数学分析课件 函数的幂级数展开讲解

合集下载

精选数学分析函数的幂级数展开讲解讲义

精选数学分析函数的幂级数展开讲解讲义

n0
n!
lim ( 1) ( n) xn1 0.
n
n!
又 x 1, 有 1 x 1 , 且0 1 1, 从而有 1 x
第二十页,总共三十四页。
1 1 x
n
1.
再当 | x | 1时, 有0 (1 x)1 (1 | x |)1 21.于
是当 1 时 (1 x)1是与 n 无关的有界量;当
如果 f 能在点x0的某邻域上等于其泰勒级数的和函
数, 则称函数 f 在点 x0 的这一邻域内可以展开成泰
勒级数, 并称等式
第六页,总共三十四页。
f (x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) ( x0 n!
)
(
x
x0
)n
(4)
的右边为 f 在 x x0 处的泰勒展开式, 或幂级数展
论如下:
当 1 时, 收敛域为 (1, 1);
当 1 0 时, 收敛域为 (1, 1];
当 0 时, 收敛域为[1, 1].
第二十二页,总共三十四页。
当 (7)式中 1时就得到
1 1 x x2 1 x
当 1 时得到
2
(1)n xn
, x (1, 1). (8)
1 1 1 x 13 x2 135 x3 , x (1, 1]. (9)
解 由于 f (n)( x) ex , f (n)(0) 1(n 1, 2, ), 因此 f
的拉格朗日余项为
Rn( x)
e x (n 1)!
x n1 (0
1).
显见
第十一页,总共三十四页。

数学物理方法课件解析函数的幂级数展开

数学物理方法课件解析函数的幂级数展开

幂级数展开求解积分方程
幂级数展开求解积分方程 的步骤
首先将积分方程中的未知函数进行幂级数展 开,然后代入积分方程中求解系数,最后得 到积分方程的解。
举例
求解∫(上限1下限0) (x^2+y^2)^(-3/2) * y dx = 1。将y(x)进行幂级数展开,得到
y(x)=∑(n=0,∞) a_n * x^(n+1),然后代入 积分方程中求解系数a_n,得到解。
THANKS
感谢观看
幂级数展开的收敛半径
幂级数展开的收敛半径是指函数在一定区间内可以展开成幂 级数的范围。
收敛半径的大小取决于各项系数的变化规律,可以通过比较 相邻项系数的方法来确定收敛半径。
幂级数展开的收敛区间
幂级数展开的收敛区间是指函数可以精确展开成幂级数的区间,通常是一个闭区 间或者半开半闭区间。
在收敛区间内,幂级数展开可以无限逼近原函数,但在收敛区间的外延,误差会 逐渐增大。
数学物理方法课件解析函 数的幂级数展开
• 幂级数展开的概述 • 幂级数展开的原理 • 幂级数展开的应用 • 幂级数展开的实例解析
01
幂级数展开的概述
幂级数展开的定义
幂级数展开是指将一个函数表示为无 穷级数的方式,其中每一项都是该函 数的幂次与系数的乘积。
幂级数展开的一般形式为:$f(x) = a_0 + a_1x + a_2x^2 + cdots + a_nx^n + cdots$,其中 $a_0, a_1, ldots, a_n$ 是常数,$x$ 是自变量。
幂级数展开求解微分方程
幂级数展开求解微分方程的步骤
首先将微分方程中的未知函数进行幂级数展开,然后代入微分方程中求解系数,最后得 到微分方程的解。

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

(3)求出 x S(t)dt 的幂级数形式,并求其收敛域. 0
解:(1)显 然 该 幂 级 数 的 收 敛 域为 ( 1,1] ;
(2)S'(x)
n1
(1)n1 n
xn
n1
(1)n1 n
xn
(1)n1 xn1, 收敛域为( 1,1);
n1
(3)
x
S(t)dt
0
x 0 n1
bn1 2 bn
an 2 an1
32
5
2
5
3
©
三、幂级数的性质
1. 代数运算性质
设 an xn和 bn xn 的收敛半径各为R1和R2 ,
n0
n0
R minR1, R2
(1) 加减法
an xn bn xn
n0
n0
x (R, R)
©
(2) 乘法 (类似于多形式的乘法)
令余项 则在收敛域上有
例如, 等比级数 它的收敛域是
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
级数发散 ;
幂级数
s( x) u1( x) u2( x) un( x) 定义域
s(x) 的定义域就是 级数的收敛域.
(函余数项,1)项一rn级般((1x数,考)的虑)s部函,(但x分数)只和1有s1ns(在nxx(时)xD),,它ln(i的m1定,s1n)义上( x域,)它是才s(是x)
x
S(t) dt
0
an
n0
x 0
tn
dt
an n0n 1
x n 1 ,
x (R, R )

高数-幂级数的展开-PPT课件

高数-幂级数的展开-PPT课件

n 1 f n 1 R x x x , 介 x 于 与 x 之 , 间 n 0 0 n 1 !
——拉格朗日余项
2.级数收敛的必要条件 3.幂级数及其和函数的性质
1
一、泰勒级数 问题:给定函数 f x, 是否能找到一个幂级数,它在某个区间 内收敛,且其和恰好是给定的函数 f x? 若能找到这样的幂级数,则说函数f (x)在该区间内能展开成 幂级数. 泰勒公式: 若函数 f x在 x 0 某邻域内有直到 n1 阶的导数,则 n f x f x 2 n 0 0 (1) f x f x f x x x x x x x R x 0 0 0 0 0 n 2 ! n ! n 1 f n 1 R x x x , 介 x 与 于 x 之 , 间 n 0 0 n 1 ! ——拉格朗日余项
2 n 0 f x a a x a x a x a 0 f 0 1 2 n 2 n 1 f 0 f x a 2 a x 3 a x na x a 1 1 2 3 n

f n 0 n ! a n 1 n n 1 2 a x f x an n n 1 n! n f 0 f 0 2 n f x f 0 f 0 x x x 得证 2 ! n !
问题: (1)x x0 时, 级数(3)是否收敛? (2)若级数(3)收敛, 是否收敛于 f x?
n f x f x 2 n 0 0 x f x 则 f x 设 在 定理 : 在该邻域内能展 f x f x f x x x x x x x 某邻域内有任意阶导数, 0 0 0 0 0 0 2 ! n ! 成泰勒级数(3)的充分必要条件是

精选数学分析函数的幂级数展开讲解讲义

精选数学分析函数的幂级数展开讲解讲义

,
f (n)(0) (1)n1(n 1)! ,
所以 ln(1 x)的麦克劳林级数是
x x2 x3 x4 (1)n1 xn .
(5)
234
n
用比式判别法容易求得级数(5)的收敛半径 R 1, 且 当 x 1 时收敛, x 1 时发散, 故级数(5)的收敛域 是 (1, 1]. 下面讨论在 (1, 1] 上它的余项的极限. 当 0 x 1 时, 对拉格朗日型余项, 有
x n1 (0
1).
显见
|
Rn (
x)
|
e|x| (n 1)!
|
x
|n1
.
y
对任何实数 x, 都有
6
lim e|x| | x |n1 0,
4
n (n 1)!
2
因而
lim
n
Rn
(
x)
0.
1 O 2
y ex
(n 2) (n 0)
1
2x
ex 1 1 x 1 x2 1 xn , x (, ).
x)(1
)n
x n1 , 0
1.
二、初等函数的幂级数展开式
例2 求k次多项式函数 f ( x) c0 c1x c2 x2
的幂级数展开式. 解 由于
ck xk
f
(
n
)
(0)
n!cn , 0,
n k, n k,
总有
lim
n
Rn
(
x
)
0,
因而
f ( x) f (0) f (0)x f (0) x2 2!
充分条件是: 对一切满足不等式 | x x0 | r的 x , 有
lim

函数的幂级数展开式ppt课件泰勒级数课件

函数的幂级数展开式ppt课件泰勒级数课件

o
x0
P104,条件1,2
y f (x)
x
Pn的确定
Pn( x) a0 a1( x x0 ) a2( x x0 )2 an( x x0 )n
分析: f (x0) Pn(x0) a0
f (x0) Pn(x0) 1 a1 f (x0) Pn(x0) 2!a2
an
1 n!
代换 恒等变形
求导,积分
数项级数求和
无穷级数
特殊:数项级数
特殊:交正错项
一般:
一般:函数项级数
特殊:幂级数 一般:
判定敛散性
求R,收敛域 求和函数,
2. 数项级数求和
(1)e x 1 x 1 x2 2!
1 xn
n!
n0
1 n!
xn
此公式对应了无数个求和公式!
x0 )n
称为点 x0 处泰勒级数
f (x) 的泰勒级数 :
f (x)
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 ) (x n!
x0 )n
n0
f
(n)( x0 )( x n!
x0 )n
不一定!
2 定理1 设函数 f (x) 在点 x0 的某一邻域
内具有
各阶导数, 则 f (x) 在该邻域内能展成泰勒级数的 充要条件是 f (x) 的__________余项满足:___________
理解1:
f (x) 的 n 阶泰勒公式
f (x) f (x0 ) f (x0 )(x x0 )
f
( x0 2!

函数的幂级数展开(精选)PPT37页

函数的幂级数展开(精选)PPT37页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
函数的幂级数展开(精选)
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。 Nhomakorabea▪
谢谢!
37

数学分析14.2函数的幂级数展开

数学分析14.2函数的幂级数展开

第十四章 幂级数 2 函数的幂级数展开一、泰勒级数概念:若函数f 在点x 0的某邻域上存在直至n+1阶的连续导数,则去除泰勒公式的拉格朗日型余项R n (x)=1n 01)(n )x x (1)!(n )ξ(f ++-+后所得级数: n00n 0(n))x -(x n!)(x f ∑∞==f(x 0)+f ’(x 0)(x-x 0)+2!)(x f 0''(x-x 0)2+…+ n!)(x f 0(n)(x-x 0)n +… 称为函数f 在x 0处的泰勒级数.例1:证明:函数f(x)=⎪⎩⎪⎨⎧=≠0x ,00x ,e 2x1- 在x=0处的泰勒级数收敛,但不收敛于函数本身.证:∵在x=0处,f (n)(0)=0, n=1,2,…,∴f 在x=0处的泰勒级数为 0+0·x+2!0·x+…+n!0·x+…,它在(-∞,+∞)上收敛,且其和函数S(x)=0, 显见,对于一切x ≠0,f(x)≠S(x),得证!定理14.11:设f 在点x 0具有任意阶导数,那么f 在区间(x 0-r,x 0+r)上等于它的泰勒级数的和函数的充分条件是:对一切满足不等式|x-x 0|<r 的x ,有∞n lim →R n (x)=0,其中R n (x)是f 在x 0处的泰勒公式余项.注:若f 在点x 0的某邻域上等于其泰勒级数的和函数,则称函数f 在点x 0的这一邻域上可以展开成泰勒级数,并称等式:f(x)=f(x 0)+f ’(x 0)(x-x 0)+2!)(x f 0''(x-x 0)2+…+ n!)(x f 0(n)(x-x 0)n +…右边为f 在x 0处的泰勒展开式,或称幂级数展开式,其具有唯一性. 当x 0=0时,n 0n (n)x n!(0)f ∑∞==f(0)+f ’(0)x+2!(0)f ''x 2+…+ n!(0)f (n)x n +…称为f 的麦克劳林级数.积分型余项:R n (x)=nx 01)(n )t x ((t)f n!1-⎰+dt ; 拉格朗日型余项:R n (x)=1n 01)(n )x x (1)!(n )ξ(f ++-+, ξ在0和x 之间; 柯西余项:R n (x)=1n n 1)(n x )θ1)(θx (f n!1++-, 0≤θ≤1.二、初等函数的幂级数展开式例2:证明k 次多项式函数f(x)=c 0+c 1x+c 2x 2+…+c k x k 的展开式是它本身. 证:∵f (n)(0)=⎩⎨⎧>≤k n ,0kn ,c !n n ,总有∞n lim →R n (x)=0,∴f(x)=f(0)+f ’(0)x+2!(0)f ''x 2+…+ k!(0)f (k)x k =c 0+c 1x+c 2x 2+…+c k x k ,即多项式函数的幂级数展开式就是它本身.例3:求函数f(x)=e x 的展开式.解:∵f (n)(x)=e x,f (n)(0)=1 (n=1,2,…). ∴R n (x)=1n θxx 1)!(n e ++, 0≤θ≤1. 又对任意实数x ,|R n (x)|≤1n θx x 1)!(n e ++→0 (n →∞),∴∞n lim →R n (x)=0. ∴e x=1+x+2!1x 2+…+n!1x n+…=∑∞=0n n n!x ,|x|<+∞.例4:求sinx 和cosx 的展开式. 解:∵(sinx)(n)=sin(x+2n π), (n=1,2,…);又(sin0) (2k)=0, (sin0)(2k-1)=(-1)k+1. ∴|R n (x)|=1)!(n x 2π1)(n ξsin 1n +⋅⎪⎭⎫ ⎝⎛+++≤1)!(n x 1n ++→0 (n →∞),∴∞n lim →R n (x)=0.∴sinx=x-3!1x 3 +5!1x 5+…+1)!(2n x (-1)12n n +++…=∑∞=++0n 12n n 1)!(2n x (-1),|x|<+∞.逐项求导得:cosx=1-2!1x 2+4!1x 4+…+(2n)!x (-1)2n n +…=∑∞=0n 2n n (2n)!x (-1),|x|<+∞.例5:求下列函数的展开式:(1)f(x)=ln(1+x);(2)f(x)=lnx 在x=1处. 解:(1)∵f (n)(x)=n1-n x )1(1)!-(n )1(+-,f (n)(0)=(-1)n-1(n-1)!, (n=1,2,…). 对f 的麦克劳林级数x-21x 2 +31x 3 +…+(-1)n-1n1x n +…求收敛半径R=n(-1)1)(n (-1)lim n 1-n ∞n +→=1,又当x=1时,收敛;当x=-1时,发散, ∴该级数的收敛域是(-1,1]. 当0≤x ≤1时,|R n (x)|=1n 1n n x ξ)(11)!(n n!)1(++++- =1n n ξ1x 1n )1(+⎪⎪⎭⎫ ⎝⎛++-≤1n 1+→0 (n →∞), 当-1<x<0时,|R n (x)|=1n n 1n n x θ)(1θx)(1n!n!)1(++++-=n1n θx 1θ1θx 1x ⎪⎭⎫⎝⎛+-++, 0≤θ≤1.∵0≤θx 1θ1+-≤1, ∴|R n (x)|≤θx1x 1n ++≤x 1x 1n -+→0 (n →∞). ∴∞n lim →R n (x)=0.从而ln(1+x)=x-21x 2 +31x 3 +…+(-1)n-1n 1x n+…=∑∞=1n n 1-n n x (-1), x ∈(-1,1].(2)设1+t=x ,则lnx=ln(1+t), t ∈(-1,1]. ∵ln(1+t) =∑∞=1n n1-n n t (-1), t ∈(-1,1].∴lnx 在x=1处的展开式为:lnx =∑∞=1n n1-n n )1-(x (-1), x ∈(0,2].例6:讨论二项式函数f(x)=(1+x)a 的展开式.解:当a 为正整数时,二项式展开式为f(x)=0a C +1a C x+2a C x 2+…+a a C x a; 当a 不等于正整数时,f (n)(x)=a(a-1)…(a-n+1)(1+x)a-n , n=1,2,… f (n)(0)=a(a-1)…(a-n+1), n=1,2,…对f(x)的麦克劳林级数 1+ax+2!1)-a(a x 2+…+n!1)+n -(a …1)-a(a x n+…求收敛半径 R=n)-(a …1)-a(a n!1)+n -(a …1)-a(a 1)!(n lim∞n +→=1,又当x=±1时,若a ≤-1, 发散;若-1<a<0, x=1收敛, x=-1发散;若a>0, 收敛. ∴收敛域不确定.又当|x|<1时,R n (x)=1-a n1n )θx 1(θx 1θ1x n!n)-(a 1)-a(a +⎪⎭⎫ ⎝⎛+-⋯+, 0≤θ≤1.由级数∑∞=+⋯0n 1n x n!n)-(a 1)-a(a 在(-1,1)收敛,知1n ∞n x n!n)-(a 1)-a(a lim+→⋯=0. 又0≤θx 1θ1+-≤1, ∴0<1-a n)θx 1(θx 1θ1+⎪⎭⎫ ⎝⎛+-≤(1+θx)a-1<(1+|x|)a-1≤2a-1.∴∞n lim →R n (x) =1-a n1n ∞n )θx 1(θx 1θ1x n!n)-(a 1)-a(a lim +⎪⎭⎫⎝⎛+-⋯+→=0. 从而有 (1+x)a=1+ax+2!1)x -a(a 2+…+n!1)x +n -(a …1)-a(a n +…=1+∑∞=1n nn!1)x +n -(a …1)-a(a , |x|<1.注:当a=-1时,x 11+=1-x+x 2+…+(-1)n x n+…=∑∞=-0n n n x )1(, |x|<1.当a=-21时,x11+=1-21x+4231⋅⋅x 2+…+(-1)n !)!n 2(!!1)-(2n x n +…=1+∑∞=1n n nx !)!n 2(!!1)-(2n (-1)=∑∞=++0n n n x 1)(2n !)!n 2(!!1)(2n (-1), x ∈(-1,1].例7:求下列函数的展开式: (1)2x 11+;(2)2x11-;(3)arctanx ;(4)arcsinx. 解:(1)记t=x 2, ∵t 11+=∑∞=-0n n n t )1(, |t|<1. ∴2x 11+=∑∞=-0n 2nn x )1(, |x|<1. (2)记t=-x 2, ∵t11+=∑∞=++0n n nt 1)(2n !)!n 2(!!1)(2n (-1), t ∈(-1,1].∴2x 11-=∑∞=++0n 2n x 1)(2n !)!n 2(!!1)(2n , |x|<1.(3)对(1)逐项求积:arctanx=∑∞=++-0n 12n n12n x )1(, |x|<1.(4)对(2)逐项求积:arcsinx=∑∞=+++0n 212n )1n 2(!)!n 2(x !!1)(2n , |x|≤1.例8:求下列函数在x=0处的幂级数展开式: (1)f(x)=(1-x)ln(1-x);(2)f(x)=lnx1x1-+. 解:(1)记t=1-x ∈(0,2), ∵lnt 在t=1处的幂级数展开式为:lnt=∑∞=1n n1-n n )1-(t (-1), t ∈(0,2]. ∴ln(1-x) 在x=0处的幂级数展开式为:ln(1-x)=∑∞=-1n nnx , x ∈[-1,1).∴(1-x)ln(1-x)=∑∞=+1n 1n n x -∑∞=1n n n x =∑∞=2n n 1-n x -∑∞=2n n n x -x =-x+∑∞=2n n1)-n(n x , x ∈[-1,1).(2)∵ln(1+x)=∑∞=1n n 1-n n x (-1), x ∈(-1,1];ln(1-x)=∑∞=-1n nnx , x ∈[-1,1). ∴lnx1x1-+在x=0处的幂级数展开式为: ln x 1x 1-+=ln(1+x)-ln(1-x)=∑∞=1n n 1-n n x (-1)+∑∞=1n n n x =2∑∞=1n 1-2n 1-2n x , x ∈(-1,1).例9:计算ln2的近似值,精确到0.0001.解:由ln x 1x 1-+=2∑∞=1n 1-2n 1-2n x , x ∈(-1,1). 当x=31时,ln2=21-2n 1n 311-2n 1⋅∑∞=.又 0<R n =2⎪⎭⎫⎝⎛⋯+⋅++⋅+++32n 12n 3132n 13112n 1<⎪⎭⎫ ⎝⎛⋯+++++4212n 313111)(2n 32=212n 31111)(2n 32-⋅++=1)(2n 3411-2n +⋅. 当n=4时,0<R n <73941⋅⋅<0.0001. ∴ln2≈21-2n 41n 311-2n 1⋅∑==2⎪⎭⎫⎝⎛⋅+⋅+⋅+75331713151313131≈0.6931.例10:用间接方法求非初等函数F(x)=⎰x0t -2e dt 的幂级数展开式.解:记x=-t 2, 由e x=∑∞=0n n n!x ,|x|<+∞,得2-t e =∑∞=-0n n 2n n!t )1(,|t|<+∞. 又R=1n n ∞n a a lim +→=n!)1(1)!(n )1(lim 1n n ∞n +→-+-=+∞,∴∑∞=-0n n2n n!t )1(在(-∞,+∞)内闭一致收敛. ∴⎰x0t -2e dt=∑⎰∞=-0n xn 2n n!t )1(dt=∑∞=++-0n 1n 2n 1)(2n n!x )1(, |x|<+∞.习题1、设函数f 在区间(a,b)上的各阶导数一致有界,即存在M>0,对一切x ∈(a,b),有|f (n)(x)|≤M, n=1,2,…. 证明:对任意x,x 0∈(a,b)有f(x)=∑∞=-0n n 00)n ()x x (!n )x (f , (f(0)(x)=f(x), 0!=1). 证:对任意x,x 0∈(a,b),∵|R n (x)|=1n 01)(n )x -(x 1)!(n ) (ξf +++≤1n a)-(b 1)!(n M++→0 (n →∞),由定理14.11可知:f(x)=∑∞=-0n n 00)n ()x x (!n )x (f .2、利用已知函数的幂级数展开式,求下列函数在x=0处的幂级数展开式,并确定它收敛于该函数的区间:(1)2x e ;(2)x 1x 10-;(3)x21x -;(4)sin 2x ;(5)x -1e x ;(6)22x -x 1x +;(7)⎰x 0t sint dt ;(8)(1+x)e -x;(9)ln(x+2x 1+). 解:(1)记t=x 2, 由e t=∑∞=0n n n!t ,|t|<+∞,得2x e =∑∞=0n n 2n!x ,|x|<+∞.(2)∵x 11-=∑∞=0n nx , |x|<1. ∴x 1x 10-=∑∞=+0n 10n x , |x|<1.(3)记t=-2x ,由t11+=∑∞=++0n n nt 1)(2n !)!n 2(!!1)(2n (-1), t ∈(-1,1].得x 211-=∑∞=+⋅+0n n n x 1)(2n !)!n 2(2!!1)(2n =∑∞=++0n n x 1)(2n !n !!1)(2n , x ∈[-21,21). ∴x21x -=∑∞=+++0n 1n x 1)(2n !n !!1)(2n , x ∈[-21,21).(4)sin 2x=2cos2x-1;由cost=∑∞=0n 2n n (2n)!t (-1), |t|<+∞,得cos2x=∑∞=-0n n2n)!(2n (2x ))1(, |x|<+∞.∴sin 2x=21-∑∞=-0n n 2n )!(2n (2x ))1(21=∑∞=+-1n n 21-n 21n x )!(2n 2)1(, |x|<+∞. (5)∵e x=∑∞=0n n !n x , |x|<+∞;x 11-=∑∞=0n n x , |x|<1.∴x -1e x =⎪⎪⎭⎫ ⎝⎛∑∞=0n n !n x ⎪⎭⎫ ⎝⎛∑∞=0n n x =∑∑∞==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛0n n n 0k x !k 1, |x|<1. (6)22x -x 1x +=⎪⎭⎫ ⎝⎛+--x 211x 1131=⎥⎦⎤⎢⎣⎡-∑∑∞=∞=0n n n 0n n (2x)(-1)x 31 =n n 0n ]x (-2)[131-∑∞=, |x|<21. (7)由sint=∑∞=++-0n 1n 2n )!1(2n t )1(,|t|<+∞,得t sint =∑∞=+-0n n 2n )!1(2n t )1(,|t|<+∞.∴⎰xt sintdt=⎰∑∞=+-x 00n n 2n )!1(2n t )1(dt=∑⎰∞=+-0n x 0n 2n )!1(2n t )1(dt=∑∞=+++-0n 1n 2n )!11)(2n (2n x )1(,|x|<+∞.(8)由e t=∑∞=0n n !n t ,|t|<+∞,得e -x=∑∞=0n n n !n x (-1),|x|<+∞,∴(1+x)e -x=∑∞=0n n n !n x (-1)+∑∞=+0n 1n n !n x (-1)=1+∑∞=++1n 1n n !1)(n nx (-1),|x|<+∞.(9)[ln(x+2x 1+)]’=2x 11+,由t11+=1+∑∞=1n nnx !)!n 2(!!1)-(2n (-1), t ∈(-1,1],得 2x 11+=1+∑∞=1n 2nnx !)!n 2(!!1)-(2n (-1), |x|≤1. ∴ln(x+2x 1+)=⎰∑⎥⎦⎤⎢⎣⎡+∞=x1n 2n n t !)!n 2(!!1)-(2n (-1)1dt =x+∑⎰∞=1n x 02n n x !)!n 2(!!1)-(2n (-1)=x+∑∞=++1n 12n nx )1n 2(!)!n 2(!!1)-(2n (-1)=∑∞=+++0n 12n 2nx )1n 2(!)!n 2(!!1)(2n (-1),|x|≤1.3、求下列函数在x=1处的泰勒展开式. (1)f(x)=3+2x-4x 2+7x 3;(2)f(x)=x1.解:(1)f(1)=8;f ’(1)=15;f ”(1)=34;f ”’(1)=42;f (n)(1)=0 (n ≥4). ∴在x=1处,f(x)=8+15(x-1)+17(x-1)2+7(x-1)3, |x|<+∞.(2)f(x)=x 1=1)-x (11+=∑∞=0n n n 1)-(x (-1) , |x-1|<1.4、求下列函数的麦克劳林级数展开式: (1))x 1)(x 1(x 2--;(2)xarctanx-ln 2x 1+. 解:(1)令)x 1)(x 1(x 2--=x )1()x 1(x 2+-=x 1A -+2x )1(B -+x1C+, 可得A=-41,B=21,C=-41. ∴)x 1)(x 1(x 2--=-x 1141-⋅+2x )1(121-⋅-x1141+⋅ =-∑∞=0n n x 41-∑∞=0n nn x (-1)41+∑∞=+0n n 1)x (n 21=∑∞=+0n n n ]x 2(-1)-1[n 21, |x|<1. (2)arctanx=∑∞=++-0n 12n n12n x )1(=∑∞=--1n 12n 1-n 1n 2x (-1), |x|<1.ln 2x 1+=21ln(1+x 2)=∑∞=1n 2n1-n n x (-1)21, |x|≤1. ∴xarctanx-ln 2x 1+=∑∞=-1n 2n 1-n 1n 2x (-1)-∑∞=1n 2n 1-n 2n x (-1)=∑∞=-1n 2n 1-n 1)n 2n(2x (-1), |x|<1.5、试将f(x)=lnx 按1x 1x +-的幂展开成幂级数.证:∵ln x 1x1-+=2∑∞=++0n 12n 12n x , |x|<1.∴lnx=x1x 11x 1x11+--+-+=212n 0n x 1x 112n 1+∞=⎪⎭⎫⎝⎛+-+∑, |x|<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2!
n!
显然它在 (?? , ? ? )上收敛, 且其和函数 S ( x ) ? 0. 由
此看到, 对一切 x ? 0 都有 f ( x ) ? S ( x ) .
上例说明, 具有任意阶导数的函数 , 其泰勒级数并不
都能收敛于该函数本身 , 哪怕在很小的一个邻域内 .
那么怎样的函数 , 其泰勒级数才能收敛于它本身呢 ?

0与
x
之间,
Rn ( x ) ?
1 n!
f
( n? 1) (?
x )(1 ? ? )n x n?1,0
?
?
?
1.
前页 后页 返回
二、初等函数的幂级数展开式
例2 求k次多项式函数 f ( x ) ? c0 ? c1 x ? c2 x 2 ?
的幂级数展开式 . 解 由于
? ck x k
f
(n)(0) ?
例1 由于函数
f
(x)
?
?? ?
?
e
1 x2
,
?? 0,
x ? 0, x?0
在 x ? 0 处的任意阶导数都等于 0 (见第六章§ 4 第
二段末尾), 即
前页 后页 返回
f (n) (0) ? 0 , n ? 1,2, ,
因此 f 在 x ? 0 的泰勒级数为
0 ? 0?x ? 0 x 2 ? ? 0 x n ? .
即多项式函数的幂级数展开式就是它本身 .
例3 求函数 f (x) = ex 的幂级数展开式 .
解 由于 f (n) ( x ) ? ex , f (n)(0) ? 1( n ? 1,2, ), 因此 f
的拉格朗日余项为
Rn ( x )
?
e? x (n ? 1)!
x n?1(0 ?
?
?
1).
显见
前页 后页 返回
再进一步, 设函数 f 在x ? x0 处存在任意阶导数 , 就 可以由函数 f 得到一个幂级数
f (x0) ?
f ?( x0 )( x ? x0 ) ?
f ?(?x0 ) ( x ? 2!
x0 )2 ?
?
f
(n)( x0) (x n!
?
x0 )n
?
,
(3)
前页 后页 返回
通常称 (3) 式为 f 在 x ? x0 处的泰勒级数. 对于级数 (3)是否能在点 x0 附近确切地表达 f , 或者说级数 (3) 在点 x0 附近的和函数是否就是 f 本身, 这就是本节 所要着重讨论的问题 . 请先看一个例子 .
? ? ?
n!cn , 0,
n ? k, n ? k,
总有
lim
n ??
Rn(x) ?
0,
因而
前页 后页 返回
f ( x ) ? f (0) ? f ?(0) x ? f ??(0) x 2 ? 2!
? c0 ? c1 x ? c2 x 2 ? ? ck x k ,
? f (k ) (0) x k k!
数是极为重要的 , 下面我们重新写出当 x0 ? 0 时的
前页 后页 返回
积分型余项、拉格朗日型余项和柯西型余项 , 以便
于后面的讨论 . 它们分别是
? Rn ( x ) ?
1 n!
x 0
f
(n?1) (t )( x ? t )n dt,
Rn ( x )
?
(n
1 ? 1)!
f
(n?1) (? ) x n?1 ,?
1
2x
ex ? 1 ? 1 x ? 1 x 2 ? ? 1 x n ? , x ? (?? , ? ? ).??f(n)(x0) (x n!
?
x0 )n
?
(4)
的右边为 f 在 x ? x0 处的泰勒展开式 , 或幂级数展 开式.
由级数的逐项求导性质可得 :
?
? 若 f 为幂级数 an x n 在收敛区间 (? R, R ) 上的和函 n?0 ?
? 数, 则 an x n 就是 f 在 (? R, R )上的泰勒展开式 , n?0
前页 后页 返回
定理14.11 设 f 在点 x0 具有任意阶导数 , 那么 f 在
区间( x0 ? r , x0 ? r )上等于它的泰勒级数的和函数的
充分条件是 : 对一切满足不等式 | x ? x0 |? r的 x , 有
lim
n ??
Rn(x )
?
0,
这里 Rn ( x )是f 在点 x0 泰勒公式的余项 .
前页 后页 返回
即幂级数展开式是惟一的 .
在实际应用上 , 主要讨论函数在 x0 ? 0 处的展开式 , 这时(3)式就变成
f (0) ? f ?(0) x ? f ?(?0) x 2 ? ? f (n)(0) x n ? ,
1!
2!
n!
称为麦克劳林级数 .
从定理14.11知道, 余项对确定函数能否展开为幂级
的某邻域内存在直至 n+1阶的连续导数 , 则
f (x) ?
f (x0) ?
f ?( x0 )( x ? x0 ) ?
f
?(?x0 ) ( x 2!
?
x 0 )2
?
?
f
(n)(x0) (x n!
?
x0 )n
?
Rn ( x ),
(1)
这里为 Rn ( x )拉格朗日型余项
Rn(x ) ?
f (n?1) (? )
本定理的证明可以直接从第六章§ 3泰勒定理推出 .
如果 f 能在点 x0的某邻域上等于其泰勒级数的和函
数, 则称函数 f 在点 x0 的这一邻域内可以展开成泰
勒级数, 并称等式
前页 后页 返回
f (x) ?
f (x0) ?
f ?( x0 )( x ? x0 ) ?
f
?(?x0 ) ( x 2!
?
x0 )2
|
Rn ( x ) |?
e|x| (n ? 1)!
|
x
|n ? 1
.
y
对任何实数 x, 都有
6
lim e|x| | x |n?1 ? 0,
4
n?? (n ? 1)!
2
因而
lim
n ??
Rn
(x)
?
0.
由定理 14.11 得到
(n ? 3) ? 1 O ?2
y ? ex
(n ? 2) (n ? 0)
§2 函数的幂级数展开
由泰勒公式知道 , 可以将满足一定条件的 函数表示为一个多项式与一个余项的和 . 如 果能将一个满足适当条件的函数在某个区间 上表示成一个幂级数 , 就为函数的研究提供 了一种新的方法.
一、泰勒级数 二、初等函数的幂级数展开式
前页 后页 返回
一、泰勒级数
在第六章§ 3的泰勒定理中曾指出 , 若函数f在点x0
(x (n ? 1)!
?
x0 )n?1,
(2)
前页 后页 返回
其中? 在x与x0之间, 称(1)式为 f 在点 x0的泰勒公式 .
由于余项 Rn ( x ) 是关于 ( x ? x0 )n 的高阶无穷小 , 因此 在点 x0 附近 f 可用(1)式右边的多项式来近似代替 ,
这是泰勒公式带来的重要结论 .
相关文档
最新文档