弧长及扇形的面积、圆锥的侧面积练习题_(1)

合集下载

初中数学冀教版九年级上册 28.5弧长和扇形面积的计算练习题

初中数学冀教版九年级上册 28.5弧长和扇形面积的计算练习题

初中数学冀教版九年级上册第二十八章弧长和扇形面积的计算练习题一、选择题1.圆心角为的扇形的半径是3cm,则这个扇形的面积是A. B. C. D.2.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是,则圆锥的母线长是A. 8cmB. 12cmC. 16cmD. 24cm3.圆锥的表面展开图由一个扇形和一个圆组成,已知圆的周长为,扇形的圆心角为,则圆锥的全面积为A. B. C. D.4.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为,则图中阴影部分的面积为A. B. C. D.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚如图,那么B点从开始至结束所走过的路径长度为A. B. C. 4 D.6.如图已知扇形AOB的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为A. 2cmB. 4cmC. 1cmD. 8cm7.一个扇形的半径为6,圆心角为,则该扇形的面积是A. B. C. D.8.如图,在▱ABCD中,,的半径为3,则图中阴影部分的面积是A. B. C. D.9.圆锥的底面半径是5cm,侧面展开图的圆心角是,圆锥的高是A. B. 10cm C. 6cm D. 5cm10.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是A. B. C. D.二、填空题11.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是______.12.若圆锥的底面直径为6cm,母线长为10cm,则圆锥的侧面积为______.13.已知扇形的面积为,圆心角为,则它的半径为______.14.一个扇形的圆心角是,半径为4,则这个扇形的面积为______结果保留15.如图,中,,CD平分交AB于点D,O是BC上一点,经过C、D两点的分别交AC、BC于点E、F,,,则劣弧的长为______.三、解答题16.如图,在平面直角坐标系中,将点C顺时针旋转后得则.请在图中画出,并写出点A的对应点的坐标;求线段AC旋转到时扫过的面积S.17.如图,的直径,半径,D为上一动点不包括B,C两点,,,垂足分别为E,F.求EF的长.若点E为OC的中点,求劣弧CD的长度;者点P为直径AB上一动点,直接写出的最小值.18.如图,把圆锥的侧面展开得到扇形,其半径,圆心角,求的长.19.已知:扇形的圆心角为,弧长为,求扇形面积.20.如图,AB是的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若,.求的半径;求图中阴影部分的面积.答案和解析1.【答案】B【解析】解:扇形的面积公式,故选:B.根据扇形的面积公式计算可得答案.本题考查扇形的面积公式.2.【答案】B【解析】解:圆锥的底面周长为,即为展开图扇形的弧长,由弧长公式得,,解得,,即圆锥的母线长为12cm.故选:B.根据圆锥侧面展开图的实际意义求解即可.本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.3.【答案】A【解析】解:设圆锥的底面圆的半径为r,母线长为l,根据题意得,解得,,解得,所以圆锥的全面积.故选:A.设圆锥的底面圆的半径为r,母线长为l,利用圆的周长公式得,解得,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后计算底面圆的面积与扇形的面积可得到圆锥的全面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.【答案】A【解析】解:连接CD、OC、OD.,D是以AB为直径的半圆周的三等分点,,,弧CD的长为,,解得:,又,、是等边三角形,在和中,,≌,.故选:A.连接OC、OD,根据C,D是以AB为直径的半圆周的三等分点,可得,是等边三角形,将阴影部分的面积转化为扇形OCD的面积求解即可.本题考查了扇形面积的计算,解答本题的关键是将阴影部分的面积转化为扇形OCD的面积,难度一般.5.【答案】B【解析】解:如图:,,点从开始至结束所走过的路径长度为弧,故选:B.根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转,并且所走过的两路径相等,求出一个乘以2即可得到.本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.6.【答案】A【解析】解:扇形的弧长是,设底面半径是r,则,解得:.故选:A.首先利用扇形的弧长公式即可求得扇形,然后根据圆的周长公式即可求解.本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.7.【答案】C【解析】解:,故选:C.根据扇形的面积公式计算即可.本题考查的是扇形面积的计算,掌握扇形的面积公式是解题的关键.8.【答案】C【解析】【分析】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.根据平行四边形的性质可以求得的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:在▱ABCD中,,的半径为3,,图中阴影部分的面积是:,故选:C.9.【答案】A【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为R,根据题意得,解得.即圆锥的母线长为10cm,圆锥的高为:.故选:A.10.【答案】B【解析】解:从9点到9点15分分针扫过的扇形的圆心角是,则分针在钟面上扫过的面积是:故选:B.从9点到9点15分分针扫过的扇形的圆心角是,利用扇形的面积公式即可求解.本题考查了扇形的面积公式,正确理解公式是关键.11.【答案】【解析】解:弧DE的长为:.故答案为:.直接利用弧长公式计算得出答案.此题主要考查了弧长公式计算,正确应用弧长公式是解题关键.12.【答案】【解析】解:圆锥的侧面积故答案为.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】3【解析】解:设半径为r,由题意,得,解得,故答案为:3.根据扇形的面积公式,可得答案.本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.【答案】【解析】解:,故答案为.利用扇形的面积公式计算即可.本题考查扇形的面积,解题的关键是记住扇形的面积是扇形的半径,l是扇形的弧长.15.【答案】【解析】解:连接DF,OD,是的直径,,,,,平分交AB于点D,,,,,在中,,的半径,劣弧的长,故答案为连接DF,OD,根据圆周角定理得到,根据三角形的内角和得到,根据三角函数的定义得到,根据弧长个公式即可得到结论.本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.16.【答案】解:如图所示,;由勾股定理得,,线段AC旋转到时扫过的面积.【解析】根据网格结构找出点A、B绕点C顺时针旋转后的对应点、的位置,再与点C 顺次连接即可,根据平面直角坐标系写出点的坐标;利用勾股定理列式求出AC,再根据扇形的面积公式列式计算即可得解.本题考查了利用旋转变换作图,扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.17.【答案】解:如图,连接OD,圆的半径为.,,,四边形OFDE是矩形,.点E为OC的中点,,,,劣弧CD的长度为.延长CO交于点G,连接DG交AB于点P,则的最小值为DG.,,,的最小值为.【解析】连接OD,由,,知四边形OFDE是矩形,据此可得;先求出的度数,再利用弧长公式求解可得;延长CO交于点G,连接DG交AB于点P,则的最小值为DG,再根据及可得答案.本题主要考查圆的有关概念与性质,解题的关键是掌握矩形的判定与性质、轴对称的性质、圆的相关性质.18.【答案】解:的长为:.【解析】弧长的计算公式为,把半径和圆心角代入公式可以求出弧长.本题考查的是弧长的计算,知道圆心角和半径,代入弧长公式计算.19.【答案】解:设扇形的半径为R,则由弧长公式得:,解得:,即扇形的面积是.【解析】先根据弧长公式求出扇形的半径,再根据扇形面积公式求出即可.本题考查了弧长公式和扇形面积公式的应用,注意:扇形的面积弧长半径.20.【答案】解:直径,.平分AO,.又,..在中,的半径为2;连接OF.在中,,...,,.【解析】本题综合考查了垂径定理和解直角三角形及扇形的面积公式.根据垂径定理得CE的长,再根据已知DE平分AO得解直角三角形求解.先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.。

中考数学复习专题24:圆的有关计算(含中考真题解析)

中考数学复习专题24:圆的有关计算(含中考真题解析)

专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。

弧长与扇形面积经典习题(有难度)

弧长与扇形面积经典习题(有难度)

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cmB.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π8.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π10. 如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π11. 在半径为4π的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O所经过的路线长是 m。

(结果用π表示)13.如图,圆锥的底面半径OB为10cm,它的展开图扇形的半径AB为30cm,则这个扇形的圆心角a的度数为____________.14. 如图,点A、B、C在直径为32的⊙O上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).2、如果一条弧长等于l,它的半径等于R,这条弧所对的圆心角增加1o,则它的弧长增加()A.lnB.180RπC.180lRπD.360l3、已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A、18πcm2B、36πcm2C、12πcm2D、9πcm24、圆的半径增加一倍,那么圆的面积增加到()A、1倍B、2倍C、3倍D、4倍5、一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A、1.5cmB、7.5cmC、1.5cm或7.5cmD、3cm或15cm8、扇形的周长为16,圆心角为360πo,则扇形的面积是()A.16 B.32 C.64 D.16π10、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与12∠BOC相等的角共有()A、2个B、3个C、4个D、5个15、如图,将三角尺ABC(其中∠B=60°,∠C=90°,AB=6)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,点A所经过的路程是()A、2πB、4πC、8πD、12π16、如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.则在圆锥的侧面上从B 点到P 点的最短路线的长为( )13、如图,扇形OAB 的圆心角为90o,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是()A.P Q = B.P Q > C.P Q <D.无法确定17、如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点。

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。

任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。

5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。

圆锥的侧面积(基础篇)(专项练习)

圆锥的侧面积(基础篇)(专项练习)

专题2.13 圆锥的侧面积(基础篇)(专项练习)一、单选题1.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.236πcm B.224πcm C.216πcm D.212πcm 2.圆锥的截面是一个等边三角形,则它的侧面展开图圆心角度数是()A.60°B.90°C.120°D.180°3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA=13 cm,则圆锥的高h为()A.12cm B.10cm C.6cm D.5cm4.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A.1B.34C.12D.135.一个底面直径为2,高为3的圆锥的体积是()A.πB.2πC.3πD.4π6.如图,有圆锥形粮堆,其正视图是边长为6的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处,捕捉老鼠,则小猫所经过的最短路程是()A .3B .C .D .47.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π8.如图,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .2cmB .3cmC .4cmD .1cm9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .rB .C rD .3r10.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在AB 上的点D 处,且:1:3BD AD ''=(BD '表示BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A.1:3B.1: C.1:4D.2:9二、填空题11.已知圆锥的母线长是9cm,它的侧面展开图的圆心角是120°,则圆锥的高为_____cm.12.若一个圆锥体的底面积是其表面积的14,则其侧面展开图圆心角的度数为______________.13.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为______.14.如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,以边AC所在直线为轴将Rt △ABC旋转一周得到一个圆锥,则这个圆锥的侧面积是__________.15.已知底面圆半径为1cm的圆锥的侧面积为3πcm2,则圆锥的母线长为_________cm.16的圆形铁皮上剪出一个圆心角为90°的扇形,将其围成一个圆锥,圆锥底面圆的半径是__________m.17.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________.18.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是l=______.三、解答题19.一个圆锥的母线长为10,底面半径为5,求这个圆锥的侧面积和全面积.20的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC.(1) 求被剪掉的阴影部分的面积;(2) 用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?21.如图,某玻璃器皿制造公司要制造一种容积为1L(31L=1dm)的圆锥形漏斗.(1)漏斗口的面积S(单位:2dm)与漏斗的深d(单位:dm)有怎样的函数关系?(2)如果漏斗口的面积为2100cm,那么漏斗的深为多少?22.(1)解方程:2x x-+=;2730(2)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OC cm,求这个圆锥形漏斗的侧面展开图的圆心角的度数.=3cmOB,高=423.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.求在圆锥的侧面上从B点到P点的最短路线的长.24.如图,在一个半径为90︒的扇形.(1)求这个扇形的面积(保留π);(2)用所剪的纸片围成一个圆锥的侧面,求这个圆锥的底面圆的半径.参考答案1.B【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧; 解:4624S rl πππ==⨯⨯=侧2cm , 故选B .【点拨】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可. 2.D【分析】易得圆锥的底面直径与母线长相等,那么根据圆锥的底面周长等于侧面展开图的弧长即可得到这个圆锥的侧面展开图的圆心角度数.解:设圆锥的底面半径为r,母线长为R,圆心角的度数为n度∵它的轴截面是正三角形,∴R=2r,∴2πr=2 180n rπ⨯,解得n=180,故展开图的圆心角为180°故选:D.【点拨】本题主要考查圆锥的侧面展开图的圆心角,圆锥的轴截面,熟练掌握圆锥的侧面展开图的弧长等于圆锥的底面周长,扇形的弧长公式,是解题的关键.3.A【分析】利用弧长求出底面圆的半径,然后运用勾股定理求出圆锥的高.解:设底面圆的半径为r,则:2πr=10π,得:r=5.12cm.故选A.【点拨】本题考查的是圆锥的计算,先根据弧长可以求出底面圆的半径,再用勾股定理求出圆锥的高.4.C【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.解:根据题意得:该圆锥的底面周长为1212ππ⨯⨯=,∴该圆锥的底面半径是1 22ππ=.故选:C【点拨】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5.A【分析】圆锥的体积等于底面积乘以高的三分之一.解:2123 32ππ⎛⎫⨯⨯=⎪⎝⎭故选A.6.B【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B 是半圆的一个端点,而点P 是平分半圆的半径的中点,根据勾股定理就可求出两点B 和P 在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6π,则66180n ππ⨯=, 180n ∴=︒,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中3AP =,6AB =,90BAP ∠=度.∴在圆锥侧面展开图中BP故小猫经过的最短距离是B .【点拨】本题考查的是平面展开-最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.7.B解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr =2π×3=6π, ∴圆锥的侧面积=12lr =12×6π×5=15π, 故选B 8.A试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.解:L=9082180R ππ⨯=, 解R=2cm . 故选 A. 考点: 弧长的计算. 9.B解:∵圆的半径为r ,扇形的弧长等于底面圆的周长得出2πr .设圆锥的母线长为R ,则120180Rπ=2πr , 解得:R =3r .根据勾股定理得圆锥的高为.故选:B .【点拨】考点:圆锥的计算. 10.D【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可. 解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒,30OAM ∴∠=︒,60AOM ∴∠=︒,且:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l , 802180lr ππ=, :2:9r l ∴=.故选D .【点拨】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.11.【分析】设圆锥底面半径为r cm ,那么圆锥底面圆周长为2r πcm ,所以侧面展开图的弧长为2r πcm ,然后利用扇形的面积公式即可得到关于r 的方程,解方程即可求得圆锥底面圆的半径,然后利用勾股定理求得圆锥的高即可.解:设圆锥底面半径为r cm ,那么圆锥底面圆周长为2r πcm , 所以侧面展开图的弧长为2r πcm ,211209292360S r ππ⨯=⨯⨯=圆锥侧面积, 解得:3r =,∴)cm =,故答案为:【点拨】本题主要考查圆锥侧面展开图的知识和圆锥侧面面积的计算,解题的关键是正确理解圆锥的侧面展开图与原来的扇形之间的关系,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.120°##120度 【分析】根据圆锥的底面积是其表面积的14,则得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.解:设底面圆的半径为r ,侧面展开扇形的半径为R ,扇形的圆心角为n °.由题意得2S r π=底面面积,2l r π=底面周长, ∵个圆锥体的底面积是其表面积的14, ∴233S S r π==扇形底面面积,2l l r π==扇形弧长底面周长. 由12S l R =⨯扇形扇形弧长得21322r r R ππ=⨯⨯, 故3R r =. 由180n r l π=扇形弧长得: 32180n r ππ⨯=, 解得120n =.故答案为:120°.【点拨】此题通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.13.【分析】根据半圆的弧长等于圆锥的底圆周长可以求出圆锥底圆的半径,又由半圆的半径等于圆锥的母线,然后利用勾股定理求出圆锥的高.解:如图所示:圆锥的侧面展开图的弧长为210210ππ⨯÷=(cm ),∴圆锥的底面半径为1025ππ÷=(cm ),∴=cm ).故答案是:.【点拨】本题考查了圆锥的展开图,正确理解圆锥与圆锥展开图后的图形为扇形之间的不变量是解决本题的关键.14.65π【分析】先得到所得圆锥的母线和底面半径,再利用扇形面积计算.解:由已知得,母线长AB =13,半径r 为5,∴圆锥的侧面积=113252π⨯⨯⨯=65π,故答案为:65π.【点拨】本题考查了圆锥的计算,要学会灵活的运用公式求解.15.3【分析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.设圆锥的母线长为R cm ,解:圆锥的底面周长=2π×1=2π,设母线长为R , 则12×2π×R =3π,解得,R =3(cm ),故答案为3.【点拨】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 16.14【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求解.解:连接BC 、AO ,∵⊙O ,m , ∵AB =AC ,OB =OC ,∴BC ⊥AO ,AO =BO ,在Rt △ABO 中,AB 1m ,∴圆锥底面圆的弧长90111802l ππ⨯==, 设圆锥底面圆的半径是r , 则122r ππ=, ∴14r =m , 故答案为:14.【点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.【分析】将圆锥的侧面展开,是一个扇形,AC 就是小虫爬行的最短路程,利用弧长与圆心角的公式,求展开图的圆心角l 180n R π=,R=4,l=2πr=2π,可求出n 的大小,由于n=90º,利用勾股定理可求AC 的长即可.解:把圆锥的侧面展开,弧长是2πr=2π,母线AS=4, 侧面展开的圆心角4l 2180180n R n πππ===,n=90º即∠ASC=90º, C 为AD 的中点SD=2,线段AC 是小虫爬行的最短距离,在Rt △SAC 中,由勾股定理的故答案为:【点拨】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.18.解:扇形的弧长和圆锥的底面周长相等,即:1202180l ππ=l =考点: 圆锥的底面周长与侧面展开图的弧长关系.19.侧面积为50π,全面积为75π【分析】根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式直接可计算出这个圆锥的侧面积,然后计算侧面积与底面积的和得到圆锥的全面积.解:这个圆锥的侧面积 12510502ππ=⨯⨯⨯= 这个圆锥的全面积=50π+π×52=75π.【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆20.(1)1m 4π(2)1m 4【分析】(1)连结BC ,根据∠A =90°,可得BC =,再由勾股定理可得AB =AC =1,然后根据O ABC S S S 阴影扇形,即可求解;(2)设圆锥底面半径为r ,则BC 的长为2πr ,从而得到9012180r ⨯=ππ,即可求解. (1)解:如图,连结BC ,∵∠A =90°,∴BC 为⊙O 的直径.即BC =,在Rt △ABC 中,AB =AC ,且AB 2+AC 2=BC 2,∴AB =AC =1,∴O ABC S S S 阴影扇形=222901111m 360244⨯⨯-=-=⎝⎭πππππ; (2)解:设圆锥底面半径为r ,则BC 的长为2πr , ∴9012180r ⨯=ππ, ∴1m 4r . 【点拨】本题主要考查了求扇形面积,圆锥的底面半径,勾股定理,熟练掌握扇形面积公式,勾股定理是解题的关键.21.(1)3(0)S d d=≠;(2)30cm 【分析】(1)根据圆锥体积=13×底面积×高,进行解答即可得; (2)根据(1)得出S 与d 的函数关系进行解答即可得.解:(1)根据圆锥体积=13×底面积×高,得113Sd =, 则3(0)S d d=≠, 故漏斗口的面积S 与漏斗的深度d 之间的函数关系为:3(0)S d d =≠; (2)∵S =100cm 2=1dm 2,∴31d=, 解得d =3dm=30cm ,故漏斗口的面积为100cm 2,那么漏斗的深为30cm .【点拨】本题考查了圆锥的体积,反比例函数的应用,解题的关键是掌握这些知识点.22.(1)121,32x x ==;(2)这个圆锥形漏斗的侧面展开图的圆心角的度数为216° 【分析】(1)利用公式法解一元二次方程即可;(2)利用勾股定理求出母线BC 的长,即为侧面展开图的半径,然后求出底面圆的周长,即求出侧面展开图的弧长,然后利用弧长公式即可求出结论.解:(1)22730x x -+=a=2,b=-7,c=3()2247423250b ac -=--⨯⨯=>∴x=()775224--±±=⨯ 解得:121,32x x ==;(2)该圆锥侧面展开图的半径5cm =侧面展开图的弧长即为底面圆的周长为236ππ⨯=cm∴侧面展开图的圆心角的度数为61805216ππ⨯︒÷÷=︒答:这个圆锥形漏斗的侧面展开图的圆心角的度数为216°.【点拨】此题考查的是解一元二次方程和圆锥侧面展开图,掌握利用公式法解一元二次方程和弧长公式是解题关键.23.【分析】求出圆锥底面圆的周长,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC =90°,连接BP ,根据勾股定理求出BP 即可.解:圆锥底面是以BC 为直径的圆,圆的周长是6π,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,弧长是l =6π,设展开后的圆心角是n °,则66180n ππ⨯=, 解得:n =180°,则∠BAC =12×180°=90°,AP =12AC =3,AB =6,则在圆锥的侧面上从B 点到P 点的最短路线的长就是展开后线段BP 的长,如图,由勾股定理得:BP答:在圆锥的侧面上从B 点到P 点的最短路线的长是.【点拨】本题考查了圆锥的计算,平面展开﹣最短路线问题,勾股定理,弧长公式等知识点的应用,主要考查学生的理解能力和空间想象能力,题目是一道具有代表性的题目,有一定的难度.24.(1)4π;(2)1【分析】(1)连接AB ,可以得到PAB △为等腰直角三角形,由勾股定理求得PA ,再根据扇形面积即可求解;(2)设这个圆锥的底面圆的半径为r ,根据题意可得AB 的长即为底面圆的周长,列方程求解即可.解:(1)如图,连接AB ,∵90APB ∠=︒,∴AB 为O 的直径,∵APB 为扇形,∵PA PB =,∴PAB △为等腰直角三角形,∴AB =∴4PA AB ===, ∴这个扇形的面积29044360ππ⋅⋅==;(2)设这个圆锥的底面圆的半径为r ,由题意得AB 的长即为底面圆的周长∵扇形PAB 中,AB 的长9042180ππ⋅⋅==, ∴22r ππ⋅=,解得1r =,即围成的这个圆锥的底面圆的半径为1.【点拨】此题考查了扇形面积的计算,弧长的计算,涉及了勾股定理,熟练掌握相关计算公式和性质是解题的关键.。

弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略(解析版)-初中数学

弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略(解析版)-初中数学

弧长、扇形的面积、圆锥的侧面积压轴题十种模型全攻略【考点导航】目录【典型例题】【考点一已知圆心角的度数,求弧长】【考点二已知弧长,求圆心角的度数】【考点三求某点的弧形运动路径长度】【考点四已知圆心角的度数或弧长,求扇形的面积】【考点五求图形旋转后扫过的面积】【考点六求弓形的面积】【考点七求其他不规则图形的面积】【考点八求圆锥的侧面积与底面半径】【考点九求圆锥侧面展开图的圆心角】【考点十圆锥侧面上最短路径问题】【过关检测】22【典型例题】【考点一已知圆心角的度数,求弧长】1(2023秋·江苏·九年级专题练习)已知扇形的半径为3cm ,圆心角为150°,则该扇形的弧长为cm .【答案】52π/2.5π【分析】直接利用弧长公式进行计算即可.【详解】解:∵L =n πr180,扇形的半径为3cm ,圆心角为150°,∴扇形的弧长L =150π×3180=52π,故答案为:52π.【点睛】本题主要考查了弧长公式的应用,熟练掌握弧长公式:L =n πr180是解题的关键.【变式训练】1(2023·浙江湖州·统考一模)一个扇形的半径为4,圆心角为90°,则此扇形的弧长为.【答案】2π【分析】利用弧长公式进行计算即可.【详解】解:弧长为=90180π×4=2π;故答案为:2π【点睛】本题考查求弧长.熟练掌握弧长公式,是解题的关键.2(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.【考点二已知弧长,求圆心角的度数】1(2023·黑龙江哈尔滨·统考三模)一个扇形的面积为10π,弧长为10π3,则该扇形的圆心角的度数为.【答案】100°/100度【分析】根据弧长和扇形面积关系可得S =12lR ,求出R ,再根据扇形面积公式求解.【详解】∵一个扇形的弧长是10π3,面积是10π,∴S =12lR ,即10π=12×10π3R ,解得:R =6,∴S =10π=n π×62360,解得:n =100°,故答案为:100°.【点睛】本题考查了扇形面积的计算;弧长的计算.熟记公式,理解公式间的关系是关键.【变式训练】1(2023·江苏镇江·统考二模)扇形的弧长为6π,半径是12,该扇形的圆心角为度.【答案】90【分析】设此扇形的圆心角为x °,代入弧长公式计算,得到答案.【详解】解:设此扇形的圆心角为x °,由题意得,12πx180=6π,解得,x =90,故答案为:90.【点睛】本题考查的是弧长的计算,掌握弧长的公式l =n πr180是解题的关键.2(2023·浙江温州·校考三模)若扇形半径为4,弧长为2π,则该扇形的圆心角为.【答案】90°/90度【分析】设扇形圆心角的度数为n ,根据弧长公式即可得出结论.【详解】解:设扇形圆心角的度数为n ,∵扇形的弧长为2π,∴n π×4180°=2π,∴n =90°.故答案为:90°.【点睛】本题考查的是扇形的面积公式,熟记扇形的面积公式及弧长公式是解答此题的关键.【考点三求某点的弧形运动路径长度】1(2023秋·云南昭通·九年级校联考阶段练习)如图,在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A OB ,其中点A 与点A 对应,点B 与点B 对应.如果A -4,0 ,B -1,2 .则点A 经过的路径长度为(含π的式子表示)【答案】2π【分析】A 点坐标为已知,求出OA 长度,再利用弧长公式l =n πr180求解即可.【详解】解:∵A -4,0如图,由题意A 点以原点O 旋转中心旋转了90°∴点A 经过的路径AA的长度=90⋅π×4180=2π故答案为:2π.【点睛】本题考查图形的旋转、弧长等知识点,需要熟练掌握弧长计算公式.【变式训练】1(2023·湖南郴州·统考中考真题)如图,在Rt △ABC 中,∠BAC =90°,AB =3cm ,∠B =60°.将△ABC 绕点A 逆时针旋转,得到△AB C ,若点B 的对应点B 恰好落在线段BC 上,则点C 的运动路径长是cm (结果用含π的式子表示).【答案】3π【分析】由于AC 旋转到AC ,故C 的运动路径长是CC 的圆弧长度,根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ,如图所示.在直角△ABC 中,∠B =60°,则∠C =30°,则BC =2AB =2×3=6cm .∴AC =BC 2-AB 2=62-32=33cm .由旋转性质可知,AB =AB ,又∠B =60°,∴△ABB 是等边三角形.∴∠BAB =60°.由旋转性质知,∠CAC =60°.故弧CC 的长度为:60360×2×π×AC =π3×33=3πcm ;故答案为:3π【点睛】本题考查了含30°角直角三角形的性质、勾股定理、旋转的性质、弧长公式等知识点,解题的关键是明确C 点的运动轨迹.2(2023·广东东莞·校考一模)如图,△ABC 和△A B ′C ′是两个完全重合的直角三角板,∠B =30°,斜边长为12cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,则点A ′所转过的路径长为cm .【答案】2π【分析】根据三角形内角和和含30度的直角三角形三边的关系得到∠A =60°,AC =12AB =6cm ,再根据旋转的性质得CA ′=CA ,于是可判断△CAA ′为等边三角形,所以∠ACA ′=60°,然后根据弧长公式计算弧AA ′的长度即可.【详解】∵∠ACB =90°,∠B =30°,AB =12cm ,∴∠A =60°,AC =12AB =6cm ,∵三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上,∴CA ′=CA ,∴△CAA ′为等边三角形,∴∠ACA ′=60°,∴弧AA ′的长度=60°π×6180°=2πcm ,即点A ′所转过的路径长为2πcm .答案为:2π.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了弧长公式.【考点四已知圆心角的度数或弧长,求扇形的面积】1(2023·江苏·九年级假期作业)已知扇形的圆心角为80°,半径为3cm ,则这个扇形的面积是cm 2.【答案】2π【详解】根据扇形的面积公式即可求解.【分析】解:扇形的面积=80π×32360=2πcm 2 .故答案是:2π.【点睛】本题主要考查了扇形的面积公式,熟练掌握扇形面积公式是解题的关键.【变式训练】1(2023·黑龙江哈尔滨·哈尔滨市第十七中学校校考模拟预测)一个扇形的弧长是8πcm ,圆心角是144°,则此扇形的面积是.【答案】40π【分析】设该扇形的半径为rcm ,然后根据弧长公式计算半径,然后根据扇形面积公式计算即可.【详解】解:设该扇形的半径为rcm ,由题意得:144πr180=8π,解得:r =10,S 扇形=12lr =12×8π×10=40π,故答案为:40π.【点睛】本题主要考查弧长计算公式及扇形面积计算公式,熟练掌握弧长计算公式和扇形面积计算公式是解题的关键.2(2023·海南海口·海师附中校考三模)如图,正五边形ABCDE 的边长为4,以顶点A 为圆心,AB 长为半径画圆,则图中阴影部分的面积是.【答案】245π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【详解】解:∵正五边形的外角和为360°,∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°-72°=108°,∵正五边形的边长为4,∴S 阴影=108⋅π×42360=245π,故答案为:245π.【点睛】本题考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【考点五求图形旋转后扫过的面积】1(2023·河南安阳·统考一模)如图,将半径为1,圆心角为60°的扇形OAB 绕点A 逆时针旋转36°,得到扇形OAB,则AB扫过的区域(即图中阴影部分)的面积为.【答案】π10【分析】结合已知条件及旋转性质,根据面积的和差可得S 阴影=S 扇形BAB,然后利用扇形面积公式计算即可.【详解】∵OA =OB =1,∠AOB =60°,∴△AOB 为等边三角形,∴AB =OA =1,由旋转性质可得,∠OAO =∠BAB =36°,S △AOB =S △AO B,则S 阴影=S 扇形BAB+S △AOB -S 扇形AOB +S 扇形AO B-S △AO B,=S 扇形BAB,=36π×12360,=π10,故答案为:π10.【点睛】此题考查了扇形的面积及旋转性质,结合已知条件将阴影部分面积转化为扇形的面积是解题的关键.【变式训练】1(2022春·四川德阳·九年级校考阶段练习)如图,将△ABC 绕点C 顺时针旋转120°得到△A B C ,已知AC =3,BC =2,则线段AB 扫过的图形(阴影部分)的面积为.【答案】5π3/53π【分析】由于将△ABC 绕点C 旋转120°得到△A B C ,可见,阴影部分面积为扇形ACA ′减扇形BCB ′,分别计算两扇形面积,在计算其差即可.【详解】解:从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是120°,所以阴影面积=大扇形面积-小扇形面积=120π×32-22 360=53π【点睛】本题考查了扇形面积的计算和阴影部分的面积,将阴影部分面积转化为两扇形面积的查是解题的关键.2(2022秋·山东烟台·九年级统考期末)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =8,将△ABC 绕点A 按逆时针方向旋转到△A B C 的位置,使C 、A 、B 三点在同一条直线上,则直角边BC 扫过的图形面积为.【答案】16π【分析】根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,因此直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,因为S △ABC=S △ABC ,因此S =S 扇形BAB-S 扇形CAC ,代入数值即可求得答案.【详解】解:根据题意可得:AC =AC =4,BC =B C =43,∠B AC =∠B AC =∠CAB =60°,△ABC ≌△AB C ,所以直角边BC 扫过的图形面积为S =S △ABC+S 扇形BAB -S 扇形CAC -S △ABC ,由于S △ABC=S △ABC ,所以S =S 扇形BAB -S 扇形CAC =120°×π×82360°-120°×π×42360°=64π3-16π3=16π,故答案为:16π.【点睛】本题考查了轨迹问题,关键是根据旋转的性质,找出BC 扫过的面积构成,利用扇形的面积公式计算即可.【考点六求弓形的面积】1(2023·云南昆明·昆明八中校考模拟预测)如图,在扇形OAB 中,∠AOB =90°,OA =6,则阴影部分的面积是.【答案】9π-18【分析】利用扇形的面积减去三角形的面积,即可得解.【详解】∵OA =OB =6,∠AOB =90°,∴S 阴=S 扇形OAB -S △AOB =90π×62360-12×6×6=9π-18.故答案为:9π-18.【点睛】本题考查求阴影部分的面积.熟练掌握割补法求面积,是解题的关键.【变式训练】1(2023·山东泰安·统考二模)如图C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,则阴影部分的面积是【答案】23π-3【分析】设AB 的中点为O ,连接OD ,OC ,用扇形COD 的面积减去△COD 的面积即可得出结果.【详解】解:设AB 的中点为O ,连接OD ,OC ,∵C 、D 在直径AB =4的半圆上,D 为半圆弧的中点,∠BAC =15°,∴OD =OC =2,∠DOB =90°,∠COB =2∠BAC =30°,∴∠DOC =∠DOB -∠COB =60°,∴△COD 为等边三角形,∴CD =OD =OC =2,过点O 作OE ⊥CD ,则:CE =12CD =1,∴OE =OC 2-CE 2=3,∴阴影部分的面积=S 扇形COD -S △COD =60π×22360-12×2×3=23π-3;故答案为:23π-3.【点睛】本题考查求弓形的面积,同时考查了圆周角定理,等边三角形的判定和性质.将阴影部分的面积转化为扇形的面积减去三角形的面积,是解题的关键.2(2023·河南周口·校联考三模)如图,在△ABC 中,BC =BA =4,∠C =30°,以AB 中点D 为圆心、AD 长为半径作半圆交线段AC 于点E ,则图中阴影部分的面积为.【答案】4π3-3【分析】连接DE ,BE ,然后根据已知条件求出∠ABE =60°,AE =23,从而得到∠ADE =120°,最后结合扇形的面积计算公式求解即可.【详解】解:如图,连接DE ,BE .∵AB 为直径,∴∠BEA =90°.∵BC =BA ,∴∠BAC =∠BCA =30°,∴∠ABE =60°,BE =12AB =2,AE =3BE =32AB =23,∵BD =DE ,∴△BDE 是等边三角形,∴∠ADE =120°,∴阴影部分的面积=S 扇形DAE -S △ADE=120π×22360-12S △ABE=120π×22360-12×12×23×2=4π3-3=4π3-3.故答案为:4π3-3.【点睛】本题考查阴影部分面积计算问题,涉及到扇形面积计算,等边三角形的判定与性质,直径所对的圆周为直角等,掌握扇形面积计算公式是解题关键.【考点七求其他不规则图形的面积】1(2023春·河南漯河·九年级校考阶段练习)图1是以AB 为直径的半圆形纸片,AB =8,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 向右平移至扇形O A C ,如图2,其中O 是OB 的中点,O C 交BC于点F ,则图中阴影部分的面积为.【答案】8π3-23【分析】根据题意和图形,利用勾股定理,可以求得O F 的长,再根据图形,可知阴影部分的面积=扇形COB 的面积∽△OO F 的面积-扇形OFC 的面积,计算即可.【详解】解:连接OF ,由题意可得,OB =4,OO =2,∠OO F =90°,∴∠OFO =30°,∴∠O OF =60°,∴O F =23,∴阴影部分的面积是:90π×42360-2×232-30×π×42360=8π3-23,故答案为:8π3-23.【点睛】本题考查扇形面积的计算、平移的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式训练】1(2023·河南信阳·统考一模)如图,正五边形ABCDE 的边长为1,分别以点C ,D 为圆心,CD 长为半径画弧,两弧交于点F ,图中阴影部分的面积为.(结果保留π)【答案】32-π15【分析】连接CF ,DF ,由CF =DF =CD =1,得∠FCD =∠FDC =60°,求出∠FCD =∠FDC =60°,根据公式求出S 扇形BCF ,S 正△CFD ,S 扇形CDF ,即可得到阴影面积.【详解】如图,连接CF ,DF ,由题意,得∠BCD =(5-2)×180°5=108°,∵CF =DF =CD =1,∴∠FCD =∠FDC =60°,∴∠BCF =108°-60°=48°,∴S 扇形BCF =48π×12360=2π15,S 正△CFD =34×12=34,S 扇形CDF =60π×12360=π6,∴S 阴影BCF =2π15+34-π6=34-π30,∴S 阴影=34-π30 ×2=32-π15,故答案为:32-π15.【点睛】此题考查了求不规则图形的面积,扇形面积公式,正多边形的性质,正确理解图形面积的计算方法连接辅助线是解题的关键.2(2023·河南南阳·统考模拟预测)如图,在矩形ABCD 中,AD =2,AB =1,以D 为圆心,以AD 长为半径画弧,以C 为圆心,以CD 长为半径画弧,两弧恰好交于BC 上的点E 处,则阴影部分的面积为.【答案】12【分析】如图,连接DE ,根据勾股定理,得DE =2,根据阴影部分的面积S 1为:扇形AED 的面积减去S 2,根据S 2的等于扇形DCE 的面积减去S 3,即可求解.【详解】解:连接DE ,如图:∵四边形ABCD 是矩形,∴∠ADC =∠BCD =90°,AB =DC =1,∵EC =DC =1,∴∠CDE =45°,∴∠ADE =45°,∴扇形DAE 的面积为:45π×2 2360=π4,∵S 2=S 扇形DCE -S 3=90π×12360-12×1×1=π4-12,∴阴影部分的面积为:S 1=S 扇形ADE -S 2=π4-π4-12 =12.故答案为:12.【点睛】本题考查矩形的性质,扇形的面积,三角形面积,解题的关键是掌握扇形的面积公式,矩形的性质.【考点八求圆锥的侧面积与底面半径】1(2023·全国·九年级专题练习)若圆锥的底面圆半径为2,母线长为5,则该圆锥的侧面积是.(结果保留π)【答案】10π【分析】根据圆锥的底面圆半径为2,母线长为5,直接利用圆锥的侧面积公式求出即可.【详解】解:根据圆锥的侧面积公式:πrl=π×2×5=10π,故答案为:10π.【点睛】本题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.【变式训练】1(2023春·云南昭通·九年级统考期中)若圆雉的侧面积为12π,底面圆半径为3,则该圆雉的母线长是.【答案】4【分析】根据圆锥的侧面积=πrl,列出方程求解即可.【详解】解:∵圆锥的侧面积为12π,底面半径为3,3πl=12π.解得:l=4,故答案为:4.【点睛】本题考查了圆锥的侧面积,解题关键是熟记圆锥的侧面积公式,列出方程进行求解.2(2023·广东梅州·统考一模)若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为cm2.(结果保留π)【答案】12π【分析】根据圆锥的侧面积公式计算即可.【详解】解:∵圆锥的底面半径为3cm,母线长为4cm,∴圆锥的侧面积为12×2×3π×4=12πcm2.故答案为:12π.【点睛】本题主要考查了圆锥的侧面积,属于简单题,熟练掌握扇形面积公式是解题关键.3(2023·江苏·九年级假期作业)已知圆锥侧面展开图圆心角的度数是120°,母线长为3,则圆锥的底面圆的半径是.【答案】1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=120×π×3180,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得2πr=120×π×3180,解得r=1.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4(2023·浙江衢州·统考二模)某个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则这个圆锥的底面半径为cm.【答案】2【分析】把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【详解】解:设此圆锥的底面半径为rcm,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=120π×6180,r=2故答案为2.【点睛】此题考查了圆的周长和圆弧长的计算,熟练掌握它们的计算公式是解题的关键.【考点九求圆锥侧面展开图的圆心角】1(2022秋·广东惠州·九年级校考阶段练习)已知圆锥的底面圆半径是2,母线长是4,则圆锥侧面展开的扇形圆心角是.【答案】180°/180度【分析】根据圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】解:∵圆锥底面半径是2,∴圆锥的底面周长为4π,设圆锥的侧面展开的扇形圆心角为n°,∴nπ×4180=4π,解得:n=180,∴圆锥侧面展开的扇形圆心角是180°.故答案为:180°.【点睛】本题考查求圆锥侧面展开图的圆心角.掌握圆锥的侧面展开图的弧长等于圆锥的底面周长是解题的关键.【变式训练】1(2023·江苏·九年级假期作业)已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为,圆锥侧面展开图形的圆心角是度.【答案】15π216【分析】根据圆锥的侧面积公式S侧=πrl即可求解该圆锥的侧面积;结合弧长公式求出圆锥侧面展开图形的圆心角即可.【详解】解:圆锥的侧面积S侧=π×3×5=15π,圆锥的底面周长L=2π×3=6π,扇形圆心角=180×6ππ×5=216°.故答案为:15π,216.【点睛】本题主要考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.2(2023·江苏·九年级假期作业)若要制作一个母线长为9cm,底面圆的半径为4cm的圆锥,则这个圆锥的侧面展开图的圆心角度数是.【答案】160°/160度【分析】利用圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系计算,即可求解.【详解】解:设这个圆锥的侧面展开图的圆心角的度数是n,根据题意得:2π×4=n π×9180,解得n =160,即这个圆锥的侧面展开图的圆心角是160°,故答案为:160°.【点睛】本题考查了圆锥侧面展开图,扇形圆心角与母线和底面圆半径的关系,明确圆锥的底面圆的周长=扇形的弧长是解答本题的关键.【考点十圆锥侧面上最短路径问题】1(2023秋·山东东营·九年级东营市胜利第一初级中学校考期末)如图,已知圆锥底面半径为20cm ,母线长为60cm ,一只蚂蚁从A 处出发绕圆锥侧面一周(回到原来的位置A )所爬行的最短路径为cm .(结果保留根号)【答案】603【分析】把圆锥的侧面展开得到圆心角为120°,半径为60的扇形,求出扇形中120°的圆心角所对的弦长即为最短路径.【详解】解:圆锥的侧面展开如图:过S 作SC ⊥AB ,∴AC =BC设∠ASB =n °,即:2π×20=n π×60180,得:n =120,∴∠ASC =60°∴AC =AS ×sin ∠ASC =60×32=303∴AB =2AC =603,故答案为:603.【点睛】本题考查了圆锥侧面展开图的圆心角,特殊角的锐角三角函数值,将圆锥中的数据对应到展开图中是解题的关键.【变式训练】1(2023春·黑龙江齐齐哈尔·九年级校联考期中)如图,AB 是圆锥底面的直径,AB =6cm ,母线PB=9cm .点C 为PB 的中点,若一只蚂蚁从A 点处出发,沿圆锥的侧面爬行到C 点处,则蚂蚁爬行的最短路程为.【答案】932/923【分析】先画出圆锥侧面展开图(见解析),再利用弧长公式求出圆心角∠APA 的度数,然后利用等边三角形的判定与性质、勾股定理可得AC =932,最后根据两点之间线段最短即可得.【详解】画出圆锥侧面展开图如下:如图,连接AB 、AC ,设圆锥侧面展开图的圆心角∠APA 的度数为n °,因为圆锥侧面展开图是一个扇形,扇形的弧长等于底面圆的周长,扇形的半径等于母线长,所以n π×9180=2π×3,解得n =120,则∠APB =12APA =60°,又∵AP =BP =9,∴△ABP 是等边三角形,∵点C 为PB 的中点,∴AC ⊥BP ,CP =12BP =92,在Rt △ACP 中,AC =AP 2-CP 2=932,由两点之间线段最短可知,蚂蚁爬行的最短路程为AC =932,故答案为:932.【点睛】本题考查了圆锥侧面展开图、弧长公式、等边三角形的判定与性质等知识点,熟练掌握圆锥侧面展开图是解题关键.2(2022秋·重庆沙坪坝·八年级重庆八中校考期中)如图1,一只蚂蚁从圆锥底端点A 出发,绕圆锥表面爬行一周后回到点A ,将圆锥沿母线OA 剪开,其侧面展开图如图2所示,若∠AOA =120°,OA =3,则蚂蚁爬行的最短距离是.【答案】3【分析】连接AA ′,作OB ⊥AA ′于点B ,根据题意,结合两点之间线段最短,得出AA ′即为蚂蚁爬行的最短距离,再根据三角形的内角和定理得出∠OAB =30°,再根据直角三角形中30°所对的直角边等于斜边的一半,得出OB =32,再根据勾股定理,得出AB =32,再根据三线合一的性质,得出AB =A ′B ,再根据线段之间的数量关系,得出AA ′=3即可解答.【详解】解:如图,连接AA ′,作OB ⊥AA ′于点B ,∴AA ′即为蚂蚁爬行的最短距离,∵OA =OA ′,∠AOA ′=120°,∴∠OAB =30°,在△OAB 中,OB ⊥AA ′,∠OAB =30°,∴OB =12OA =12×3=32,∴AB =OA 2-OB 2=3 2-32 2=32,在△AOA ′中,OA =OA ′,OB ⊥AA ′,∴AB =A ′B ,∴AA ′=2AB =2×32=3.∴蚂蚁爬行的最短距离为3.故答案为:3【点睛】本题考查了圆锥侧面上最短路径问题、三角形的内角和定理、直角三角形的特征、勾股定理、三线合一的性质等知识点,正确作出辅助线、构造等腰三角形和直角三角形是解题的关键.【过关检测】一、单选题1(2023·黑龙江哈尔滨·哈尔滨市第四十七中学校考模拟预测)一个扇形的半径是4cm ,圆心角是45°,则此扇形的弧长是()A.πcmB.2πcmC.4πcmD.8πcm 【答案】A【分析】根据弧长公式进行计算即可.【详解】解:由题意得,扇形的半径为4cm,圆心角为45°,故此扇形的弧长为45π×4180=πcm,故选:A.【点睛】此题考查了扇形弧长的计算,属于基础题,解答本题的关键是熟练掌握弧长计算公式,难度一般.2(2023·浙江温州·校联考三模)已知圆锥的底面半径为4,母线长为5,则圆锥的侧面积为() A.8π B.10π C.12π D.20π【答案】D【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解.【详解】解:根据题意可得:圆锥的侧面积为:π×4×5=20π,故选:D.【点睛】本题考查了圆锥的侧面积展开图公式,解题的关键是掌握圆锥的侧面积的计算公式:圆锥的侧面积=π×底面半径×母线长.3(2023秋·江苏·九年级专题练习)如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A B C的位置.若BC的长为7.5cm,那么顶点A从开始到结束所经过的路径长为()A.10πcmB.103πcmC.15πcmD.20πcm【答案】A【分析】顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径的圆弧,旋转的角度是180°-60°=120°,所以根据弧长公式可得.【详解】解:在含有30°角的直角三角板ABC中,∠ACB=60°,BC=7.5cm,∴∠ACA =120°,AC=2BC=15cm,∴120π×15180=10πcm,故选:A.【点睛】本题考查弧长公式,解题的关键是弄准弧长的半径和圆心角的度数.4(2023秋·江苏·九年级专题练习)如图,在扇形AOB中,∠AOB=90°,半径OA=3,将扇形AOB沿过点B的直线折叠,使点O恰好落在AB上的点D处,折痕为BC,则阴影部分的面积为()A.3π-332B.9π4-33 C.π-34D.3π-34【答案】B【分析】连接OD ,由折叠的性质可得CD =CO ,BD =BO ,∠DBC =∠OBC ,从而得到△OBD 为等边三角形,再求出∠CBO =30°,从而得出OC =3,进行得出S △BOC =332,最后由△BOC 与△BDC 面积相等及S 阴影=S 扇形AOB -S △BOC -S △BDC ,进行计算即可得到答案.【详解】解:如图,连接OD ,,根据折叠的性质,CD =CO ,BD =BO ,∠DBC =∠OBC ,∴OB =BD =OD ,∴△OBD 为等边三角形,∴∠DBO =60°,∴∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB ⋅tan ∠CBO =3×33=3,∴S △BOC =12OB ⋅OC =332,∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB -S △BOC -S △BDC =14π×32-332-332=94π-33,故选:B .【点睛】本题主要考查了等边三角形的判定与性质、折叠的性质、扇形面积的计算-求不规则图形的面积,添加适当的辅助线,得到S 阴影=S 扇形AOB -S △BOC -S △BDC 是解题的关键.5(2023·辽宁抚顺·统考一模)如图1是一块弘扬“社会主义核心价值观”的扇面宜传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =3m ,OB =1.5m ,则阴影部分的面愁为()A.4.25πm 2B.25πm 2C.3πm 2D.2.25πm 2【答案】D【分析】根据S 阴影=S 扇形DOA -S 扇形BOC 计算即可.【详解】S 阴影=S 扇形DOA -S 扇形BOC =120π×9360-120π×94360=2.25πm 2故选:D .【点睛】本题考查的是扇形面积的计算,掌握扇形的面积公式S =n πR 2360是解题的关键.二、填空题6(2023·福建福州·福建省福州第一中学校考模拟预测)圆锥母线长l =8,底面圆半径r =2,则圆锥侧面展开图的圆心角θ是.【答案】90°/90度【分析】根据弧长公式,弧长与圆锥底面圆的周长相等,建立等式计算即可.【详解】∵圆锥母线长l =8,底面圆半径r =2,圆锥侧面展开图的圆心角θ,∴2πr =θπl180,∴θ=360×2×π8π=90°,故答案为:90°.【点睛】本题考查了圆锥的侧面展开,弧长公式,熟练掌握展开的特点,牢记弧长公式是解题的关键.7(2023秋·河北唐山·九年级统考期末)如图,半圆O 的直径AB =6,弦CD =3,AD的长为34π,则BC的长为.【答案】5π4【分析】由题意可知:△OCD 是等边三角形,从而可求出弧CD 的长度,再求出半圆弧的长度后,即可求出弧BC 的长度.【详解】解:连接OD 、OC ,∵CD =OC =OD =3,∴△CDO 是等边三角形,∴∠COD =60°,∴CD 的长=60⋅π×3180=π,又∵半圆弧的长度为:12×6π=3π,∴BC =3π-π-3π4=5π4.故答案为:5π4【点睛】本题考查圆了弧长的计算,等边三角形的性质等知识,属于中等题型.8(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.9(2023·吉林长春·校联考二模)如图,AB 是⊙O 的直径,AB =4,点C 在⊙O 上(点C 不与A 、B 重合),过点C 作⊙O 的切线交AB 的延长线于点D ,连接AC .若∠D =45°,则BC的长度是(结果保留π)【答案】π2/12π【分析】连接OC ,根据切线的性质,得出∠OCD =90°,再根据三角形的内角和定理,得出∠DOC =45°,即∠BOC =45°,再根据圆的基本概念,得出OB =2,再根据弧长公式,计算即可.【详解】解:如图,连接OC ,∵CD 是⊙O 的切线,∴CD ⊥OC ,。

2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。

初三数学扇形和弧长练习题

初三数学扇形和弧长练习题

初三数学扇形和弧长练习题1. 计算扇形的面积问题:一个半径为5cm的圆的一个扇形的圆心角为60度,求该扇形的面积。

解析:扇形的面积等于圆的面积乘以扇形的圆心角度数除以360度。

已知半径为5cm,圆心角为60度,代入公式可得:扇形面积 = 圆的面积 ×圆心角度数 / 360= π × 5^2 × 60 / 360= π × 25 × 60 / 360= π × 25 / 6≈ 13.09cm^2所以该扇形的面积约为13.09cm^2。

2. 计算弧长问题:一个圆的周长为10π cm,求圆的一段弧长。

解析:弧长等于圆的周长乘以弧所占圆周的比例。

已知圆的周长为10π cm,我们可以设所求弧长为x cm,代入公式可得:x / (10π) = 所求弧所占圆周的比例 = 弧长 / 圆的周长解得 x = 弧长= (10π) × 弧长 / 圆的周长= (10π) × 1 / 4π= 10 / 4= 2.5 cm所以该圆的一段弧长为2.5 cm。

3. 综合计算问题:一个半径为8cm的圆的两个扇形的圆心角分别为120度和60度,求这两个扇形的面积之和。

解析:根据第一题的解析,我们可以计算出两个扇形的面积,然后相加即可。

已知半径为8cm,圆心角分别为120度和60度,代入公式可得:第一个扇形的面积= π × 8^2 × 120 / 360= π × 64 × 120 / 360= π × 8 × 40= 320π cm^2第二个扇形的面积= π × 8^2 × 60 / 360= π × 64 × 60 / 360= π × 8 × 10= 80π cm^2两个扇形的面积之和 = 第一个扇形的面积 + 第二个扇形的面积= 320π + 80π= 400π cm^2所以这两个扇形的面积之和为400π cm^2。

九年级数学下册圆锥的侧面积 同步练习北师大版

九年级数学下册圆锥的侧面积 同步练习北师大版

圆锥的侧面积学习目标:经历探索圆锥侧面积计算公式的过程,了解圆锥的侧面积计算公式,并会应用公式解决问题.学习重点:圆锥的侧面展开图及侧面积的计算.圆锥的侧面展开图是扇形,其半径等于母线长,弧长等于圆锥底面圆的周长.设圆锥的底面半径为r,母线长为ι,则它的侧面积:S侧=πrι,S全=S侧+S底=πr(ι+r).学习难点:对圆锥的理解认识.圆锥是一个底面和一个侧面围成的,它可以看作是由一个直角三角形绕一条直角边所在直线旋转而成的图形.学习方法:观察——想象——实践——总结法.学习过程:一、例题讲解:【例1】已知圆锥的底面积为4πcm2,母线长为3cm,求它的侧面展开图的圆心角.【例2】若圆锥的底面直线为6cm,母线长为5cm,则它的侧面积为 cm.(结果保留π)【例3】在Rt△ABC中,已知AB=6,AC=8,∠A=90°.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其全面积为S1;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其全面积为S2.那么S1:S2等于()A.2:3 B.3:4 C.4:9 D.5:12【例4】圆锥的侧面积是18π,它的侧面展开图是一个半圆,求这个圆锥的高和锥角.【例5】一个圆锥的高为33cm,侧面展开图是半圆,求:(1)圆锥母线与底面半径的比;(2)锥角的大小;(3)圆锥的全面积.二、随堂练习1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为 .2.粮仓的顶部是圆锥形,这个圆锥的底面直径是4m ,母线长3m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6m 2B .6πm 2C .12m 2D .12πm 23.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( ) A .aB .33aC .3aD .23a三、课后练习:1.一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( )A .43B .32C .54D .212.若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( )A .3:2B .3:1C .2:1D .5:33.如图,将半径为2的圆形纸片沿半径OA 、OB 将其截成1:3两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A .21B .1C .1或3D .21或234.如图,将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是( )5.在△ABC 中,∠C=90°,AB=4cm ,BC=3cm .若△ABC 绕直线AC 旋转一周得到一个几何体,则此几何体的侧面积是( )A .6πcm 2B .12πcm 2C .18πcm 2D .24πcm 26.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4 B.43C.45D.2147.已知圆锥的母线长是10cm,侧面展开图的面积是60πcm2,则这个圆锥的底面半径是cm.8.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.9.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.10.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.11.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的全面积为.12.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm,那么这个烟囱帽的底面直径为()A.80cm B.100cm C.40cm D.5cm13.圆锥的高为3cm,底面半径为4cm,求它的侧面积和侧面展开图的圆心角.14.以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.15.已知两个圆锥的锥角相等,底面面积的比为9:25,其中底面较小的圆锥的底面半径为6cm,求另一个圆锥的底面积的大小.16.轴截面是顶角为120°的等腰三角形的圆锥侧面积和底面积的比是多少?17.如图,已知圆锥的母线SB=6,底面半径r=2,求圆锥的侧面展开图扇形的圆心角α.18.一个圆锥的底面半径为10cm,母线长20cm,求:(1)圆锥的全面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.19.一个扇形如图,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,求圆锥底面半径和锥角.20.一个圆锥的轴截面是等边三角形,它的高是23cm.(1)求圆锥的侧面积和全面积;(2)画出圆锥的侧面展开图.21.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=52cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.22.用一块圆心角为300°的扇形铁皮做一个圆锥形烟囱帽,圆锥的底面直径为1m,求这个扇形铁皮的半径.23.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?24.如图,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)25.小明要在半径为1m,圆心角为60°的扇形铁皮上剪取一块面积尽可能大的正方形铁皮.小明在扇形铁皮上设计了如图3-8-11的甲、乙两种方案剪取所得的正方形的面积,并计算哪个正方形的面积较大?(估算时3取1.73,结果保留两个有效数字)26.要将一块直径为2m的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图3-8-14中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).方案二:在图3-8-15中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.。

【中考专项】2023年中考数学转向练习之选择题11 弧长、扇形与圆锥侧面积的有关计算

【中考专项】2023年中考数学转向练习之选择题11 弧长、扇形与圆锥侧面积的有关计算

【填空题】必考重点11 弧长、扇形与圆锥侧面积的有关计算圆的有关计算主要包括弧长的计算、扇形的面积、圆锥的侧面积以及圆锥的半径或母线的长度计算,是江苏省各地市中考的必考点,难度一般或较为简单。

接此类题目时,要求考生熟记弧长的计算公式,扇形的面积公式等基本知识,在做题时注意找出已知量,标出所求量,根据公式计算即可。

【2022·江苏徐州·中考真题】如图,圆锥的母线AB=6,底面半径CB=2,则其侧面展开图扇形的圆心角α=_______.【考点分析】本题考查圆的周长公式,弧长公式,方程思想在初中数学的学习中非常重要,是中考的热点,在各种题型中均有出现,要特别注意.【思路分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到6180απ⨯=2π•2,然后解方程即可.【2022·江苏宿迁·中考真题】将半径为6cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______cm.【考点分析】本题考查了扇形、圆锥的知识;解题的关键是熟练掌握弧长公式、圆锥的性质,从而完成求解.【思路分析】根据弧长公式、圆锥的性质分析,即可得到答案.【2021·江苏徐州·中考真题】如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为8cm,扇形的圆心角90θ=︒,则圆锥的底面圆半径r为__________cm.【考点分析】本题考查了弧长、圆周长的知识;解题的关键是熟练掌握弧长计算的性质,从而完成求解.【思路分析】结合题意,根据弧长公式,得圆锥的底面圆周长;再根据圆形周长的性质计算,即可得到答案.【2021·江苏宿迁·中考真题】已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【考点分析】考查了圆锥的计算,解题的关键是了解圆锥的侧面展开扇形的弧长等于底面圆的周长,难度不大.【思路分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.1.(2022·江苏·宿迁市宿豫区教育局教研室二模)把半径为12且圆心角为150︒的扇形围成一个圆锥,则这个圆锥的底面圆的半径为__________.2.(2022·江苏·徐州市第十三中学三模)用一个直径为30cm圆形扫地机器人,打扫一间长为4m、宽为3m 的矩形房间,则打扫不到的角落的面积为______.(结果保留π)3.(2022·江苏·淮安市淮安区教师发展中心学科研训处模拟预测)已知圆锥的底面圆半径是2,母线长是3,则圆锥的侧面积为______.4.(2022·江苏常州·二模)已知圆锥的底面半径为9,高为12,则这个圆锥的侧面积为____________.5.(2022·江苏南京·二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若扇形的半径R=6cm,扇形的圆心角θ=120°,该圆锥的高为______cm.6.(2022·江苏扬州·三模)小红用图中所示的扇形纸片制作一个圆锥形容器(接缝忽略不计)的侧面,已知扇形纸片的半径为5cm,圆心角为240°,那么这个圆锥形容器底面半径为______cm.7.(2022·江苏南京·二模)如图,在矩形ABCD中,AD=1,AB A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为______.8.(2022·江苏·二模)如图,将半径为4,圆心角为120°的扇形OAB绕点B逆时针旋转60°,得到扇形O'A'B,其中点A的运动路径为AA ,则图中阴影部分的面积和为_______.9.(2022·江苏无锡·模拟预测)学习圆锥有关知识的时候,韩老师要求每个同学都做一个圆锥模型,小华用家里的旧纸板做了一个底面半径为3cm ,母线长为5cm 的圆锥模型,则此圆锥的侧面积是__cm 2. 10.(2022·江苏徐州·二模)如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为______2cm (结果保留π).11.(2022·江苏南京·一模)如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是 _____.12.(2022·江苏苏州·一模)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,60DAB ∠=︒,4AB =.分别以点A ,点C 为圆心,AO ,CO 长为半径画弧交AB ,AD ,CD ,CB 于点E ,F ,G ,H ,则图中阴影部分面积为______.(结果保留根号和π)13.(2022·江苏南京·一模)如图,在正五边形ABCDE中,BD、CE相交于点O.以O为圆心,OB为半径画弧,分别交AB,AE于点M,N.若BC=2,则MN的长为______(结果保留π).AB=,将半圆O绕点B顺时针旋转45︒得到半圆'O,与14.(2022·江苏无锡·一模)如图,半圆O的直径6AB交于点P,图中阴影部分的面积等于__________.15.(2022·江苏无锡·一模)如图,边长为2的等边ABC的中心与半径为2的O的圆心重合,E,F分别是CA,AB的廷长线与O的交点,则图中阴影部分的面积为__________.16.(2022·江苏扬州·一模)如图,等腰Rt△AOD的直角边OA长为2,扇形BOD的圆心角为90°,点P 是线段OB的中点,PQ⊥AB,且PQ交弧DB于点Q.则图中阴影部分的面积是______.17.(2022·江苏徐州·模拟预测)如图,小明利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是_____cm2.(结果用含π的式子表示)18.(2022·江苏·靖江市滨江学校一模)如图,将矩形ABCD绕着点A逆时针旋转得到矩形AEFG,点B的对应点E落在边CD上,且DE=AD=2,则BE的长为_____.19.(2022·江苏苏州·二模)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧,交AC 于点E,若∠A=60°,∠ABC=100°,BC=4,则扇形BDE的面积为_______.20.(2022·江苏盐城·一模)如图,半径为3的扇形AOB中,∠AOB=90°,C为弧上一点,CD⊥OA,CE ⊥OB,垂足分别为D、E.若∠CDE为40°,则图中阴影部分的面积为_______.21.(2022·江苏徐州·模拟预测)如图,扇形OAB是一个圆锥的侧面展开图,∠AOB=120°,AB的长为6πcm,则该圆锥的侧面积为_______cm2(结果保留π).22.(2022·江苏·苏州高新区实验初级中学三模)如图,在扇形AOB 中,∠AOB =90°,点C 是AB 的中点,过点C 的切线交OB 的延长线于点E ,当BE =43 __________________.23.(2022·江苏南京·模拟预测)如图,在Rt AOB 中,90AOB ︒∠=,3OA =,2OB =,将Rt AOB 绕O 顺时针旋转90︒后得Rt FOE ,将线段EF 绕点E 逆时针旋转90︒后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是________.24.(2022·江苏南京·模拟预测)OABC 中,D 为边BC 上一点,且CD =1,以O 为圆心,OD 为半径作圆,分别与OA 、OC 的延长线交于点E 、F ,则阴影部分的面积为__.25.(2022·江苏无锡·模拟预测)如图,AB 是半圆O 的直径,以O 为圆心,C 为半径的半圆交AB 于C 、OC=,则图中阴影部分的面积为_________(结果保留D两点,弦AF切小半圆于点E.已知2OA=,1π)【填空题】必考重点11 弧长、扇形与圆锥侧面积的有关计算圆的有关计算主要包括弧长的计算、扇形的面积、圆锥的侧面积以及圆锥的半径或母线的长度计算,是江苏省各地市中考的必考点,难度一般或较为简单。

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积

人教版九年级数学上册作业课件 第二十四章 圆 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
7.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形, 求这个圆锥的侧面积及高.
解:侧面积为12 ×12×12π=72π(cm2).设底面半径为 r cm,则有 2πr =12π,∴r=6.由于高、母线、底面圆的半径恰好构成直角三角形, 根据勾股定理可得,高 h= 122-62 =6 3 (cm)
知识点 2:圆锥的全面积 8.圆锥的底面半径为 4 cm,高为 5 cm,则它的表面积为( D ) A.12π cm2 B.26π cm2 C. 41 π cm2 D.(4 41 +16)π cm2
9.已知直角三角形 ABC 的一条直角边 AB=12 cm,另一条直角边 BC =5 cm,则以 AB 为轴旋转一周,所得到的圆锥的表面积是( A ) A.209π cm2 B.155π cm2 C.90π cm2 D.65π cm2
解:l=2π×3=nπ18×0 6 ,∴n=180,∴圆锥侧面展开图是一个半圆,如 图所示,∠BAP=90°,AB=6 m,AP=3 m,∴BP=3 5 m,∴小猫 所经过的最短路程是 3 5 m
人教版
第二十四章 圆
24.4 弧长和扇形面积 第2课时 圆锥的侧面积与全面积
1.圆锥是由一个底面和一个__侧__面围成的几何体,连接圆锥_顶__点__和底面 圆周上任意一点的线段叫做圆锥的母线.
练习1:一圆锥的母线长为5,高为4,则该圆锥底面圆的周长为_6_π__.
2.圆锥的侧面展开图是一个__扇__形,扇形的半径为圆锥的_母__线__长,扇形 的弧长即为圆锥底面圆的_周__长__.圆锥的全面积等于底面积+_侧__面__积__.
则圆锥的侧面积为12 π·AC2=18π(cm2)
17.(2020·广东中考改编)如图,从一块半径为1 m的圆形铁皮上剪出一个 圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,求该圆锥 的底面圆的半径r.

圆锥的侧面积(巩固篇)(专项练习)

圆锥的侧面积(巩固篇)(专项练习)

专题2.13 圆锥的侧面积(巩固篇)(专项练习)一、单选题1.如图,圆锥的底面圆半径r 为5cm ,高h 为12cm ,则圆锥的侧面积为( )A .65πcm 2B .60πcm 2C .100πcm 2D .130πcm 22.从半径为8cm 的圆形纸片剪去圆周14的一个扇形,将剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .10cmB .C .8cmD .6cm3.如图,O 是ABC 的外接圆,22.5,8ABO ACO BC ∠=∠=︒=,若扇形OBC (图中阴影部分)正好是一个圆锥的侧面展开图,则该圆锥的高为( )AB .CD 4.已知圆锥底面半径为1,母线长为4,地面圆周上有一点A ,一只蚂蚁从点A 出发沿圆锥侧面运动一周后到达母线P A 中点B ,则蚂蚁爬行的最短路程为( )A .πB C .D .2π5.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为( )A .24πcmB .25πcmC .26πcmD .28πcm6.已知圆锥的母线长为2,底面圆的半径为1,如果一只蚂蚁从圆锥的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )AB C .D .27.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .88.如图,从一张腰长为90cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面圆的半径为( )cm .A .15B .30C .45D .30π9.斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为()A.54B.2C.52D.410.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.C.D.二、填空题11.如果圆锥底面圆的半径为3cm,它的侧面积为12 cm2,则这个圆锥的母线长为_____cm.12.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=___cm.13.如图,菱形ABCD,∠A=135°,以点C为圆心的弧EF分别与AB、AD相切于点G、H,与BC、CD分别相交于点E、F,用扇形CEF做成圆锥的侧面,则这个圆锥的高是_____.(结果保留根号)14.一个母线长为6cm ,底面半径为3cm 的圆锥展开后得到的侧面展开图扇形的圆心角是___度.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为_____.16.如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.17.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为__________.18.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果剪下来的扇形围成一个圆锥,则该圆锥的底面圆的周长为______m .三、解答题19.一块四边形ABCD 余料如图所示,已知AD BC ∥,2AD =米,AB =点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,用扇形AFD围成一个圆锥的侧面,求这个圆锥底面圆的半径.20.如图,已知一个圆锥的侧面展开图是一个半径为9cm,圆心角为120°的扇形.求:(1)圆锥的底面半径;(2)圆锥的全面积.21.如图,在单位长度为1的正方形网格中建立直角坐标系,一条圆弧恰好经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1) 利用网格找出该圆弧所在圆的圆心D点的位置,则D点的坐标为_______;(2) 连接AD、CD,若扇形DAC是一个圆锥的侧面展开图,则该圆锥底面半径为_______;(3) 连接AB,将线段AB绕点D旋转一周,求线段AB扫过的面积.22.如图,已知扇形AOB的圆心角为120°,半径OA为9cm.(1) 求扇形AOB的弧长和扇形面积;(2) 若把扇形纸片AOB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.23.如图,已知圆锥的底面半径r为10cm,母线长为40cm.求它的侧面展开扇形的圆心角的度数和它的全面积.24.已知圆锥的底面半径为r=20cm,高h=,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.参考答案1.A【分析】根据圆锥的侧面积公式:S =πrl ,直接代入数据求出即可. 解:由圆锥底面半径r =5cm ,高h =12cm ,根据勾股定理得到母线长l (cm ), πrl =π×5×13=65π(cm 2), 故选:A .【点拨】此题主要考查了圆锥侧面积公式,熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B【分析】先求得扇形的弧长,即圆锥的底面周长,则底面半径即可求得,然后利用勾股定理即可求得圆锥的高.解:圆心角是:1704360(1)2,︒⨯-=︒则弧长是:270812(cm),180ππ⨯= 设圆锥的底面半径是r ,则212r ππ=, 解得:r =6, 则圆锥的高是:=故选:B.【点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.D【分析】根据圆的性质,勾股定理求出圆的半径OB ,再根据扇形的弧长公式即可求解;解:根据圆的性质,2BOC A ∠=∠180180A ABO OBC ACO OCB OBC BOC OCB ∠+∠+∠+∠+∠=︒∠+∠+∠=︒∵, A ABO ACO BOC ∠+∠+∠=∠∴∵2BOC A ∠=∠,22.5ABO ACO ∠=∠=︒90BOC ∴∠=︒∵8OB OC BC ==,∴OB OC =∴124BC π=⋅⋅=∴圆锥底面圆的半径为:2r π==∴圆锥的高h =故选:D【点拨】本题主要考查圆的性质、勾股定理、弧长公式的应用,掌握相关知识并灵活应用是解题的关键.4.C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,连接AB ,根据展开所得扇形的弧长等于圆锥底面圆的周长求得扇形的圆心角,进而解三角形即可求解.解:根据题意,将该圆锥展开如下图所示的扇形,则线段AB 就是蚂蚁爬行的最短距离.∵点B 是母线P A 的中点,4PA =, ∴2PB =,∵圆锥的底面圆的周长=扇形的弧长, 又∵圆锥底面半径为1,∴扇形的弧长=圆锥底面周长,即22l r ππ==,扇形的半径=圆锥的母线=P A =4, 由弧长公式可得:42180180n R n l πππ⨯=== ∴扇形的圆心角90n =︒,在Rt △APB 中,由勾股定理可得:AB =所以蚂蚁爬行的最短路程为故选:C.【点拨】.本题考查平面展开--最短路径问题、圆的周长计算公式、弧长计算公式,勾股定理等知识,解题的关键是“化曲为直”,将立体图形转化为平面图形.5.B【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到()9062180rπ⨯-=2πr,解方程求出r,然后求得直径即可.解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得()9062180rπ⨯-=2 πr,解得r=1,侧面积=1·2?442rππ=,底面积=2rππ=所以圆锥的表面积=25πcm,故选:B.【点拨】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.A【分析】把圆锥的侧面展开,易得展开图是一个半圆,在平面内求出线段BD的长,则此时便是最短路线长,这只要在直角三角形中应用勾股定理解决即可.解:∵圆锥的底面周长为2π∴圆锥的侧面展开后的扇形的圆心角为21801802nππ⨯︒==︒,如图∴∠BAD=90゜∵D为AC的中点∴112122AD AC==⨯=在Rt△BAD中,由勾股定理得BD故选:A【点拨】本题考查了圆锥的侧面展开图,勾股定理,扇形弧长公式,本题体现了空间问题平面化,这是一种重要的数学思想方法.7.C【分析】首先画出圆柱的侧面展开图,根据底面周长12cm,求出AB的值,由BC=10cm,DC=2cm,求出DB的值,再在Rt△ABD 中,根据勾股定理求出AD 的长,即可得答案.解:圆柱侧面展开图如下图所示,∵圆柱的底面周长为12cm,∴AB =6cm,∵BC=10cm,DC=2cm,∴DB=8,在Rt△ABD 中,10AD=( cm ),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D 的最短距离是10cm,故选:C .【点拨】此题主要考查了圆柱的平面展开图,以及勾股定理的应用,解题的关键是画出圆柱的侧面展开图.8.A【分析】作出等腰三角形底边上的高线OE,首先根据直角三角形30°所对的直角边等于斜边的一半求出等腰三角形底边上的高线OE的长度,即得到扇形OCD所在的圆的半径R,然后根据弧长公式求出CD的长度,CD的长度即为圆锥底面圆的周长,最后根据周长求出半径即可.解:如图,过点O作OE⊥AB,垂足为E,∵△OAB为顶角为120°的等腰三角形,∴A ∠=30°,1452OE OA ==cm , ∴12024530360CD ππ=⨯⨯=cm , 设圆锥的底面圆半径为r cm ,根据题意得,230r ππ=,解得15r =,所以该圆锥的底面圆的半径为15cm ,故选A .【点拨】本题考查了直角三角形30°所对的直角边等于斜边的一半、扇形的弧长公式、圆的周长公式,准确将扇形的弧长转化为底面圆的周长是解决本题的关键. 9.A【分析】根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可.解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长152542l ππ=⨯⨯= 设圆锥底面半径为r ,则522r ππ= 54r ∴= 故选:A .【点拨】本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.10.C【分析】先计算出扇形的弧长,即圆锥的底面周长,从而得到圆锥的底面半径,然后利用勾股定理求出圆锥的高.解:正六边形的外角和为360︒,∴正六边形的每个外角的度数为360660,∴正六边形的每个内角的度数为18060120︒-︒=︒,设该圆锥的底面半径为r , 则120226360r ππ=⨯⨯, 解得2r =,∴=故选:C .【点拨】本题考查了正多边形与圆及圆锥的相关计算,以及勾股定理的应用,熟练掌握扇形与扇形所围圆锥侧面之间的等量关系是解题的关键.11.4【分析】设圆锥的母线长为l cm ,根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到123122l ππ⨯⨯⨯=,然后解方程即可. 解:由扇形面积公式2360n S r π=⨯和弧长公式2360n l r π=⨯可得12扇形S lr , 设圆锥的母线长为l cm ,根据题意知侧面展开扇形的弧长为23π⨯,从而得到123122l ππ⨯⨯⨯=, 解得l =4,即圆锥的母线长为4cm ,故答案为:4.【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.5【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.解:∵圆锥的母线长是10cm ,侧面积是50πcm 2,∴圆锥的侧面展开扇形的弧长为:l 210010s r π===10π(cm ), ∵圆锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r 1022l πππ===5(cm ), 故答案为:5.【点拨】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.13 【分析】先连接CG ,设CG R =,由三角函数定义求得扇形的半径即圆锥的母线长,根据弧长公式180n R l π=,再由2180n R r ππ=,求出底面半径r ,最后根据勾股定理即可求得圆锥的高. 解:如图: 连接CG ,135C ∠=︒,45B ∴∠=︒,AB 与EF 相切,CG AB ∴⊥,在直角CBG ∆中,sin 451CG BC =⋅︒==,即圆锥的母线长是1, 设圆锥底面的半径为r ,则:13512180r ππ⨯=, 38r ∴=.则圆锥的高h ==.【点拨】本题考查的是圆锥的计算, 先利用直角三角形求出扇形的半径, 运用弧长公式计算出弧长, 然后根据底面圆的周长等于扇形的弧长求出底面圆的半径 .14.180【分析】先计算出展开的扇形的弧长,再计算出以母线为半径的圆的周长,再根据圆心角公式即可得到答案.解:∵母线长为6l =cm ,底面半径为3r =cm ,∴展开的扇形的弧长为26r ππ=,以母线为半径的圆的周长为212l ππ=,∴侧面展开图扇形的圆心角=636018012ππ︒⨯=︒, 故答案为:180︒.【点拨】本题考查圆锥的性质,解题的关键是熟练掌握圆锥的相关知识. 15.83π【分析】由圆锥底面的周长=扇形的弧长,利用弧长公式解题.解:圆锥底面的周长=扇形的弧长120481801803n r l πππ⨯=== 故答案为:83π. 【点拨】本题考查扇形的弧长等知识,是基础考点,掌握相关知识是解题关键. 16.【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角90,BAB '∠=︒ 再利用勾股定理求解即可.解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n °, 圆锥底面圆周长为210=20,40=20,180n BB 则n =90, ∵40,AB AB 224040402,BB即这根绳子的最短长度是,故答案为:【点拨】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.17.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE .线段AC 与BB'的交点为F ,线段BF 是最短路程.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF 为所求的最短路程.设∠BAB′=n°.∵6180n π⋅=4π, ∴n =120即∠BAB′=120°.∵E 为弧BB′中点,∴∠AFB =90°,∠BAF =60°,∴BF =AB•sin ∠BAF =∴最短路线长为故答案为:【点拨】本题考查了平面展开−最短路径问题,解题时注意把立体图形转化为平面图形的思维.18.23π 【分析】连接OA ,OB ,OC ,证明AOB 是等边三角形,从而求得AB 的长,然后利用弧长公式计算出BOC 的长度,即是该圆锥底面圆的周长.解:如图,连接OA ,OB ,OC ,∵OB OC =,∴OB OC =, ∴1602BAO CAO BAC ∠=∠=∠=︒, ∴AOB 是等边三角形,∴1AB OA ==,∵120BAC ∠=︒,∴BOC 的长为:12021803AB ππ⋅⋅= , 即该圆锥的底面圆的周长为23π . 故答案为:23π. 【点拨】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,解题的关键要掌握扇形弧长与底面圆周长相等.19.34r = 【分析】连接AE ,利用勾股定理得AE =BE ,由此即可求出∠ABE 的度数,再先求出扇形的圆心角∠DAB 的度数,再由弧长公式求出弧长,此弧长就是所得圆锥的底面圆的周长,由圆的周长公式即可求得所得圆锥的底面半径.解:如图,连接AE ,∵AD 为半径的圆与BC 相切于点E ,∴AE ⊥BC ,AE =AD =2.在Rt △AEB 中,∵AB =AE =2,∴AE =BE =2,∴∠ABE =45°.∴ABE △是等腰直角三角形,45BAE ∠=︒,设圆锥底面半径为r , 由题意得135222360r ππ⨯⨯=, 解得34r =. 【点拨】本题考查了切线的性质、平行线的性质、圆锥的计算,解题的关键是掌握所涉及的知识要点,并能够灵活运用.20.(1)圆锥的底面半径为3cm ;(2)圆锥的全面积236cm S π=【分析】(1)扇形的弧长公式l =180n r π,利用展开后扇形的弧长即为展开前圆锥底面圆的周长求出半径;(2)S 圆锥= S 侧+S 底,S 侧面=12lR ,S 底=2r π,(R =扇形半径即圆锥母线长,r =底面圆半径)将已知条件代入即可.解:(1)设圆锥的底面半径为cm r . 扇形的弧长为12096180l ππ⨯==, ∴26r ππ=,解得3r =,∴圆锥的底面半径为3cm . (2)圆锥的侧面积:S 侧面=12lR =()216927cm 2ππ⨯⨯=. 园锥的底面积:S 底=239(cm)ππ⨯=.∴圆锥的全面积S 全=S 侧+S 底=()227936cm πππ+=.【点拨】本题考查圆锥相关的计算,要求掌握圆锥侧面积与底面积的计算公式,侧面展开图扇形相关的面积和弧长的求算,注意求圆锥面积时母线与底面圆半径的区分.21.(1)(2,0)(3)4π 【分析】(1)线段AB 与BC 的垂直平分线的交点为D ;(2)连接AC ,先判断∠ADC =90°,则可求AC 的弧长,该弧长即为圆锥底面圆的周长,由此可求底面圆的半径;(3)设AB 的中点为E ,线段AB 的运动轨迹是以D 为圆心DA 、DE 分别为半径的圆环面积.(1)解:过点(2,0)作x 轴垂线,过点(5,3)作与BC 垂直的线,两线的交点即为D 点坐标,∴D (2,0),故答案为:(2,0);(2)解:连接AC ,∵A (0,4),B (4,4),C (6,2),∴AD =CD =AC =∵AC 2=AD 2+CD 2,∴∠ADC =90°,∴AC 的长124π=⨯⨯, ∵扇形DAC 是一个圆锥的侧面展开图,2r π=,∴r =,; (3)解:设AB 的中点为E ,∴E (2,4),∴DE =4,∴S =π×(AD 2﹣DE 2)=4π,∴线段AB 扫过的面积是4π.,【点拨】本题考查圆锥的展开图,垂径定理,能够由三点确定圆的圆心位置,理解圆锥展开图与圆锥各部位的对应关系是解题的关键.22.(1)6cm π,227cm π(2)【分析】(1)根据弧长公式和扇形面积公式求解即可;(2)先求出底面圆的半径,然后利用勾股定理求解即可.(1)解:由题意得扇形AOB 的弧长12096cm 180ππ⨯⨯==,221209==27cm 360AOB S ππ⨯⨯扇形; (2)解:如图所示,AH 为底面圆的半径,OA 为母线长,由题意可得=9cm OA ,63cm 2AH ππ==,∴OH ==.【点拨】本题主要考查了求扇形面积,求弧长,求圆锥的高,勾股定理等等,解题的关键在于能够熟练掌握弧长公式和扇形面积公式.23.90°,500π【分析】根据由圆锥的底面圆的周长等于侧面展开扇形的弧长可求.解:由圆锥的底面圆的周长等于侧面展开扇形的弧长可知:π402π10180n ⨯⨯⨯=,90n =︒, ∴侧面展开扇形的圆心角的度数是90°.全面积=底面积+展开侧面积, 全面积为:2290π40π10500π360⨯⨯⨯+=. 【点拨】本题考查了圆锥全面积和展开图圆心角的度数,解题关键是明确圆锥的底面圆的周长等于侧面展开扇形的弧长,根据题意列方程求解.24.【分析】蚂蚁爬行的最短距离是圆锥的展开图的扇形中AA′的长度.根据勾股定理求得母线长后,利用弧长等于底面周长求得扇形的圆心角的度数为90度,再由等腰直角三角形的性质求解.解:设扇形的圆心角为n ,圆锥的在Rt △AOS 中,∵r=20cm ,h=,∴由勾股定理可得母线,而圆锥侧面展开后的扇形的弧长为2×20π=18080n π⨯. ∴n=90°即△SAA′是等腰直角三角形,∴由勾股定理得:.∴蚂蚁爬行的最短距离为.【点拨】本题利用了勾股定理,弧长公式,圆的周长公式,等腰直角三角形的性质求解.。

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积 同步练习2024-2025学年九年级上册数学人教版

24.4 弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第一课时知识点一 弧长的有关计算1. 在半径为1的⊙O 中, 120°的圆心角所对的弧长是 ( ) A.3π B. 3π- C. π D.2π 2. 在半径为2 的⊙O 中,AB 的长为2π,则AB 所对的圆心角 为 ( ) A. 90° B. 45° C. 22.5° D. 180°3.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”. 若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于 ( ) A. π B. 3π C. 2π D.2π−√34. 如图, 四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则 AĈ的长是( ) A. 2π B. π C. π/2 D. π/3 5. 如图, 在扇形AOB 中, ∠AOB=90°, 点 C 为OA 的中点, CD⊥OA 交 AB ̂于D, 若 BD ̂的长为 13π, 则⊙O 的半径为 .知识点二 扇形面积的有关计算6. 如图, 在⊙O 中, OA=2,∠C=45°, 则图中阴影部分的面积是 .7. 如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形的边长为1,图中阴影部分的面积为 ( )A.52π−74 B.52π−72 C.54π−74 D.54π−72 8.(1) 在扇形AOB 中, ∠AOB =75∘,AB̂的长为2.5π, 则⊙O 的半径为 ;9. 如图, AB 是半圆O的直径, 以O为圆心, OC 长为半径的半圆交AB于C, D 两点, 弦AF 切小半圆于点E.已知OA=2, OC=1, 则图中阴影部分的面积是̂所在圆相切于点A, B. 若该10.如图是某款“不倒翁”及其轴截面图, PA, PB 分别与AMB̂的长是 cm.圆半径是18 cm,∠P=50°, 则AMB11. 如图, AB 为⊙O 的直径,点C 为⊙O上一点, CD⊥AD, AD 交⊙O 于E, AC 平分∠BAD.(1) 求证: CD 是⊙O 的切线;(2) 连CE, CE∥AB,AB=4,求图中阴影部分面积.12.如图, 在Rt△ABC 中,∠C=90°, AC=BC, 点O在AB 上, 以O为圆心, OA 为半径的半圆分别交AC, BC, AB 于点 D, E, F, 且点 E 是弧 DF 的中点.(1) 求证: BC 是⊙O 的切线;(2) 若CE=√2,求图中阴影部分的面积(结果保留π).̂的中点, D、E为圆上动点, 且 D、E关于AB 对13. 如图, AB 为⊙O 的直径, 点 C 为AB̂沿AD 翻折交AE 于点F, 使点C 恰好落在直径AB 上点C'处, 若⊙O 的周长为1称,将AD̂的长.0,求AF第二课时知识点一圆锥的展开图与扇形的关系1. 圆锥的母线长为13 cm,底面半径为5cm,则此圆锥的高线为 ( )A. 6 cmB. 8cmC. 10 cmD. 12 cm2. 在半径为50cm的圆形铁皮上剪出一块扇形铁皮,用剩余部分做一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪出的扇形的圆心角度数为 ( )A. 228°B. 144°C. 72°D. 36°3. 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ( )A. 4 cmB. 3cmC. 2cmD. 1 cm4. 已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ).A. 9B. 27C. 3D. 10知识点二圆锥的侧面积与全面积5. 已知圆锥的底面半径是3,高为4,则这个圆锥的侧面展开图的面积是 ( )A. 12πB. 15πC. 30πD. 24π6. 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是 .7. 在长方形ABCD 中, AB=16, 如图所示裁出一个扇形ABE, 将扇形围成一个圆锥 (AB 和AE 重合),则此圆锥的底面圆的半径为 ( )A. 4B. 6C. 4√2D. 88. 如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°, AB的长为12πcm, 求该圆锥的侧面积.9. 如图,一个圆锥的高为3√3 cm,侧面展开图是半圆.(1) 求∠BAC 的度数;(2) 求圆锥的侧面积(结果保留π).10. 若一个圆锥的侧面积是底面积的3 倍,则这个圆锥的侧面展开图的圆心角为 ( )A. 60°B. 90°C. 120°D. 180°11. 如图, 用一个半径为30 cm, 面积为300πcm²的扇形铁皮,制作一个无底的圆锥 (不计损耗),则圆锥的底面半径r 为 ( )A. 5cmB. 10 cmC. 20cmD. 5πcm12. 如图,圆锥的底面半径为3cm,母线长为9cm,C 为母线PB 的中点,在圆锥的侧面上, 从A 到C 的最短距离是 cm.13. 如图,已知圆锥的母线AB 长为40cm, 底面半径OB 长为 10 cm, 若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 cm.14. 如图,有一个直径为1m的圆形铁皮,圆心为O,要从中间剪去一个圆心角为120°的扇形ABC, 且BC经过点O.(1) 求被剪掉阴影部分的面积;(2) 若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥的底面半径是多少?15. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图2所示的一个圆锥,求圆锥的高.。

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习
的圆弧与AE交于,则弧AH的弧长为( )
13
A.
6
13
π
B.
4
π
5
C.
3
π
5
D.
2
π

3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA = 13cm,则圆锥的
高ℎ为( )
A. 12cm
B. 10cm
C. 6cm
D. 5cm
4.如图,正方形ABCD的边长为8,以点为圆心,AD为半径,画圆弧DE得到扇形
∴ 由勾股定理得:ℎ = 12.
故选:.
根据扇形的弧长求得圆锥的底面半径,然后利用勾股定理求得高即可.
考查了圆锥的计算,解答该题的关键是了解圆锥的底面周长等于扇形的弧长,难度不
大.
4.【答案】D;
【解析】解:设圆锥的底面圆的半径为,
根据题意可知:
AD = AE = 8,∠DAE = 45°,
答案和解析
1.【答案】B;
【解析】解:设弧所在圆的半径为 cm,
135πr
由题意得, 180
= 2π × 3 × 5

解得, = 40.
故选:.
设出弧所在圆的半径,由于弧长等于半径为3cm的圆的周长的5倍,所以根据原题所给
出的等量关系,列出方程,解方程即可.
解决本题的关键是熟记圆周长的计算公式和弧长的计算公式,根据题意列出方程.
故选:.
从2:00到4:00,这根分针的尖走了2圈,根据圆的周长 = 2πr,计算即可.
此题主要考查弧长的计算,解答该题的关键是理解题意,灵活运用所学知识解决问
题.
10.【答案】B;
阴影 = 2扇形 ‒ 正方形 = 2 ×

初三数学圆锥的侧面积试题

初三数学圆锥的侧面积试题

初三数学圆锥的侧面积试题1.已知圆锥的母线长是10cm,侧面展开图的面积是60cm2,则这个圆锥的底面半径是_______cm。

【答案】6【解析】圆锥的侧面积公式:圆锥的侧面积母线×底面半径.设圆锥的底面半径为R,由题意得,解得则这个圆锥的底面半径是6cm.【考点】圆锥的侧面积公式点评:本题是圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.2.如图,圆锥的底面半径OA=3cm,高SO=4cm,则它的侧面积为______cm2.【答案】15【解析】先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式即可求得结果.由题意得圆锥的母线长则它的侧面积【考点】勾股定理,圆锥的侧面积公式点评:勾股定理是初中数学平面图形中的极为重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.一个扇形的圆心角为120°,以这个扇形围成一个无底圆锥, 所得圆锥的底面半径为6cm,则这个扇形的半径是______cm.【答案】18【解析】先根据圆的周长公式求得底面圆周长,再根据弧长公式即可求得结果.由题意得底面圆周长,解得则这个扇形的半径是【考点】弧长公式,圆的周长公式点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4.圆锥的母线长为5cm,底面半径为3cm,那么它的侧面展开图的圆心角是( )A.180°B.200°C.225°D.216°【答案】D【解析】先根据圆的周长公式求得底面圆周长,再根据弧长公式即可求得结果.由题意得底面圆周长,解得故选D.【考点】弧长公式,圆的周长公式点评:本题是弧长公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5.圆锥的底面半径为2cm,母线长为3cm,则它的侧面积为( )A.2cm2B.3cm2C.12cm2D.6cm2【答案】D【解析】圆锥的侧面积公式:圆锥的侧面积母线×底面半径.由题意得圆锥的侧面积,故选D.【考点】圆锥的侧面积公式点评:本题是圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.6.如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线BC为轴旋转一周得一个圆锥,则这个圆锥的表面积为( )cm2.A.65B.90C.156D.300【答案】B【解析】由题意知所得的圆锥的母线长为13cm,底面半径为5cm,根据圆锥的侧面积公式及圆的面积公式即可求得结果.由题意得圆锥的侧面积则圆锥的表面积故选B.【考点】圆锥的表面积点评:图形的旋转问题是初中数学平面图形中的极为重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240 °的扇形纸板制成的,还需要用一块圆形纸板做底面,那么这块圆形纸板的直径为( )A.15cm B.12cm C.10cm D.9cm【答案】B【解析】先根据弧长公式求得底面圆周长,再根据圆的周长公式即可求得结果.由题意得底面圆周长则这个圆锥的底面直径为故选B.【考点】弧长公式,圆的周长公式点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.已知圆锥的底面半径是8,母线的长是15,求这个圆锥的侧面展开图的圆心角.【答案】192°【解析】先根据圆的周长公式求得侧面展开图的弧长,再根据弧长公式即可求得结果.侧面展开图的弧长为,设其圆心角为n°,则,解得n=192答:这个圆锥的侧面展开图的圆心角是192°.【考点】弧长公式,圆的周长公式点评:方程思想是初中数学学习中非常重要的思想方法,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.9.在半径为27m的圆形广场中央点O的上空安装了一个照明光源S,S 射向地面的光束呈圆锥形,如图所示,若光源对地面的最大张角(即图中∠ASB的度数是120°时,效果最大,试求光源离地面的垂直高度SO为多少时才符合要求?(精确到0.1m)【答案】15.6m【解析】由题意得△SAO≌△SBO,即得∠ASO=∠BSO=60°,∠SBO=30°再根据∠SBO的正切函数及可求得结果.由题意得△SAO≌△SBO,故∠ASO=∠BSO=60°,∠SBO=30°由BO=27,tan ∠SBO="tan" 30°=,得SO=≈15.6m,即光源离地面的垂直高度约为15.6m时才符合要求.【考点】全等三角形的性质,锐角三角函数点评:全等三角形的判定和性质的应用是初中数学平面图形中的极为重要的知识点,贯穿于整个初中数学的学习,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.10.在一边长为a的正方形铁皮上剪下一块圆形和一块扇形铁皮(如图),使之恰好做成一个圆锥模型,求它的底面半径.【答案】0.22a【解析】设圆的半径为r,扇形的半径为R,根据圆周长公式及弧长公式即可得到R=4r,再根据R+r+即可求得结果.设圆的半径为r,扇形的半径为R,由题意得,解得R=4r又R+r+将R=4r代入可求得r=≈0.22a.【考点】正方形的性质,圆周长公式,弧长公式点评:特殊四边形的性质的应用是初中数学平面图形中的极为重要的知识点,贯穿于整个初中数学的学习,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧长及扇形的面积、圆锥的侧面积练习
一、请准确填空(每小题3分,共24分)
1.两个同心圆的半径差为5,其中一个圆的周长为15π,则另一个圆的周长为_____.
2.已知a 、b 、c 分别是正六边形的一边、最短对角线和最长对角线,则a ∶b ∶c 为_____.
3.已知Rt △ABC ,斜边AB =13 cm ,以直线BC 为轴旋转一周,得到一个侧面积为65π cm 2的圆锥,则这个圆锥的高等于_____.
4.已知在同一平面内圆锥两母线在顶点最大的夹角为60°,母线长为8,则圆锥的侧面积为_____.
5.已知圆柱的底面半径长和母线长是方程4x 2-11x +2=0的两个根,则该圆柱的侧面展开图的面积是_____.
6.圆内接正方形的一边切下的一部分的面积等于2π-4,则正方形的边长是_____,这个正方形的内切圆半径是_____.
7.要制造一个圆锥形的烟囱帽,如图1,使底面半径r 与母线l 的比r ∶l =3∶4,那么在剪扇形铁皮时,圆心角应取_____.
8.将一根长24 cm 的筷子,置于底面直径为5 cm ,高为12 cm 的圆柱形水杯中(如图2).设筷子露在杯子外面的长为h cm ,则h
的取值范围是_____.
图1 图2
二、相信你的选择(每小题3分,共24分)
9.已知正三角形的边长为a ,其内切圆的半径为r ,外接圆的半径为R ,则r ∶a ∶R 等于
A.1∶23∶2
B.1∶2∶23
C.1∶2∶3
D.1∶3∶2
10.如图3,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线”,
其中、
、 、… 圆心依次按A 、B 、C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是
A.8π
B.6π
C.4π
D.2π
11.如图4,一扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30 cm ,贴纸部分BD 长为20 cm ,贴纸部分的面积为
A.800π cm 2
B.500π cm 2 C .3800π cm 2 D.3
500
π
cm 2
12.已知如图5,两同心圆中大圆的半径OA 、OB 交小圆于C 、D ,OC ∶CA =3∶2,则和的长度比为
A.1∶1
B.3∶2
C.3∶5
DE EF
13.如图6,AB 为半圆O 的直径,C 是半圆上一点,且∠COA =60°,设扇形AOC 、△COB 、弓形BmC 的面积为S 1、S 2、S 3,则它们之间的关系是
A.S 1<S 2<S 3
B.S 2<S 1<S 3
C.S 1<S 3<S 2
D.S 3<S 2<S 1
A B
C
D
E
F
A
C
D B
O
图3 图4 图5
图6
14.如图7中,正方形的边长都相等,其中阴影部分面积相等的有
(1) (2)
(3) (4) 图7
A.(1)(2)(3)
B.(2)(3)(4)
C.(1)(3)(4)
D.(1)(2)(3)(4) 15.如果圆锥的母线长为5 cm ,底面半径为3 cm ,那么圆锥的表面积为
A.39π cm 2
B.30π cm 2
C.24π cm 2
D.15π cm 2
16.一个圆台形物体的上底面积是下底面积的4
1
.如图8,放在桌面上,对桌面的压强是
200 帕,翻过来放,对桌面的压强是
A.50帕
B.80帕
C.600帕 D .800帕
图8
三、考查你的基本功(共14分)
17.(6分)如图9,圆锥底面半径为r ,母线长为3r ,底面圆周上有一蚂蚁位于A 点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径.
A
图9
18.(8分)如图10,等腰Rt △ABC 中斜边AB =4,O 是AB 的中点,以O 为圆心的半圆分别与两腰相切于点D 、E ,图中阴影部分的面积是多少?请你把它求出来.(结果用π表示)
A
B
C D O
E
F
图10
四、生活中的数学(共18分)
19.(8分)铅球比赛要求运动员在一固定圆圈内投掷,推出的铅球必须落在40°角的扇形区域内(以投掷圈的中心为圆心).如果运动员最多可投7 m ,那么这一比赛的安全区域的面积至少应是多少?(结果精确到0.1 m 2)
20.(10分)如图11,有一直径是1 m 的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB .
(1)被剪掉的阴影部分的面积是多少?
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?(结果可用根号表示)
A
B
C
O
图11
五、探究拓展与应用(共20分)
21.(10分)现有总长为8 m 的建筑材料,用这些建筑材料围成一个扇形的花坛(如图12),当这个扇形的半径为多少时,可以使这个扇形花坛的面积最大?并求最大面积.
A B
O
图12
22.(10分)如图13,正三角形ABC 的中心恰好为扇形ODE 的圆心,且点B 在扇形内,要使
扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3
1

扇形的圆心角应为多少度?说明你的理由.
图13。

相关文档
最新文档