统的非线性因素既不能忽略,又不符合线性化处 理的条件,则就要按非线性系统的概念来进行讨论了。对非线 性系统的分析计算还是要采用近似的或数值计算的方法,而且 往往是具体情况要具体处理。本章介绍的描述函数法和相平面 法,用于分析非线性系统是相当烦琐和困难的,因此,只是提 供一些基本的概念和方法,对非线性系统的分析主要使用 xoBox分析软件的非线性仿真功能。 系统的非线性一般会对系统的工作产生不利的影响,但在某 些情况下,人为地使系统非线性也可以使控制系统结构简化而 又改善系统的某些性能。因此正确运用非线性系统的概念,在 系统没计中也是至关重要的。
xoBox
4.继电特性 一般的继电特性的输入 输出关系如图7-4所示。它相当于上述三 种特性的综合:输出存在死区,当输入达 某值时,输出立即跃变为定值,相当于饱 和,而在输出饱和区中又存在回环。电器。 中的继电器的工作特性就是典型的例子,由于吸合、释放电 压的不同而形成这种特性。继电特性一般是人为的,可以用 来改善系统性能,但也可能带来不利的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章非线性系统分析
自动控制原理
东北大学
王建辉顾树生主编
杨自厚主审
第7章非线性系统分析
非线性系统动态过程的特点
非线性环节及其对系统结构的影响
非线性特性的描述函数
分析非线性系统的描述函数法
改善非线性系统性能的措施及非线性特性的利用
相平面法
小结
第7章非线性系统分析
了解非线性系统的特点,掌握非线性系统与线性系统的本质区别;
了解典型非线性环节的特点;
理解描述函数的基本概念,掌握描述函数的计算方法;
掌握分析非线性系统的近似方法——描述函数法,能够应用描述函数法分析非线性系统的稳定性。

7.1 非线性系统动态过程的特点
1. 非线性系统的定义及种类
2. 几种典型的非线性特性
3. 非线性系统的稳定性
4. 非线性系统的运动形式
5. 非线性系统的自振
7.1 非线性系统动态过程的特点
非本质非线性
能够用小偏差线性化方法进行线性化处理的非线性。

本质非线性
不能用小偏差线性化方法解决的非线性。

1. 非线性系统的定义及种类
(1)定义
含有非线性元件的系统,称之为非线性系统。

(2)非线性系统的分类
2.
几种典型的非线性特性
7.1 非线性系统动态过程的特点
7.1 非线性系统动态过程的特点
3. 非线性系统的稳定性
(1)非线性系统的稳定性,则除了与系统的结构、参数有关外,很重要的一点是与系统起始
偏离的大小密切相连。

(2)不能笼统地泛指某个非线性系统稳定与否,而必须明确是在什么条件、什么范围下的
稳定性。

7.1 非线性系统动态过程的特点
4. 非线性系统的运动形式
(1)非线性系统在小偏离时单调变化,大偏离时很可能就出现振荡。

(2)非线性系统的动态响应不服从叠加原理。

7.1 非线性系统动态过程的特点
5. 非线性系统的自振
非线性系统的自振却在一定范围内能够长期存在,不会由于参数的一些变化而消失。

7.2 非线性环节及其对系统结构的影响
1. 不灵敏区(死区)
2. 饱和
3. 间隙
4. 摩擦
5. 继电器
1.
不灵敏区(死区)特性
7.2 非线性环节及其对系统结构的影响
表示输入表示输出
△表示不灵敏区,也常称死区。

1x 2x
(1)当系统前向通道中串有死区特性的元件时,
最主要的影响是增大了系统的稳态误差,降低了定位精度。

(2)减小了系统的开环增益,提高了系统的平稳
性,减弱动态响应的振荡倾向。

7.2 非线性环节及其对系统结构的影响
不灵敏区(死区)特性的影响
7.2 2.
(1) 饱和特性使系统开环增益下降,对动态响应
的平稳性有利。

(2) 如果饱和点过低,则在提高系统平稳性的同
时,将使系统的快速性和稳态跟踪精度有所下降。

(3) 带饱和的控制系统,一般在大起始偏离下总
是具有收敛的性质,系统最终可能稳定,最坏的情况就是自振,而不会造成愈偏愈大的不稳定状态。

7.2 非线性环节及其对系统结构的影响饱和特性的影响
7.2 非线性环节及其对系统结构的影响
3.回环(间隙)特性
表示输入表示输出
b 表示间隙。

1x 2x
(1)降低了定位精度,增大了系统的静差。

(2)使系统动态响应的振荡加剧,稳定性变坏。

7.2 非线性环节及其对系统结构的影响
回环(间隙)特性的影响
7.2
(1)对随动系统而言,摩擦会增加静差,降低
精度。

(2)在复现缓慢变化的低速指令时,会造成爬
行现象,大大影响系统的低速平稳性。

7.2 非线性环节及其对系统结构的影响
摩擦特性的影响
7.2 非线性环节及其对系统结构的影响
改善系统跟踪过程的平稳性,采取的措施:(1)采取良好的润滑或外加高频颤振信号的
办法,以减小静、动摩擦力矩的差值。

(2)采取按干扰补偿的办法,通过引入非线
性校正来抵消摩擦力矩的影响。

(3)采取增加系统阻尼的办法,以减小转速
脉动,提高平稳性。

7.2 非线性环节及其对系统结构的影响
5.继电器特性
(a)理想继电特性(b)死区继电特性(c)一般的继电特性
(1) 理想继电控制系统最终多半处于自振工作
状态。

(2) 可利用继电控制实现快速跟踪。

(3) 带死区的继电特性,将会增加系统的定位
误差,对其他动态性能的影响,类似于死区、饱和非线性特性的综合效果。

7.2 非线性环节及其对系统结构的影响继电器特性的影响
7.3 非线性特性的描述函数法
1. 基本概念
2. 谐波线性化
3. 非线性特性的描述函数
4. 典型非线性特性的描述函数
7.3 非线性特性的描述函数法
描述函数法是一种近似方法,相当于线性理论中频率法的推广。

方法不受阶次的限制,且所得结果也比较符合实际,故得到了广泛应用。

1. 基本概念
(1) 分析非线性系统的两种工程方法
相平面法
描述函数法
(2) 描述函数法(谐波平衡法)的特点
①适用于一、二阶非线性系统的分析
②方法:首先将二阶非线性微分方程变写为以输出量及输出量导数为变量的两个一阶微分方程;然后依据这一对方程,设法求出其在上述两变量构成的相平面中的轨线,并由此对系统的时间响应进行判别。

③该方法所得结果比较精确和全面。

④对于高于二阶的系统,需要讨论变量空间中的曲面结构,从而大大增加了工程使用的困难。

7.3 非线性特性的描述函数法
(3)相平面法的特点
7.3 非线性特性的描述函数法
2. 谐波线性化
描述函数是对非线性特性在正弦信号作用下的输出,进行谐波线性化处理之后得到的,它是非线性特性的近似描述。

(1)描述函数概念
(2)以理想继电特性为例的谐波线性化
⎩⎨⎧<−>=0
)(0)()(t e b t e b t x 正弦输入信号:t
X x ωsin =理想继电特性:
7.3 非线性特性的描述函数法
7.3
7.3 非线性特性的描述函数法
对一任意非线性系统,设输入x=Xsinωt,输出波形为y(t),则可以将y(t)表示为富氏级数形式
01
01
()(cos sin )
A sin()
n n n n n n y t A A n t B n t Y n t ωωωφ∞
=∞
==++=++∑∑(3)非线性系统的谐波线性化
7.3
7.3
7.3
24
4
4
2
2
7.3 非线性特性的描述函数法
(1)理想继电特性的描述函数
4. 典型非线性特性的描述函数
7.3 非线性特性的描述函数法
(2)死区特性的描述函数
7.3 非线性特性的描述函数法
(3)饱和特性的描述函数
7.3 非线性特性的描述函数法
(4)间隙特性的描述函数
7.3 非线性特性的描述函数法
(5)继电器特性的描述函数
7.3 非线性特性的描述函数法
(6)组合非线性特性的描述函数
等效的非线性特性如下图所示。

7.4 分析非线性系统的描述函数法
1. 系统的典型结构及基本条件
2. 非线性系统的稳定性分析
3. 自振分析
4. 非线性系统结构图的简化
7.4 分析非线性系统的描述函数法
1. 系统的典型结构及基本条件
(1)非线性系统的典型结构
7.4 分析非线性系统的描述函数法
(2)描述函数法对非线性系统的假设
①系统可归化为线性部分与非线性部分相串
联的典型结构。

②非线性部分输出中的高次谐波振幅小于基
波振幅。

③线性部分的低通滤波效应较好。

相关文档
最新文档