27.1 相似图形(1)
图形相似ppt
27.1 图形的相似
1.相似图形 (1)定义:把___形__状__相__同___的图形叫做相似图形. (2)特点:①形状相同;②图形的大小,位置没有要求. 注意:“全等”是“相似”的一种特殊情况.全等的两个 图形一定相似,而相似的图形则未必全等.
2.成比例线段(比例线段) 对于四条线段 a,b,c,d,如果其中两条线段的__比____与 另外两条线段的___比__相__等___,如___ab_=__dc__(ad=bc),我们就说这 四条线段是成比例线段. 注意:线段的比值是一个正数,与度量关系无关,但要注 意度量单位的统一.
图 27-1-3
4 . 等 腰 梯 形 ABCD 与 等 腰 梯 形 A′B′C′D′ 相 似 , AD=BC,∠A=65°,AB=8 cm,A′B′=6 cm,AD=5 cm, 求出 A′D′的长度及梯形 A′B′C′D′各角的度数.
解:∵A′ABB′=A′ADD′,即86=A′5D′.∴A′D′=145 cm. 在等腰梯形 ABCD 中,AD=BC,∠A=65°, ∴∠B=∠A=65°,∠D=∠C=180°-∠A=115°. ∴∠A′=∠B′=65°,∠C′=∠D′=115°.
Hale Waihona Puke 解:∵四边形 ABCD 相似于四边形 A′B′C′D′, ∴A′ABB′=B′BCC′=C′CDD′=D′DAA′, 即A′7B′=59=C′6D′=D′8A′.
∴A′B′=12.6,C′D′=10.8,D′A′=14.4. ∴四边形A′B′C′D的周长为 12.6+9+10.8+14.4=46.8.
知识点 1 相似图形 【例 1】 下列各组图形:①两个平行四边形;②两个圆; ③两个矩形;④有一个内角是 80°的两个等腰三角形;⑤两个正 五边形;⑥有一个内角是 100°的两个等腰三角形,其中一定是 相似图形的是________(填序号). 思路点拨:判断两个图形是不是相似图形的关键:这两个 图形的形状是不是相同,与其大小、位置无关.
27.1图形的相似(1)
A
AB BC CD DE EF FA 2 A1 B1 B1C 1 C 1 D1 D1 E1 E1 F1 F1 A1
显然:正六边形都是相似的, 它们的对应角相等,对应边的比相等。
小结
A1ห้องสมุดไป่ตู้
A
B
C
A
F E
D A1
B
C
B1
C1
B1 通过类似的研究,可以得到, 相似的正多边形对应角相等, 对应边的比相等。 C1
由此类推,相似多边形对应角相等, 对应边的比相等。
相似多边形的主要特征: 相似多边形对应角相等, 对应边的比相等。
它体现了什么 重要意义?
反过来, 如果两个多边形满足 对应角相等,对应边 的比相等,那么这两 个多边形相似.
相似多边形的性质: 相似多边形对应角相等, 对应边的比相等。
反过来, 如果两个多边形满足 对应角相等,对应边 的比相等,那么这两 个多边形相似.
课堂 练习
知识的升华
观察下面的图形(a)~(g),其中哪些是与(1)(2) 或(3)相似的?
(a )与(1)、 (d)与(2)、 (g)与(3)
练一练
把四边形ABCD放大1倍(要求:放 大后的顶点在格点上)。
D`
A`
B` A
D C
C`
B
八年级 数学
说说你的方法 归纳:如何画放大或缩小图形? (1)先取定一个点; (2)任何一个相应的部分都放大或 缩小相同的倍数。
(1) ∠A =∠A1, ∠B =∠B1, ∠C =∠C1
显然:正三角形都是相似的, 它们的对应角相等, 对应边的比相等。
AB BC CA 2 A1 B1 B1C 1 C 1 A1
27.1.1相似图形
解:图略
二、填空题(每小题 4 分,共 12 分) 13.复印前后纸上的对应图形之间的关系为_ 相似 _. 14.观察如图所示的三组图形,图形形状相同的有_ 三_组.
15.观察图中各32 分) 16.(8 分)在下面的点格中,再画在两个与已给图形相似的图形,并且三个图 形大小都不一样.
27.1 图形的相似 第1课时 相似图形
_ 形状 _相同的图形叫做相似图形.两个图形相似,其中一个图形可以看作 由另一个图形_
放大或缩小后
_得到的.
相似图形
1.(4 分)下面几对图形中,相似的是(
C )
2.(4 分)下面的各组图形中,不相似的一组是( D )
3.(4 分)下面每组图形中的两个图形,不是相似图形的是(
D )
4.(4 分)观察下面每组的每个图形,相似图形是(
A )
5.(5 分)下列各图案形状不同的是( D ) A.大小不同的两张中国地图 B.人民币上的国徽和天安门城楼上的国徽 C.在同一张底片洗出的不同尺寸的两张照片 D.足球场和篮球场 6.(5 分)下列命题中,是真命题的为( D ) A.锐角三角形都相似 B.直角三角形都相似 C.等腰三角形都相似 D.等边三角形都相似
解:分别把原图形的各边扩大到原来的 2 倍、3 倍即可
17.(8 分)如图,请在图②中画出与图①相似的缩小图形. 解:每个“叶片”内缩 2 格即可
18.(8 分)在图中画出一个与四边形 ABCD 相似但不全等的格点图形.
解:图略
【综合运用】 19.(8 分)正方形网格中有一条简笔画“鱼”,请你将这条“鱼”放大,使新 图形与原图形的对应线段的比是 2∶1.
一、选择题(每小题 4 分,共 16 分) 9.如图,用放大镜将图形放大,应属于哪一种变换( D ) A.对称变换 B.平移变换 C.旋转变化 D.相似变换 10.与左下图相似的图形是( B )
人教版数学九年级下册27.1《图形的相似》教案
(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。
27.1 图形的相似课件(共30张PPT)
比)与另两条线段的比相等,如
a b
c
d(即
ad
=
bc),我们就说这四
条线段成比
27.1 图形的相似
观察与思考 1.观察多面体模型与五棱柱教具中的正五边形回答下列问题
27.1 图形的相似
问题1 这些正五边形两两之间相似吗?
相似
问题2 在这两个正五边形中,是否有对应相等的内角?
是
问题3 在这两个正五边形中,对应内角的两边是否成比例?
78° 83°
B
C
F
α G
27.1 图形的相似
解:∵ 四边形 ABCD 和 EFGH 相似, ∴ 它们的对应角相等.由此可得
∠α = ∠C = 83°,∠A = ∠E=118°.
在四边形 ABCD 中,
β = 360°-(78°+83°+118°) = 81°.
21 D
A
β
18
78° 83°
B
C
x E
27.1 图形的相似 如果放在教室最后面展示又有什么不同? 2. 图形的放大:
两个图形相似,其中一个图形可以 看作由另一个图形放大或缩小得到.
通过上面两 组图形的观 察,发现了 什么?
27.1 图形的相似 例1 放大镜观察学具的一个角和原来的角有什么关系?
放大之后的角与原来的 角是相似关系
27.1 图形的相似
118° 24
F
H
α G
27.1 图形的相似
∵ 四边形 ABCD 和四边形 EFGH 相似, ∴它们的对应边成比例,由此可得
EH AD
EF AB
,即
x 21
24 18
.
解得 x = 28 cm.
九年级数学下册人教版27.1图形的相似优秀教学案例
在课堂教学结束后,我会布置一些作业,让学生进一步巩固所学知识。同时,我会提醒学生在完成作业时注意运用相似图形的性质,解决实际问题。作业小结环节有助于学生巩固课堂所学,提高他们的应用能力。
五、案例亮点
1.生活实例导入:通过展示生活中的实例,引导学生关注相似图形在实际中的应用,激发学生的学习兴趣,引出相似图形的概念。这种教学方法使学生能够更好地理解抽象的数学概念,并感受到数学与生活的紧密联系。
三、教学策略
(一)情景创设
在教学过程中,我注重创设贴近学生生活实际的情景,激发学生的学习兴趣。例如,通过展示实际生活中的图片、模型等,引导学生关注相似图形在生活中的应用,从而引出相似图形的概念。同时,我还会设计一些有趣的实践活动,如让学生自己动手绘制、变换图形,使其在实际操作中感受相似图形的性质。
(二)问题导向
4.反思与评价:在教学过程中,我注重引导学生进行反思与评价,使其能够及时发现自己的不足,调整学习方法。这种教学方法有助于学生建立自信,提高学习兴趣,培养良好的学习习惯。
5.多媒体教学手段:我运用动画、图片等多媒体教学手段,形象地展示相似图形的变化过程,帮助学生建立起空间想象能力。这种教学方法使抽象的数学概念更加直观,有助于学生更好地理解和掌握知识点。同时,多媒体教学手段也使课堂更加生动有趣,提高了学生的学习兴趣。
在教学过程中,我以生活实际为出发点,设计了一系列具有针对性和实用性的教学活动,旨在激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。同时,我也注重引导学生从直观图形中抽象出相似图形的共同特征,培养学生的高级思维能力。
二、教学目标
(一)知识与技能
1.学生能够理解相似图形的概念,掌握相似比、对应角、对应边等基本性质。
人教版9年级下册数学 相似图形教案与教学反思
第二十七章相似27.1 图形的相似第1课时相似图形【知识与技能】1.结合具体实例认识相似的图形,体会相似图形在实际中的广泛应用.2.理解相似图形的概念,能判别两个图形是否相似.【过程与方法】经历观察、想象、推理、交流等活动,发展空间想象能力和推理能力.【情感态度】使学生在积极参与探索、交流的活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.【教学重点】理解相似图形的概念,会判断图形的相似.【教学难点】判断图形是否相似.一、情境导入,初步认识问题请同学们观察所给出的几组图形,说说它们有哪些共同点?(这里的图片可以是教材P24中图27.1—1中3组图片,可以是教师自制教学图片,也可以是利用多媒体而展示的相似图片.)【教学说明】通过观察实物图片,从感性上认识相似图形.二、思考探究,获取新知问题1你认为什么样的图形是相似图形?问题2你能举出一些相似图形的例子吗?【教学说明】问题1是让学生在感性认识的基础上而进行的必要理性思考,教师应善于这种诱导,让学生通过“看起来一样,但大小不同的图形为相似图形”进入到“形状相同的图形叫做相似图形”从而认识新知.问题2可由学生相互交流,并运用新知来判别举例的合理性,加深对概念的理解.教师巡视,可参与到学生的交流活动中,听取学生的观点,适时点拨.【归纳结论】1.相似图形:形状相同的图形叫做相似图形.2.两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.问题3展示教材P24中图27.1—2及P25中图27.1—3以及练习第1题中的三幅图片 (可让学生直接观察教材图片,有条件的地方可利用多媒体来展示更多图片),它们中有相似图形?为什么?【教学说明】让学生指出图片中的相似图形,通过相互交流加深对概念的理解.让学生说明理由,目的在于更好地理解“形状相同”的含义,理解图形相似的本质.当然,这里的理由也是感性认识,不必作更深的说明.三、运用新知,深化理解1.放电影时,投在屏幕上的画面与胶片上的画面相似吗?2.从放大镜里看到的图案和原来的图案相似吗?3.教材P35练习第2题【教学说明】让学生分组讨论,相互交流,然后釆用抢答方式来处理.四、动手设,转化知识问题你能画出相似的图形吗?试试看,看谁画的图形最相似?【教学说明】学生自己动手画出的图形多种多样,在动手画图过程中应思考怎样画才能使两个图案相似.教师在巡视时可适时予以提醒.在完成上述问题后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.相似图形的定义是什么?2.怎样判断所给出的图形是否相似?【教学说明】设置问题,师生共同回顾,及时反馈,巩固所学知识.完成创优作业中本课时的“课时作业”部分.本课时教学过程中应注重培养学生的空间象能力和推理能力,通过学生画图、动手操作等实践活动加强对相似图形概念的理解,并能熟练步断图形的相似.【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。
27.1图形的相似(基础练习)
巩固练习第27章 图形的相似27.1 图形的相似(1)1、在下面的图形中,形状相似的一组是( )2、下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形3、要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm 、60cm 、80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( )A .1种B .2种C .3种D .4种4、下列说法正确的是( )A .人们从平面镜及哈哈镜里看到的不同镜像相似.B .人们从平面镜里看到的像与人的关系是相似图形,但不是全等图形.C .拍照时,镜头的取景与照片上的画面是相似的D .放幻灯片时投在屏幕上的画面与幻灯片上的图形是全等的5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?27.1图形的相似(2)巩固练习:1.△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ).A .32B .23C .52D .942.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形; (3)所有的等腰三角形;(4)所有的等边三角形; (5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个3. 图中两个四边形是相似形,仔细观察这两个图形,它们对应边之间存在怎样的关系?对应角之间又有什么关系?4.如图,四边形EFGH相似于四边形ABCD,求∠A、∠C、∠H以及x、y、z的值.5.如图,△ABC与△DEF相似,求未知边x、y的长度。
6.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EF AB相似,求EF的长.。
专题27.1 图形的相似(解析版)
专题27.1 图形的相似1.相似图形定义:形状相同的图形叫做相似图形。
2.相似多边形定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
3.性质相似多边形的对应角相等,对应边成比例。
【例题1】在如图所示的相似四边形中,求未知边x、y的长度和角α的大小.【答案】x=31.5,y=27,α=83°.【解析】∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==, ∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.【点拨】利用图形相似,对应边成比例,对应角相等的性质来进行解题。
【例题2】要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm【答案】C .【解析】设另一个三角形的最长边长为xcm ,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm ,故选:C .【点拨】根据相似三角形的对应边成比例求解可得.【例题3】所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?【答案】见解析。
【解析】所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.1. 图中的两个多边形相似吗?说说你的理由.【答案】见解析。
【解析】不相似.︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等”.2.已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.【答案】见解析。
27.1图形的相似课件
例题
3 正方形
6 长方形
ห้องสมุดไป่ตู้
3
8
解:∵ 正方形和矩形的四个内角都是直角. ∴ 它们的对应角相等. ∵ 对应边 3 : 6 ≠ 3 : 8. ∴ 它们的对应边不成比例. ∴ 这一组图形不相似.
你能找出其中的相似多边形吗? 相似正五边形
课堂小结
1. 相似图形:
形状相同的图形。
2. 相似多边形:
对应角相等,对应边成比例。
相似图形的关系
两个图形相似,其中一个图形可以看 作由另一个图形放大或缩小得到。
小练习
在下列图形中,找出相似图形。
对应角有什么关系?对应边有什么关系? A 正三角形
60° 缩小 A1 60°
B
C B1
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 AB = BC = AC , A1B1 = B1C1 = A1C1
数,求出对应边 的长度。
C
缩小
B1 对应边有什么关系?
C1
A A1
对 应 角 有 什 么 D关 系?
D1
当相似比k =1时,相似图形即是全等图形。
全等是一种特殊的相似。
A
F
B
E
A1 F1
B1
E1
C
D
C1 D1
六边形ABCDEF与六边形A1B1C1D1E1F1的 相似比为 k1= 2 : 1,
对应边 AB:A1B1= 2 : 1 。
3. 相似比:
相似多边形对应边的比。
随堂练习
1. 判断:
(1)任意两个矩形都是相似图形(× ) (2)任意两个圆形是相似图形(√ ) (3)对应角相等的两个四边形是相似多边形( ×) (4)两个正五边形是相似多边形( √ ) (5)两个全等三角形是相似多边形(√ ) (6)两菱形是相似多边形(× ) (7)两个相似多边形,对应边成比例(√ )
27.1相似图形第一课时教学设计
27.1图形的相似(第一课时)教学设计一、教材分析“图形的相似”是人教版九年级下册第27章第一节的内容,本节从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系,通过学习本节课,使学生认识图形除轴对称、平移和旋转之外的另一种变换——相似.为后续学习相似三角形打基础.二、学情分析本节课之前已经学习了全等和全等三角形的有关知识,并且学习了平移,旋转,轴对称等有关图形的全等变换,对于“对应边、对应角”的概念应该理解的比较深刻;在小学六年级学生已经学习过比和比例的基础知识,这些知识都是学习本节课所必需的.三、教学目标(三维目标)1.知识与技能:理解相似图形的概念,能正确地判断图形是否相似,了解两个相似图形的关系.2.过程与方法:通过问题驱动,引导学生发现“相似图形”的概念.3.情感态度与价值观:进一步体会数学来源于生活,又服务于生活,进一步体会数学的价值,进一步增强学好数学的自信心.(德育渗透:“感党恩,听党话,跟党走”)四、重点难点1.重点:相似图形的概念2.难点:相似图形的变换关系(缩放关系)五、教学手段(媒体选择)PPT课件六、教学过程(一)导入新课对来源于抖音APP的18秒短视频《金属3D打印模型重量对比VS#3d打印#模型#金属加工》进行裁剪,裁剪为前5秒短视频,进行课堂导入,提出5个问题::(1)“这两个正方体模型的形状有什么关系呢?”(学生口答:“形状相同”)(2)你能举出现实生活中类似的例子吗?(学生代表口答,老师提问:教室黑板上方有这样的例子吗?进行德育渗透)(3)通过这些例子的共同特征都是形状____?(学生集体口答:“相同”,老师强调:“形状相同”)(4)你能不能用一个2个字的词语来总结一下呢?(学生集体口答:“相似”)(5)我们把形状相同的图形,叫做_____图形?(学生集体口答:“相似”,老师强调:“相似图形”,引导学生集体口述“相似图形”的概念)(二)探索新知1.相似图形:我们把形状相同的图形叫做相似图形.(老师强调:相似图形形状相同即形状不变)(1)引导学生当堂背会相似图形的概念.(2)两个全等的三角形是相似图形吗?全等图形是相似图形吗?学生回答:“两个全等的三角形是相似图形”,“全等图形是相似图形”.老师强调:全等图形是特殊的相似图形.2.相似图形的变换关系(缩放关系)(1)从放大镜里看到胡三角尺和原来的三角尺相似吗?(2)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.例如,放电影时,投在屏幕上的画面就是胶片上图形的放大;用复印机把一个图形放大或缩小后所得的图形,都与原来的图形相似.(3)思考:图27.1-3是一个女孩儿从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?(三)学以致用1判断题(1)两个全等的四边形是相似图形()(2)全等图形一定是相似图形()(3)相似图形一定是全等图形()2.课后练习第2题(四)课堂小结1.什么叫做相似图形?2.两个图形相似,它们是怎样的变换关系?3.全等图形是相似图形吗?(五)作业设计1.必做题:同步练习册27.1图形的相似第1课时的“基础知识”和“能力提升”2.选做题:同步练习册27.1图形的相似第1课时的“探索研究”(六)板书设计第一板:27.1图形的相似(第1课时)1.相似图形2.相似图形的变换关系(缩放关系)3.全等图形是特殊的相似图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a c A. d b a c B. b d d b C. a c a d D. c b
ab ac bc 3.已知 k ,求k的值. c b a
解:∵a+b=kc,a+c=kb,b+c=ka, a+b+a+c+b+c=k(a+b+c), 即 2(a+b+c)=k(a+b+c), ∴k=2.
第二十七章 相似
• 学习目标:
1.结合具体实例认识相似图形,理解相似图 形的概念,会判断两个图形是否相似. 2.知道成比例线段,会求线段的比,知道相似 多边形的对应角相等,对应边的比相等.
• 学习重、难点:
重点:图形相似及相似多边形的性质. 难点:线段成比例的意义.
新课导入
问题1:每组图片中的两张图片有何关系?
探究新知
知识点1:相似图形
问题2:相似图形在我们的生活中是很 常见的,看了这些相似图形,哪位同学能给 相似图形下一个定义?
我们把形状相同的图形叫相似图形.
问题3:观察这四组相似图形,其中一个图 形可以看作由另一个图形怎样变换得到?
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到.
你能再举出一些 相似图形的例子吗?
放电影时,银幕上的画面与胶片上的画面是 相似图形; 复印机把一个图形放大,放大后的图形与原 来的图形是相似图形; 实际的建筑物与它的模型是相似图形.
问题4:国旗上的大五角星与小五角星是 相似图形吗?四颗小五角星呢?
都相似
全等图形是相似 图形,相似图形不一 定是全等图形.
拓展延伸
x 2y x y z 已知 ,求 的值. z 2 3 4
x 2y x 2y 1 3 2 1 解: z z z 2 4
随堂演练 1.下列说法正确的是 ( D ) A.小明上幼儿园时的照片和初中毕业时的照片相似 B.从商店新买来的一副三角板的两块三角板是相似的 C.所有的课本都是相似的
D.国旗的五角星都是相似的
随堂演练 2.观察下列图形,指出哪些是相似图形,用“线” 将相似的图形连接起来.
随堂演练 3.下列各组中的四条线段成比例的是( C ) A.a= 2,b=3,c=2,d= 3 B.a=4,b=6,c=5,d=10 C.a=2,b= 5 ,c=2 3 ,d= 15 D.a=2,b=3,c=4,d=1
考
如图是一个女孩从平面镜和哈哈镜里看 到的自己的形象,这些镜中的形象相似吗?
平面镜是表面平整的镜子,它所成像的 形状和大小与物体完全相同. 哈哈镜中看到的图像,有的被“压扁” 了,有的被“拉长”了,它们不相似.
1 形状相同的图形叫做相似图形. 两个图形相似, 其中一个图形可以看作由另一个图形放大或缩 小得到. 2 全等的两个图形是相似的.
3 如果两个图形相似,那么它们的形状相同,而 与它们的大小无关.
练习
1.如图,从放大镜里看到的三角尺和原来的三 角尺相似吗?
相似
2.如图,图形(a)~(f)中,哪些与图形(1) 或(2)相似?
相似 相似
知识点2:成比例线段 对于四条线段 a,b,c,d,如果其中两条 线段的比(即它们长度的比)与另两条线段的 比相等, 如 a c b d (即 ad=bc),我们就说这四条线段成比例.
课堂小结
我们把形状相同的图形叫相似图形 图 形 的 相 似
a c 四条线段 a,b,c,d成比例 b d
课后作业
1.从课后习题中选取;
2.完成练习册本课时的习题。
教学反思
本课时作为“图形的相似”的起始课,先通 过大量的实例、图片来激发学生的学习兴趣, 发动学生去发现、去参与寻找相似图形,给学 生提供展示自我的时间和机会. 学生通过画图、 动手操作等实践活动加强对相似图形的理解, 并能熟练判断图形的相似.
一张桌面的长a=1.25 m,宽b=0.75 m,那 么长与宽的比是多少? 5:3 a.如果a=125 cm,b=75 cm,那么长与宽 的比是多少? 5:3 b.如果a=1250 mm,b=750 mm,那么长与 宽的比是多少? 5:3
练习
1.如果线段a,b,c,d满足a∶b=c∶d,a=3, 6 b=4,d=8,则c=____.