2018年高考数学考试大纲解读专题16不等式选讲理
2018年高考数学考试大纲解读 专题16 不等式选讲 理
专题16 不等式选讲选考内容(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b +≤+ .(2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:||||||.⋅≥⋅αβαβ(2)22222()(+)()a b c d ac bd +≥+.(3(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题.6.会用数学归纳法证明伯努利不等式:了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、 柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.考向一 绝对值不等式的求解样题1 (2017新课标全国Ⅰ理科)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.所以a 的取值范围为[1,1]-.【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.考向二含绝对值不等式的恒成立问题样题2 已知函数.(1)当时,求的解集;(2)若不等式对任意实数恒成立,求的取值范围.样题3 已知函数.(1)若不等式的解集为,求实数的值;(2)若不等式对任意恒成立,求实数的取值范围.【解析】(1)由题意知,不等式的解集为,由得,∴,解得.(2)不等式等价于,因为不等式对任意恒成立,所以,因为,- 3 -所以,解得或.考向三不等式的证明样题4 已知函数的单调递增区间为.(1)求不等式的解集;(2)设,证明:.百度文库是百度发布的供网友在线分享文档的平台。
2018年高考数学不等式选讲分类汇编
2018年高考数学不等式选讲分类汇编 解答题1.【2018全国一卷23】已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.2.【2018全国二卷23】设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.3.【2018全国三卷23】设函数.(1)画出的图像;(2)当,,求的最小值.()5|||2|f x x a x =-+--1a =()0f x ≥()1f x ≤a ()211f x x x =++-()y f x =[)0x +∞∈,()f x ax b +≤a b+4.【2018江苏卷21D 】若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.参考答案解答题1.解: (1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >. (2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].2.解:(1)当时, 可得的解集为.(2)等价于.1a =24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()0f x ≥{|23}x x -≤≤()1f x ≤|||2|4x a x ++-≥而,且当时等号成立.故等价于. 由可得或,所以的取值范围是.3.解:(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.4.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, |||2||2|x a x a ++-≥+2x =()1f x ≤|2|4a +≥|2|4a +≥6a ≤-2a ≥a (,6][2,)-∞-+∞13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x=()y f x =y 233a ≥2b ≥()f x ax b ≤+[0,)+∞a b +5所以222++的最小值为4.x y z。
2018届高三数学(文理通用)不等式选讲解题方法规律技巧详细总结版
2018届高三理科数学不等式选讲解题方法规律技巧详细总结版【简介】不等式选讲是新课标的新增内容,也是选考内容.从能力要求上看,主要考查学生了解不等式、应用不等式的能力,分析问题和解决问题的能力.(1)考查含绝对值不等式的解法与含绝对值符号的函数的最值、恒成立问题;(2)考查了不等式的证明,会用综合法,分析法等证明不等式,往往难度不大,加以适当的训练是完全可以掌握的.【3年高考试题比较】不等式选讲内容,在高考题中以选作的形式出现,难度一般不大,比较这三年的高考题,出现频率较高的有:解绝对值不等式,作含绝对值的函数图像,含参的绝对值恒成立有解问题,不等式证明,一般以分析法证明为主.【必备基础知识融合】1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c;(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.3.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.(1)比较法①求差比较法知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明a-b>0即可,这种方法称为求差比较法.②求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明a b>1即可,这种方法称为求商比较法. (2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.4.几个常用基本不等式 (1)柯西不等式:①柯西不等式的代数形式:设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2(当且仅当ad =bc 时,等号成立).②柯西不等式的向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.③柯西不等式的三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R , 则(x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 3)2+(y 1-y 3)2.④柯西不等式的一般形式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. (2)算术—几何平均不等式若a 1,a 2,…,a n 为正数,则a 1+a 2+…+a n n≥a 1=a 2=…=a n 时,等号成立.【解题方法规律技巧】典例1:(1)对任意x ,y ∈R ,求|x -1|+|x |+|y -1|+|y +1|的最小值. (2)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,求|x -2y +1|的最大值.【规律方法】求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区间法.典例2:设a,b,c>0,且ab+bc+ca=1.求证:(1)a+b+c≥ 3.(2)abc+bac+cab≥3(a+b+c).【规律方法】当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.典例3:已知a>0,b>0,a+b=1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9. 证明 (1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab=2⎝ ⎛⎭⎪⎫1a +1b=2⎝⎛⎭⎪⎫a +b a +a +b b =2⎝ ⎛⎭⎪⎫b a +a b +4≥4b a ×ab+4=8. ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立). (2)∵⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =1a +1b +1ab+1,由(1)知1a +1b +1ab≥8.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9.【规律方法】(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.典例4:已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.【规律方法】(1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边常数且应注意等号成立的条件.典例5:已知不等式.(1)当时,求不等式的解集;(2)若不等式的解集为,求的范围.【答案】(Ⅰ);(Ⅱ)是【解析】试题分析:试题解析:(1)由已知,可得当时,若,则,解得若,则,解得若,则,解得综上得,所求不等式的解集为;(2)不妨设函数,则其过定点,如图所示,由(1)可得点,由此可得,即. 所以,所求实数的范围为.【规律方法】(1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.典例6:(1)解关于的不等式(2)关于的不等式有解,求实数的范围。
2018届高考理科数学二轮专题复习讲义 不等式选讲
专题八 选修系列第2讲 不等式选讲考情考向分析本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点分类突破热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a .(2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R.(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6.当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅; 当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4. 综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎡⎦⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)证明 由柯西不等式,有 (-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值.解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1, 解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc +3abc ≥23abc·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4,即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。
2018年高考数学考试大纲解读 专题10 不等式、推理与证明 理
专题10 不等式、推理与证明(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 3.二元一次不等式组与简单线性规划问题 (1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:0,0)2a ba b +≥≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. (3)了解合情推理和演绎推理之间的联系和差异. 2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.3.数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.从考查题型来看,涉及不等式的题目主要在选择题、填空题中考查二元一次不等式(组)表示的平面区域问题以及简单的线性规划问题,利用基本不等式求解最小(大)值问题,以及基本不等式的实际应用等.而对于推理与证明的考查,选择题、填空题中重点在于考查推理的应用以及学生联想、归纳、假设、证明的数学应用能力,解答题中重点考查数学归纳法.2.从考查内容来看,线性规划重点考查不等式(组)表示的可行域的确定,目标函数的最大(小)值的计算等,重点体现数形结合的特点.推理与证明则主要考查归纳、类比推理,以及综合函数、导数、不等式、数列等知识考查直接证明和间接证明.3.从考查热点来看,通过线性规划求最值、推理是高考命题的热点,考查了学生的数形结合思想以及联想、归纳、假设、证明的能力.考向一比较大小样题1 已知,则m、n、p的大小关系为A.n m p B.n p mC.p n m D.m p n【答案】B考向二一元二次不等式的解法样题2 已知集合,则- 3 -A .B .C .D .【答案】C 【解析】因为,所以.样题3 若不等式的解集为,则不等式的解集为A .或B .C .D .或【答案】B考向三 目标函数的最值问题样题4 (2017新课标全国Ⅱ理科)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是 A .15- B .9- C .1 D .9【答案】A【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2()3)56(1z --=⨯+=-,故选A .【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大. 样题5 已知,x y 满足22416x y x y +≥+≤⎧⎨⎩,则226825z x x y y =++++的取值范围是A .121,812⎡⎤⎢⎥⎣⎦B .121,732⎡⎤⎢⎥⎣⎦C .[]65,73 D .[]65,81【答案】A考向四 利用线性规划解决实际问题样题6某颜料公司生产两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果产品的利润为300元/吨,产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为A.14000元B.16000元C.16000元D. 20000元A【答案】所以工厂每天生产产品40吨,产品10吨时,才可获得最大利润,为14000元.选A.考向五推理- 5 -样题7 (2017新课标全国Ⅱ理科)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩【答案】D考向六 数学归纳法样题8 设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.【解析】(1)当n =1时,方程x 2-a 1x -a 1=0有一根为S 1-1=a 1-1, ∴(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.-7 -百度文库是百度发布的供网友在线分享文档的平台。
高考数学(苏教,理科)复习课:第十六章 不等式选讲第二节 不等式的证明及柯西不等式
=131+3+ba+ab+bc+bc+ac+ac2
≥131+3+2
ba·ab+2
=13×(1+9)2=1030.
bc·bc+2
ac ·ac 2
当且仅当a=b=c=13时,等号成立. [类题通法]
分析法与综合法常常结合使用,实际是以分析法为主,借
助综合法,使证明的问题明朗化.
[针对训练] 已知a>0,b>0,2c>a+b,求证:c- c2-ab<a<c+ c2-ab. 证明:法一(分析法) 要证c- c2-ab<a<c+ c2-ab, 即证- c2-ab<a-c< c2-ab, 即证|a-c|< c2-ab, 即证(a-c)2<c2-ab, 即证a2-2ac<-ab. 因为a>0,所以只要证a-2c<-b,
①先假设要证的命题不成立,以此为出发点,结合已知条件, 应用公理、定义、定理、性质等,进行正确的推理,得到和命题的 条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说 明假设不正确,从而证明原命题成立,这种方法叫作反证法.
②证明不等式时,通过把不等式中的某些部分的值放大或缩
小,简化不等式,从而达到证明的目的,这种方法叫作放缩法. 2.几个常用基本不等式 (1)柯西不等式: ①柯西不等式的代数形式:设a1,a2,b1,b2均为实数,
[典例] (2014·南通模拟)若正数a,b,c满足a+b+c=1,
则3a1+2+3b1+2+3c+1 2的最小值为________. 解析:由柯西不等式知:
3a1+2+3b1+2+3c+1 2[(3a+2)+(3b+2)+(3c+
2)]≥
3a1+2×
3a+2+
3b1+2×
高考数学一轮复习鸭部分不等式选讲学案理20180619146
不等式选讲第1课绝对值不等式[过双基]1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解;③构造函数,利用函数的图象求解. [小题速通]1.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1, 所以不等式的解集为{}x |x ≥1. 答案:{x |x ≥1}2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.答案:[-2,4]x|1≤x≤3,则实数k=________.3.若不等式|kx-4|≤2的解集为{}解析:由|kx-4|≤2⇔2≤kx≤6.x|1≤x≤3,∵不等式的解集为{}∴k=2.答案:24.设不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为____________.解析:∵||x+1|-|x-2||≤3,∴-3≤|x+1|-|x-2|≤3,∴k<(|x+1|-|x-2|)的最小值,即k<-3.答案:(-∞,-3)[清易错]1.对形如|f(x)|>a或|f(x)|<a型的不等式求其解集时,易忽视a的符号直接等价转化造成失误.2.绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|中易忽视等号成立的条件.如|a-b|≤|a|+|b|,当且仅当ab≤0时等号成立,其他类似推导.1.设a,b为满足ab<0的实数,那么( )A.|a+b|>|a-b|B.|a+b|<|a-b|C.|a-b|<||a|-|b||D.|a-b|<|a|+|b|解析:选B ∵ab<0,∴|a-b|=|a|+|b|>|a+b|.2.若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.解析:|x-2y+1|=|(x-1)-2(y-2)-2|≤|x-1|+2|y-2|+2≤5.答案:5绝对值不等式的解法[典例] 设函数(1)当a=1时,求不等式f(x)>0的解集;(2)若方程f(x)=x只有一个实数根,求实数a的取值范围.[解] (1)依题意,原不等式等价于: |x +1|-|x -1|+1>0,当x <-1时,-(x +1)+(x -1)+1>0, 即-1>0,此时解集为∅;当-1≤x ≤1时,x +1+(x -1)+1>0, 即x >-12,此时-12<x ≤1;当x >1时,x +1-(x -1)+1>0, 即3>0,此时x >1.综上所述,不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫xx >-12.(2)依题意,方程f (x )=x 等价于a =|x -1|-|x +1|+x , 令g (x )=|x -1|-|x +1|+x .∴g (x )=⎩⎪⎨⎪⎧x +2,x <-1,-x ,-1≤x ≤1,x -2,x >1..画出函数g (x )的图象如图所示,∴要使原方程只有一个实数根,只需a >1或a <-1. ∴实数a 的取值范围是(-∞,-1)∪(1,+∞). [方法技巧](1)求解绝对值不等式的两个注意点:①要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点、分区间、分段讨论.②对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程. (2)求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.[即时演练]1.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6⇒-12≤x ≤12;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:原不等式可化为⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.2.解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2, 即-4<2,显然成立,所以此时不等式的解集为(-∞,1); 当1≤x ≤5时,不等式可化为x -1-(5-x )<2, 即2x -6<2,解得x <4,所以此时不等式的解集为[1,4); 当x >5时,不等式可化为(x -1)-(x -5)<2, 即4<2,显然不成立.所以此时不等式无解. 综上,不等式的解集为(-∞,4).绝对值不等式的证明[典例] 已知x ,y ∈R ,且|x +y |≤6,|x -y |≤4,求证:|x +5y |≤1.[证明] ∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. [方法技巧]绝对值不等式证明的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明.(3)转化为函数问题,数形结合进行证明. [即时演练]已知f (x )=|x +2|-|2x -1|,M 为不等式f (x )>0的解集. (1)求M ;(2)求证:当x ,y ∈M 时,|x +y +xy |<15.解:(1)f (x )=⎩⎪⎨⎪⎧x -3,x <-2,3x +1,-2≤x ≤12,-x +3,x >12,当x <-2时,由x -3>0,得x >3,舍去; 当-2≤x ≤12时,由3x +1>0,得x >-13,即-13<x ≤12;当x >12时,由-x +3>0,得x <3,即12<x <3,综上,M =⎝ ⎛⎭⎪⎫-13,3.(2)证明:∵x ,y ∈M ,∴|x |<3,|y |<3,∴|x +y +xy |≤|x +y |+|xy |≤|x |+|y |+|xy |=|x |+|y |+|x |·|y |<3+3+3×3=15.绝对值不等式的综合应用[典例] (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. [解] (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54,且当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.[方法技巧](1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a .f (x )>a 恒成立⇔f (x )min >a .[即时演练]已知函数f (x )=|x -a |-|2x -1|. (1)当a =2时,求f (x )+3≥0的解集;(2)当x ∈[1,3]时,f (x )≤3恒成立,求a 的取值范围. 解:(1)当a =2时,由f (x )+3≥0, 可得|x -2|-|2x -1|≥-3, ①⎩⎪⎨⎪⎧x <12,2-x +2x -1≥-3或②⎩⎪⎨⎪⎧12≤x <2,2-x -2x +1≥-3或③⎩⎪⎨⎪⎧x ≥2,x -2-2x +1≥-3.解①得-4≤x <12;解②得12≤x <2;解③得x =2.综上所述,不等式的解集为{x |-4≤x ≤2}. (2)当x ∈[1,3]时,f (x )≤3恒成立, 即|x -a |≤3+|2x -1|=2x +2. 故-2x -2≤x -a ≤2x +2, 即-3x -2≤-a ≤x +2,∴-x -2≤a ≤3x +2对x ∈[1,3]恒成立. ∴a ∈[-3,5].1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].2.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).3.(2016·江苏高考)设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.(2013·全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈⎣⎢⎡⎭⎪⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎥⎤-1,43.1.(2018·唐山模拟)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3;(2)若f (x )的最小值为1,求a 的值.解:(1)因为f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪⎪⎪1+a 2,当且仅当(x +1)⎝ ⎛⎭⎪⎫x -a 2≤0且x -a2=0时,取等号.所以⎪⎪⎪⎪⎪⎪1+a 2=1,解得a =-4或0.2.已知函数f (x )=|2x +1|,g (x )=|x -1|+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若对任意x ∈R ,f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x -1|, 两边平方整理得x 2+2x ≥0,解得x ≥0或x ≤-2. 所以原不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )≥g (x ),得a ≤|2x +1|-|x -1|. 令h (x )=|2x +1|-|x -1|,则h (x )=⎩⎪⎨⎪⎧-x -2,x ≤-12,3x ,-12<x <1,x +2,x ≥1.故h (x )min =h ⎝ ⎛⎭⎪⎫-12=-32.故所求实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32. 3.已知函数f (x )=|2x -a |+|2x -1|,a ∈R. (1)当a =3时,求关于x 的不等式f (x )≤6的解集; (2)当x ∈R 时,f (x )≥a 2-a -13,求实数a 的取值范围. 解:(1)当a =3时,不等式f (x )≤6可化为|2x -3|+|2x -1|≤6.当x <12时,不等式可化为-(2x -3)-(2x -1)=-4x +4≤6,解得-12≤x <12;当12≤x ≤32时,不等式可化为-(2x -3)+(2x -1)=2≤6,解得12≤x ≤32; 当x >32时,不等式可化为(2x -3)+(2x -1)=4x -4≤6,解得32<x ≤52.综上所述,关于x 的不等式f (x )≤6的解集为⎩⎨⎧⎭⎬⎫x -12≤x ≤52.(2)当x ∈R 时,f (x )=|2x -a |+|2x -1|≥|2x -a +1-2x |=|1-a |, 所以当x ∈R 时,f (x )≥a 2-a -13等价于|1-a |≥a 2-a -13. 当a ≤1时,等价于1-a ≥a 2-a -13,解得-14≤a ≤1; 当a >1时,等价于a -1≥a 2-a -13,解得1<a ≤1+13, 所以a 的取值范围为[-14,1+13]. 4.已知函数f (x )=|x -a |+|2x +1|. (1)当a =1时,解不等式f (x )≤3;(2)若f (x )≤2a +x 在[a ,+∞)上有解,求a 的取值范围. 解:(1)当a =1时,f (x )≤3化为|x -1|+|2x +1|≤3, 则⎩⎪⎨⎪⎧x <-12,1-x -1-2x ≤3或⎩⎪⎨⎪⎧-12≤x ≤1,1-x +2x +1≤3或⎩⎪⎨⎪⎧x >1,x -1+2x +1≤3,解得-1≤x <-12或-12≤x ≤1或∅.所以原不等式解集为{x |-1≤x ≤1}.(2)因为x ∈[a ,+∞),所以f (x )=|x -a |+|2x +1|=x -a +|2x +1|≤2a +x , 即|2x +1|≤3a 有解,所以a ≥0, 所以不等式化为2x +1≤3a 有解, 即2a +1≤3a ,解得a ≥1, 所以a 的取值范围为[1,+∞). 5.设函数f (x )=|2x -a |+2a .(1)若不等式f (x )≤6的解集为{x |-6≤x ≤4},求实数a 的值;(2)在(1)的条件下,若不等式f (x )≤(k 2-1)x -5的解集非空,求实数k 的取值范围. 解:(1)∵|2x -a |+2a ≤6,∴|2x -a |≤6-2a,2a -6≤2x -a ≤6-2a , ∴32a -3≤x ≤3-a 2. 而f (x )≤6的解集为{x |-6≤x ≤4}, 故有⎩⎪⎨⎪⎧32a -3=-6,3-12a =4,解得a =-2.(2)由(1)得f (x )=|2x +2|-4, ∴不等式|2x +2|-4≤(k 2-1)x -5, 化简得|2x +2|+1≤(k 2-1)x ,令g (x )=|2x +2|+1=⎩⎪⎨⎪⎧2x +3,x ≥-1,-2x -1,x <-1.画出函数y =g (x )的图象如图所示.要使不等f (x )≤(k 2-1)x -5的解集非空,只需k 2-1>2或k 2-1≤-1, 解得k >3或k <-3或k =0,∴实数k 的取值范围为(-∞,-3)∪{0}∪(3,+∞). 6.设函数f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解:(1)显然a ≠0,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a ,则-1a =-6,3a=2,无解;当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,则-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝ ⎛⎭⎪⎫-∞,-14上单调递减,在⎝ ⎛⎭⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,解得m ≤72,故实数m 的取值范围是⎝⎛⎦⎥⎤-∞,72.7.(2018·九江模拟)已知函数f (x )=|x -3|-|x -a |. (1)当a =2时,解不等式f (x )≤-12;(2)若存在实数a ,使得不等式f (x )≥a 成立,求实数a 的取值范围. 解:(1)∵a =2,∴f (x )=|x -3|-|x -2|=⎩⎪⎨⎪⎧1,x ≤2,5-2x ,2<x <3,-1,x ≥3,∴f (x )≤-12等价于⎩⎪⎨⎪⎧x ≤2,1≤-12或⎩⎪⎨⎪⎧2<x <3,5-2x ≤-12或⎩⎪⎨⎪⎧x ≥3,-1≤-12,解得114≤x <3或x ≥3,∴不等式的解集为⎣⎢⎡⎭⎪⎫114,+∞.(2)由不等式性质可知f (x )=|x -3|-|x -a |≤|(x -3)-(x -a )|=|a -3|, ∴若存在实数x ,使得不等式f (x )≥a 成立,则|a -3|≥a ,解得a ≤32,∴实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,32. 8.已知函数f (x )=|2x +1|-|x |+a , (1)若a =-1,求不等式f (x )≥0的解集;(2)若方程f (x )=2x 有三个不同的解,求a 的取值范围. 解:(1)当a =-1时,不等式f (x )≥0可化为 |2x +1|-|x |-1≥0, ∴⎩⎪⎨⎪⎧x <-12,-x +--x -1≥0或⎩⎪⎨⎪⎧-12≤x <0,x +--x -1≥0或⎩⎪⎨⎪⎧x ≥0,x +-x -1≥0,解得x ≤-2或x ≥0,∴不等式的解集为(-∞,-2]∪[0,+∞). (2)由f (x )=2x ,得a =2x +|x |-|2x +1|, 令g (x )=2x +|x |-|2x +1|,则g (x )=⎩⎪⎨⎪⎧3x +1,x <-12,-x -1,-12≤x <0,x -1,x ≥0,作出函数y =g (x )的图象如图所示,易知A ⎝ ⎛⎭⎪⎫-12,-12,B (0,-1),结合图象知:当-1<a <-12时,函数y =a 与y =g (x )的图象有三个不同交点,即方程f (x )=2x 有三个不同的解,∴a 的取值范围为⎝⎛⎭⎪⎫-1,-12.第2课不等式证明[过双基]1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法:依据是a -b >0⇔a >b ;步骤是“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证A B≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.4.柯西不等式(1)设a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则⎝ ⎛⎭⎪⎪⎫∑i =1n a 2i ⎝ ⎛⎭⎪⎪⎫∑i =1n b 2i ≥⎝ ⎛⎭⎪⎪⎫∑i =1n a i b i 2,当且仅当b 1a 1=b 2a 2=…=b n a n (当a i =0时,约定b i =0,i =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α,β共线时等号成立.[小题速通]1.若m =a +2b ,n =a +b 2+1,则m 与n 的大小关系为________. 解析:∵n -m =a +b 2+1-a -2b =b 2-2b +1=(b -1)2≥0,∴n ≥m . 答案:n ≥m2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(填序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b≥2.解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确;a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确;1a +1b=a +b ab =2ab≥2,命题⑤正确.答案:①③⑤3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c的最小值为________.解析:把a +b +c =1代入1a +1b +1c得a +b +c a +a +b +c b +a +b +cc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9[清易错]1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.1.已知a >0,b >0,则a a b b________(ab )a +b2(填大小关系).解析:∵a a b b aba +b 2=⎝ ⎛⎭⎪⎫a b a -b 2,∴当a =b 时,⎝ ⎛⎭⎪⎫a ba -b 2=1,当a >b >0时,ab>1,a -b2>0,∴⎝ ⎛⎭⎪⎫a ba -b 2>1,当b >a >0时,0<a b<1,a -b2<0,则⎝ ⎛⎭⎪⎫a b a -b 2>1, ∴a a b b≥(ab )a +b2.答案:≥2.设x >y >z >0,求证:x -z +8x -y y -z≥6.证明:x -z +8x -yy -z=(x -y )+(y -z )+8x -y y -z≥33x -y y -z8x -y y -z=6.当且仅当x -y =y -z =8x -yy -z时取等号,所以x -z +8x -y y -z≥6.比较法证明不等式[典例] (2018·莆田模拟)设a ,b 是非负实数.求证:a 2+b 2≥ab (a +b ). [证明] (a 2+b 2)-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b ) =(a 12-b 12)(a 32-b 32).因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0, 所以a 2+b 2≥ab (a +b ). [方法技巧]比较法证明不等式的方法和步骤(1)求差比较法:由a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为求差比较法.(2)求商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明a b>1即可,这种方法称为求商比较法.(3)用比较法证明不等式的一般步骤是:作差(商)—变形—判断—结论,而变形的方法一般有配方、通分和因式分解.[即时演练]求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +122+12≥0,所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.综合法证明不等式[典例] 已知a (1)(ax +by )2≤ax 2+by 2;(2)⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. [证明] (1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy , 因为a +b =1,所以a -1=-b ,b -1=-a ,又a ,b 均为正数, 所以a (a -1)x 2+b (b -1)y 2+2abxy =-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立. 所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2=4+a 2+b 2+⎝ ⎛⎭⎪⎫1a 2+1b 2 =4+a 2+b 2+a +b2a 2+a +b 2b 2=4+a 2+b 2+1+2ba +b 2a 2+a 2b 2+2a b+1=4+(a 2+b 2)+2+⎝ ⎛⎭⎪⎫2b a +2a b +⎝ ⎛⎭⎪⎫b 2a 2+a 2b 2≥6+a +b 22+4+2=252,当且仅当a =b =12时,等号成立,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.[方法技巧]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +ba≥2(ab >0); a b +ba≤-2(ab <0). [即时演练]设a ,b ,c 均为正数,且a +b +c =1,求证: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.[典例] 设a ,b 求证:(1)a +b +c ≥ 3. (2)a bc +b ac + cab≥3(a +b +c ). [证明] (1)要证a +b +c ≥3, 由于a ,b ,c >0,因此只需证明(a +b +c )2≥3. 即证a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证a 2+b 2+c 2≥ab +bc +ca . 而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立. (2)a bc +b ac+ c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立, 只需证明1abc≥ a +b +c ,即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.所以a bc +b ac +c ab ≤ab +bc +ca 当且仅当a =b =c =33时等号成立. 所以原不等式成立. [方法技巧]1.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真. 2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab , 即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+a +b24(a +b )=2+a +b34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |.3.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件. 4.(2014·全国卷Ⅰ)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3. 由于43>6,从而不存在a ,b , 使得2a +3b =6.1.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1.证明:∵a >0,b >0,a +b =2, ∴a 2a +1+b 2b +1-1=a 2b ++b2a +-a +b +a +b +=a 2b +a 2+b 2a +b 2-ab -a -b -1a +b +=a 2+b 2+ab a +b -ab -a +b -1a +b +=a 2+b 2+2ab -ab -3a +b +=a +b 2-3-aba +b +=1-aba +b +.∵a +b =2≥2ab ,∴ab ≤1. ∴1-aba +b +≥0.∴a 2a +1+b 2b +1≥1.2.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3. 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明:由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.3.(2018·云南统一检测)已知a 是常数,对任意实数x ,不等式|x +1|-|2-x |≤a ≤|x +1|+|2-x |都成立.(1)求a 的值;(2)设m >n >0,求证:2m +1m 2-2mn +n 2≥2n +a .解:(1)设f (x )=|x +1|-|2-x |, 则f (x )=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,∴f (x )的最大值为3.∵对任意实数x ,|x +1|-|2-x |≤a 都成立,即f (x )≤a , ∴a ≥3.设h (x )=|x +1|+|2-x |, 则h (x )=⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2,则h (x )的最小值为3.∵对任意实数x ,|x +1|+|2-x |≥a 都成立,即h (x )≥a ,∴a ≤3. ∴a =3.(2)证明:由(1)知a =3. ∵2m +1m 2-2mn +n 2-2n =(m -n )+(m -n )+1m -n2,且m >n >0,∴(m -n )+(m -n )+1m -n2≥33m -n m -n1m -n2=3.∴2m +1m 2-2mn +n 2≥2n +a .4.已知x ,y ,z 是正实数,且满足x +2y +3z =1. (1)求1x +1y +1z的最小值;(2)求证:x 2+y 2+z 2≥114.解:(1)∵x ,y ,z 是正实数,且满足x +2y +3z =1, ∴1x +1y +1z =⎝ ⎛⎭⎪⎫1x +1y +1z (x +2y +3z )=6+2y x+3z x+x y+3z y+x z +2yz≥6+22+23+26,当且仅当2y x =x y 且3z x =x z 且3z y =2yz时取等号.(2)由柯西不等式可得1=(x +2y +3z )2≤(x 2+y 2+z 2)(12+22+32) =14(x 2+y 2+z 2), ∴x 2+y 2+z 2≥114,当且仅当x =y 2=z 3,即x =114,y =17,z =314时取等号.故x 2+y 2+z 2≥114.5.(2018·石家庄模拟)已知函数f (x )=|x |+|x -1|. (1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab . 解:(1)由绝对值不等式的性质知f (x )=|x |+|x -1|≥|x -x +1|=1,∴f (x )min =1, ∴只需|m -1|≤1, 即-1≤m -1≤1, ∴0≤m ≤2,∴实数m 的最大值M =2.(2)证明:∵a 2+b 2≥2ab ,且a 2+b 2=2, ∴ab ≤1,∴ab ≤1,当且仅当a =b 时取等号.① 又ab ≤a +b2,∴ab a +b ≤12, ∴ab a +b ≤ab 2,当且仅当a =b 时取等号.② 由①②得,ab a +b ≤12,∴a +b ≥2ab . 6.(2018·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4. ①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当1<x <2时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤1时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1,所以1m +12n=1(m >0,n >0),所以m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n=2+m 2n +2nm ≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.已知a ,b ,c ,d 均为正数,且ad =bc . (1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)若t ·a 2+b 2·c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围. 解:(1)证明:由a +d >b +c ,且a ,b ,c ,d 均为正数, 得(a +d )2>(b +c )2,又ad =bc , 所以(a -d )2>(b -c )2,即|a -d |>|b -c |.(2)因为(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2=(ac +bd )2, 所以t ·a 2+b 2·c 2+d 2=t (ac +bd ). 由于a 4+c 4≥ 2ac, b 4+d 4≥ 2bd ,又已知t ·a 2+b 2·c 2+d 2= a 4+c 4+b 4+d 4,则t (ac +bd )≥ 2(ac +bd ),故t ≥ 2,当且仅当a =c ,b =d 时取等号. 所以实数t 的取值范围为[2,+∞). 8.已知函数f (x )=|x -1|. (1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f ab |a |>f ⎝ ⎛⎭⎪⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎝ ⎛⎦⎥⎤-∞,-103∪[2,+∞). (2)证明:f ab |a |>f ⎝ ⎛⎭⎪⎫b a 等价于f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a ,即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.阶段滚动检测(六)全程仿真验收(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A },则集合B 中的元素个数为( )A .9B .6C .4D .3解析:选D 集合A ={1,2,3},B ={(x ,y )|x +y -4>0,x ,y ∈A }={(2,3),(3,2),(3,3)},则集合B 中的元素个数为3.2.若复数2a +2i1+i (a ∈R)是纯虚数,则复数2a +2i 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B2a +2i1+i=a +-+-=2a +2+-2a 2,由题意可知2a +2=0且2-2a ≠0,所以a =-1,则复数2a +2i 在复平面内对应的点(-2,2)在第二象限.3.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 因为x ∈(-∞,0)时,2x3x =⎝ ⎛⎭⎪⎫23x >1,所以2x >3x,故命题p 是假命题;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,cos x <1,是真命题,则綈p 是真命题,綈q 是假命题,故(綈p )∧q是真命题.4.某几何体的三视图如图所示,则该几何体的体积为( )A .1+2πB .1+4π3C .1+π2D .1+π6解析:选D 由三视图可知,该几何体是一个组合体,上面是一个半径为12的球,下面是一个棱长为1的正方体,所以该几何体的体积V =4π3·⎝ ⎛⎭⎪⎫123+1=1+π6.5.函数y =x 22x -2-x 的图象可能是( )解析:选C 因为f (-x )=x 22-x -2x =-f (x ),即函数y =x 22x -2-x 是奇函数,故排除B 、D ;当x >0,且x →+∞时,y →0,故排除A ,因此选C.6.执行如图所示的程序框图,如果输入的m ,n 分别为1 848,936,则输出的m 的值为( )A .168B .72C .36D .24解析:选D 根据题意,运行程序:m =1 848,n =936;r =912,m =936,n =912;r =24,m =912,n =24;r =0,m =24,n =0,此时满足条件,循环结束,输出m =24,故选D.7.如图,Rt △ABC 中,AB =AC ,BC =4,O 为BC 的中点,以O 为圆心,1为半径的半圆与BC 交于点D ,P 为半圆上任意一点,则BP ―→·AD ―→的最小值为( )A .2+ 5 B. 5 C .2D .2- 5解析:选D 建立如图所示的平面直角坐标系,则B (-2,0),A (0,2),D (1,0),设P (x ,y ),故BP ―→=(x +2,y ),AD ―→=(1,-2),所以BP ―→·AD ―→=x -2y +2.令x -2y +2=t ,根据直线的几何意义可知,当直线x -2y +2=t 与半圆相切时,t 取得最小值,由点到直线的距离公式可得|2-t |5=1,t =2-5,即BP ―→·AD ―→的最小值是2- 5.8.将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,若所得图象与原图象重合,则f ⎝ ⎛⎭⎪⎫π24不可能等于( ) A .0 B .1 C.22D.32解析:选 D 将函数f (x )=cos ωx (ω>0)的图象向右平移π3个单位,得函数y =cos ⎝⎛⎭⎪⎫ωx -ωπ3,由题意可得ωπ3=2k π,k ∈Z ,因为ω>0,所以ω=6k >0,k ∈Z ,则f ⎝ ⎛⎭⎪⎫π24=cosωπ24=cos k π4,k ∈Z ,显然,f ⎝ ⎛⎭⎪⎫π24不可能等于32,故选D. 9.(2017·郑州二模)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1,则z =2|x -2|+|y |的最小值是( )A .6B .5C .4D .3解析:选 C 作出不等式组⎩⎪⎨⎪⎧y ≥x +2,x +y ≤6,x ≥1表示的可行域如图中阴影部分所示,其中A (2,4),B (1,5),C (1,3),∴x ∈[1,2],y ∈[3,5].∴z =2|x -2|+|y |=-2x +y +4,当直线y =2x -4+z 过点A (2,4)时,直线在y 轴上的截距最小,此时z 有最小值,∴z min =-2×2+4+4=4,故选C.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =π4,b 2-a 2=12c 2,则tan C=( )A .2B .-2 C.12D .-12解析:选A 因为b 2-a 2=12c 2且b 2+c 2-a 2=2bc cos A =2bc ,所以b =3c 22,a =5c 22,由余弦定理可得cos C =58c 2+98c 2-c 22×5c 22×3c22=15,则角C 是锐角,sin C =25,则tan C =sin Ccos C =2.11.已知点P 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,F 1,F 2分别为双曲线的左、右焦点,若|PF 1―→ |2-|PF 2―→ |2=12a 2,则该双曲线的离心率的取值范围是( )A .[3,+∞)B .(2,4]C .(2,3]D .(1,3]解析:选 D 根据题意,因为|PF 1―→|2-|PF 2―→|2=12a 2,且|PF 1|-|PF 2|=2a ,所以|PF 1|+|PF 2|=6a ≥|F 1F 2|=2c ,所以e ≤3.又因为e >1,所以该双曲线的离心率的取值范围是(1,3].12.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,若g (x )=f (x )-12x 2+x ,则方程g ⎝ ⎛⎭⎪⎫x 2a -x -x =0有且仅有一个根时,实数a 的取值范围是( ) A .(-∞,0)∪{1} B .(-∞,1] C .(0,1]D .[1,+∞)解析:选 A 由函数的解析式可得f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)ex -1,f ′(1)=1-f (0)+f ′(1),所以f ′(1)=e ,f (0)=1,所以f (x )=12x 2-x +e x ,g (x )=f (x )-12x 2+x =e x,则e x 2a -x -x =0有且仅有一个根,即x 2a =x +ln x 有且仅有一个根,分别作出y =x 2a和y=x +ln x 的图象,由图象知a <0或a =1.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.(m +x )(1+x )3的展开式中x 的奇数次幂项的系数之和为16,则⎠⎛-11x md x =________.解析:(m +x)(1+x)3=(m +x)(C 03x 3+C 13x 2+C 23x +C 33),所以x 的奇数次幂项的系数之和为 m C 03+m C 23+C 13+C 33=16,解得m =3, 所以⎠⎛-11x md x =⎠⎛-11x 3d x =14x 4⎪⎪⎪1-1=0.答案:014.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP ―→=4AB―→|AB ―→|+AC―→|AC ―→|,则△PBC 面积的最小值为________. 解析:由于AB ⊥AC ,故以AB ,AC 所在直线分别为x 轴,y 轴,建立平面直角坐标系(图略),则B ⎝ ⎛⎭⎪⎫1t ,0,C(0,t),因为AP ―→=4AB ―→|AB ―→|+AC ―→|AC ―→|,所以点P 坐标为(4,1),直线BC 的方程为t 2x +y -t =0,所以点P 到直线BC 的距离为d =|4t 2+1-t|t 4+1,BC =t 4+1t ,所以△。
2018高考数学(理)专题突破——选考系列:不等式选讲
【题型突破】
题型一、绝对值不等式的解法 【例1】已知函数f(x)=|x+1|-|2x-3|. (1)在图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.
x-4,x≤-1, 【解析】(1)f(x)=3x-2,-1<x≤ 32,
-x+4,x>32, 故 y=f(x)的图象如图所示. (2)由 f(x)的解析式及图象知,当 f(x)=1 时,可得 x=1 或 x=数,且 a+b=c+d,证明: (1)若 ab>cd,则 a+ b> c+ d; (2) a+ b> c+ d是|a-b|<|c-d|的充要条件.
【解析】证明 (1)∵a,b,c,d 为正数,且 a+b=c+d, 欲证 a+ b> c+ d,只需证明( a+ b)2>( c+ d)2, 也就是证明 a+b+2 ab>c+d+2 cd, 只需证明 ab> cd,即证 ab>cd. 由于 ab>cd,因此 a+ b> c+ d.
【对点训练】
已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集; (2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 【解析】(1)当 a=1 时,f(x)>1 化为|x+1|-2|x-1|-1>0. 当 x≤-1 时,不等式化为 x-4>0,无解; 当-1<x<1 时,不等式化为 3x-2>0,解得23<x<1; 当 x≥1 时,不等式化为-x+2>0,解得 1≤x<2. 所以 f(x)>1 的解集为x23<x<2.
(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2, 即(a+b)2-4ab<(c+d)2-4cd.∵a+b=c+d,所以 ab>cd. 由(1)得 a+ b> c+ d. ②若 a+ b> c+ d,则( a+ b)2>( c+ d)2, ∴a+b+2 ab>c+d+2 cd.∵a+b=c+d,所以 ab>cd. 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|. 综上, a+ b> c+ d是|a-b|<|c-d|的充要条件.
高考数学 第十六章 第一节 不等式的基本性质、含有绝对值的不等式课件 理 苏教版
4.(2013·苏州模拟)对于实数x,y,若|x-1|≤1,|y-2|≤1,求 |x-y+1|的最大值.
【解析】方法一:∵|x-1|≤1,|y-2|≤1,∴|x-y+1|=|(x-1)-(y2)|≤|x-1|+|y-2|≤1+1=2, (当且仅当x=2,y=1,或x=0,y=3时取等号), 故|x-y+1|的最大值为2. 方法二:∵|x-1|≤1,|y-2|≤1, ∴-1≤x-1≤1且-1≤y-2≤1, 即-1≤x-1≤1且-1≤2-y≤1. 相加可得-2≤x-y+1≤2,即|x-y+1|≤2, 故|x-y+1|的最大值为2.
(4)错误.当数或式小于0时,不等式两边同乘(除)此数或式,
不等号要改变方向.
答案:(1)√ (2)× (3)√ (4)×
考向 1 不等式性质的简单应用
【典例1】设实数x,y满足3≤xy2≤8 ,4 x2 9,求 x3 的最
y
y4
大值.
【思路点拨】可以从结论开始,设所求的量为参数t,通过消
元法求出参数的取值范围;也可以从已知条件出发,将条件中 的整体设成参数t,s,然后用其表示x,y,从而求 xy的43 取值范 围.
{_x_|_a_x_+__b_≥_c__ 或__a_x_+__b_≤_-__c_}
(2) 含两个绝对值的不等式的解集 |x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等 式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的 思想.
2018年高考数学大纲解读
1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内 容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识 别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、 会解等. 2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关 系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学 的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简 单问题的能力.
从《2018年高考文理科数学大纲》 可以看出,考纲坚持对五种能力和两种 意识的考查,即空间想象能力、抽象概 括能力、推理论证能力、运算求解能力 、数据处理能力以及应用意识和创新意 识,这也是数学抽象、逻辑推理、数学 建模、数学运算、直观想象、数据分析 六大核心素养在高考中的体现和延续。
二. 考核目标与要求
1. 空间想象能力:能根据条件做出正确的图形,根据图形想 象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能 对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题 的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主 要表现为识图、画图和对图形的想象能力.识图是指观察研究所给 图形中几何元素之间的相互关系;画图是指将文字语言和符号语言 转化为图形语言以及对图形添加辅助图形或对图形进行各种变换; 对图形的想象主要包括有图想图和无图想图两种,是空间想象能 力高层次的标志.
AA1=3,则 V 的最大值是( (A)4π ) (C)6 π
9 (B) 2
32 (D) 3
例 3(16 一)如图,在以 A,B,C ,D,E,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,
AFD 90 ,且二面角 D-AF -E 与二面角 C- BE-F 都是 60 .
高三数学-2018年普通高等学校招生全国统一考试大纲--数学文 精品
2018年普通高等学校招生全国统一考试大纲文科数学Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度、必要的区分度和适当的难度.Ⅱ.考试要求《2018年普通高等学校招生全国统一考试大纲(文科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅰ的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想.将知识、能力与素质融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求依次为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材.通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(3)空间想象能力:能报据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.二、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.(l)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.(4)对实践能力的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学教学的实际,考虑学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅲ.考试内容1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.2.集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.3.函数考试内容:映射.函数.函数的单调性.奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.4.不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │.5.三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:22sin cos 1αα+=,sin tan cos ααα=,tan cot 1αα=.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+ϕ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ϕ)的简图,理解A,ω,ϕ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctanx 表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.7.直线和圆的方程考试内容:直线的倾斜角和斜率.直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.8.圆锥曲线方程考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.9(A).①直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念,掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.(4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体、凸多面体的概念,了解正多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(11)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.①考生可在9(A)和9(B)中任选其一10.排列、组合、二项式定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.11.概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生k次的概率.12.统计考试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.考试要求:(1)了解随机抽样,了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.13.导数考试内容:导数的背景.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)掌握函数y=c(c为常数)、y=x n(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.Ⅳ.考试形式与试卷结构考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.试卷一般包括选择题、填空题和解答题等题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.试卷应由容易题、中等题和难题组成,总体难度要适当,并以中等题为主.。
2018年高考数学总复习 选考部分 不等式选讲
知识梳理 考点自测
-4-
2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:
①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c或ax+b≤-c .
考点四
-10-
解绝对值不等式及求参数范围(多考向) 考向1 分离参数法求参数范围
例1(2017全国Ⅲ,文23)已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.
考点一
考点二
考点三
考点四
-11-
-3,������ < -1,
解 (1)f(x)= 2������-1,-1 ≤ ������ ≤ 2,当 x<-1 时,f(x)≥1 无解;
3,������ > 2
当-1≤x≤2 时,由 f(x)≥1 得,2x-1≥1,解得 1≤x≤2;
当 x>2 时,由 f(x)≥1 解得 x>2.
所以 f(x)≥1 的解集为{x|x≥1}.
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.
解 (1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)因为(a+b)3=a3+3a2b+3ab2+b3 =2+3ab(a+b)≤2+3(������+4 ������)2(a+b)=2+3(������+4 ������)3, 当 a=b 时,取等号, 所以(a+b)3≤8,因此 a+b≤2.
2018届高考全国卷数学大纲解读
考核目标
了解:对所列知识的含义有初步的、感 性的认识,知道这一知识内容是什么, 按照一定的程序和步骤照样模仿,并能 (或会)在有关的问题中识别和认识它. 理解:对所列知识内容有较深刻的理性 认识,知道知识间的逻辑关系,能够对 所列知识作正确的描述说明并用数学语 言表达,能够利用所学的知识内容对有 关问题作比较、判别、讨论,具备利用 所学知识解决简单问题的能力. 掌握:能够对所列的知识内容能够推导 证明,利用所学知识对问题能够进行分 析、研究、讨论,并且加以解决.
(三)考试基本原则的理解
4. 具体总结 (1)高考必须服从《标准》,服从中学数学 教学的实际。 (2)高考必须有利于课程改革和教学的实施。 (3)高考必须坚持自己的独立要求:保持社会 公平,能够实际操作。 (4)高考必须与时俱进,创新试题设置,体 现新课程理念.
(四)考核目标与要求解读
考核目标:立足数学,把考核信息(知识、 能力、思想方法的掌握必须达到的层次)输入 试题,量化考生的掌握程度,是期望值,具有 刚性(一道试题,预测有多少人做对)。 考核要求:立足学生,由考生解题输出信 息(知识、能力、思想方法实际达到的层次), 具体测算考生的掌握程度,是真实值,具有弹 性(一道试题,实际有多少人做对)。
2018年高考数学《高考考纲解读与备考方案》
从而六个数的最大数在π3与3π之中,最小数在3e与e3之
中.
将
这6个数按从小到大的顺序排列,并证明你的结论. ln ln e e 由上例知:f(π)<f(3)<f(e), e e 故只需比较e3与πe和eπ与π3的大小. e e2 e ln x 1 2 ln ln 由0<x<e时, 则 从而 x e e e 2.7 ln 2 e ln e(2 ) 2.7 (2 )3
第一次, i=2,S=624-12=612,第二次,i=3,S=612-18=594,第三次,i=4,S=59424=570, 第四次,i=5, S=570-30=540,第五次,i=6,S=540-36=504,第六次,i=7,S=504-
二次函数、三次函数 幂、指、对函数 三角函数 知识
思想
对称性 性质
函数
方法
单调性
数列
周期性
解析式
图象
函数的给出或存在形式 简单基本初等 函数 解 析 式 分段组合 基本初等函数 的组合函数 运算组合
研究途径和方法函 数 抽 象 关 系
图象直观
完全抽象 关系
关键分析、理解函数变 量间的随变关系
数 f(x)(x∈R) 是奇函数, 故函数g(x)是偶数,所以 g(x) 在
>0 ,1;当 U 0,1 ,且 g(-1)=g(1)=0. 当0<x<1时,g(x)>0,则f(x) x<-1 时,g(x)<0,则
f(x)>0,综上所述,使得 f (x)>0成立的x的取值范围是 ,故选A.
最新-2018年高考数学考试大纲及考试说明(新课标全国卷理科)精品
2018年高考考试说明(新课标全国卷)——数学(理)Ⅰ.考试性质和目标一、考试性质普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,对考生德、智、体全面衡量,择优录取,因此,新课程高考应具有较高的信度、效度,必要的区分度和适当的灵活度.二、考试目标根据教育部考试中心《2018年普通高等学校招生全国统一考试大纲(理科·课程标准试验版)》(以下简称《大纲》),结合海南省基础教育的实际情况,制定了《2018年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验版)(供海南省使用)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合《海南省2018年普通高校招生考试改革指导方案》和海南省普通高中课程改革实验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
(一)考核目标一、知识目标知识是指《标准》所规定的必修课程、选修系列2和选修系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.各部分知识的整体要求与定位参照《标准》相应模块的有关说明,依照《大纲》制定.2、能力目标能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.(二)命题基本原则数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有。
2018年高考数学一轮复习热点难点精讲精析选修系列(第2部分:不等式选讲)
2018 年高考一轮复习热门难点精讲精析:选修系列 <第 2 部分:不等式选讲)一、绝对值不等式<一)绝对值三角不等式性质定理的应用〖例〗“ |x-a|<m,且|y-a| <m是“ |x-y|<2m”(x,y,a,m∈ R>的<A)<A)充足非必需条件<B )必需非充足条件<C )充要条件<D )非充足非必需条件思路解读:利用绝对值三角不等式,推证与|x-y|<2m的关系即得答案。
解答:选 A。
<二)绝对值不等式的解法〖例〗解以下不等式:思路解读:<1)利用公式或平方法转变为不含绝对值的不等式。
<2)利用公式法转变为不含绝对值的不等式。
<3)利用绝对值的定义或去掉绝对值符号或利用数形结合思想求解。
<4)不等式的左侧含有绝对值符号,要同时去掉这两个绝对值符号,能够采纳“零点分段法”,本题亦可利用绝对值的几何意义去解。
解答: <1)方法一:原不等式等价于不等式组即解得 -1 ≤ x< 1 或 3< x≤ 5,所以原不等式的解集为{x|-1≤ x<1或3<x≤ 5}.<2)由不等式,可得或解得 x>2 或 x<-4.∴原不等式的解集是{x| x<-4或x>2}<3)原不等式①或②不等式①不等式②∴原不等式的解集是{x|2 ≤ x≤ 4 或x=-3}.(4> 分别求 |x-1|,|x+2| 的零点,即1, -2 。
由 -2,1 把数轴分红三部分:x<-2,-2 ≤ x≤ 1,x>1.当 x<-2 时,原不等式即 1-x-2-x<5, 解得 -3<x<-2;当 -2 ≤x≤ 1 时,原不等式即 1-x+2+x<5 ,由于 3<5 恒建立,则 - 2≤ x≤ 1; 当x>1 时,原不等式即 x-1+2+x<5,解得 1<x<2.综上,原不等式的解集为{x|-3<x<2}.<三)含参数的绝对值不等式〖例〗若对于 x 的不等式 |x+2|+|x-1|≤ a的解集为,务实数 a 的取值范围。
2018年高考数学一轮复习 热点难点精讲精析 选修系列(第2部分:不等式选讲)
2018年高考一轮复习热点难点精讲精析:选修系列<第2部分:不等式选讲)一、绝对值不等式<一)绝对值三角不等式性质定理的应用〖例〗“|x-a|<m,且|y-a|<m是“|x-y|<2m”(x,y,a,m∈R>的<A)<A)充分非必要条件 <B)必要非充分条件 <C)充要条件 <D)非充分非必要条件思路解读:利用绝对值三角不等式,推证与|x-y|<2m的关系即得答案。
解答:选A。
<二)绝对值不等式的解法〖例〗解下列不等式:思路解读:<1)利用公式或平方法转化为不含绝对值的不等式。
<2)利用公式法转化为不含绝对值的不等式。
<3)利用绝对值的定义或去掉绝对值符号或利用数形结合思想求解。
<4)不等式的左边含有绝对值符号,要同时去掉这两个绝对值符号,可以采用“零点分段法”,此题亦可利用绝对值的几何意义去解。
解答:<1)方法一:原不等式等价于不等式组即解得-1≤x<1或3<x≤5,所以原不等式的解集为{x|-1≤x<1或3<x≤5}.<2)由不等式,可得或解得x>2或x<-4.∴原不等式的解集是{x| x<-4或x>2}<3)原不等式①或②不等式①不等式②∴原不等式的解集是{x|2≤x≤4或x=-3}.(4>分别求|x-1|,|x+2|的零点,即1,-2。
由-2,1把数轴分成三部分:x<-2,-2≤x≤1,x>1.当x<-2时,原不等式即1-x-2-x<5,解得-3<x<-2;当-2≤x≤1时,原不等式即1-x+2+x<5,因为3<5恒成立,则-2≤x≤1;当x>1时,原不等式即x-1+2+x<5,解得1<x<2.综上,原不等式的解集为{x|-3<x<2}.<三)含参数的绝对值不等式〖例〗若关于x的不等式|x+2|+|x-1|≤a的解集为,求实数a的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题16 不等式选讲
选考内容 (二)不等式选讲
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ . (2) a b a c c b -≤-+-.
(3)会利用绝对值的几何意义求解以下类型的不等式:
; ; ax b c ax b c x a x b c +≤+≥-+-≥.
2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)柯西不等式的向量形式:||||||.⋅≥⋅αβαβ (2)22222()(+)()a b c d ac bd +≥+.
(3(此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形:
4.会用向量递归方法讨论排序不等式.
5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题. 6.会用数学归纳法证明伯努利不等式:
了解当n 为大于1的实数时伯努利不等式也成立.
7.会用上述不等式证明一些简单问题.能够利用平均值不等式、 柯西不等式求一些特定函数的极值.
8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.
2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.
3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.
考向一 绝对值不等式的求解
样题1 (2017新课标全国Ⅰ理科)已知函数
2–4()x ax f x =++,11()x x g x =++-||||.
(1)当a =1时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.
所以a 的取值范围为[1,1]-.
【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.
考向二含绝对值不等式的恒成立问题
样题2已知函数.
(1)当时,求的解集;
(2)若不等式对任意实数恒成立,求的取值范围.
样题3已知函数.
(1)若不等式的解集为,求实数的值;
(2)若不等式对任意恒成立,求实数的取值范围.
【解析】(1)由题意知,不等式的解集为,
由得,
∴,解得.
(2)不等式等价于,
因为不等式对任意恒成立,
所以,
因为,
所以,解得或.
考向三不等式的证明样题4 已知函数的单调递增区间为.
(1)求不等式的解集;
(2)设,证明:.。