量子力学导论课件09
合集下载
量子力学简介PPT课件
i Et
Ψ (x, y, z, t) (x, y, z)e
2023/12/30
对于等式右边: 1 ( 2 2 V ) E
2m
量子力学简介
说明
2 2 V E
2m
——定态薛定谔方程
(x,y,z)应为单值函数;
(1) 标准条件: |Ψ |2dxdydz 1 应为有限值;
(2) 求解
, , ,
量子力学简介
2. 一维粒子在外保守力场中运动时具有势能 V
粒子的总能量: E p2 V
2m
同理,有:
Ψ
2 2
i
V
t
2m x2
推广:粒子在三维空间中运动时:
引入拉普拉斯算符: 2
2
x 2
2 y 2
2 z 2
i Ψ 2 2 V ——薛定谔方程
t
2m
定义哈密顿算符:
Hˆ
2
2
V
(r )
应连续.
x y z
E (粒子能量)
(定态波函数)
(3) 势能函数V 不随时间变化.
以一维定态薛定谔方程(粒子在一维空间运动)为例讨论.
2023/12/30
17.4 一维定态问题
量子力学简介
17.4.1 一维无限深方势阱
1. 势能函数
0 V (x)
2. 定态薛定谔方程
0 xa x 0,x a
1.22
应用举例
电子显微镜分辨率 远大于
光学显微镜分辨率
20世纪30年代, 电子显微镜诞生了.电子显微镜是利用高 速运动的电子束代替光线来观察物体的细微结构的, 放大倍 数比光学显微镜高许多, 可以达到几十万倍.电子显微镜大大 开阔了人们的视野, 使人们看到了细胞更细微的结构.
《量子力学》课件
贝尔不等式实验
总结词
验证量子纠缠的非局域性
详细描述
贝尔不等式实验是用来验证量子纠缠特性的重要实验。通过测量纠缠光子的偏 振状态,实验结果违背了贝尔不等式,证明了量子纠缠的非局域性,即两个纠 缠的粒子之间存在着超光速的相互作用。
原子干涉仪实验
总结词
验证原子波函数的存在
详细描述
原子干涉仪实验通过让原子通过双缝,观察到干涉现象,证明了原子的波函数存在。这个实验进一步 证实了量子力学的预言,也加深了我们对微观世界的理解。
量子力学的意义与价值
推动物理学的发展
量子力学是现代物理学的基础之一,对物理学的发展产生了深远 的影响。
促进科技的创新
量子力学的发展催生了一系列高科技产品,如电子显微镜、晶体 管、激光器等。
拓展人类的认知边界
量子力学揭示了微观世界的奥秘,拓展了人类的认知边界。
量子力学对人类世界观的影响
01 颠覆了经典物理学的观念
量子力学在固体物理中的应用
量子力学解释了固体材料的电子 结构和热学性质,为半导体技术 和超导理论的发现和应用提供了
基础。
量子力学揭示了固体材料的磁性 和光学性质,为磁存储器和光电 子器件的发展提供了理论支持。
量子力学还解释了固体材料的相 变和晶体结构,为材料科学和晶
体学的发展提供了理论基础。
量子力学在光学中的应用
复数与复变函数基础
01
复数
复数是实数的扩展,包含实部和虚部,是量子力 学中描述波函数的必备工具。
02
复变函数
复变函数是定义在复数域上的函数,其性质与实 数域上的函数类似,但更为丰富。
泛函分析基础
函数空间
泛函分析是研究函数空间的数学分支,函数空间中的元素称为函数或算子。
量子力学基础知识PPT讲稿
Plank
The Nobel Prize in Physics 1918
"for their theories, developed independently, concerning the course of chemical reactions"
Max Karl Ernst Ludwig Planck
(3).光子具有一定的动量(p)
P = mc = h /c = h/λ
光子有动量在光压实验中得到了证实。 (4).光的强度取决于单位体积内光子的数目,即光子密度。
将频率为的光照射到金属上,当金属中的一个电子受到一个光子撞击时, 产生光电效应,光子消失,并把它的能量h转移给电子。电子吸收的能量,一 部分用于克服金属对它的束缚力,其余部分则表现为光电子的动能。
Germany Berlin University Berlin, Germany
1858在金属表面上,金属发射出电子的现象。
.1 只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电
子,不同金属的临阈频率不同。 2.随着光强的增加,发射的电子数也增加,但不影响光电子的动能。 3.增加光的频率,光电子的动能也随之增加。
“光子说”表明——光不仅有波动性,且有微粒性,这就是光的波粒 二象性思想。
Einstein
The Nobel Prize in Physics 1921
"for their theories, developed independently, concerning the course of chemical reactions"
第一节.微观粒子的运动特征
电子、原子、分子和光子等微观粒子,具有波粒二象 性的运动特征。这一特征体现在以下的现象中,而这些现 象均不能用经典物理理论来解释,由此人们提出了量子力 学理论,这一理论就是本课程的一个重要基础。
量子力学课件(完整版)
Light beam
metal
electric current
11
能量量子化的假设
造成以上难题的原因是经典物理学认为 能量永远是连续的。
如果能量是量子化的,即原子吸收或发 射电磁波,只能以“量子”的方式进行, 那末上述问题都能得到很好的解释。
12
能量量子化概念对难题的解释
原子寿命 ①原子中的电子只能处于一系列分立的能级之中。
18
当 kT hc(高频区)
E(, T)
2hc2 5
e hc
kT
Wein公式
当 kT hc(低频区)
E(, T)
2c 4
kT
Rayleigh–Jeans公式
19
能量量子化概念对难题的解释
对光电效应的解释
如果电子处于分立能级且入射光的能 量也是量子化的,那么只有当光子的能 量(E =hυ)大于电子的能级差,即E =hυ > En-Em时,光电子才会产生。如 果入射光的强度足够强,但频率υ足够 小,光电子是无法产生的。
2 , k 2 / ,
得到 d 2 0,所以,t x(t)
dk 2 m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
2
这面临着两个问题:
1、信号电磁波所覆盖的区域包括大量的 元件,每个元件的工作状态有随机性,但 器件的响应具有统计性;
量子力学(全套) ppt课件
1 n2
人们自然会提出如下三个问题:
1. 原子线状光谱产生的机制是什么? 2. 光谱线的频率为什么有这样简单的规律?
nm
3. 光谱线公式中能用整数作参数来表示这一事实启发我们 思考: 怎样的发光机制才能认为原子P的PT课状件态可以用包含整数值的量来描写12 。
从前,希腊人有一种思想认为:
•2.电子的能量只是与光的频率有关,与光强无关,光
强只决定电子数目的多少。光电效应的这些规律是经典
理论无法解释的。按照光的电磁理论,光的能量只决定
于光的强度而与频率无关。
PPT课件
24
(3) 光子的动量
光子不仅具有确定的能量 E = hv,
而且具有动量。根据相对论知,速度 为 V 运动的粒子的能量由右式给出:
nm
11
谱系
m
Lyman
1
Balmer
2
Paschen
3
Brackett
4
Pfund
5
氢原子光谱
n 2,3,4,...... 3,4,5,...... 4,5,6,...... 5,6,7,...... 6,7,8,......
区域 远紫外 可见 红外 远红外 超远红外
RH
C
1 m2
自然之美要由整数来表示。例如:
奏出动听音乐的弦的长度应具有波长的整数倍。
这些问题,经典物理学不能给于解释。首先,经典物理学不能 建立一个稳定的原子模型。根据经典电动力学,电子环绕原子 核运动是加速运动,因而不断以辐射方式发射出能量,电子的 能量变得越来越小,因此绕原子核运动的电子,终究会因大量 损失能量而“掉到”原子核中去,原子就“崩溃”了,但是, 现实世界表明,原子稳定的存在着。除此之外,还有一些其它 实验现象在经典理论看来是难以解释的,这里不再累述。
量子力学ppt
详细描述
量子计算和量子通信是量子力学的重要应用之一,具有比传统计算机和通信更高的效率和安全性。
量子计算是一种基于量子力学原理的计算方式,具有比传统计算机更快的计算速度和更高的安全性。量子通信是一种基于量子力学原理的通信方式,可以保证通信过程中的安全性和机密性。这两个应用具有广泛的应用前景,包括密码学、金融、人工智能等领域。
薛定谔方程
广泛应用于原子、分子和凝聚态物理等领域,可以用于描述物质的量子性质和现象。
薛定谔方程的应用
哈密顿算符与薛定谔方程
03
量子力学中的重要概念
是量子力学中的一种重要运算符号,用于描述量子态之间的线性关系,可以理解为量子态之间的“距离”。
狄拉克括号
是一种量子化方法,通过引入正则变量和其对应的算符,将经典物理中的力学量转化为量子算符,从而建立量子力学中的基本关系。
描述量子系统的状态,可以通过波函数来描述。
量子态与波函数
量子态
一种特殊的函数,可以表示量子系统的状态,并描述量子粒子在空间中的概率分布。
波函数
波函数具有正交性、归一性和相干性等性质,可以用于计算量子系统的性质和演化。
波函数的性质
一种操作符,可以用于描述物理系统的能量和动量等性质。
哈密顿算符
描述量子系统演化的偏微分方程,可以通过求解该方程得到波函数和量子系统的性质。
量子优化
量子优化是一种使用量子计算机解决优化问题的技术。最著名的量子优化算法是量子退火和量子近似优化算法。这些算法可以解决一些经典优化难以解决的问题,如旅行商问题、背包问题和图着色问题等。然而,实现高效的量子优化算法仍面临许多挑战,如找到合适的启发式方法、处理噪声和误差等。
量子信息中的量子算法与量子优化
解释和预测新材料的物理性质,如超导性和半导体性质等。
量子计算和量子通信是量子力学的重要应用之一,具有比传统计算机和通信更高的效率和安全性。
量子计算是一种基于量子力学原理的计算方式,具有比传统计算机更快的计算速度和更高的安全性。量子通信是一种基于量子力学原理的通信方式,可以保证通信过程中的安全性和机密性。这两个应用具有广泛的应用前景,包括密码学、金融、人工智能等领域。
薛定谔方程
广泛应用于原子、分子和凝聚态物理等领域,可以用于描述物质的量子性质和现象。
薛定谔方程的应用
哈密顿算符与薛定谔方程
03
量子力学中的重要概念
是量子力学中的一种重要运算符号,用于描述量子态之间的线性关系,可以理解为量子态之间的“距离”。
狄拉克括号
是一种量子化方法,通过引入正则变量和其对应的算符,将经典物理中的力学量转化为量子算符,从而建立量子力学中的基本关系。
描述量子系统的状态,可以通过波函数来描述。
量子态与波函数
量子态
一种特殊的函数,可以表示量子系统的状态,并描述量子粒子在空间中的概率分布。
波函数
波函数具有正交性、归一性和相干性等性质,可以用于计算量子系统的性质和演化。
波函数的性质
一种操作符,可以用于描述物理系统的能量和动量等性质。
哈密顿算符
描述量子系统演化的偏微分方程,可以通过求解该方程得到波函数和量子系统的性质。
量子优化
量子优化是一种使用量子计算机解决优化问题的技术。最著名的量子优化算法是量子退火和量子近似优化算法。这些算法可以解决一些经典优化难以解决的问题,如旅行商问题、背包问题和图着色问题等。然而,实现高效的量子优化算法仍面临许多挑战,如找到合适的启发式方法、处理噪声和误差等。
量子信息中的量子算法与量子优化
解释和预测新材料的物理性质,如超导性和半导体性质等。
关于量子力学课件
对实物粒子: =c ? 错。
3.
相速:
c2
违背相对论吗?
不。能量是以群速g=传播。
例题17-1 (1)电子动能Ek=100eV;(2)人:m=66.3kg,
=10m/s, 求德布罗意波长。
解 (1) 用非相对论公式计算电子速度
Ek
1 2
mυ2
5.93106 m / s
p mυ 5.41024
7.3 106 (m
/
s)
可见,微观粒子的速度和坐标不能同时准确测定。 故研究氢原子不能用经典理论,只能用量子力学理 论来处理。
例题17-5 子弹质量m=1kg , 速度测量的不确定量是
x=10-6 m/s ,求子弹坐标的不确定量。
解 按不确定关系: xpx h,则子弹坐标的不确
定量为
x h m x
h
=0.0535Å
mυ
mo=s
§17.2 不确定关系
一. 不确定关系
微观粒子的位置坐标 x 、动量分量 px 不能同时具 有确定的值。
x、px 分别是 x,px 同时具有的不确定量,
则其乘积
x
px
2
(海森伯不确定关系)
下面借助电子单缝衍射试验加以说明。
远小于光速, 可不再修正
h h =1.23Å mυ p
m=9.11×10-31 kg h= 6.63×10-34J.s
(2) 人: h h = 1.0×10-36m
p mυ
可见,只有微观粒子的波动性较显著;而宏观粒子
(如人)的波动性根本测不出来。
例题17-2 用5×104V的电压加速电子,求电子的速度、
x sin
x
psin
电