多项不等式

合集下载

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法

高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。

例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。

下面列出了20道不等式组题目,并附带解答过程。

1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。

3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。

5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

方程与不等式知识点

方程与不等式知识点

方程与不等式知识点一、方程的定义与基本概念方程是数学中常见的概念之一,它描述了数学关系中的等式关系。

方程通常由未知数、系数、和常数项组成,通过运算符号将它们连接起来。

在解方程时,我们的目标是找到满足方程条件的未知数的值。

方程可以是一元方程,即只含有一个未知数,也可以是多元方程,含有多个未知数。

二、一元一次方程一元一次方程是最简单的方程形式。

它的形式通常为ax+b=0,其中a和b为已知数,x为未知数。

解一元一次方程的关键在于运用逆运算,将未知数从方程中解出来。

通过将方程两边进行运算,消去系数和常数项,最终得到未知数的值。

三、一元二次方程一元二次方程是一元方程中的一种,其形式为ax²+bx+c=0,其中a、b和c为已知数,x为未知数。

解一元二次方程的常用方法是配方法和公式法。

其中,配方法涉及到将方程转化为完全平方形式,即通过添加常数项使方程变为平方的形式。

公式法则是通过使用求根公式,直接计算方程的解。

四、不等式的定义与基本概念不等式用于描述两个不同数之间的关系。

与方程类似,不等式也分为一元不等式和多元不等式。

一元不等式中只含有一个未知数,而多元不等式中含有多个未知数。

不等式中的符号包括大于、小于、大于等于、小于等于等。

解不等式的目标是确定使不等式成立的数的范围。

五、一元一次不等式一元一次不等式是最简单的不等式形式。

它常见的形式为ax+b>0,其中a、b为已知数,x为未知数。

解一元一次不等式的关键在于确定不等式的符号和确定未知数的取值范围。

通过合理的变形和运算,可以得到不等式的解集。

六、一元二次不等式一元二次不等式是一元不等式中的一种,其形式为ax²+bx+c>0,其中a、b和c为已知数,x为未知数。

解一元二次不等式的方法与解一元二次方程类似。

通过分析二次项的符号、系数和常数项的关系,可以确定不等式的解集。

七、方程与不等式的应用方程与不等式在数学中有着广泛的应用。

在实际生活中,它们常用于建模和解决实际问题。

解不等式的方法和应用

解不等式的方法和应用
收入分配:计算不同收入水平的人群的消费能力
实际生活问题
商品价格比较:比较不同商品的价格,选择最便宜的商品
资源分配:分配有限的资源,使收益最大化
风险评估:评估不同风险事件的概率和影响,选择最安全的方案
投资决策:比较不同投资方案的收益,选择最优的投资方案
Part Three
解不等式的注意事项
确定解集的区间
利用函数图像进行放缩
消元技巧
代入消元法:将方程组中的一个方程的未知数用另一个方程的未知数表示,然后代入另一个方程求解
加减消元法:将方程组中的两个方程相加或相减,消去一个未知数,然后求解
矩阵消元法:通过行变换将增广矩阵化为行最简形矩阵,然后求解
换元法:引入新的未知数,将原方程组转化为新的方程组,然后求解
问题描述:如何确定最优报价方案,使得公司成本最低
解不等式方法:使用线性规划方法,建立不等式模型,求解最优解
应用结果:公司选择了最优报价方案,降低了成本,提高了利润
实际生活问题案例
旅行规划:计算旅行预算
健康饮食:计算每日所需营养摄入量
超市购物:计算购物篮中的商品总价格
投资理财:计算投资回报率
THANKS
换元法:引入新的未知数,使不等式两边都含有未知数的次数相同
数形结合:利用数形结合的方法,将不等式转化为几何图形,使不等式两边都含有未知数的次数相同
Part Five
解不等式的实际案例分析
数学问题案例
案例一:求解不等式x^2+2x-3>0
案例四:求解不等式(x-1)(x-2)<0
案例三:求解不等式x^2-2x+1>0
案例二:求解不等式(x-1)(x+2)>0

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程篇一:不等式组是数学中一种基本的不等式表达方式,其可以用于求解各种数学问题。

下面,我们将提供20道不等式组题目,并给出解答过程。

正文:1. 某项工程,甲队单独完成需要60天,乙队单独完成需要50天,两队合作完成需要多少天?解答:甲队每天完成工程的1/60,乙队每天完成工程的1/50。

因此,两队合作完成需要的天数为:(1/60 + 1/50) * 2 = 14/100 * 2 = 28/100因此,需要28天才能完成这项工程。

2. 某项工程,甲队每天完成工程的1/12,乙队每天完成工程的1/15,两队合作完成需要多少天?解答:甲队每天完成工程的1/12,乙队每天完成工程的1/15。

因此,两队合作完成需要的天数为:(1/12 + 1/15) * 2 = 5/30 * 2 = 11/60因此,需要11天才能完成这项工程。

3. 某项工程,甲队每天完成工程的1/8,乙队每天完成工程的1/10,两队合作完成需要多少天?解答:甲队每天完成工程的1/8,乙队每天完成工程的1/10。

因此,两队合作完成需要的天数为:(1/8 + 1/10) * 2 = 3/20 * 2 = 3/50因此,需要3天才能完成这项工程。

4. 某项工程,甲队每天完成工程的1/16,乙队每天完成工程的1/20,两队合作完成需要多少天?解答:甲队每天完成工程的1/16,乙队每天完成工程的1/20。

因此,两队合作完成需要的天数为:(1/16 + 1/20) * 2 = 5/40 * 2 = 11/80因此,需要11天才能完成这项工程。

5. 某项工程,甲队每天完成工程的1/15,乙队每天完成工程的1/22,两队合作完成需要多少天?解答:甲队每天完成工程的1/15,乙队每天完成工程的1/22。

因此,两队合作完成需要的天数为:(1/15 + 1/22) * 2 = 7/66 * 2 = 13/111因此,需要13天才能完成这项工程。

不等式选讲

不等式选讲

不等式选讲一、基础知识:(一)不等式的形式与常见不等式:1、不等式的基本性质:(1)a b b a>⇔<(2),a b b c a c >>⇒>(不等式的传递性)注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立(3)a b a c b c>⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒<(5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>⇒>≥∈2、绝对值不等式:a b a b a b -≤+≤+(1)a b a b +≤+等号成立条件当且仅当0ab ≥(2)a b a b -≤+等号成立条件当且仅当0ab ≤(3)a b b c a c -+-≥-:此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当()()0a b b c --≥3、均值不等式(1)涉及的几个平均数:①调和平均数:12111n nnH a a a =+++ ②几何平均数:n G =③代数平均数:12nn a a a A n+++= ④平方平均数:n Q =(2)均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12na a a ===(3)三项均值不等式:①a b c ++≥2223a b c abc++≥②33a b c abc ++⎛⎫≤ ⎪⎝⎭③a b c ++≤4、柯西不等式:()()()222222212121122n n n na a a bb b a b a b a b ++++++≥+++ 等号成立条件当且仅当1212n na a ab b b === 或120n b b b ==== (1)二元柯西不等式:()()()22222a bcd ac bd ++≥+,等号成立当且仅当ad bc=(2)柯西不等式的几个常用变形①柯西不等式的三角公式:②()222212121212n nn na a a a a ab b b b b b ++++++≥+++ ()()222212121212n n n n a a a b b b a a a b b b ⎛⎫⇔++++++≥+++ ⎪⎝⎭ ②式体现的是当各项22212,,,n a a a 系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充。

不等式知识点归纳

不等式知识点归纳

不等式知识点归纳1.不等式的基本性质不等式的性质可分为单向性质和双向性质两类.在解不等式时,只能用双向性质; 在证明不等式时,既可用单向性质,也可用双向性质. (1)a b b a <⇔>对称性 (2)c a c b b a >⇒>>,传递性(3)c b c a b a+>+⇒>加法单调性(4)d b c a d c b a +>+⇒>>,同向不等式相加 (5)d b c a d c b a->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,. 或 c b c a >(乘法单调性)(7)bc ac c b a <⇒<>0, 或 c bca <(8)bd ac d c b a>⇒>>>>0,0(同向不等式相乘)(9)0,0a ba b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b >>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b a b a n n且平方法则(12))1,(0>∈>⇒>>n Z n b a b an n 且开方法则倒数性质①a>b,ab>0.11b a <⇒②a<0<b.11b a <⇒③a>b>0,0<c<d.d b c a >⇒ ④0<a<x<b 或a<x<b<0.a x b 111<<⇒ 有关分数的性质:若a>b>0,m>0,则①真分数的性质: ②假分数的性质:).(;0>--->++<m b m a mb a b m a m b a b ).(;0>---<++>m b m b m a b a m b m a b a比例的几个性质①比例基本性质:;②反比定理:;③更比定理:;④合比定理;;⑤分比定理:;⑥合分比定理:;⑦分合比定理:;⑧等比定理:若,,则.①,则.【说明】:(,糖水的浓度问题).【拓展】:.②,,则;2.比较大小:分类讨论1.作差比较法;2.作商比较法(常用于指数式或均为正数的两式).(1)作差法步骤:作差——变形——判断差的符号.作商法的步骤:作商——变形——判断商与1的大小.(2)两种方法的关键是变形.常用的变形技巧有因式分解、配方、有理化等,也可以等价转化为易于比较大小的两个代数式来达到目的. 1.比较法(1)作差比较法①理论依据:a >b ⇔a -b >0;a <b ⇔a -b <0.②证明步骤:作差→变形→判断符号→得出结论.(2)作商比较法①理论依据:b >0,ab >1⇒a >b ;b <0,ab >1⇒a <b .②证明步骤:作商→变形→判断与1的大小关系→得出结论.2.平方法、开方法、倒数法等3.用同向不等式求差的范围.c b y xd a cy d bx a d y c b x a -<-<-⇒⎩⎨⎧-<-<-<<⇒⎩⎨⎧<<<<4.倒数关系在不等式中的作用..110;110b a b a ab b a b a ab >⇒⎩⎨⎧<><⇒⎩⎨⎧>>5.不等式的解法: 注意“系数化正”附:化归方法在不等式中的具体运用:(1)异向化同向;(2)负数化正数;(3)减式化加式;(4)除式化乘式;(5)多项化少项;(6)高次化低次.注:1.求不等式的解集、定义域及值域时,结果一定要用集合或区间表示,不能用不等式表示. 2.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o,a<b<o.解不等式应遵守的原则:1.凡是x的系数为负数的因式首先要[ 即标准式]2.分式不等式不能两边同乘上公分母而约去分母,只能移项通分。

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1不等式的性质及常见不等式解法(精讲)(解析版)专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和⽇常⽣活中的不等关系,了解不等式(组)的实际背景.2.⼀元⼆次不等式:(1)会从实际情境中抽象出⼀元⼆次不等式模型.(2)通过函数图像了解⼀元⼆次不等式与相应的⼆次函数、⼀元⼆次⽅程的联系.(3)会解⼀元⼆次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应⽤.5.培养学⽣的数学抽象、数学运算、数学建模、逻辑推理等核⼼数学素养.【知识清单】1.实数的⼤⼩(1)数轴上的任意两点中,右边点对应的实数⽐左边点对应的实数⼤.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a2.不等关系与不等式我们⽤数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表⽰它们之间的不等关系,含有这些符号的式⼦,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b如果bb.即a>b?b(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c?a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a>b,c<0,那么ac(5)性质5:如果a>b,c>d,那么a+c>b+d.(6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.⼀元⼆次不等式的概念及形式(1)概念:我们把只含有⼀个未知数,并且知数的最⾼次数是2的不等式,称为⼀元⼆次不等式. (2)形式:①ax 2+bx +c >0(a ≠0);②ax 2+bx +c ≥0(a ≠0);③ax 2+bx +c <0(a ≠0);④ax 2+bx +c ≤0(a ≠0).(3)⼀元⼆次不等式的解集的概念:⼀般地,使某个⼀元⼆次不等式成⽴的x 的值叫做这个不等式的解,⼀元⼆次不等式的所有解组成的集合叫做这个⼀元⼆次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分⼦、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0?f (x )g (x )__>__0,f (x )g (x )<0?f (x )·g (x )__<__0. f (x )g (x )≥0??f (x )g (x ) ≥ 0,g (x )≠0. ?f (x )·g (x )__>__0或?f (x )=0g (x )≠0.f (x )g (x )≤0f (x )·g (x ) ≤ 0,g (x )≠0?f (x )·g (x )__<__0或?f (x )=0g (x )≠0. 6.简单的⾼次不等式的解法⾼次不等式:不等式最⾼次项的次数⾼于2,这样的不等式称为⾼次不等式. 解法:穿根法①将f (x )最⾼次项系数化为正数;②将f (x )分解为若⼲个⼀次因式的积或⼆次不可分因式的积;③将每⼀个⼀次因式的根标在数轴上,⾃上⽽下,从右向左依次通过每⼀点画曲线(注意重根情况,偶次⽅根穿⽽不过,奇次⽅根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集. 7.不等式恒成⽴问题 1.⼀元⼆次不等式恒成⽴问题(1)ax 2+bx +c >0(a ≠0)恒成⽴(或解集为R )时,满⾜ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成⽴(或解集为R )时,满⾜a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成⽴(或解集为R )时,满⾜a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成⽴(或解集为R )时,满⾜?a <0Δ≤0.2.含参数的⼀元⼆次不等式恒成⽴.若能够分离参数成k f (x )形式.则可以转化为函数值域求解.设f (x )的最⼤值为M ,最⼩值为m .(1)k f (x )恒成⽴?k >M ,k ≥f (x )恒成⽴?k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利⽤两边平⽅的形式转化为⼆次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ?-c≤ax +b≤c (c>0),|ax +b|≥c ?ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应⽤如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成⽴.【考点梳理】考点⼀:⽤不等式表⽰不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提⾼0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样⽤不等式表⽰销售的总收⼊仍不低于20万元?【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收⼊为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收⼊不低于20万元”⽤不等式可以表⽰为:(8-x -2.50.1×0.2)x ≥20.【规律总结】⽤不等式(组)表⽰实际问题中不等关系的步骤:①审题.通读题⽬,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“⾄少”“⾄多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件⽤不等式表⽰.【变式探究】某钢铁⼚要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照⽣产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满⾜上述所有不等关系的不等式.【答案】见解析【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表⽰上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:500x +600y ≤4 0003x ≥yx ≥0y ≥0,即5x +6y ≤403x ≥y x ≥0y ≥0考点⼆:⽐较数或式⼦的⼤⼩【典例2】(1)⽐较x 2+y 2+1与2(x +y -1)的⼤⼩; (2)设a ∈R 且a ≠0,⽐较a 与1a 的⼤⼩.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0,∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a.【领悟技法】 1.⽐较⼤⼩的常⽤⽅法 (1)作差法⼀般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采⽤配⽅、因式分解、通分、有理化等⽅法把差式变成积式或者完全平⽅式.当两个式⼦都为正数时,有时也可以先平⽅再作差. (2)作商法⼀般步骤:①作商;②变形;③判断商与1的⼤⼩关系;④结论. (3)函数的单调性法将要⽐较的两个数作为⼀个函数的两个函数值,根据函数的单调性得出⼤⼩关系.【变式探究】已知x <y <0,⽐较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的⼤⼩.【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0,∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).考点三:不等式性质的应⽤【典例3】(2020·⿊龙江省佳⽊斯⼀中⾼⼀期中(理))对于任意实数a b c d ,,,,下列正确的结论为()A .若,0a b c >≠,则ac bc >;B .若a b >,则22ac bc >;C .若a b >,则11a b <; D .若0a b <<,则b a a b<.【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满⾜a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<,因此0b a b aa b a b-【典例4】若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】⽅法⼀易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . ⽅法⼆对于函数y =f (x )=ln xx ,y ′=1-ln x x2,易知当x >e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是.【答案】[5,10]【解析】⽅法⼀(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b ,于是得 m +n =4,n -m =-2,解得?m =3,n =1.所以f (-2)=3f (-1)+f (1).⼜因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. ⽅法⼆(解⽅程组法)由?f (-1)=a -b ,f (1)=a +b ,a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1).⼜因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.【规律总结】1.判断不等式的真假.(1)⾸先要注意不等式成⽴的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采⽤特值法进⾏排除,注意取值要遵循以下原则:⼀是满⾜题设条件;⼆是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进⾏证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举⼀反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应⽤.(2)应⽤不等式的性质进⾏推证时,应注意紧扣不等式的性质成⽴的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建⽴待求范围的代数式与已知范围的代数式的关系,利⽤不等式的性质进⾏运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使⽤这种转化,就有可能扩⼤其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应⽤最易出错,即在不等式的两边同时乘(除)以⼀个数时,必须能确定该数是正数、负数或零,否则结论不确定.【变式探究】1.(2020·陕西省西安中学⾼⼆期中(⽂))已知0a b <<,则下列不等式成⽴的是() A .22a b < B .2a ab <C .11a b< D .1b a< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.2. (2020·江西省崇义中学⾼⼀开学考试(⽂))下列结论正确的是() A .若ac bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满⾜,但a b <,B 选项错误;对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D ,D 选项错误.故选:C. 3.已知12b的取值范围.【错解】∵123.【辨析】错解中直接将12b 的取值范围⽽致错.【正解】∵1515.⼜12b <4.【易错警⽰】错⽤不等式的性质致错. 考点四:⼀元⼆次不等式的解法【典例6】(2020·全国⾼考真题(⽂))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,⼜因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律⽅法】1.解⼀元⼆次不等式的⼀般步骤(1)化:把不等式变形为⼆次项系数⼤于零的标准形式. (2)判:计算对应⽅程的判别式.(3)求:求出对应的⼀元⼆次⽅程的根,或根据判别式说明⽅程有没有实根. (4)写:利⽤“⼤于取两边,⼩于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进⾏分类讨论.(1)若⼆次项系数为常数,⾸先确定⼆次项系数是否为正数,再考虑分解因式,对参数进⾏分类讨论,若不易分解因式,则可依据判别式符号进⾏分类讨论.(2)若⼆次项系数为参数,则应先考虑⼆次项系数是否为零,确定不等式是不是⼆次不等式,然后再讨论⼆次项系数不为零的情形,以便确定解集的形式. (3)对⽅程的根进⾏讨论,⽐较⼤⼩,以便写出解集.【易错警⽰】忽视⼆次项系数的符号致误【变式探究】1.(2019·全国⾼考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ?=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ?=-<<.故选C .2. (2020·⿊龙江省⼤庆实验中学⾼三⼀模(⽂))已知集合1|03x A x x -?=≥??-??,集合{|15}B x N x =∈-≤≤,则A B =()A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A 【解析】因为集合{1|033x A x x x x -?=≥=??-??或}1x ≤,集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=,所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省⾼考真题)设x ∈R ,解不等式2|1|||4x x ++<.【答案】2(2,)3- 【解析】1224x x x <-??---?++21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周⼝市中英⽂学校⾼⼆⽉考(⽂))(1)求不等式|x -1|+|x +2|≥5的解集;(2)若关于x 的不等式|ax -2|<3的解集为51|33x x ?-<,求a 的值.【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,⽆解;当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-10时,15x a a -<< , 153a -=-,且513a =⽆解;当a =0时,x ∈R ,与已知条件不符;当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律⽅法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利⽤绝对值号内式⼦对应⽅程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设ac(c>0)的⼏何意义:数轴上到点x 1=a 和x 2=b 的距离之和⼤于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.【变式探究】1.(2017天津,⽂2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的()(A )充分⽽不必要条件(B )必要⽽不充分条件(C )充要条件(D )既不充分也不必要条件【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤?≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·⼴东⾼考真题(理))不等式的解集为 .【答案】(][),32,-∞-?+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-;(2)当21x -≤≤时,()3f x =,此时不等式⽆解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥;综上所述,不等式的解集为(][),32,-∞-?+∞. 考点六:绝对值不等式的应⽤如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成⽴.【典例9】(2020·陕西省西安中学⾼⼆期中(理))已知不等式53m x x ≤-+-对⼀切x ∈R 恒成⽴,则实数m 的取值范围为() A .2m ≤B .2m ≥C .8m ≤-D .8m ≥-【答案】A【解析】()()-+-≥---=,∴根据题意可得2x x x x53532m≤.故选:A【典例10】(2018年理新课标I卷)已知.(1)当时,求不等式的解集;(2)若时不等式成⽴,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代⼊函数解析式,求得,利⽤零点分段将解析式化为,然后利⽤分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中⼀个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成⽴等价于当时成⽴.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题⼀类是⽐较简单的不等式,往往可通过平⽅法、换元法去掉绝对值符号转化为常见的不等式证明题,或利⽤绝对值三⾓不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另⼀类是综合性较强的函数型含绝对值的不等式,往往可考虑利⽤⼀般情况成⽴,则特殊情况也成⽴的思想,或利⽤⼀元⼆次⽅程的根的分布等⽅法来证明.2.含绝对值不等式的应⽤中的数学思想(1)利⽤“零点分段法”求解,体现了分类讨论的思想;(2)利⽤函数的图象求解,体现了数形结合的思想.3.求f(x)=|x+a|+|x+b|和f(x)=|x+a|-|x+b|的最值的三种⽅法(1)转化法:转化为分段函数进⽽利⽤分段函数的性质求解.(2)利⽤绝对值三⾓不等式进⾏“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利⽤绝对值的⼏何意义. 【变式探究】1.(2020·宁夏回族⾃治区⾼三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成⽴,求实数a 的值范围.【答案】(1) 17,33??- ;(2) 15,44??-【解析】(1)由题,()133,211,2233,2x x f x x x x x ?-+≤??=+<-≥;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成⽴,解得122x <<;当2x ≥时,334x -<,解得723x ≤<.综上有3 137x -<<.故实数x 的取值范围为17,33??-(2)因为()133,211,2233,2x x f x x x x x ?-+≤??=+<-≥,当12x ≤时,()1322f x f ??≥= ;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最⼩值为3 2.故3212a -<,即332122a -<-<,解得1544a -<<.故实数a 的值范围为15,44??-2.已知函数f(x)=|x?1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).【答案】(1) {x|x≤?5或x≥3} (2)见解析【解析】(1)f(x)+f(x+4)=|x?1|+|x+3|={?2x?2,x1,当x当?3≤x≤1时,f(x)≥8不成⽴;当x>1时,由2x+2≥8,解得x≥3.所以不等式f(x)+f(x+4)≥8的解集为{x|x≤?5或x≥3}.(2)f(ab)>|a|f(ba),即|ab?1|>|a?b|.因为|a|<1,|b|<1,所以|ab?1|2?|a?b|2=(a2b2?2ab+1)?(a2?2ab+b2)=(a2?1)(b2?1)>0,所以|ab?1|>|a?b|,故所证不等式成⽴.。

不等式解题技巧

不等式解题技巧

不等式解题技巧近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。

特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。

“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。

1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明:111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。

由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。

本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-)(2121)2141211(41*11N n n n n n ∈-+=++++-=+- .此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。

多项不等式

多项不等式
例6.
設 ,下列恆成立,則 的範圍?
例7.
若 恆成立,求 的範圍?
類題.
(1)設 ,若對於任意實數 ,恆有 恆成立,求 之
範圍.
(2)設 ,對任意實數 恆使 成立,求實數 的範圍.
乙.特殊不等式
1.分式不等式:
<<型一>> (1) (2)
<<型二>> 移項:
通分: [使分母為零者捨棄]
2.高次不等式:
為(A) (B) 或 (C) 或
(D) (B)
例3.
滿足的解集合為 , 的最簡整數值為何?–12, 7, 10
類題.
(1)若 之解為 ,則 .–5
(2)設不等式 的解為 ,求不等式 的解.

例4.
設 若 ,
求 及 .2, 5
例5.
對任意實數 值,二次函數 之值恆大於–8,則實數 的範圍?
類題.
若對所有實數 , 均成立,則 的範圍為.
解下列各不等式:
(1) (2)

丙.根的專論
二次函數 ,設 的圖形與 軸交於
,則 為二次方程式 的二實根,且 ,

1.若 之二根均大於
2.若 之二根均小於
3.若 有一根大於
一根小於
例11.
設二次方程式 之二實根均大於1,求 的範
圍. 或
類題.
設 若 的二根皆小於–1,則 之範圍為.
例12.
已知 的二次方程式 有二相異實根 ,若
(1)三一律:” ”三式中恰有一式會成立.
(2)遞移律:若 且 ,則 .
(3)加法律:若 ,則 .
(4)乘法律:若 且 ,則 .
若 且 ,則 .

三项相加的基本不等式

三项相加的基本不等式

三项相加的基本不等式1. 引言嘿,大家好!今天咱们聊聊一个数学小秘密,听上去可能有点高深,但实际上就像吃棒棒糖一样简单,保准让你心里一亮。

这就是“三项相加的基本不等式”。

别被名字吓到,实际上它的意思就是当你有三项数的时候,它们的和总是大于等于单独的某些组合。

就像生活中的事情,很多时候你需要把三个小伙伴聚在一起,才能干成大事,嘿,这可不是随便说说的哦!2. 基本概念2.1 三项数的魅力好吧,咱们先来看看“三项”。

想象一下,假设你有三个朋友,分别叫小明、小红和小刚。

他们每个人都有自己的长处,比如小明会唱歌,小红会跳舞,小刚会讲笑话。

把他们三个人放在一起,你会发现,聚光灯下的他们就像一场超级精彩的表演,简直能把整个聚会气氛推向高兴。

这就好比数学中的三项相加,单独的力量虽然也很强,但三个人一起肯定能玩得更开心,事情也会变得更有趣!2.2 生活中的例子想象一下,假如你要举办一场派对,当然需要一个好地方,一个美味的食物和一份精彩的娱乐节目。

这三样东西,缺一不可。

就像数学中的不等式,如果你缺少了其中一个,那整个派对的气氛就会打折扣。

所以,聚在一起,才能发挥出它们的最大价值。

这就是不等式的精髓,简单却又富有哲理。

3. 数学上的不等式3.1 理论背后的故事说到这里,或许有人会问,为什么要关注这个不等式呢?其实,数学就像生活,它充满了奇妙的联系和隐秘的规则。

这个不等式就像一个指南针,帮助我们在复杂的数学世界中找到方向。

想象一下,你在大海中航行,没有指南针可怎么办?就会迷失方向。

所以说,了解这个不等式不仅可以帮助你在考试中拿高分,更能在思考问题时理清思路。

3.2 运用到实际中你知道吗,这个不等式其实在很多地方都有应用,比如经济学、物理学,甚至生活中的决策都离不开它。

比如你去超市购物,面对三样不同的商品,你得考虑哪个商品最划算,哪个组合最实惠。

这个时候,你就得运用这个不等式来帮助你做出明智的选择。

嘿,谁说数学不实用呢?4. 结语好了,今天的故事到这里就差不多了。

基本不等式拓展三项

基本不等式拓展三项

基本不等式拓展三项摘要:一、基本不等式的概念与性质1.基本不等式的定义2.基本不等式的性质二、拓展三项的具体内容1.第一项:柯西- 施瓦茨不等式2.第二项:闵可夫斯基不等式3.第三项:切比雪夫不等式三、拓展三项的证明方法与技巧1.柯西- 施瓦茨不等式的证明方法2.闵可夫斯基不等式的证明方法3.切比雪夫不等式的证明方法四、拓展三项在实际问题中的应用1.柯西- 施瓦茨不等式在信号处理中的应用2.闵可夫斯基不等式在机器学习中的应用3.切比雪夫不等式在统计学中的应用正文:基本不等式是数学中一个非常重要的概念,它在许多领域都有着广泛的应用。

本文将对基本不等式进行拓展,介绍三项重要的不等式:柯西- 施瓦茨不等式、闵可夫斯基不等式和切比雪夫不等式。

首先,我们来回顾一下基本不等式的概念与性质。

基本不等式,也称为柯西不等式,是指对于任意两个实数a 和b,都有a^2 + b^2 >= ab。

这个不等式有很多扩展和应用,其中就包括我们要介绍的拓展三项。

接下来,我们详细介绍一下拓展三项的具体内容。

第一项是柯西- 施瓦茨不等式,它是一种在向量空间中的内积不等式,表示对于任意两个向量x 和y,都有||x|| * ||y|| >= (x·y)^2,其中||x||和||y||分别表示向量x 和y 的模长,x·y 表示向量x 和y 的内积。

第二项是闵可夫斯基不等式,它也是一种在向量空间中的内积不等式,表示对于任意两个向量x 和y,都有||x+y||^2 <= ||x||^2 + ||y||^2。

第三项是切比雪夫不等式,它是一种关于序列的不等式,表示对于任意一个序列a_1, a_2, ..., a_n,都有(a_1 + a_2 + ...+ a_n)^2 <= n * (a_1^2 + a_2^2 + ...+ a_n^2)。

在了解了拓展三项的具体内容后,我们来看一下它们的证明方法与技巧。

小学数学课件不等式的意义与解集

小学数学课件不等式的意义与解集

数学建模:不等 式是数学建模的 基础,通过解集 可以建立数学模 型并解决实际问 题
数学分析:在数 学分析中,解集 的概念对于研究 函数的性质和图 像非常重要
04
不等式的解法
简单不等式的解法
移项:将不等式 两边的项进行移 动,使不等式的 一侧为0
化简:对不等式 进行化简,使其 变为简单形式
求解:根据不等 式的性质,求解 不等式的解集
配方法:将高次不等式化为完全平方的形式,再根据平方根的性质求解。
判别式法:利用二次方程的判别式来判断不等式的解的情况,再根据二次方程的根的性质求解。
函数单调性法:利用函数的单调性来判断不等式的解的情况,再根据函数的零点求解。
05
不等式的应用
在生活中的实际应用
添加标题
购物优惠:商家经常使用不等式来设置优惠条件,例如“买一送一”或“满100减20”,顾客 可以根据不等式来选择最优惠的购买方式。
速度比较中, 汽车速度为60 公里/小时,火 车速度为120 公里/小时,这 里60<120, 表示汽车速度
比火车慢。
数学中的不等式定义
不等式是数学中 表示两个数或两 个量之间大小关 系的式子。
不等式可以表示 为 "a > b"、"a < b" 或 "a ≥ b"、"a ≤ b" 的形式。
不等式可以用来 解决各种实际问 题,如比较大小、 求解最值等。
01
添加章节标题
02
不等式的意义
生活中的不等式例子
购物时,100 元可以购买 200元的商品, 这里100<200, 表示购买力小 于商品价值。
跑步比赛中, 小明跑完100 米用了15秒, 小华用了18秒, 这里15<18, 表示小明跑得 比小华快。

大学中常用不等式

大学中常用不等式

大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1) ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式 e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

三项不等式

三项不等式

三项不等式
随着竞争日益激烈的当今社会,暴利主义可谓百花齐放,种种涉财倾向到处可见,无疑腐蚀了社会的气氛,取缔也无济于事。

如何摆脱这样被人质疑的质素,成为很多企业担忧的烦恼。

答案不外乎”三不贪“原则,即不贪图财富,不贪求功过,不贪慕虚名。

既然说到三不贪,首先我们可以采取“三不等式”,即适当地维持利益与负责
任的本质平衡。

究其原理,这个惯例含义清晰:对权力而言,不屈从于金钱的驱使;对财务而言,不被财富的腐蚀;对权利而言,不因胜利而自满不知止增。

在此与此,只有一条原则可以铺设在此:一切正当,即可拥有,一切虚伪,即宜否准。

想要施行三不等式,除了以上原则外,还要有一种勇气和自律。

在利益的交替
抉择中,不能缺乏正义坚定的信念,贪得无厌的金钱必须抛诸脑后,虚名膨胀的嫌疑必须抛诸脑外,安逸的日子先后也必须踢开,实现三不等式的平衡状态。

踏踏实实做好自己的事情,这种做法一直都是受益者。

企业、职能部门、个人
等等,在把握金钱、权力和虚名有机结合后,将会产生出划时代的结果。

总之,要实现三不等式的精妙设定,不仅要遵循基本原则,还要有勇气去踏上
实践之路,艰难困苦也都可以克服,最终获得无以伦比的平衡,得到一切正当的成功。

等式与不等式的解法

等式与不等式的解法

等式与不等式的解法等式和不等式在数学中都是常见的概念,它们在解决数学问题时起着重要的作用。

本文将介绍等式和不等式的定义和性质,并探讨解等式和不等式的方法。

1. 等式的解法等式是指具有相等关系的表达式,通常采用“=”符号进行表示。

解等式即找到使等式成立的未知数的值,常用的解等式方法有以下几种:1.1. 合并同类项和移项法当等式中存在多个相同未知数的项时,我们可以将这些项合并。

例如,对于等式2x + 3x = 35,我们可以合并同类项得到5x = 35。

接下来,我们可以通过移项法将未知数的系数和常数项分别移到等式的两侧来求解。

1.2. 代入法代入法是解等式的一种常用方法。

当一个未知数可以表示为其他未知数的表达式时,我们可以将该表达式代入等式中,从而得到只含有一个未知数的等式。

例如,对于等式2x + 3y = 10,若已知y = 4,则可以将y的值代入等式中,得到2x + 3(4) = 10,进而简化为2x + 12 = 10,继续通过其他解法求解。

1.3. 因式分解法对于某些等式,我们可以通过因式分解的方法将其转化为更简单的形式。

例如,对于二次方程x^2 + 5x + 6 = 0,我们可以通过对等式进行因式分解得到(x + 2)(x + 3) = 0,然后通过零乘法可以得到x + 2 =0或x + 3 = 0,从而求解出x的值。

2. 不等式的解法不等式是指具有大小关系的表达式,常用的不等式符号有“<”、“>”、“≤”、“≥”等。

解不等式即找到使不等式成立的未知数的取值范围,常见的解不等式方法有以下几种:2.1. 图像法图像法是解不等式的一种常用方法。

对于线性不等式,我们可以通过绘制直线图像和分析直线图像在坐标轴上的位置关系,得出不等式的解集。

例如,对于不等式2x - 3 < 5,我们可以将其转化为2x < 8,然后绘制直线y = 2x - 3和y = 5在坐标轴上的图像,通过观察两条直线的相对位置来确定不等式的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章三角函數的基本概念11
§4-6 多項不等式甲. 一般不等式
1.n 次不等式:
設)(x f 是實係數n 次多項式, 那麼不等式0)(,0)(,0)(x f x f x f 或0)(x f 就叫做n 次多項不等式( 簡稱n 次不等式).
2.不等式的解集合:
不等式0)
(x f 中的未知數x 用某一個實數代入, 會使不等式0)(f 成立, 則實數叫做不等式0)(x f 的一個解, 所有滿足不等式0)(f 的解形成的集合, 稱為該不等式的解集合.
3.不等式的基本性質:
(1)三一律:” b a b a
b a ,,” 三式中恰有一式會成立. (2)遞移律:若b a
且c b , 則c a . (3)加法律:若b a
, 則)(R c c b c a . (4)乘法律:若b a
且0c , 則bc ac . 若b a
且0c , 則bc ac . 4.二次不等式:
設R c
b a ,,, 若02
c bx ax 之二個實數解為,且, ac b D 42, 則(1) 042ac
b 與x 軸交於二點(2) 042a
c b 與x 軸交於一點。

相关文档
最新文档