大学一年级高等数学考试试卷
大一上学期(第一学期)高数期末考试题(有答案)
其通解为
y C1e x C2 e2x
1, r2 2.
2
1
代入初始条件 y(0)
y (0) 1,得
C1
, C2 3
3
y
2 e
x
故所求曲线方程为:
3
五、解答题(本大题 10 分)
1 e2 x 3
y 15. 解:(1)根据题意,先设切点为 ( x0 , ln x0 ) ,切线方程:
ln x0
1
(x x0
x0 )
设 ( x) 1 x , ( x) 3 33 x,则当 x 1时( )
2.
1x
.
(A) ( x)与 (x) 是同阶无穷小,但不是等价无穷小; 是等价无穷小;
(B) ( x)与 (x)
(C) ( x) 是比 ( x) 高阶的无穷小; 无穷小 .
(D) ( x) 是比 (x) 高阶的
x
3.
F (x) 若
1
(1 q) f ( x) d x q f ( x)dx
0
q
1 [0, q ] 2 [ q,1]
q (1 故有:
q) f ( 1)
q (1
f ( 1) f ( 2)
q) f ( 2 )
0
q
1
f ( x) d x q f ( x )dx
0
0
证毕。
17.
x
F ( x) f ( t)dt , 0 x
证:构造辅助函数:
x 0, y 0 , y (0) 1 10. 解: u x7 7 x6dx du
原式
1 (1 u)
11
du
(
2 )du
7 u(1 u) 7 u u 1
大一高等数学期末测试卷及答案
大学一年级《高等数学》期末测试卷一、选择题(每题4分,共16分)1.101lim(1)lim sinxx x x x x -→→∞++=( )。
A 、e ;B 、1e -;C 、1e +;D 、11e -+2.设()ln f x x x =在0x 处可导,且0()2f x '=,则0()f x =( )。
A 、0;B 、e ;C 、1;D 、2e 。
3.若sin 2x 是()f x 的一个原函数,则()xf x dx =⎰( )。
A 、sin 2cos2x x x C ++;B 、sin 2cos2x x xC -+;C 、1sin 2cos 22x x x C -+;D 、1sin 2cos 22x x x C++。
4.已知函数32()f x x ax bx =++在1x =处取得极值2-,则( )。
A 、3,0a b =-=且1x =为函数()f x 的极小值点;B 、0,3a b ==-且1x =为函数()f x 的极小值点;C 、3,0a b =-=且1x =为函数()f x 的极大值点;D 、0,3a b ==-且1x =为函数()f x 的极大值点。
二、填空题(每题5分,共20分)1. 0limx xx xe e -→=- 。
2.x =⎰。
3.3222sin (cos )1x x dx x ππ-+=+⎰ 。
4.设,,,αβδγ为向量,k 为实数。
若||||1,||||1αβ==,α⊥β,2,k γαβδαβ=+=+,γ⊥δ,则k = 。
三、计算下列各题(每题9分,共45分)1.求极限0lim xx x →+。
2.函数()y y x =由方程0x y e e xy --=确定,求202|x d ydx =。
3.求定积分1dx。
4.求过点(3,1,2)且与平面21x z +=和32y z -=平行的直线方程。
5.设1sin , 0()20, x x f x π⎧≤≤⎪=⎨⎪⎩其它,求0()()xx f t dt Φ=⎰。
大一高等数学考卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。
()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。
()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。
()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。
()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。
()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。
2.函数f(x)=e^x在x=0处的导数为______。
3.函数f(x)=lnx在x=1处的导数为______。
4.函数f(x)=sinx在x=π/2处的导数为______。
5.函数f(x)=cosx在x=0处的导数为______。
四、简答题(每题2分,共10分)1.简述导数的定义。
2.简述连续与可导的关系。
3.简述罗尔定理。
4.简述拉格朗日中值定理。
大学一年级《高等数学》期末考试卷(五套)
一、填空题(4'⨯6=24'):1、已知直线过点(1,3,2)P -,且与平面427x y z ++=垂直,则直线方程为 .2、曲线20z x y ⎧=⎨=⎩绕z 轴旋转所得的曲面方程为 .3、反常积分11pdx x +∞⎰当 p 时收敛. 4、设二次积分10(,)xI dx f x y dy =⎰⎰,则交换积分次序后得I= .5、已知级数12n n u ∞==∑,则级数11()2n n n u ∞=+=∑ . 6、微分方程22x y y y e '''+-=的特解可设为 . 二、选择题('35⨯=15'):1.设a 和b 是向量,则()(2)a b a b +⨯+=( )(A )a b ⨯ ;(B )3a b ⨯ ;(C )b a ⨯ ; (D )223a a b b +⨯+ .2、微分方程34"'(")30y y y y x ++-=的阶数是 ( ). (A )1; (B )2; (C )3; (D )4.3、已知2ln(),z x y =+则2z x y∂=∂∂ ( ). (A )222()x x y -+; (B )22()x x y -+; (C )22()x x y +; (D )221()x y +.4、设'00(,)0x f x y =,'00(,)0y f x y =,则在点00(,)x y 处函数(,)f x y ( ).(A )连续;(B )一定取得极值;(C )可能取得极值; (D )全微分为零.5、设积分区域22:3D x y +≤,则二重积分(3)Ddxdy -⎰⎰ ( ).(A )9π-; (B )3π-;(C )3π;(D )9π.三、计算题(6'4⨯=24'): 1、已知(1)x yz xy +=+,求函数z 在点(1,1)P 处的偏导数zx∂∂; 2、设ln 0x z z y -=,求z zz y x y∂∂-∂∂;3、求幂级数21(3)nn x n ∞=-∑的收敛域;4、将函数()ln(4)f x x =-在1x =处展开成幂级数. 四、(7') 求微分方程'23xy y x +=的通解. 五、计算二重积分:(7'214'⨯=)1、计算2Dy d σ⎰⎰,其中D 是由直线,y x =2y x =2y =及所围成的闭区域.2、计算arctan Dyd x σ⎰⎰,其中D 是由圆22221,4x y x y +=+=及直线0,y y x ==所围成的第一象限部分.六、应用题:(8'216'⨯=)1、某厂要用铁板作成一个体积为32m 的有盖长方体水箱,问当长、宽、高各取多少时,才能使用料最省?2、求由曲线22,8,y x y x == 所围成的图形x 绕轴旋转一周所得旋转体的体积.一、选择题('35⨯=15'):1、下列方程表示的曲面为旋转曲面的是 ( ).(A )22149x y -+=;(B )22223x y z +=;(C )22z x y =-;(D )22224x y z -+=.2、二元函数(,)f x y 在点00(,)x y 处满足关系 ( ).(A )可微(指全微分存在)⇔可导(指偏导数存在);(B )可微⇒可导⇒连续; (C )可微⇒可导,且可微⇒连续,但可导不一定连续;(D )可导⇒连续,但可导不一定可微.3、若函数(,)y y x z =由方程x y xyz e +=所确定,则yx∂=∂ ( ).(A )(1)(1)y x x y --; (B )(1)y x y -; (C )1yz y -; (D )(1)(1)y xz x y --.4、微分方程2"2'35x y y y e -+=的一个特解为 ( ).(A )259x e ; (B )253x e ; (C )22x e ; (D )252x e .5、设无穷级数311p n n ∞-=∑收敛,则( ).(A )1p >; (B )3p <; (C )2p >; (D )2p <.二、填空题(4'⨯7=28'): 1、,,,a b c →→→为单位向量,且满足0a b c →→→++=则a b b c c a →→→→→→++= . 2、函数22(,)f x y =的定义域是 .3、设函数22x y z e +=,则全微分dz = .4、(,)(0,3)sin limx y xyx→= . 5、若(,)f x y 在区域22:14D x y ≤+≤上恒等于1,则(,)Df x y dxdy =⎰⎰ .6、幂级数1(1)2nnn x n ∞=-⋅∑的收敛半径R = . 7、微分方程"8'160y y y -+=的通解为 . 三、计算题(6'4⨯=24'):1、求直线234:112x y z L ---==与平面:260x y z π++-=的交点坐标; 2、设函数(,,)u f x y z =可微,22z x y =-,求u x ∂∂,uy∂∂;3、判断级数21(1)1nn n ∞=-+∑的敛散性;如果收敛,指出是绝对收敛还是条件收敛;4、将函数2()ln(1)f x x =+展开为x 的幂级数. 四、(6')求函数22(,)4()2f x y x y x y =---的极值.五、(7')求微分方程()230x y dx xdy -+=的通解.六、计算下列积分: 1、(7')计算(2)Dy x d σ-⎰⎰,其中D 是由抛物线2y x =和直线2y x =+所围成的闭区域.2、(7')求旋转抛物面224z x y =--和平面0z =围成的立体的体积.3、(6')求由曲线1y x=,直线4y x =,2x =,0y =所围成的平面图形的面积.3一、填空题(4'⨯6='24):1、经过z 轴和点(3,1,2)--的平面方程为____________ .2、设22(,)4()f x y x y x y =---,则其驻点为 .3、设(,)z f x y =而sin ,t x t t y e =+=,则全导数dzdt= . 4、微分方程'sin 0y y e x -=的通解为 . 5、设二次积分ln 1(,)exI dx f x y dy =⎰⎰,则交换积分次序后得I = .6、级数13nn q∞=∑收敛,则q 的取值为 .二、选择题('35⨯=15'):1、下列三元数组中,哪组可作为向量的方向余弦 ( ). (A )212{,,}333-; (B )11{1,,}22-;(C )11{,,1}23; (D )11{,,3}32.2、二元函数(,)z f x y =在00(,)x y 处的偏导数 '00(,)x f x y 和'00(,)y f x y 存在是函数在该点全微分存在的( ).(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分也非必要条件. 3、下列微分方程中,是可分离变量的微分方程为 ( ).(A )()()0x y x y x y e e dx e e dy ++-+-=; (B ))(ln xy dxdy=; (C )3()0xdy y x dx -+=; (D )422dy x y dx xy+=. 4、级数11121(1)2n n n k ∞--=--∑(k 为常数) ( ). (A )绝对收敛; (B )条件收敛; (C )发散; (D )敛散性与k 有关. 5、设:01,0D x y x ≤≤≤≤,则4Dd σ=⎰⎰( ).(A )0; (B )1; (C )2; (D )4.三、计算题(6'⨯4=24'):1、已知方程22243x y y z +-+=确定函数(,)z z x y =,求z zx y∂∂∂∂和; 2、设(cos sin )xz e y x y =+,求z x ∂∂,2zx y∂∂∂;3、求二元函数3322339z x y x y x =-++-的极值.4、将函数()ln(3)f x x x =-展开为x 的幂级数. 四、(7')求微分方程2"'2xy y y e +-=的通解. 五、计算二重积分:(7'214'⨯=) 1.计算22Dx d yσ⎰⎰,其中D 是由直线2x =,y x =及曲线1xy =所围成的闭区域. 2.计算二重积分22x y DI e dxdy +=⎰⎰,D 为圆221x y +=所包围的第一象限中的闭区域.六、应用题:1、(8')在所有对角线为2、(7')求椭圆22221x y a b+= (0,0)a b >>围成的平面图形分别绕x 轴、绕y 轴旋转一周所成的旋转体的体积.4一、填空题(4'⨯7=28'):1、设有平面:210x y z π-+-=和直线116:112x y z L -+-==-,则π与L 的夹角为 . 2、曲面2221x y z ++=与平面0x y z ++=的交线在xoy 面上的投影曲线为-----------3、设函数(1)x z y =+,则(1,1)|dz = .4、设222()u f x y z =+-,其中f 为可微函数,则uz∂=∂ . 5、交换积分次序:2220(,)yydy f x y dx =⎰⎰ .6、设a 为常数,若级数1()nn ua ∞=-∑收敛,则lim n n u →∞= .7、微分方程"5'60y y y -+=的通解为y = . 二、选择题('36⨯=18'):1、设向量2a i j k =-+ ,49b i j k =++ ,则 ( ).(A )//a b (B )||||a b > (C )||||a b = ; (D )a b ⊥2、在(1,1)-内,幂级数2461x x x -+-++ 的和函数为( ).(A )211x -;(B )211x --;(C )211x +; (D )211x -+.3设D 是由222x y x +=围成的闭区域,则(,)Df x y d σ⎰⎰化成极坐标系下的累次积分为 ( )(A )2sin 0(cos ,sin )d f r r rdr πθθθθ⎰⎰; (B )2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰;(C )2sin 22(cos ,sin )d f r r rdr πθπθθθ-⎰⎰; (D )2cos 202(cos ,sin )d f r r rdr πθπθθθ-⎰⎰.4、微分方程'cot 0y y x -=的通解是 ( ).(A )cot y x =; (B )sin y C x =; (C )tan y C x =; (D )csc y C x =.5、函数22(6)(4)z x x y y =--驻点个数为( ).(A )6; (B )5; (C )4; (D )3.6、下列无穷级数中,绝对收敛的是 ( ).(A )21sin n n n ∞=∑; (B)11n n -∞=; (C )11(1)n n n -∞=-∑; (D )2211n n n ∞=+∑. 三、计算题(6'3⨯=18'):1、设ln()yz x x y =-,求z x ∂∂,z y∂∂;2、设222234x y z -++=,求(1,1,1)z x ∂∂,(1,1,1)zy∂∂;3、讨论级数()11121nn n ∞=--∑的敛散性;若收敛,指出是条件收敛还是绝对收敛. 四、(7')求微分方程'tan y yy x x=+的通解.五、(8')设某工厂生产某产品的数量S ()吨与所用的两种原料A ,B 的数量,x y (吨)之间的关系式2(,)0.005S x y x y =。
大一高数试题及答案解析
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑an发散,则级数∑an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1①0②1③2④37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01①0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0①0②1③ ∞ ④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑anxn在xo(xo≠0)收敛,则∑anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
大一高数下考试题及答案
大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
大一上学期高等数学测试习题及答案.
大一上学期高等数学测试及答案一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题有4小题, 每小题4分, 共16分1. 函数的全体连续点的集合是()(A (-,+ (B (-,1 (1,+(C (-,0 (0, + (D (-,0 (0,1 (1,+2. 设,则常数a,b的值所组成的数组(a,b)为()(A)(1,0)(B)(0,1)(C)(1,1)(D)(1,-1)3. 设在[0,1]上二阶可导且,则()(A) (B(C (D)4. 则()(A) M < N < P (B) P < N < M(C) P < M < N (D) N < M < P二填空题(本大题有4小题,每小题4分,共16分)1. 设()2. 设则()3. 直线方程,与xoy平面,yoz平面都平行,那么的值各为()4. ()三解答题(本大题有3小题,每小题8分,共24分)1. 计算2. 设试讨论的可导性,并在可导处求出3. 设函数连续,在x0时二阶可导,且其导函数的图形如图所示,给出的极大值点、极小值点以及曲线的拐点。
x四解答题(本大题有4小题,每小题9分,共36分)1. 求不定积分2. 计算定积分3. 已知直线,求过直线l1且平行于直线l2的平面方程。
4. 过原点的抛物线及y=0,x=1所围成的平面图形绕x轴一周的体积为,确定抛物线方程中的a,并求该抛物线绕y轴一周所成的旋转体体积。
五、综合题(本大题有2小题,每小题4分,共8分)1. 设,其中在区间[1,2]上二阶可导且有,试证明存在()使得。
2.(1)求的最大值点;(2)证明:解答:一、单项选择题 B D B C.二、填空题(本大题有4小题,每小题4分,共16分)5. .6. .7. .8. .三、解答题(本大题有3小题,每小题8分,共24分)9. (8分计算极限.解:10. (8分设,试讨论的可导性,并在可导处求出.解:当;当故f (x在x=0处不可导。
高数大一考试试题
高数大一考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是基本初等函数?A. 指数函数B. 对数函数C. 分段函数D. 三角函数2. 函数f(x) = 2x^3 - 5x^2 + 3x + 1在区间(-∞,+∞)内的最大值是:A. 1B. -1C. 0D. 23. 设函数f(x) = x^2 + 3x + 2,求f(x)的最小值:A. -1B. 0C. 1D. 24. 以下哪个选项是极限lim (x->2) [(x^2 - 4)/(x - 2)]的值?A. 0B. 4C. 8D. 不存在5. 已知数列{an}是等差数列,且a1 = 3,a4 = 13,求此等差数列的A. 2B. 3C. 4D. 56. 以下哪个选项是不定积分∫1/(4+3x^2) dx的解?A. 1/3 arctan(x/2)B. 1/2 arctan(x/2)C. 1/3 arctan(x)D. 1/2 arctan(x)7. 设函数f(x) = sin(x) + cos(x),求f(x)的导数f'(x):A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)8. 以下哪个选项是定积分∫[0, π/2] x^2 dx的值?A. π^2/4B. π^2/3C. π^3/6D. π^3/39. 设随机变量X服从参数为λ的泊松分布,求E(X)的值:A. λB. λ^2C. 1/λD. 2λ10. 以下哪个选项是二元函数z = xy在区域D:x^2 + y^2 ≤ 1上的A. 1B. 0C. -1D. 不存在二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上可导,则f'(x) = ________。
12. 设数列{bn}的通项公式为bn = 2n - 1,该数列的前n项和Sn =________。
大一高等数学试题及答案
大一高等数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2的零点个数是()。
A. 0B. 1C. 2D. 33. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. 2D. 无穷大4. 曲线y = x^3 - 2x^2 + 3在x = 1处的切线斜率是()。
A. -1B. 0C. 1D. 25. 以下哪个不是微分方程dy/dx = y/x的解()。
A. y = x^2B. y = x^3C. y = x^(-1)D. y = x6. 定积分∫(0,1) x^2 dx的值是()。
A. 1/3B. 1/4C. 1/2D. 17. 函数f(x) = ln(x)在区间[1, e]上的值域是()。
A. [0, 1]B. [1, e]C. [0, e]D. [1, 2]8. 以下哪个是复合函数f(g(x))的导数()。
A. f'(g(x)) * g'(x)B. f(g(x)) * g'(x)C. f'(x) * g'(x)D. f(x) * g'(x)9. 以下哪个是泰勒级数展开的公式()。
A. f(x) = ∑[n=0 to ∞] (f^(n)(a) / n!) * (x - a)^nB. f(x) = ∑[n=1 to ∞] (f^(n)(a) / n!) * (x - a)^nC. f(x) = ∑[n=0 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^nD. f(x) = ∑[n=1 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^n10. 以下哪个是拉格朗日中值定理的条件()。
A. f(x) 在区间[a, b]上连续B. f(x) 在区间(a, b)上可导C. f(x) 在区间[a, b]上可导D. f(x) 在区间(a, b)上连续且可导答案:1-5 C B B C A 6-10 B A A D D二、填空题(每题2分,共10分)1. 若f(x) = x^3 - 4x^2 + 5x - 6,则f'(x) = __________。
大学大一高数试题及答案
大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。
A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。
A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。
A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。
A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。
答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。
答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。
答案:24. 函数y=ln(x)的反函数为______。
答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。
答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。
2. 计算级数∑(1到∞) (1/n^2)的和。
答案:该级数为π^2/6。
3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。
答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。
大学一年级高等数学试题及答案
期末总复习题一、填空题1、已知向量2a i j k =+-r rr r ,2b i j k =-+r r r r ,则a b ⋅r r = -1 。
2、曲线2x z =绕z 轴旋转所得曲面方程为 z=x 2 + y 2 。
3、级数1113n n n∞=⎛⎫+ ⎪⎝⎭∑的敛散性为 发散 。
4、设L 是上半圆周222a y x =+(0≥y ),则曲线积分221L ds x y+⎰= a π 5.交换二重积分的积分次序:⎰⎰--0121),(ydx y x f dy =dy y x dx ),(f 0x-121⎰⎰6.级数∑∞=+1)1(1n n n 的和为 1 。
二、选择题1、平面0)1(3)1(=+++-z y x 和平面02)1()2(=+--+z y x 的关系 ( B ) A 、重合 B 、平行但不重合 C 、一般斜交 D 、垂直2. 下列曲面中为母线平行于z 轴的柱面的是 ( C )A 、2221x z +=B 、2221y z +=C 、2221x y +=D 、22221x y z ++= 3. 设)0(4:22>≤+y y x D ,则32222ln(1)1Dx x y dxdy x y ++=++⎰⎰( A )A 、2πB 、0C 、1D 、4π 4、设)0(4:22>≤+y y x D ,则⎰⎰=Ddxdy ( A )A 、π16B 、π4C 、π8D 、π25、函数22504z x y =--在点(1,-2)处取得最大方向导数的方向是 ( A ) A 、216i j -+ B 、216i j -- C 、216i j + D 、216i j -6、微分方程222()()0y y y '''+-=的阶数为 ( B ) A 、1 B 、2 C 、4 D 、67.下列表达式中,微分方程430y y y ''-+=的通解为 ( D )A 、3x x y e e C =++B 、3x x y e Ce =+C 、3x x y Ce e =+D 、312x x y C e C e =+8.lim 0n n u →∞=为无穷级数1n n u ∞=∑收敛的( B )A 、充要条件B 、 必要条件C 、充分条件D 、什么也不是 三、已知1=a ϖ,3=b ϖ,b a ϖϖ⊥,求b a ϖϖ+与b a ϖϖ-的夹角.P7四、一平面垂直于平面0154=-+-z y x 且过原点和点()3,7,2-,求该平面方程.(参考课本P7例题)五、设,,,22xy v y x u ue z v =-==求yzx z dz ∂∂∂∂,,. P19 六、求由z xyz sin =所确定的函数()y x z z ,=的偏导数yzx z ∂∂∂∂, 七、求旋转抛物面2222y x z +=在点⎪⎭⎫ ⎝⎛-2,21,10M 处的切平面和法线方程. O221202142b -a b a ))((cos 231))((2)301()(b - a 2)301(a b a 0ab b a =∴==⨯+-+=∴-=-=-+=+-=-==++=+=+=∴⊥θθ )( 解:b a b a b a b a b a b Θ0z y 13x 4705B 4-A 54-1n 0C 3B A 2-0D 0D Cz By Ax =++=+∴⊥=++==+++故有: ,, 又, 依题可得解:设平面方程为C Θ)2()2()2()2()()()22()()()(z du z dz 23322332222222xy y x e yz y y x x e x z dy xy y x e dx y y x x e xdy ydx e y x ydy xdx e xy d e y x y x d e dv ue du e dvv u xy xy xy xy xyxyxy xy v v --=∂∂-+=∂∂--+-+=+-+-=-+-=+=∂∂+∂∂= ,进而可得变性,得解:由全微分方程的不八、求函数())2sin(,y x xy y x f ++=在点()0,0P 处沿从点()0,0P 到点()2,1Q 的方向的方向导数。
《大一高等数学》试卷(十份)
《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
大一高数试题和答案与解析
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
大一高数试题及答案
大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。
A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。
A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。
答案:-16. 求不定积分∫(1/x) dx。
答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。
答案:e^x8. 计算定积分∫(0,π) sinx dx。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。
解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。
因此,x=1为极大值点,x=11/3为极小值点。
10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。
解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。
切线方程为y-0=-3(x-1),即y=-3x+3。
11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。
解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。
大一上高等数学(I )试题及答案
高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。
2. 曲线x y ln =上曲率最大的点为__________________。
3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。
4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。
5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。
6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。
四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。
七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。
(完整版)大一高等数学期末考试试卷及答案详解
大一高等数学期末考试一试卷一、选择题(共12 分)1.( 3 分)若 f ( x)2e x , x 0,为连续函数 , 则a的值为 ().a x, x0(A)1 (B)2 (C)3 (D)-12.( 3 分)已知f(3) 2, 则lim f (3 h) f (3) 的值为().h02h(A)1 (B)3 (C)-1(D)1 23.( 3 分)定积分212xdx 的值为().cos2(A)0 (B)-2 (C)1(D)24.(3分)若f (x)在x x0处不连续,则 f ( x) 在该点处().(A)必不行导 (B) 必定可导 (C) 可能可导 (D) 必无极限二、填空题(共 12 分)1.(3 分)平面上过点(0,1) ,且在任意一点 ( x, y) 处的切线斜率为 3x2的曲线方程为.2.( 31x4 sin x) dx.分)( x213.( 3分) lim x2 sin1=.x0x4.( 3分) y2x33x2的极大值为.三、计算题(共42 分)1.( 6x ln(15x).分)求 limsin 3x2x02.(6 分)设ye xx2, 求 y .13.( 6分)求不定积分x ln(1 x2 )dx.x 4.( 63f ( x 1)dx, 此中f (x) 1, x 1,分)求cosxe x1,x 1.5. ( 6 分)设函数 yy x f ( x) 由方程e t dtcostdt 0 所确立 , 求 dy.6. ( 6 分)设 f ( x)dxsin x 2 C, 求 f (2 x 3)dx.3 n7. ( 6 分)求极限 lim 1 .2nn四、解答题(共 28 分)1. ( 7 分)设 f (ln x) 1 x, 且 f (0)1, 求 f ( x). 2. ( 7 分)求由曲线 ycos x2x与 x 轴所围成图形绕着 x 轴旋转一周2所得旋转体的体积 .3. ( 7 分)求曲线 y x 3 3x 2 24x 19 在拐点处的切线方程 .4. ( 7 分)求函数 yx1 x 在 [ 5,1] 上的最小值和最大值 .五、证明题 (6 分)设 f ( x) 在区间 [ a, b] 上连续 , 证明b b a1 bf (x)dx[ f (a) f (b)]( x a)( x b) f ( x) dx.a22 a标准答案一、 1 B;2C; 3D; 4 A.二、 1y x31;22 ;3 0;40.3三、 1解 原式limx5x 5 分x 03x 251 分32 解Q ln y lne x x ln( x 2 1),2 分x 2 12y e x[12x] 4 分x 21 2x 2 13 解原式1ln(1 x 2 ) d (1 x 2 )3 分21[(12)ln(12 (12) 12xdx]2xx )xx 22 分1[(1 x 2 )ln(1 x 2 )x 2 ] C1 分24解令 x1 t, 则2 分320 f ( x)dx1 f (t )dt1t2 t11 costdt1 (e 1)dt0 [ e tt ]12e 2 e 15两边求导得 eyy cosx 0,cosxQ ye ycosxsin x 1dycosx dxsin x 16 解f (2 x 3) dx1 f (2 x2 1sin(2 x 3)2 C21 分1 分1 分 1 分2 分1 分1 分2 分3)d(2 x 2)2 分4 分32 n 37 解原式 = lim3 24 分1n2n3= e22 分四、 1 解令 ln xt, 则 xe t ,f (t) 1 e t ,3 分f (t )(1 e t )dt = t e tC.2 分Q f (0)1, C 0,2 分f (x) xe x .1 分2 解V x2 23 分cos xdx222cos 2 xdx2 分2.2 分23 解 y3x 2 6x 24, y6x 6,1 分令 y 0, 得 x 1.1 分当x 1时 , y0; 当 1 x时 , y0,2 分(1,3) 为拐点 ,1 分该点处的切线为 y 3 21(x 1).2 分4 解 y 11x2 1 x 1, 2 分2 12 1 x令 y0, 得 x3 . 1 分4y( 5)56,2.55,y3 5, y(1) 1,2 分44最小值为 y(5)56, 最大值为 y35 . 2 分44五、证明ba)( x b) f(x) ba)( x b) df ( x)1 分(x( xaabb[( x a)( x b) f (x)] aaf ( x)[2 x ( a b)dx1分ba [2 x (a b)df ( x)1分[2 x (a b)] f ( x)(b a)[ f ( a) f (b)]移项即得所证 .b ba2 a f ( x)dx1分b2 a f ( x)dx,1分1分。
大学一年级高等数学试题及答案
大学一年级高等数学试题及答案一、选择题1. 下列哪个是函数?A)f(x) = √xB) f(x) = |x|C) f(x) = 2x - 1D) f(x) = x^2 + 1答案:C2. 函数f(x) = 3x^2 + 2x - 1的导函数是:A) f'(x) = 6x + 2B) f'(x) = 6x - 2C) f'(x) = 2x - 1D) f'(x) = 3x^2答案:A3. 已知函数f(x) = x^3 - 2x^2 - 3x + 2,求f'(x)的极值点。
A) (0, 2)B) (1, -2)C) (-1, 2)D) (2, -2)答案:D4. 求不定积分∫(3x^2 + 2x + 1)dx。
A) x^3 + x^2 + x + CB) x^3 + x + CC) x^2 + x + CD) x^3 + x^2 + C答案:A5. 设函数f(x) = e^x,求f''(x)。
A) f''(x) = e^xB) f''(x) = -e^xC) f''(x) = e^x + e^{-x}D) f''(x) = -e^x + e^{-x}答案:A二、填空题1. 已知曲线y = 3x^2 + 2x - 1,点P(2, 11),求曲线在点P处的切线方程。
答案:y = 12x - 132. 求曲线y = x^3 - 3x的导函数。
答案:y' = 3x^2 - 33. 对函数f(x) = sin^2x + cos^2x,求f'(x)。
答案:f'(x) = 04. 已知曲线y = 2e^x,点P(0, 2),求曲线在点P处的切线方程。
答案:y = 2x + 25. 求不定积分∫(2x + 1)dx。
答案:∫(2x + 1)dx = x^2 + x + C三、解答题1. 计算极限lim(x→0) [(1 + x)^(1/x)]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<o第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】3x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩x (,0)-∞ 0 (0,1)1 (1,2)2 (2,)+∞y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈o,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈o,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x1- ()1,1-1 (]1,3()f x ' 0+- ()f x极小值Z极大值]4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b baa f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。